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I.5 Continuity of P

- consider why P is required to be countably additive rather than just
finitely additive

- for this we need to define what it means for a sequence of sets An ⊆ Ω
to converge to a set A ⊆ Ω

Definition 1.5.1 For a sequence An ⊆ Ω define

lim inf An = ∪∞
n=1 ∩∞

i=n Ai = {ω : ω is in all but finitely many Ai},
lim supAn = ∩∞

n=1 ∪∞
i=n Ai = {ω : ω is in infinitely many Ai}.

Then An converges to the set A, and write limn→∞ An = A or An → A,
whenever A = lim inf An = lim supAn. �
- lim inf An ⊆ lim supAn
- ∩∞

i=1Ai ⊆ ∩∞
i=2Ai ⊆ · · · and so ∩∞

i=nAi is an increasing sequence of sets

- ∪∞
i=1Ai ⊇ ∪∞

i=2Ai ⊇ · · · and so ∪∞
i=nAi is a decreasing sequence of sets
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- if An ∈ A for every n, then ∩∞
i=nAi ,∪∞

i=nAi ∈ A for every n (they are
"events") and this implies lim inf An, lim supAn ∈ A and also, when
An → A, then A ∈ A (are all events)
Proposition 1.5.1 If An ∈ A for every n and A1 ⊇ A2 ⊇ · · · (a monotone
decreasing sequence of sets), then An → A = ∩∞

i=1Ai .

Proof: Now let ω ∈ ∩∞
i=nAi so ω ∈ An ⊆ An−1 ⊆ · · · ⊆ A1 which implies

ω ∈ ∩∞
i=1Ai and therefore ∩∞

i=nAi ⊆ ∩∞
i=1Ai while it is clear that

∩∞
i=1Ai ⊆ ∩∞

i=nAi for every n. Therefore, ∩∞
i=nAi = ∩∞

i=1Ai for every n
which implies lim inf An = ∩∞

i=1Ai . Also ∪∞
i=nAi = An by the monotonicity

and so lim supAn = ∩∞
i=1Ai . Therefore, An → A = ∩∞

i=1Ai . �
Exercise 1.5.1 If A1 ⊆ A2 ⊆ · · · (a monotone increasing sequence of
sets), then prove An → A = ∪∞

i=1Ai .
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Proposition 1.5.2 (Continuity of P) If An ∈ A for every n and An → A,
then P(An)→ P(A) as n→ ∞.

Proof: As noted ∪∞
i=nAi is a monotone decreasing sequence and so (Prop.

1.4.1) ∪∞
i=nAi → ∩∞

n=1 ∪∞
i=n Ai = lim supAn and similarly (Ex. 1.4.1)

∩∞
i=nAi → lim inf An. So, if we prove the result for monotone sequences,
then

P(∪∞
i=nAi ) → P(lim supAn),

P(∩∞
i=nAi ) → P(lim inf An).

Now note
P(∩∞

i=nAi ) ≤ P(An) ≤ P(∪∞
i=nAi ),

and since A = lim inf An = lim supAn we would have P(An)→ P(A).

Now suppose An is a monotone increasing sequence of sets, so
(Ex. 1.4.1) An → A = ∪∞

i=1Ai . Put

B1 = A1,B2 = A2 ∩ Ac1 ,B3 = A3 ∩ Ac2 , . . .
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and note that the Bn ∈ A, are mutually disjoint with An = ∪ni=1Bi .
Therefore, P(An) = ∑n

i=1 P(Bi ) and

lim
n→∞

P(An) = lim
n→∞

n

∑
i=1
P(Bi ) =

∞

∑
i=1
P(Bi )

= P(∪∞
i=1Bi ) = P(∪∞

i=1Ai ) = P( limn→∞
An).

A similar argument establishes this result when An is a monotone
decreasing sequence of sets. �
Exercise 1.5.2 Prove that if An is a monotone decreasing sequence of
sets, then limn→∞ P(An) = P(limn→∞ An). (Hint: Acn is a monotone
increasing sequence of sets.)
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- the converse (under finite additivity) of Prop. 1.4.2 is also true

Proposition 1.5.3 If P : A → [0, 1] satisfies (i) P(Ω) = 1, (ii) P is
additive (A,B ∈ A mutually disjoint then P(A∪ B) = P(A) + P(B)) and
(iii) P(An)→ P(A) as n→ ∞ whenever An ∈ A for every n and An → A,
then P is a probability measure on A.
Proof: Exercise 1.5.3.

- so countable additivity is equivalent to continuity of P which is only
really needed when #(Ω) = ∞ and in that case (in practice) we are
approximating something that is essentially finite
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Proposition 1.5.4 (Boole’s inequality) If An ∈ A for every n, then (i)
P(∪ni=1Ai ) ≤ ∑n

i=1 P(Ai ) and (ii) P(∪∞
i=1Ai ) ≤ ∑∞

i=1 P(Ai ).

