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[11.9 Generating Functions and the Characteristic Function

- consider a sequence {a, : n € Ng} of real numbers, then the generating
function of the sequence is defined by

G(t)=) at'
i=0

provided the series converges for all t € (—hg, hg) with hg > 0 as then

d¥G(t)
dtk

= akk!
t=0

- not all sequences have generating functions (e.g. a, = n!)
-if G(t) = Y2 ait’, H(t) = Y52, bit' are generating functions, then
K(l’) = G(t)H(l’) = Z C,'l'i where ¢; = agpb; + a1bi—1 + -+ -+ ajbgy
i=0

is the generating function of {¢, : n € INg} where hx = min{hg, hy }
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Abel’s Theorem If G(t) = Y%, a;t' is finite in (—1,1) and 2 a;
converges (limit could be o), then lim;1; G(t) = Y72 a;.

Proof: See a book on Analysis.

Probability Generating Functions

Definition 111.9.1 If X is a r.v. such that Px(INg) = 1, then
Gx(t) = E(tX) = X2, P(X = i)t for |t| < 1 is the probability
generating function of X. l

Proposition 111.9.1 If Gx(t) = Gy (t) for all t € (—h, h) for some h > 0,
then X and Y have the same probability distribution.

Proof: Since Gx(t) = Y20 P(X = i)t' for |t| < 1, then for |t| < 1

l dk Gx(t)

1 dey t
Kl dtk = Px =) = o

- k
t=0 kb dt t=0

- so Gx completely specifies the distribution of X
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Proposition 111.9.2 (i) If X, Y are stat. ind. r.v.'s with pgf's Gx, Gy,
then GXer(t) = Gx(t)Gy(t).

(ii) If X has pgf Gx and the k-th factorial moment

e

Mg =EX(X=1) -+ (X—k+1)) = Y i(i—1)--- (i—k+1)P(X =)

k

i

of X exists then lim;}q dkg;(k(t) = M-

(iii) (Compound distributions) If the rv.'s {X; : i =1,2,...} are i.id.
with pgf Gx, stat. ind. of N with pgf Gy, then Y = Z,’-V:l X;i has pgf
Gy (t) = Gn(Gx(t))-

Proof: (i)

Gxiy(t) = E(5X+Y) = E(XtY) ™ E(X)E(tY) = Gx(t)Gy ().
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(ii) When |t| < 1, then

de)((t) dk & N > . N L i—k
T:WEE)P(X:I)t :l;(/(/—l)---(l—k—f—l)P(X:/)t
is finite and by Abel’'s Thm
| —1) - (i—k+1)P(X =itk
im L A1) (ke DPX =)
= i(i=1)-- (i —k+1)P(X =) = py
i=k

(iii)
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Example 111.9.1 Poisson
- if X ~ Poisson(A) with A > 0, then

i

A
px (i) = 7e—Aforizo,l,z...
and
) -Ai B - (t)&)i B B
_ Xy _ i A_ oA o AatA (-1
Gx(t) = E(t)—igotﬁe =e ,';o T =e eth = M=)

i
- so if X ~ Poisson(A1) ind. of Y ~ Poisson(A), then
GX+Y(t) _ Gx(t) Gy(t) — Mt Aa(t=1) _ S(M+A2)(t-1)

and therefore X + Y Poisson(A; + A2)

- if X ~ Poisson(A), then since ) j- (t;\!)i converges for all t € R!, then
M is finite for all k and
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de<t)

_ _n _n At—1)
mo= =i T = mad =
L dPGx(t) A(t—1) 2
Hap = IH?T:L'{?/\(? =A

Var(X) = pp —pp(pp D =2 -AA-1) =11

Exercise 111.9.1 If X ~ Bernoulli(p), then find Gx(t) and use this to
obtain the pgf for a binomial(n, p) distribution.

Exercise 111.9.2 If X ~ Geometric(p), then find Gx(t) and use this to
obtain the mean and variance of X.

Exercise 111.9.3 If N ~ Poisson(A) independent of Xi, Xz, ... ~
—1 4 2Bernoulli(p) and Y = YN | X;, determine E(Y).
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Moment Generating Function and Characteristic Function

Definition 111.9.2 (i) If X € R¥ is a random vector, then

myx(t) = E(exp(t'X)) is the moment generating function of X provided
the expectation is finite for all t € Bj(0), for some h > 0. (ii) The
characteristic function of X is given by cx(t) = E(exp(it'X)) for all
terR. N

- mx may not exist but since e* = cosx + isin x and
|cosx| <1,|sinx| <1 and

E(] exp(it'X)|)
= E(|cos(t'X) +isin(t'X)|) < E(| cos(t'X)|) + E(|sin(t'X)|) <2

so cx(t) = E(cos(t'X)) + iE(sin(t'X)) always exists (may be
complex-valued)

- if Px(B) = Px<—B) then Px(t/x < X) = Px(t/x > —X) and t'X has
a probability distribution symmetric about 0 and since

sin(—x) = —sin(x), this implies E(sin(t’X)) = 0 and cx is real-valued

8 /17
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Proposition 111.9.3 (Uniqueness) (i) If mx, my exist and mx(t) = my(t)
for all t € Bp(0), for some h > 0, then Px = Py. (ii) If cx(t) = oy (t) for
all t € R then Px = Py.

Proof: Accept.

- so if we know mx or cx and we recognize it then we know the
distribution of X

- there are inversion results that give expressions for the cdf of X
computed from myx or cx

Definition 111.9.3 If /1, ..., ik € N, then (i, ..., ix)-th mixed moment of
random vector X € R¥ is defined by

whenever this expectation exists. Il

Proposition 111.9.4 If iy < ji,..., i < ji and E(|X{" - X}|) < oo for all
(i - - Jk) satisfying ji + -+ + jx = j then p, _, is finite.

