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II.5 Transformations and Change of Variables (continued)

absolutely continuous case

- suppose X ∈ Rk has density function fX and we want the distribution of
Y = T (X) ∈ R l where l ≤ k
- as noted Y could have a discrete distribution but our interest here is in
the situations where Y also has an a.c. distribution with density fY which
we want to determine

- one approach to this (which can be carried out sometimes) is through
the cdf

fY(y1, . . . , yk ) =
∂kFY(y1, . . . , yk )

∂y1 · · · ∂yk

=
∂kPX(T−1{(−∞, y1]× · · · × (−∞, yk ]})

∂y1 · · · ∂yk
- this will generally work with projections T when there is a formula for FX
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Example II.5.1 (Example II.2.2 Continued)

- we defined F : R2 → [0, 1] by

F (x1, x2) =
{
0 x1 < 0 or x2 < 0
1− e−x1 − e−x2 + e−x1−x2 x1 ≥ 0 and x2 ≥ 0

but we didn’t actually prove it is a cdf (via the Extension Thm)

- but if it is, then

f (x1, x2) =
∂2F (x1, x2)

∂x1∂x2
=

{
0 x1 < 0 or x2 < 0
e−x1−x2 x1 ≥ 0 and x2 ≥ 0

and we see that (i) f (x1, x2) ≥ 0 for all (x1, x2) and (ii)∫ ∞

−∞

∫ ∞

−∞
f (x1, x2) dx1dx2 =

∫ ∞

0

∫ ∞

0
e−x1−x2 dx1dx

=
∫ ∞

0
e−x1 dx1

∫ ∞

0
e−x2 dx2 =

(
−e−x1

∣∣∞
0

) (
−e−x2

∣∣∞
0

)
= 1

- so f is a valid pdf and thus F is a valid cdf since

F (x1, x2) =
∫ x1

−∞

∫ x2

−∞
f (z1, z2) dz1dz2
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- therefore, if Y = T (X1,X2) = X1, then

FX1(x1) = F (x1,∞) =
{
0 x1 < 0
1− e−x1 x1 ≥ 0

so

fX1(x1) =
∂FX1(x1)

∂x1
=

{
0 x1 < 0
e−x1 x1 ≥ 0

and similarly for X2, namely, both X1 and X2 have exponential(1)
distributions �
- generally, we need alternative methods to determine fY
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Example II.5.2
- suppose y = T (x1, x2) = x1+ x2 and (X1,X2) has density

f (x1, x2) =
{
2 if 0 < x1 < x2 < 1
0 otherwise

so

FY (y) = PY ((−∞, y ]) = P(X1,X2)({(x1, x2) : x1 + x2 ≤ y})

=


0 y < 0∫ y/2
0

∫ y−x1
x1

2dx2dx1 = y2/2 0 ≤ y ≤ 1
1−

∫ 1
y/2

∫ x2
y−x2 2dx1dx2 = 2y − y

2/2− 1 1 ≤ y ≤ 2
1 2 < y

fY (y) =


0 y ≤ 0 or y ≥ 2
y 0 < y < 1
2− y 1 ≤ y < 2

the triangular density �
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change of variable

- suppose now T : Rk → Rk is 1-1 and smooth (all 1st order partial
derivatives exist and are continuous)

- so

T (x) =

 T1(x)
...

Tk (x)


and put

JT (x) =

∣∣∣∣∣∣∣∣det


∂T1(x)
∂x1

. . . ∂T1(x)
∂xk

...
...

∂Tk (x)
∂x1

. . . ∂Tk (x)
∂xk


∣∣∣∣∣∣∣∣
−1

- JT (x) indicates how T is changing volume at x since (fact)

JT (x) = lim
δ↓0

vol(Bδ(x))
vol(TBδ(x))

so JT (x) < 1 means T expands volume at x and JT (x) > 1 means T
contracts volumes at x =T−1(y)
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- now if Y = T (X), then for small δ

fY(y) ≈
PY(TBδ(T−1(y)))
vol(TBδ(T−1(y)))

=
PX(Bδ(T−1(y)))
vol(Bδ(T−1(y))

vol(Bδ(T−1(y)))
vol(TBδ(T−1(y)))

≈ fX(T
−1(y))JT (T−1(y))

