Probability and Stochastic Processes I - Lecture 7

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

II.4 Absolutely Continuous Probability on Euclidean Spaces

- if for (R^k, \mathcal{B}^k, P) we have $P(\{\mathbf{a}\}) = 0$ for every $\mathbf{a} \in R^k$, then this is a continuous probability model

Example II.4.1 - suppose k = 1 and $F : R^1 \rightarrow [0, 1]$ is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & 1 \le x \end{cases}$$

- then (i) for $a \leq b$

$$F(b) - F(a) = \begin{cases} 0 & b < 0 \\ b & a < 0 \le b \le 1 \\ b - a & 0 \le a \le b \le 1 \\ 1 - a & 0 \le a \le 1 < b \\ 1 & a \le 0 \le 1 < b \\ 0 & 1 \le a \end{cases}$$

$$\ge 0$$

◆□ ト ◆□ ト ◆ 直 ト ◆ 直 ・ りへで

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

- also (ii) $\lim_{x\to\infty} F(x) = 1$ and (iii) since F is continuous it is always right continuous

- therefore by the Extension Thm F is a cdf and since F is continuous

$$P(\{a\}) = \lim_{\delta \downarrow 0} P((a - \delta, a]) = \lim_{\delta \downarrow 0} F(a) - F(a - \delta) = 0$$

and so F corresponds to a continuous distribution on $R^1 \blacksquare$

- we use the notation $f:(R^k,\mathcal{B}^k)\to (R^1,\mathcal{B}^1)$ to mean $f:R^k\to R^1$ and $f^{-1}B \in \mathcal{B}^k$ for every $B \in \mathcal{B}^1$

Definition II.4.1 A probability model (R^k, \mathcal{B}^k, P) is absolutely continuous if there is a function $f:(R^k,\mathcal{B}^k)\to(R^1,\mathcal{B}^1)$ such that

$$P(A) = \int_A f(\mathbf{x}) \, d\mathbf{x}$$

for every $A \in \mathcal{B}^k$. The function f is called the *probability density function* (pdf) of the model. ■

note - $P({a}) = \int_{{a}} f(x) dx = 0$ and so an absolutely continuous (a.c.) model is a continuous model but there are continuous models that are not absolutely continuous

- why is f called a density?
- let $B_{\delta}(\mathbf{a}) = \{\mathbf{x} : ||\mathbf{x} \mathbf{a}|| \leq \delta\} = \text{ball of radius } \delta \text{ centered at } \mathbf{a}$ if f is continuous at a then (fact)

$$f(\mathbf{a}) = \lim_{\delta \downarrow 0} \frac{1}{Vol(B_{\delta}(\mathbf{a}))} \int_{B_{\delta}(\mathbf{a})} f(\mathbf{x}) d\mathbf{x} = \lim_{\delta \downarrow 0} \frac{P(B_{\delta}(\mathbf{a}))}{Vol(B_{\delta}(\mathbf{a}))}$$

so for small δ

$$f(\mathbf{a}) \approx \frac{P(B_{\delta}(\mathbf{a}))}{Vol(B_{\delta}(\mathbf{a}))}$$

- so $f(\mathbf{a})$ is approximately the amount of probability per unit volume at \mathbf{a}

Proposition II.4.1 For a.c. model (R^k, \mathcal{B}^k, P) with density $f(\mathbf{i})$ $f(\mathbf{x}) > 0$ with probability 1,

(ii)
$$\int_{R^k} f(\mathbf{x}) d\mathbf{x} = 1$$
,

(iii)
$$F(x_1,...,x_k) = \int_{-\infty}^{x_k} \cdots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f(z_1,...,z_k) dz_1 dz_2 \cdots dz_k$$

(iv) when f is continuous at (x_1, \ldots, x_k) , then $f(x_1, \ldots, x_k) = \frac{\partial^k F(x_1, \ldots, x_k)}{\partial x_1 \cdots \partial x_k}$.

Proof (i)
$$0 \le P(f^{-1}(-\infty,0)) = \int_{f^{-1}(-\infty,0)} f(\mathbf{x}) d\mathbf{x} \le 0$$
 and so $P(f^{-1}(-\infty,0)) = 0$ which implies $P(f^{-1}[0,\infty)) = 1$.