Proof: Exercise 111.9.4 Do the case when k :“é'.k
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Proposition 111.9.5 If my exists, then all the moments of X are finite and

. akmx(t)
ke Qg -9kt =0

Proof: Consider the case when k = 1. Then for t € B,(0)

mx(t) = E(exp(tX)) = E(lix>0} exp(tX})) + E(l{x <o) exp(—tX-))
= myx, (t) = P(X<0)+mx (—t)—P(X >0) <co

(since, for example, P(X; = 0) = P(X =0) 4+ P(X < 0)) so mx, and

myx_ exist which implies m|x|(t) = E(exp(tX; +tX_)) =

mx (t) = P(X <0) +mx_(t) — P(X > 0) < co and so m|y| exists. Let

noHXI i X
—_—

Yo = . —— = exp(tX) so
j=0 7 j=0 7
ol e it
[t X] [t | X]
Yol < ) 1 )Y ———— =exp(|t]|X]).
=0 I k=0 J°
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Since m|x| exists E(|X|¥) < |t‘km|x‘(|t|) < o0 and so all moments of X
are finite. Furthermore, by DCT

. >t
lim E(Y,) — Y —2L = mx(t)
n—oo =0 _/'
which implies '
" = djmx(t)
! dt/ t:O-
For the general case put Z = (| Xi|,...,|Xk|) and a similar argument
shows that mz exists. Put
y, — Z (X1 + -+ X))

J!

1 ( J ) Wi i
= - , X X
;J :120;@0 el

e Fik=j
Yol < exp(Jta][Xa| + -+t Xk|)

which implies p; , is finite and by DCT
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© til R tik
E(Y,) — ), %
j=0 >0 >0 -7 ke
n4-ti=y
Proposition 111.9.6 If mx exists, then cx(t) = mx(it).
Proof: Accept.

Proposition 111.9.7 If X, Y € R¥ are stat. ind. with mgf's my, my (cf's
cx, ¢y) then X +Y has mgf mx.y(t) = mx(t)my(t) when mx(t) and
my (t) are finite and cf cx v (t) = cx(t)cy(t).

Proof:

exiy(t) = E(exp(it' (X+Y)) = E(exp(it'X) exp(it'Y))
= E(exp(it’X))E(exp(it'Y)) = cx(t)cy(t). B
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Example 111.9.2 Normal
- suppose X ~ N (p, %), then X = pu+X1/2Z where Z ~ N, (0, 1) so
Zi ... Ze "% N(0,1) and

mz(t) = E(exp(t'Z)) = E(exp(t1 Z1 + - - + tx Zk))

k

.. k k
= E (Hexp(t,-Z,-)) MLl HE(exp(t,-Z,-)) = Emz(t;) where

i=1

—72/2) dz

3

z(t) =

= exp(t2/2

o0 1
/mexp(tz)\/ﬁexp(
) [ ee(-(z - 0?/2)dz = ep(s*/2)

so mz(t) = exp(t't/2) and
mx(t) = E(exp(t' (u+2122Z)) = exp(t'n) E(exp(t'21/22Z))
= exp(t'u)E(exp((Z1/%t)'Z)) = exp(t'n) exp(t'’Zt/2)
= exp(t p+t'Ee/2)
ex(t) = exp(it’u —t'Lt/2) using Prop. 111.9.6
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-soif Xq,..., X, is a sample from the Ny (pu, X) distribution and

n
- ZX,- = sample mean
L=

then

m(t) - ((z))(n(()))

me t/n) = exp(t'u + t'Lt/2n) and by Uniqueness

Y ~ k(y,Z/n) |
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Proposition 111.9.8 If X € R* is a random vector and r'X is normally
distributed for every constant r €R¥, then X ~ Ny (u,X) for some (u,%).
Proof: We have that E(¥'X) = r'E(X) and Var(r'X) = r' Var(X)r and so
put (p,X) = (E(X),Var(X)). Now

mpx (t) = exp(tr'u + t°r'Sr/2) =my(tr)

which implies the result.

Example 111.9.3 Cauchy

- suppose X ~ Cauchy, then E(X) does not exist so mx does not exist

- but using contour integration it can be shown that cx (t) = exp(—|t|)
1y

- now suppose Xi, ..., Xn is a sample from the Cauchy and Y = 3} 1L, X;

- then

ey (8) = [ Jexp(—1t]/n) = exp(~|1])

i=1

so by Uniqueness Y ~ Cauchy B
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- note that any cf cx satisfies cx(0) = 1 and by DCT
tlm) cx(t) = tli% E(cos(tX)) +i l!ﬂqo E(sin(tX)) =1

so cx Is continuous at 0

- if cx is also real then cx(—t) = E(cos(—tX)) = E(cos(tX)) = cx(t)

so cx is symmetric and for any n and xi,...,Xs, t1, ..., ty
2
n n n
Z ZXijCX(tj_tk) =E Z)gexp(ith) >0
j=1k=1 j=1

- therefore such a cx can serve as the autocorrelation function of a weakly
stationary process

- for any constant a, then cx(t) = exp(—a|t|) is such an autocorrelation
function as is cx (t) = exp(—a?|t])
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Exercise 111.9.4 If Xy, ..., X, are mut. stat. ind. with X; ~ N, (p;, %))
anda€e R™, C € R™*ki are constant, then determine the distribution of
Y =a+) GX,.

Exercise 111.9.5 E&R 3.4.13
Exercise 111.9.6 E&R 3.4.16
Exercise 111.9.7 E&R 3.4.20
Exercise 111.9.8 E&R 3.4.29
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