- this intuitive argument can be made rigorous to prove the following

Proposition II.5.1 (Change of Variable) When T : Rk → Rk is 1-1,
smooth and Y = T (X) where X has an a.c. distribution with density fX,
then Y has an a.c. distribution with density

fY(y) = fX(T−1(y))JT (T−1(y)).
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Example II.5.3

- f (x) = 1/2 for 0 < x < 2 (the Uniform(0, 2) distribution)

- let y = T (x) = x2 so T−1(y) = y1/2 and JT (x) = |det(2x)|−1 = 1/2x
for x ∈ (0, 2)
- note T contracts lengths on (0, 1/2) and expands lengths on (1/2, 2)

- then

fY (y) = f (T−1(y))JT (T
−1(y))

= f (y1/2)
1

2y1/2

=

{
0 y ≤ 0 or y ≥ 4
1/4y1/2 0 < y < 4

�

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 9 2023 8 / 16



Example II.5.4 Prove
∫ ∞
−∞ ϕ(x) dx = 1 for N(0, 1) pdf ϕ.

- consider(∫ ∞

−∞
ϕ(x) dx

)2
=

∫ ∞

−∞
ϕ(x) dx

∫ ∞

−∞
ϕ(y) dy

=
∫ ∞

−∞

∫ ∞

−∞

1
2π

exp
(
−x

2 + y2

2

)
dxdy

- make the polar coordinate change of variable T (x , y) = (r , θ) where for
r ∈ (0,∞), θ ∈ [0, 2π)

(x , y) = T−1 (r , θ) = (r cos θ, r sin θ)

- fact - JT (x) = 1/JT −1(T (x)) in general so

JT −1(r , θ) =

∣∣∣∣det( ∂r cos θ
∂r

∂r cos θ
∂θ

∂r sin θ
∂r

∂r sin θ
∂θ

)∣∣∣∣−1
=

∣∣∣∣det( cos θ −r sin θ
sin θ r cos θ

)∣∣∣∣−1
=

∣∣r(cos2 θ + sin2 θ)
∣∣−1 = 1/r
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- then, using r2 = x2 + y2,(∫ ∞

−∞
ϕ(x) dx

)2
=
∫ ∞

0

∫ 2π

0

r
2π

exp
(
−r2/2

)
dθdr

=
∫ ∞

0
r exp

(
−r2/2

)
dr = − exp

(
−r2/2

)∣∣∞
0 = 1

- this proves
∫ ∞
−∞ ϕ(x) dx = 1

�
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Example II.5.5 Affi ne transformations

- consider a general affi ne transformation T : Rk → Rk given by

T (x) = Ax+ b =


a11x1 + · · ·+ a1kxk + b1
a21x1 + · · ·+ a2kxk + b2

...
ak1x1 + · · ·+ akkxk + bk


where b ∈Rk ,A ∈ Rk×k

note T (x1) = T (x2) iff A(x1−x2) = 0 so T is 1-1 iff A is a nonsingular
(invertible) matrix and in that case T−1(y) =A−1(y− b) = x

JT (x) =

∣∣∣∣∣∣∣∣det


∂T1(x)
∂x1

. . . ∂T1(x)
∂xk

...
...

∂Tk (x)
∂x1

. . . ∂Tk (x)
∂xk


∣∣∣∣∣∣∣∣
−1

= |detA|−1

- so if Y = AX+ b then

fY(y) = fX(T−1(y))JT (T−1(y)) = fX(A−1(y− b)) |detA|−1

�
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Example II.5.6 General Multivariate Normal

- suppose Z ∼ Nk (0, I ) so fZ(z) = (2π)−k/2 exp(−z′z/2) for z ∈ Rk

- let X = AZ+ µ where A ∈ Rk×k is nonsingular and µ ∈ Rk

- then by the previous example X has an a.c. distribution with density

fX(x) = fZ(A
−1(x− µ)) |detA|−1

= (2π)−k/2 exp(−((A−1(x− µ))′A−1(x− µ)/2) |detA|−1

= (2π)−k/2 |detA|−1 exp(−((x− µ)′(A−1)′A−1(x− µ)/2)

= (2π)−k/2 ∣∣detA detA′∣∣−1/2 exp(−((x− µ)′(AA′)−1(x− µ)/2)

