Probability and Stochastic Processes I - Lecture 24

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

V. Gaussian Processes

V.1 Stationary Gaussian Processes

- $\{(t,X_t):t\in\mathcal{T}\}$ is a Gaussian process if for any $\{t_1,\ldots,t_n\}\subset\mathcal{T}$, then

$$\begin{pmatrix} X_{t_1} \\ \vdots \\ X_{t_n} \end{pmatrix} \sim N_n \begin{pmatrix} \mu(t_1) \\ \vdots \\ \mu(t_n) \end{pmatrix}, \begin{pmatrix} \sigma(t_1, t_1) & \cdots & \sigma(t_1, t_n) \\ \vdots & & \vdots \\ \sigma(t_n, t_1) & \cdots & \sigma(t_n, t_n) \end{pmatrix} \end{pmatrix}$$

for some mean function $\mu:T\to R^1$ and autocovariance function $\sigma:T\times T\to R^1$

- when $T \subset R^1$ then a weakly stationary Gaussian process has μ constant and $\sigma(t_i,t_j)=\kappa(t_i-t_j)$ for some positive definite $\kappa:T\to R^1$

Definition V.1.1 A s.p. with $T \subset R^1$ and the property that $(X_{t_1+h},\ldots,X_{t_n+h}) \sim (X_{t_1},\ldots,X_{t_n})$ for all $\{t_1,\ldots,t_n\} \subset T$ and h such that $\{t_1+h,\ldots,t_n+h\} \subset T$ is said to be a *strictly stationary process*.

- so a weakly stationary Gaussian process is always strictly stationary since $\sigma(t_i + h, t_i + h) = \kappa(t_i - t_i) = \sigma(t_i, t_i)$

Example V.1.1 Autoregressive process of order 1

- $\{Z_n : n \in \mathbb{Z}\}$ i.i.d. $N(0, \tau^2)$ and consider

$$X_n = \alpha X_{n-1} + Z_n \tag{1}$$

where X_{n-1} is independent of Z_n

- does there exist a stationary Gaussian process satisfying this?
- assume there is, then

$$X_n = \alpha X_{n-1} + Z_n = \alpha^2 X_{n-2} + \alpha Z_{n-1} + Z_n$$

 $\stackrel{k \text{ steps}}{=} \alpha^k X_{n-k} + \alpha^{k-1} Z_{n-k+1} + \dots + Z_n$

- consider the case when $|\alpha| < 1$ then, since $\{X_n : n \in \mathbb{Z}\}$ is stationary (which implies mean and variance constant), as $k \to \infty$

$$E(X_n) = \alpha^k E(X_{n-k}) = \alpha^k E(X_0) \to 0 \text{ so } E(X_n) = 0$$

 $Var(\alpha^k X_{n-k}) = \alpha^{2k} E(X_{n-k}^2) = \alpha^{2k} E(X_0^2) \to 0$

- therefore, as $k \to \infty$,

$$E\left(\left(X_n - \sum_{j=0}^{k-1} \alpha^j Z_{n-j}\right)^2\right) = \alpha^{2k} E(X_{n-k}^2) \to 0$$

so $X_n - \sum_{i=0}^{k-1} \alpha^j Z_{n-j} \overset{2}{ o} 0$ and it would be natural to define

$$X_n = \sum_{i=0}^{\infty} \alpha^i Z_{n-i}$$

and note that formally such an X_n satisfies (1)

- but is $\sum_{i=0}^{\infty} \alpha^{i} Z_{n-i}$ a r.v.?
- consider $\sum_{i=0}^{\infty} |\alpha^i Z_{n-i}|$ and let

$$A_b = \left\{ \omega : \sum_{i=0}^{\infty} |\alpha^i Z_{n-i}(\omega)| \le b \right\} = \bigcap_{m=0}^{\infty} \left\{ \omega : \sum_{i=0}^{m} |\alpha^i Z_{n-i}(\omega)| \le b \right\}$$

$$A = \left\{ \omega : \sum_{i=0}^{\infty} |\alpha^i Z_{n-i}(\omega)| = \infty \right\} = \bigcap_{b=1}^{\infty} \left\{ \omega : \sum_{i=0}^{\infty} |\alpha^i Z_{n-i}(\omega)| > b \right\}$$

- then $A_b, A \in \mathcal{A}$ so $\sum_{i=0}^{\infty} |\alpha^i Z_{n-i}|$ is an (extended) r.v. and by MCT

$$E\left(\sum_{i=0}^{n} |\alpha^{i} Z_{n-i}|\right) = E(|Z_{0}|) \sum_{i=0}^{n} |\alpha|^{i} \uparrow E\left(\sum_{i=0}^{\infty} |\alpha|^{i} |Z_{n-i}|\right)$$
$$= E(|Z_{0}|) (1 - |\alpha|)^{-1} < \infty$$

so P(A) = 0 (otherwise the expectation would be infinite), A can be removed from Ω implying $\sum_{i=0}^{\infty} |\alpha^i Z_{n-i}|$ is a r.v.