(ii)
$$1 = P(R^k) = \int_{R^k} f(\mathbf{x}) d\mathbf{x}$$
.

(iii)

$$F(\mathbf{x}) = P((-\infty, x_1] \times \cdots \times (-\infty, x_k]) = \int_{(-\infty, x_1] \times \cdots \times (-\infty, x_k]} f(\mathbf{z}) d\mathbf{z}$$
$$= \int_{-\infty}^{x_k} \cdots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f(z_1, \dots, z_k) dz_1 dz_2 \cdots dz_k$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*)

(iv)

$$\frac{\partial F(x_1, \dots, x_k)}{\partial x_k} \\
= \frac{\partial}{\partial x_k} \int_{-\infty}^{x_k} \left(\int_{-\infty}^{x_{k-1}} \dots \int_{-\infty}^{x_1} f(z_1, \dots, z_k) dz_1 \dots dz_{k-1} \right) dz_k \\
= \frac{\partial}{\partial x_k} \int_{-\infty}^{x_k} g(x_1, \dots, x_{k-1}, z_k) dz_k \\
= g(x_1, \dots, x_{k-1}, x_k) \text{ by the Fundamental Thm of Calculus} \\
= \int_{-\infty}^{x_{k-1}} \dots \int_{-\infty}^{x_1} f(z_1, \dots, z_{k-1}, x_k) dz_1 \dots dz_{k-1}$$

and similarly for the remaining derivatives.

Michael Evans University of Toronto http://iProbability and Stochastic Processes I - Lectu

Proposition II.4.2 If $f:(R^k,\mathcal{B}^k)\to(R^1,\mathcal{B}^1)$ satisfies (i) $f(\mathbf{x})>0$ for all **x** and (ii) $\int_{\mathbb{R}^k} f(\mathbf{x}) d\mathbf{x} = 1$, then f is a density for a.c. prob. model (R^k, \mathcal{B}^k, P) .

Proof: Consider the assignment $P(B) = \int_B f(\mathbf{x}) d\mathbf{x}$ for $B \in \mathcal{B}^k$. Clearly $0 \le P(B) \le \int_{R^k} f(\mathbf{x}) d\mathbf{x} = 1$ and so $P : \mathcal{B}^k \to [0,1]$ and $P(R^k) = 1$. Now suppose $B_1, B_2, \ldots \in \mathcal{B}^k$ are mutually disjoint, then

$$P(\bigcup_{i=1}^{\infty} B_i) = \int_{\bigcup_{i=1}^{\infty} B_i} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{\infty} \int_{B_i} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{\infty} P(B_i)$$

where we have used (fact) the countable additivity of \int when integrating nonnegative functions (discussed later).

- this result gives us a simple way to define a.c. probability models

Example II.4.2 Standard Multivariate Normal Distribution on R^k

- we write $\mathbf{X} \sim N_k(\mathbf{0}, I)$ for $\mathbf{X} \in R^k$ where $\mathbf{0} = (0, \dots, 0) \in R^k, I \in R^{k \times k}$ the identity matrix when

$$f(\mathbf{x}) = (2\pi)^{-k/2} \exp(-\mathbf{x}'\mathbf{x}/2)$$

$$= (2\pi)^{-k/2} \exp\left(-\frac{1}{2}\sum_{i=1}^{k} x_i^2\right)$$

$$= \prod_{i=1}^{k} (2\pi)^{-1/2} \exp\left(-\frac{1}{2}x_i^2\right) = \prod_{i=1}^{k} \varphi(x_i)$$

note - when k=1 then $f(\mathbf{x})$ is the N(0,1) density and otherwise it is the product of N(0,1) densities φ

