Probability and Stochastic Processes I - Lecture 8

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

II.5 Transformations and Change of Variables

- suppose we have a random vector $\mathbf{X} \in \mathbb{R}^k$ and we transform this to be a new random vector $\mathbf{Y} = T(\mathbf{X}) \in R^I$
- given the probability distribution of X, whether specified by a probability function $p_{\mathbf{X}}$ or a density $f_{\mathbf{X}}$, determine the probability function or density of Y

discrete case

- so suppose **X** has prob. function $p_{\mathbf{X}}$ and now we want

$$\rho_{\mathbf{Y}}(\mathbf{y}) = P_{\mathbf{Y}}(\{\mathbf{y}\}) = P_{\mathbf{X}}(T^{-1}\{\mathbf{y}\}) = \sum_{\mathbf{x} \in T^{-1}\{\mathbf{y}\}} \rho_{\mathbf{X}}(\mathbf{x})$$

Example II.5.1 - suppose
$$p_{\mathbf{X}}(0,1)=1/2$$
, $p_{\mathbf{X}}(1,0)=1/3$, $p_{\mathbf{X}}(1,1)=1/6$ and $y=T(x_1,x_2)=x_1+x_2$

- so Y takes the values 1 and 2 (only) with positive probability and since $T^{-1}\{1\} = \{(0,1), (1,0)\}$ then $p_Y(1) = 1/2 + 1/3 = 5/6$ and since $T^{-1}\{2\} = \{(1,1)\}$ then $p_Y(2) = 1/6$

Example II.5.2 Projections

- suppose $k \ge 2$ and $(y_1, y_2) = T(x_1, \dots, x_k) = (x_1, x_2)$ projection on the first two coordinates, then

$$T^{-1}\{\mathbf{y}\} = T^{-1}\{(y_1, y_2)'\} = \{(x_1, \dots, x_k) : x_1 = y_1, x_2 = y_2\}$$

$$p_{\mathbf{Y}}(y_1, y_2) = P_{\mathbf{X}}(T^{-1}\{\mathbf{y}\}) = \sum_{\mathbf{x} \in T^{-1}\{\mathbf{y}\}} p_{\mathbf{X}}(\mathbf{x})$$

$$= \sum_{(x_1, \dots, x_k) : x_1 = y_1, x_2 = y_2} p_{\mathbf{X}}(x_1, \dots, x_k)$$

$$= \sum_{(x_3, \dots, x_k) \in R^{k-2}} p_{\mathbf{X}}(y_1, y_2, x_3, \dots, x_k)$$

- also if $y=T(x_1,\ldots,x_k)=x_2$ projection on the second coordinate, then $T^{-1}\{y\}=T^{-1}\{y\}=\{(x_1,\ldots,x_k):x_2=y\}$

$$p_{Y}(y) = \sum_{(x_{1},...,x_{k}):x_{2}=y} p_{X}(x_{1},...,x_{k})$$

$$= \sum_{(x_{1},x_{3},...,x_{k})\in R^{k-2}} p_{X}(x_{1},y,x_{3},...,x_{k})$$

- so the general approach for finding the probability functions of projections is to take the joint probability function and sum out all the remaining variables

Example II.5.3 *Multinomial* $(n, p_1, ..., p_k)$ *distribution*

- when let $\mathbf{X} = (X_1, \dots, X_k)' \sim \textit{multinomial}(n, p_1, \dots, p_k)$ then $p_{\mathbf{X}}$ is only positive on $\mathbf{a} \in R^k$ when

$$a_i \in \{0,\ldots,n\}$$
 and $a_1 + \cdots + a_k = n$ (*)

and has

$$p_{\mathbf{X}}(\mathbf{a}) = \binom{n}{a_1 \ a_2 \ \dots \ a_k} p_1^{a_1} \cdots p_k^{a_k}$$

- suppose $k \ge 2$ and $(y_1, y_2) = T(x_1, \dots, x_k) = (x_1, x_2)$ so we want the distribution of $\mathbf{Y} = (X_1, X_2)'$
- by (*) $y_1, y_2, a_3, \ldots, a_k \in \{0, \ldots, n\}$ and $y_1 + y_2 + a_3 + \cdots + a_k = n$ iff

$$a_3, \ldots, a_k \in \{0, \ldots, n - y_1 - y_2\}$$
 and $a_3 + \cdots + a_k = n - y_1 - y_2$ (**)