Proof: Recall from Exercise I.1.4,

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2) ≤ P(A1) + P(A2)

and now assume (i) holds for a specified n ≥ 2. Then

P(∪n+1i=1 Ai ) = P((∪ni=1Ai ) ∪ An+1) ≤ P(∪ni=1Ai ) + P(An+1) ≤
n+1

∑
i=1
P(Ai )

and by induction the result (i) holds for every n. Also, since

P(∪ni=1Ai ) ≤
n

∑
i=1
P(Ai )

the LHS converges to P(∪∞
i=1Ai ) (since ∪ni=1Ai is monotone increasing

and P is continuous) and the RHS converges to ∑∞
i=1 P(Ai ) proving (ii). �
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Proposition 1.5.5 (Borel-Cantelli lemma) If An ∈ A for every n and
∑∞
i=1 P(Ai ) < ∞, then P(lim supAn) = 0.

Proof: We have that P(lim supAn) = P(∩∞
n=1 ∪∞

i=n Ai ) ≤ P(∪∞
i=nAi ) for

every n and, using Boole’s inequality, P(∪∞
i=nAi ) ≤ ∑∞

i=n P(Ai )→ 0 as
n→ ∞ which establishes the result. �
- Borel-Cantelli says if the sum of all the probabilities P(Ai ) is finite, then
it is impossible that infinitely many of the events are true

Example 1.5.1
- consider a sequence of experiments where a fair coin is tossed n times
and let An = "n heads are obtained in the n-th experiment" so
P(An) = 1/2n and (summing a geometric series)

∞

∑
i=1
P(Ai ) =

∞

∑
i=1

1
2i
=

∞

∑
i=0

1
2i
− 1 = 1

1− 1/2
− 1 = 2− 1 = 1 < ∞

and so by Borel-Cantelli the event that all heads occurs can only happen
finitely many times as n→ ∞ �
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1.6 Conditional Probability

- the most important concept in probability (relationships among variables,
measuring evidence, etc.)

Definition 1.6.1 When (Ω,A,P) is a probability model and C ∈ A
satisfies P(C ) > 0, then the conditional probability model given C is
(Ω,A,P(· |C )) where P(· |C ) : A → [0, 1] is given by

P(A |C ) = P(A∩ C )
P(C )

. �

Exercise 1.6.1 Prove that (Ω,A,P(· |C )) is a probability model.
- application: initially the measure of belief that A is true is given by P(A)
but then the information is provided that C is true and so the belief
measure is modified to P(A |C )
- principle of conditional probability: you must modify beliefs in this way
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- note: if A∩ C = φ, then P(A |C ) = 0 while P(C |C ) = 1 so really the
probability model can be taken to be (C ,A∩ C ,P(· |C )) where

A∩ C = {A∩ C : A ∈ A}

is a σ-sigma (closure under complementation means complements wrt C )

Proposition 1.6.1 (Theorem of Total Probability) Suppose
C1,C2, . . . ∈ A with P(Ci ) > 0 for all i and Ω = ∪∞

i=1Ci with
Ci ∩ Cj = φ for all i , j , then for any A ∈ A

P(A) =
∞

∑
i=1
P(Ci )P(A |Ci ).

Proof: Clearly A = ∪∞
i=1A∩ Ci and the sets Ci ∩ A are mutually disjoint.

Therefore,

P(A) =
∞

∑
i=1
P(A∩ Ci ) =

∞

∑
i=1

P(A∩ Ci )
P(Ci )

P(Ci ) =
∞

∑
i=1
P(Ci )P(A |Ci ). �

- we call {Ci : i = 1, 2, . . .}, as described in Prop. 1.5.1, a partition of Ω

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 3 2023 10 / 12



Exercise 1.6.2 Prove that A = ∪∞
i=1(A∩ Ci ) and the sets Ci ∩ A are

mutually disjoint when {Ci : i = 1, 2, . . .} is a partition of Ω.

- the value of the theorem lies in simplifying calculations

Example 1.6.1

- suppose there are three urns, with the following contents

urn 1 contains 50 white balls and 50 black balls
urn 2 contains 60 white balls and 80 black balls
urn 3 contains 20 white balls and 30 black balls

- an urn is selected according to a probabilistic mechanism where

P("urn 1 is selected") = 2/3,
P("urn 2 is selected") = 1/5,
P("urn 3 is selected") = 2/15

and then a ball is drawn from the selected urn after thorough mixing

- question: what is the probability that a white ball is selected?
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- Ω = {(1,B), (1,W ), (2,B), (2,W ), (3,B), (3,W )},A = 2Ω

- partition Ω via Ci = "urn i is selected" = {(i ,B), (i ,W )}
- by the Theorem of Total Probability

P("white ball is selected")

= ∑P
(
"white ball is selected"

∣∣∣∣ "urn i is
selected"

)
P
(
"urn i is
selected"

)
= ∑P({(i ,W )} | {(i ,B), (i ,W )})P({(i ,B), (i ,W )})

=
50
100

2
3
+
60
140

1
5
+
20
50
2
15
=
248
525

= 0.47238
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