## Probability and Stochastic Processes I - Lecture 23

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

## IV.2 Convergence in Probability

**Definition IV.2.1** The sequence  $X_n$  of r.v.'s *converges in probability* to r.v. X if

$$\lim_{n\to\infty}P(|X_n-X|>\delta)=0$$

for any  $\delta > 0$  and we write  $X_n \stackrel{P}{\to} X$ .

- this is different than  $X_n \stackrel{wp1}{\longrightarrow} X$  which says

$$P(\{\omega: \lim_{n\to\infty} X_n(\omega)\neq X(\omega)\})=0$$

while  $X_n \stackrel{P}{\to} X$  says for any  $\delta > 0$ ,  $\varepsilon > 0$  there exists  $N_{\delta,\varepsilon}$  such that for all  $n > N_{\delta,\varepsilon}$ 

$$P(\{\omega: |X_n(\omega) - X(\omega)| > \delta\}) < \varepsilon$$



**Proposition IV.2.1** (i)  $X_n \stackrel{wp1}{\to} X$  implies  $X_n \stackrel{P}{\to} X$  and (ii)  $X_n \stackrel{P}{\to} X$  implies  $X_n \stackrel{d}{\to} X$ .

Proof: (i) Let 
$$A_{m,n} = \{\omega: |X_n(\omega) - X(\omega)| > 1/m\}$$
 so

$$\limsup_{n} A_{m,n} = \{\omega : |X_n(\omega) - X(\omega)| > 1/m \text{ for infinitely many } n\}.$$

By hypothesis

$$0 = P(\limsup_{n} A_{m,n}) = P(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{m,n})$$
$$= \lim_{k \to \infty} P(\bigcup_{n=k}^{\infty} A_{m,n}) \ge \lim_{k \to \infty} P(A_{m,k})$$

so  $\lim_{k\to\infty} P(A_{m,k}) = 0$  which implies  $X_n \stackrel{P}{\to} X$ .

Michael Evans University of Toronto http:// Probability and Stochastic Processes I - Lectu

(ii) For  $\delta > 0$ ,

$$F_{X_n}(x) = P(X_n \le x, X \le x + \delta) + P(X_n \le x, X > x + \delta)$$

$$\le F_X(x + \delta) + P(|X_n - X| > \delta) \text{ and}$$

$$F_X(x - \delta) = P(X_n \le x, X \le x - \delta) + P(X_n > x, X \le x - \delta)$$

$$\le F_{X_n}(x) + P(|X_n - X| > \delta).$$

Therefore

$$F_{X_n}(x) - F_X(x) \leq F_X(x+\delta) - F_X(x-\delta) + P(|X_n - X| > \delta)$$
  
$$F_X(x) - F_{X_n}(x) \leq F_X(x+\delta) - F_X(x-\delta) + P(|X_n - X| > \delta).$$

Then, for  $\varepsilon > 0$  there exist  $N_{\delta,\varepsilon}$  s.t. for all  $n > N_{\delta \varepsilon}$ ,  $P(|X_n - X| > \delta) < \varepsilon/2$  and so

$$|F_X(x) - F_{X_n}(x)| \le |F_X(x+\delta) - F_X(x-\delta)| + \varepsilon/2$$

If x is a cty point of  $F_X$  choose  $\delta$  s.t.  $|F_X(x+\delta) - F_X(x-\delta)| \le \varepsilon/2$  and so  $|F_X(x) - F_{X_n}(x)| \le \varepsilon$ . Since  $\varepsilon$  is arbitrary this implies the result.



**note**  $X_n \stackrel{P}{\to} X$  does not imply  $X_n \stackrel{wp1}{\to} X$  (example is complicated)

**Example IV.2.1**  $X_n \stackrel{d}{\rightarrow} X$  does not imply  $X_n \stackrel{P}{\rightarrow} X$ 

- put 
$$X_n=Z\sim N(0,1)$$
,  $X=-Z\sim N(0,1)$  so  $X_n\stackrel{d}{\to} X$  but 
$$P(|X_n-X|>\delta)=P(2|Z|>\delta)=2(1-\Phi(\delta/2))$$

and so  $X_n \stackrel{P}{\nrightarrow} X \blacksquare$ 

**Proposition IV.2.2**  $X_n \stackrel{d}{\rightarrow} \mu$  iff  $X_n \stackrel{P}{\rightarrow} \mu$ .

Proof: Prop IV.2.1(ii) establishes that if  $X_n \xrightarrow{P} \mu$ , then  $X_n \xrightarrow{d} \mu$ . For the other direction,

$$\begin{split} P(|X_n - \mu| & \leq \delta) = P(\mu - \delta \leq X_n \leq \mu + \delta) \\ & = (F_{X_n}(\mu + \delta) - F_{X_n}(\mu - \delta)) + P(X_n = \mu - \delta) \\ \text{and } P(X_n = \mu - \delta) \leq F_{X_n}(\mu - \delta) \to 0 \\ P(|X_n - \mu| \leq \delta) \to 1 - 0 + 0 = 1 \end{split}$$

since  $\mu \pm \delta$  are cty pts of limiting dist., which implies  $X_n \stackrel{P}{\to} \mu$ .

**Proposition IV.2.3** (*Slutsky's Theorem*) If  $X_n \stackrel{d}{\to} X$  and  $Y_n \stackrel{d}{\to} c$ , then (i)  $X_n + Y_n \stackrel{d}{\to} X + c$  (ii)  $X_n Y_n \stackrel{d}{\to} cX$  (iii) and provided  $c \neq 0, X_n / Y_n \stackrel{d}{\to} X / c$ . Proof: Accept.