therefore

$$\begin{split} & p_{Y}(y_{1},y_{2}) = \sum_{(a_{3},\ldots,a_{k}) \text{ sat. (**)}} \binom{n}{y_{1} y_{2} a_{3} \ldots a_{k}} p_{1}^{y_{1}} p_{2}^{y_{2}} p_{3}^{a_{3}} \cdots p_{k}^{a_{k}} \\ & = \frac{n!}{y! y_{2}! (n - y_{1} - y_{2})!} p_{1}^{y_{1}} p_{2}^{y_{2}} \sum_{(a_{3},\ldots,a_{k}) \text{ sat. (**)}} \frac{(n - y_{1} - y_{2})!}{a_{3}! \cdots a_{k}!} p_{3}^{a_{3}} \cdots p_{k}^{a_{k}} \\ & = \binom{n}{y_{1} y_{2} n - y_{1} - y_{2}} p_{1}^{y_{1}} p_{2}^{y_{2}} (1 - p_{1} - p_{2})^{n - y_{1} - y_{2}} \times \\ & \sum_{(a_{3},\ldots,a_{k}) \text{ sat.g (**)}} \binom{n - y_{1} - y_{2}}{a_{3} \ldots a_{k}} \left(\frac{p_{3}}{1 - p_{1} - p_{2}}\right)^{a_{3}} \cdots \left(\frac{p_{k}}{1 - p_{1} - p_{2}}\right)^{a_{k}} \\ & = \binom{n}{y_{1} y_{2} n - y_{1} - y_{2}} p_{1}^{y_{1}} p_{2}^{y_{2}} (1 - p_{1} - p_{2})^{n - y_{1} - y_{2}} \end{split}$$

since the second term is the sum of all

multinomial
$$\left(n - y_1 - y_2, \frac{p_3}{1 - p_1 - p_2}, \dots, \frac{p_k}{1 - p_1 - p_2}\right)$$

probabilities and so $(X_1, X_2) \sim \text{multinomial}(n, p_1, p_2, 1 - p_1 - p_2) \blacksquare$

Exercise II.5.1 If $\mathbf{X} = (X_1, \dots, X_k)' \sim \text{multinomial}(n, p_1, \dots, p_k)$ then prove $X_i \sim \text{binomial}(n, p_i) = \text{multinomial}(n, p_i, 1 - p_i)$.

note - these results for the multinomial are easy to see intuitively since the multinomial arises by categorizing n independent observations into k mutually disjoint categories and when we project onto I coordinates we are now categorizing into I+1 mutually disjoint categories

Exercise II.5.2 Use the above note to determine the distribution of $Y = X_1 + \cdots + X_l$ for $l \le k$ when

$$(X_1,\ldots,X_k)'\sim \text{multinomial}(n,p_1,\ldots,p_k).$$

note - in the discrete case if $\mathcal T$ is 1-1 ($\mathcal T(\textbf{x}_1)=\mathcal T(\textbf{x}_2)$ iff $\textbf{x}_1=\textbf{x}_2)$ then

$$p_{\mathbf{Y}}(\mathbf{y}) = P_{\mathbf{X}}(T^{-1}\{\mathbf{y}\}) = p_{\mathbf{X}}(T^{-1}\{\mathbf{y}\})$$

whenever $\mathcal{T}^{-1}\{\mathbf{y}\}
eq \phi$

4□ → 4□ → 4 = → 4 = → 9 Q P

- depending on the transformation T it could be that $\mathbf{Y} = T(\mathbf{X})$ has a discrete distribution no matter what kind of distribution \mathbf{X} has

Example II.5.4

- suppose $T(\mathbf{x}) = \mathbf{c} \in R^I$ for every \mathbf{x} , then

$$p_{\mathbf{Y}}(\mathbf{y}) = P_{\mathbf{X}}(T^{-1}\{\mathbf{y}\}) = \begin{cases} P_{\mathbf{X}}(R^k) = 1 & \text{if } \mathbf{y} = \mathbf{c} \\ P_{\mathbf{X}}(\phi) = 0 & \text{if } \mathbf{y} \neq \mathbf{c} \end{cases}$$

and the distribution of Y is degenerate at c

- suppose $X \sim N(0,1)$ so $P(X \le 0) = P(X > 0) = 1/2$, then if

$$Y = T(X) = I_{(-\infty,0]}(X) = \begin{cases} 1 & \text{if } X \le 0 \\ 0 & \text{if } X > 0 \end{cases}$$

then

$$p(1) = P(X \le 0) = 1/2 \text{ and } p(1) = P(X > 0) = 1/2$$

so $Y \sim \text{Bernoulli}(1/2) \blacksquare$

Definition II.5.1 For $A \subset \Omega$ the function $I_A : \Omega \to R^1$ given by

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \in A^c \end{cases}$$

is called the *indicator function* of A.

Exercise II.5.3 If (Ω, \mathcal{A}, P) is a probability model and $A \in \mathcal{A}$ then $Y = I_A$ is a random variable with $Y \sim \text{Bernoulli}(P(A))$.