$$- \text{ now } X_{n}^{2} = \left(\sum_{i=0}^{\infty} \alpha^{i} Z_{n-i}\right)^{2} = \sum_{i=0}^{\infty} \alpha^{2i} Z_{n-i}^{2} + \sum_{i \neq j}^{\infty} \alpha^{i+j} Z_{n-i} Z_{n-j}$$

$$\left|\sum_{i \neq j}^{\infty} \alpha^{i+j} Z_{n-i} Z_{n-j}\right| \leq \sum_{i \neq j}^{\infty} |\alpha|^{i+j} |Z_{n-i}| |Z_{n-j}| \leq \sum_{i \neq j}^{\infty} |\alpha|^{i+j} \max\{|Z_{n-i}|^{2}, |Z_{n-i}|^{2}\}$$

$$\leq \sum_{i \neq j}^{\infty} |\alpha|^{i+j} \{|Z_{n-i}|^{2} + |Z_{n-j}|^{2}\} \leq 2 \sum_{i=0}^{\infty} |\alpha|^{2i} Z_{n-i}^{2}$$

and by MCT

$$E\left(\sum_{i=0}^k \alpha^{2i} Z_{n-i}^2\right) = \tau^2 \sum_{i=0}^k \alpha^{2i} \uparrow \frac{\tau^2}{1-\alpha^2} < \infty$$

- since $E(X_n^2) < \infty$ for every n, the autocovariance function of $\{X_n : n \in \mathbb{Z}\}$ is defined and is given by (suppose wlog $s \ge t$ and use $E(Z_iZ_j) = 0$ when $i \ne j$, $E(Z_i^2) = \tau^2$)

$$\sigma(s,t) = Cov(X_s, X_t) = E\left(\sum_{i=0}^{\infty} \alpha^i Z_{s-i} \sum_{j=0}^{\infty} \alpha^j Z_{t-j}\right)$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha^{i+j} E(Z_{s-i} Z_{t-j}) = \sum_{\{(i,j): s-i=t-j\}}^{\infty} \sum_{s-i=t-j}^{\infty} \alpha^{i+j} E(Z_{s-i} Z_{t-j})$$

$$= \sum_{i=s-t}^{\infty} \alpha^{2i+t-s} E(Z_{s-i}^2) = \tau^2 \alpha^{s-t} \sum_{i=0}^{\infty} \alpha^{2i} = \frac{\tau^2 \alpha^{|s-t|}}{1-\alpha^2}$$

since j=t-s+j so i+j=t-s+2i and $i=s-t+j\geq s-t$, and it is a weakly stationary process

- for $n_1 < \dots < n_k \in \mathbb{Z}$ and $\mathbf{a} = (a_1, \dots, a_k)' \in R^k$ for $Y = \sum_{j=1}^k a_j X_{n_j}$

$$c_{Y}(t) = E(\exp\{itY\}) \stackrel{DCT}{=} \lim_{n \to \infty} E\left(\exp\left\{it\sum_{j=1}^{k} a_{j} \sum_{m=0}^{n} \alpha^{m} Z_{n_{j}-m}\right\}\right)$$
$$= \exp(-\mathbf{a}'(\sigma(n_{i}, n_{j}))\mathbf{a}/2)$$

and so (by Uniqueness) $Y \sim N(0, \mathbf{a}'(\sigma(n_i, n_j)\mathbf{a}))$ and Prop. III.9.8 implies that $\{X_n : n \in \mathbb{Z}\}$ is a stationary Gaussian process

- to simulate (approximately) choose $n_0 \in \mathbb{Z}$, say $n_0 = 0$, and choose k s.t.

$$\sum_{j=0}^{k} \alpha^{j} Z_{n_{0}-j} \sim N\left(0, \tau^{2} \sum_{j=0}^{k} \alpha^{2j}\right) = N\left(0, \tau^{2} \frac{1 - \alpha^{2(k+1)}}{1 - \alpha^{2}}\right)$$

$$\approx N\left(0, \frac{\tau^{2}}{1 - \alpha^{2}}\right) \text{ so take } X_{n_{0}} = \sum_{j=0}^{k} \alpha^{j} Z_{n_{0}-j}$$

and then generate Z_{n_0-k} , Z_{n_0-k+1} , ..., $Z_{n_0+n} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ and use (1) to obtain X_{n_0} , X_{n_0+1} , ..., X_{n_0+n}