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Chapter IV - Convergence

- applications of probability theory are often concerned with approximations
- the underlying idea of "approximation" is the notion of a limit
- for example, for a sequence of real numbers {x, : n € N}

Definition. The limit of {x, : n € IN} exists if there is x € R! such that
for any € > 0, there exists N, such that for all n > N, then |x, — x| < ¢
and we write lim, . X, = X.

then we approximate x by x, for large n and try to say something about
the error |x, — x| in this approximation

- if we have a sequence of r.v.'s {X,, : n € N}, then the pointwise
convergence of X, to r.v. X means lim,_.c X,(w) = X(w) for every
w € () but this is too strong and we weakened this to convergence with

probability 1, namely, X, 2L X if P{w : limp_e Xp(w) = X(w)}) =1

- there are weaker forms of convergence that are useful
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IV.1 Convergence in Distribution (Weak Convergence)

Definition IV.1.1 The sequence X, of r.v.'s converges in distribution to
rv. X if
lim Fx, (x) = Fx(x)

n—od
for every continuity point x of the cdf Fx of X and we write X, LAY

- then Px ((a, b]) = Fx,(b) — Fx,(a) = Fx(b) — Fx(a) for large n
provided a, b are cty points of Fx

- so convergence in distribution is about approximating the distribution of
a r.v. and not about approximating the value of the r.v.
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Example IV.1.1 Why restrict to convergence at continuity points of Fx?
- suppose Px ({—1/n}) = Px, ({1/n}) =1/2so0

0 if x< —1/n
Fx,(x) = 1/2 if —-1/n<x<1/n
1 if1/n<x

- then as n gets bigger all the probability mass "piles up at 0" and let X
be degenerate at 0 so

0 ifx<oO

Fx(x) = {1 if 0 < x
0 if x <0
lim Fx (x) = 1/2 ifx=0
e 1 if0o<x

- 50 limy—« Fx,(x) = Fx(x) at every cty point of Fx but
limp—o Fx,(0) # Fx(0) and 0 is not a cty point of Fx W
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Proposition IV.1.1 If E(|X|¥) < oo, then cx(t) = ko )
where the remainder o(t) is a function of t satisfying

lim¢—o o(tk)/tk = 0.

Proof: We have, using integration by parts with u = e, dv = (x — 5)", so
du=ie®, v=—(x— s)”*l/(n—i— 1)

"1+ o(t4)

/0 (X—s)"e"s ds- n—|—1 ”+1 e ds *)
and so
—i(e™ —1) = (x — )" ds "L x+i/ (x —s)te® ds
0 0
2 n—1 n X
L X+f~|— X —I—I—/(X—s"’sds
n! n' Jo

no(ix) it

. + / X — )" is ds.
= j! n! 0( )
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Again, by *

/(x—s)” lefds =

[ios

Therefore
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£ <mm{ |t x|k+1 2[tX |k

x" i[x n _is
Z 4 7/ (x —s)"e"” ds which implies
n  nlJo

X

)"e®ds = n(/ (X—s)”_leisds—x> and
i \Jo n

eix ; /X n_nl) /X(X—S)n l(eis—l)ds.

x|+ 2|x|" L
Z < min CEST which implies
k B 1 J
= |£]*

CE R }):E(

k!

{Itl\Xlk+1 2!X|k}>
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and this upper bound is finite since E(|X|¥) < co and goes to 0 as t — 0
which proves the result. B

Proposition 1V.1.2 (Continuity Theorem) Suppose X, is a sequence of
rv.'s. (i) If X, 9, X, then cx, (t) — cx(t) for every t. (i) If
cx, (t) — c(t) for every t and c is continuous at 0, then c is the cf of a

r.v. X such that X, LN X.
Proof: Accept.
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Proposition 1V.1.3 (Weak Law of Large Numbers) If X, is a sequence of
ii.d. rv.'swith E(X;) = u € RL, then

1 1<
;S ZX <, p (the r.v. with distribution generate at ).
i=1

Proof: Let X be degenerate at p so cx (t) = exp(ity) and note this is

continuous at 0. Also,
ji.d. t

_ <1+i;4n+o <;)) (by Prop IV.1.1)
(%)

n n
= 14—/'E 1+ 2 \n — exp(ity)
M 1+ ipt .
since, when x, — 0 and nx, converges to a finite limit, then

log(1+ x,)" = nlog(1+ x,) = n(xy — x2/24+x2/3 —--+) — lim nx,.

cig, (1)

The result follows by the Continuity Theorem. H
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- the Strong Law of Large Numbers says
1 12 wpl
—9n — — Xi
n5 n :; K
and we will prove that if X, wp! X, then X, d, X and so the the SLLN

implies the WLLN

Proposition 1V.1.4 (The Central Limit Theorem) If X, is a sequence of

iid. rv.'swith E(X;) = u € R, Var(X;) = 02, then

z,— 2%
c/y/n

Proof: Note that

2
E <15n> =u, Var <15,,> -
n n n

so Z, has mean 0 and variance 1. Also Y; = (X; — u)/0 has mean 0 and
variance 1,

<, Z ~ N(0,1).

1 n
ani Yl
ﬁ,-zzl
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and Yi,..., Y, are i.i.d. Therefore

o) = o, ()
2

- <1+ i—tE(Yl) - 7E(Y12) +o0 <2>> (by Prop IV.1.1)

which is the cf of Z ~ N(0, 1) and the result follows by the Continuity
Theorem. W
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Example IV.1.2 Normal approximation to the binomial.

- X1, Xa, ... i.i.d. Bernoulli(p), E(X;) = p, Var(X;) = p(1 —p) so S, ~
binomial(n, p)

- 1S, = proportion of 1's in X1, Xy, ..., X, then by CLT

S|

Sn_p
vVp(l=p)/n

- so for large n with Z ~ N(0,1)

— N(0,1)

O(b) — P(a) = P(a<Z§b)%P<a<p’1’(51"__£/n§b>

= P <np—|—a\/np(1—p) <S5, < np—i—b\/np(l—p))

- note a, b reflect how long interval about mean is in terms of standard
deviations W
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Example IV.1.3 Poisson approximation to the binomial (rare events).

- consider a situation where X1, Xz, ..., X, i.i.d. Bernoulli(p,) with
pn =A/n+o0(1/n) — 0 with n (since no(1/n) — 0, then o(1/n) — 0)

- think of X; as indicating whether or not, in n independent units, X; is
either on (1) or off (0) and the probability of being on is very small

- since S, ~ binomial(n,A/n+ o(1/n)), the expected number on is
np, =A+no(l/n) — A

- this permits working backwards from the expected number on to say
Pn = A/n+ 0(1/’7)

- therefore,
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P(S, = k) = <Z> (2‘ + o(l/n))k <1 _ % _ 0(1/n)>nk

B n(n—l)---(n—k+1)A"(1+m’(1/”)>k< A)nx

12
nk k! A

(1_ ol(l_/g)>n <1_/2—o(1/n)>_k
B )

n
A kK A\ A AR
using the expansion of log(1+ x,)" as in Prop.IV.1.3 for the limits
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- so at any cty point of the Poisson(A), say y € (k, k+ 1) where k € N

i

k
PS5, <y)— /\,—e"\ = cdf of Poisson(A) at y
= i!

which proves S, % Poisson(A)
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