**Proposition IV.2.4** If  $X_n \stackrel{d}{\to} c$  and  $h: (R^1, \mathcal{B}^1) \to (R^1, \mathcal{B}^1)$  is continuous at c, then  $h(X_n) \stackrel{d}{\to} h(c)$ .

Proof: Let  $\varepsilon>0$ . Then there exists  $\delta>0$  s.t.  $|h(x)-h(c)|\leq \varepsilon$  whenever  $|x-c|\leq \delta$ . Therefore

$$P(|h(X_n) - h(c)| > \varepsilon) \le P(|X_n - c| > \delta) \to 0.$$

## Example IV.2.2

- suppose  $X_1, X_2, \ldots$  is an i.i.d. sequence from a distribution with mean  $\mu$  and variance  $\sigma^2$  so by CLT

$$\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu}{\sigma/\sqrt{n}} = \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \xrightarrow{d} N(0,1) \text{ and if}$$

$$S^{2} = \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{n-1} = \frac{n}{n-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}\right) \text{ then}$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \xrightarrow{d} \sigma^{2} + \mu^{2} \text{ by WLLN,}$$

$$\bar{X}^{2} \xrightarrow{d} \mu^{2} \text{ by Slutsky (ii) and } \frac{n}{n-1} \xrightarrow{wp1} 1, \text{ so}$$

$$S^{2} \xrightarrow{d} \sigma^{2} \text{ by Slutsky and } S \xrightarrow{d} \sigma \text{ by Prop. IV.2.4}$$

- therefore  $T_n=rac{\sqrt{n}(ar{X}-\mu)}{S}=rac{\sigma}{S}rac{\sqrt{n}(ar{X}-\mu)}{\sigma}\stackrel{d}{ o} N(0,1)$  by Slutsky
- when  $X_1, X_2, \ldots$  is an i.i.d.  $N(\mu, \sigma^2)$  sequence this implies

$$\mathsf{Student}(n) \xrightarrow{d} N(0,1)$$

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

## IV.3 Convergence in Expectation

**Definition IV.3.1** The sequence  $X_n$  of r.v.'s converges in expectation of order  $r \ (\geq 1)$  to r.v. X if  $E(|X_n|^r) < \infty$  for every n and

$$\lim_{n\to\infty} E(|X_n-X|^r)=0$$

and we write  $X_n \stackrel{r}{\to} X$ .

**Proposition IV.3.1** (i) If  $X_n \stackrel{r}{\to} X$ , then  $X_n \stackrel{s}{\to} X$  for any 1 < s < r. (ii) If  $X_n \xrightarrow{1} X$ , then  $X_n \xrightarrow{P} X$ .

Proof: (i) Note that  $d^2x^p/dx^2 = p(p-1)x^{p-2} > 0$  when x > 0, p > 1and so  $x^{r/s}$  is convex on  $[0, \infty)$ . Therefore,

$$E(|X_n - X|^r) = E((|X_n - X|^s)^{\frac{r}{s}}) \stackrel{\text{Jensen}}{\geq} (E(|X_n - X|^s))^{\frac{r}{s}}$$

which implies the result. (ii) For any  $\delta > 0$ 

$$P(|X_n - X| > \delta) \stackrel{\mathsf{Markov}}{\leq} \frac{E(|X_n - X|)}{\delta} \to 0. \blacksquare$$

- the converses to Prop. IV.3.1 are false
- the most important case is r=2 and we let

$$L^{2}(P) = \{X : X \text{ is a r.v. and } E(X^{2}) < \infty\}$$

- define  $<\cdot,\cdot>: L^2(P) \times L^2(P) \to R^1$  by < X, Y> = E(XY) and note

$$(E(XY))^2 \overset{\mathsf{Cauchy-Schwartz}}{\leq} E(X^2)E(Y^2) < \infty$$

and let  $||X|| = \langle X, X \rangle^{1/2}$ 

**Proposition IV.3.2** (i) If  $X, Y \in L^2(P)$ , then  $a + bX + cY \in L^2(P)$  for all constants a, b, c. (ii)  $\langle \cdot, \cdot \rangle$  is an inner product on  $L^2(P)$  (iii)  $||\cdot||$  is a norm on  $L^2(P)$ .

Proof: **Exercise IV.3.1.** 

- this leads to a geometry of r.v.'s and the angle  $\theta$  between X - E(X),  $Y - E(Y) \in L^2(P)$  satisfies

$$\cos \theta = \frac{\langle X - E(X), Y - E(Y) \rangle}{||X - E(X)|| \, ||Y - E(Y)||} = \frac{Cov(X, Y)}{Sd(X)Sd(Y)} = Corr(X, Y)$$

**Proposition IV.3.3** ( $L^2$  Law of large Numbers) If  $X_n$  is an i.i.d. sequence in  $L^2(P)$  then  $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{2} E(X_1)$ .

Proof:

$$E\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-E(X_{1})\right)^{2}\right)=Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=\frac{Var(X_{1})}{n}\rightarrow0.\ \blacksquare$$

- in time series many s.p.'s are defined in terms of series of r.v.'s that converge in  $\mathcal{L}^2$
- **note**  $X_n \xrightarrow{2} X$  implies  $X_n \xrightarrow{1} X$  implies  $X_n \xrightarrow{P} X$  implies  $X_n \xrightarrow{d} X$