= (2π)−k/2 ∣∣detAA′∣∣−1/2 exp(−((x− µ)′(AA′)−1(x− µ)/2)

= (2π)−k/2(detΣ)−1/2 exp(−((x− µ)′Σ−1(x− µ)/2)

where Σ = AA′ ∈ Rk×k

- when a random vector X has this pdf we write X ∼ Nk (µ,Σ)
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note - Σ′ = (AA′)′ = (A′)′A′ = AA′ = Σ so it is a symmetric matrix and
for any vector x ∈ Rk

x′Σx = x′AA′x = (A′x)′A′x = ||A′x||2 ≥ 0

and ||A′x||2 = 0 iff A′x = 0 which is true iff x = 0 and so Σ is a positive
definite matrix �
Exercise II.5.4 Suppose X ∼ Nk (µ,Σ) and Y = AX+ b where A ∈ Rk×k
is nonsingular and µ ∈ Rk . Prove that Y ∼ Nk (Aµ+ b,AΣA′).

Exercise II.5.5 Suppose X ∼ Nk (µ,Σ) and Σ = CC ′ where C ∈ Rk×k is
nonsingular. Prove that Z = C−1(X− µ) ∼ Nk (0, I ).
Exercise II.5.6 When k = 2 write out the density

fX(x) = (2π)−k/2(detΣ)−1/2 exp(−((x− µ)′Σ−1(x− µ)/2)

in terms of x1 and x2 using µ = (µ1, µ2)
′,

Σ =
(

σ11 σ12
σ12 σ22

)
and we have used the symmetry of Σ to put σ21 = σ12.
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Example II.5.7 Some Properties of the Multivariate Normal

- consider, for µ ∈ Rk ,Σ ∈ Rk×k p.d., is

fX(x) = (2π)−k/2(detΣ)−1/2 exp(−((x− µ)′Σ−1(x− µ)/2) (*)

a valid density so we can say X ∼ Nk (µ,Σ)?
- recall the Spectral Theorem from linear algebra which says that, for any
p.d. matrix Σ ∈ Rk×k ,

Σ = QΛQ ′ =
k

∑
i=1

λiqiq′i where

Q =
(
q1 · · · qk

)
∈ Rk×k orthogonal

Λ = diag(λ1, . . . ,λk ) with λ1 ≥ · · · ≥ λk > 0

- here

Σqj =
k

∑
i=1

λiqiq′iqj = λjqj

since q′iqj = 0 when i 6= j and q′jqj = 1, so λj is an eigenvalue of Σ with
eigenvector qj
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- define Σ1/2 = QΛ1/2Q ′, where Λ1/2 = diag(λ1/2
1 , . . . ,λ1/2

k ), called the
symmetric square root of Σ since

(Σ1/2)′ = QΛ1/2Q ′

Σ1/2Σ1/2 = QΛ1/2Q ′QΛ1/2Q ′ = QΛ1/2IΛ1/2Q ′

= QΛ1/2Λ1/2Q ′ = QΛQ ′ = Σ

- if Z ∼ Nk (0, I ) and A = Σ1/2, then Example II.5.5 shows that
X = AZ+ µ ∼ Nk (µ,AA′) where AA′ = Σ1/2Σ1/2 = Σ

- therefore * defines a valid pdf on Rk whenever Σ is p.d.

- clearly the level sets of fX are given by

∂Er (µ,Σ) = {x : (x− µ)′Σ−1(x− µ) = r2}
= the boundary of the ellipsoidal region

with center at µ and principal axes

determined by Σ and r
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Exercise II.5.7 When Σ is p.d. with spectral decomposition QΛQ ′, then
prove Σ−1 = QΛ−1Q ′.

- so putting w = Q ′(x− µ) then x = µ+Qw and

∂Er (µ,Σ) = {x : (x− µ)′QΛ−1Q ′(x− µ) = r2}
= µ+Q{w : w′Λ−1w = r2}
= µ+Q(∂Er (0,Λ))

and

∂Er (0,Λ) =
{
w : ∑

w2i
r2λi

= 1
}

which is the ellipsoid in Rk with i-th semi-principal axis along the i-th
standard basis vector ei of length rλ1/2

i

- so ∂Er (µ,Σ) has i-th semi-principal axis is on the line {µ+cqi : c ∈ R1}
of length rλ1/2

i �
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