- therefore (i) $f(\mathbf{x}) \geq 0$ for all \mathbf{x} and (ii) using $\int_{-\infty}^{\infty} \varphi(x) \, dx = 1$

$$\int_{R^k} f(\mathbf{x}) d\mathbf{x} = \int_{R^k} \prod_{i=1}^k \varphi(x_i) dx_1 \cdots dx_k = \prod_{i=1}^k \int_{-\infty}^{\infty} \varphi(x_i) dx_i = 1$$

and so by Prop II.4.2 this defines an a.c. prob. model on R^k

Exercise II.4.1 (a) Suppose $f(x_1, x_2, x_3) = cx_1x_2x_3$ when $(x_1, x_2, x_3) \in [0, 1]^3$ and is 0 otherwise. Determine c so that f is a pdf. (b) Using f in (a) calculate $P([1/2, 3/4] \times [2/3, 1] \times [0, 1/2])$. (c) Now suppose $f(x_1, x_2, x_3) = cx_1x_2x_3$ for $0 \le x_1 \le x_2 \le x_3 \le 1$ and is 0 otherwise. Repeat parts (a) and (b).

Exercise II.4.2 F&R 2.4.20

Exercise II.4.3 F&R 2.4.21

Exercise II.4.4 F&R 2.4.24 and 2.4.25

Exercise II.4.5 F&R 2.7.17 and 2.7.18

- suppose $\mathbf{X} \sim f_{\mathbf{X}}$ (random vector \mathbf{X} has an a.c. distribution with density $f_{\mathbf{X}}$)

- then **X** has cdf

$$F_{\mathbf{X}}(x_1,\ldots,x_k) = \int_{-\infty}^{x_k} \cdots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_{\mathbf{X}}(z_1,\ldots,z_k) dz_1 dz_2 \cdots dz_k$$

- then, for example,

$$F_{(X_{1},X_{2})}(x_{1},x_{2}) = F_{\mathbf{X}}(x_{1},x_{2},\infty,\ldots,\infty)$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f_{\mathbf{X}}(z_{1},\ldots,z_{k}) dz_{1} dz_{2} \cdots dz_{k}$$

$$= \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(z_{1},\ldots,z_{k}) dz_{3} \cdots dz_{k} dz_{1} dz_{2}$$

$$= \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} g(z_{1},z_{2}) dz_{1} dz_{2}$$

where

$$g(z_1, z_2) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(z_1, \ldots, z_k) dz_3 \cdots dz_k$$

◆ロト ◆昼 ▶ ◆ 差 ▶ → 差 → から(で)

- since the cdf determines all the probabilities (Extension Thm) we know now that (X_1, X_2) has an a.c. prob dist. with density

$$f_{(X_1,X_2)}(x_1,x_2) = \frac{\partial^2 F_{(X_1,X_2)}(x_1,x_2)}{\partial x_1 \partial x_2} = g(x_1,x_2)$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,x_2,z_3,\ldots,z_k) dz_3 \cdots dz_k$$

- the general result holds: if we have a joint density $f_{\mathbf{X}}$ for \mathbf{X} then any subvector $(X_{i_1}, \ldots, X_{i_1})$ has an a.c. distribution with density obtained by integrating out all the remaining variables

Example II.4.2 Standard Multivariate Normal Distribution on R^k (continued)

- suppose $\mathbf{X} \sim N_k(\mathbf{0}, I)$ which has density $f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^k \varphi(x_i)$
- then clearly $(X_{i_1},\ldots,X_{i_l})'$ has density $\prod_{j=1}^l \varphi(x_{i_j})$ and so

$$(X_{i_1},\ldots,X_{i_l})'\sim N_I(\mathbf{0},I)$$

- in particular $X_i \sim N(0,1)$ for $i=1,\ldots,k$

Exercise II.4.6 Suppose $X \sim p_X$ (random vector X has discrete distribution with prob. fn p_X). Show that any subvector $(X_{i_1}, \ldots, X_{i_1})'$ has a discrete distribution and show how you would compute its probability function.

Exercise II.4.7 Suppose $X \sim \text{multinomial}(n, p_1, p_2, p_3, p_4)$. Determine the probability functions of X_1 and (X_1, X_2) . State a general result for the marginals of a multinomial distribution.

Exercise II.4.8 Suppose $X \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_{k+1})$ as in Ex. II.4.5. Determine the density functions of X_1 and (X_1, X_2) . State a general result for the marginals of a Dirichlet distribution.