Probability and Stochastic Processes I - Lecture 20

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

III.8 Conditional Expectation

- consider r.v. Y where $E(|Y|) < \infty$ and random vector **X**
- from the joint distribution of (X, Y) we get the conditional distribution of Y given that $\mathbf{X} = \mathbf{x}$ and now we want the conditional mean of Y given that X = x

discrete case

- the joint distribution of $(\mathbf{X}, Y) \in \mathbb{R}^{k+1}$ is given by the prob. function

$$p_{(\mathbf{X},Y)}(\mathbf{x},y) = P_{(\mathbf{X},Y)}(\{(\mathbf{x},y)\}) = P(\mathbf{X} = \mathbf{x}, Y = y)$$

and so the conditional distribution of $Y \mid \mathbf{X} = \mathbf{x}$, namely, the probability measure $P_{Y|X}$, has prob. function

$$p_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) = p_{(\mathbf{X}, Y)}(\mathbf{x}, y) / p_{\mathbf{X}}(\mathbf{x})$$

when $p_{\mathbf{X}}(\mathbf{x}) = P_{\mathbf{X}}(\{\mathbf{x}\}) = P(\mathbf{X} = \mathbf{x}) = \sum_{\mathbf{y}} p_{(\mathbf{X},\mathbf{y})}(\mathbf{x},\mathbf{y}) > 0$ (otherwise cond. dist. not defined)

- then the conditional expectation of Y given $\mathbf{X} = \mathbf{x}$ is given by

$$E_{p_Y \mid \mathbf{X}}(Y \mid \mathbf{X})(\mathbf{x}) = \sum_{y > 0} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) - \sum_{y < 0} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})$$

when defined and note that

$$\begin{split} & \sum_{y} |y| p_{Y|\mathbf{X}}(y|\mathbf{x}) = \sum_{y} |y| \frac{p_{(\mathbf{X},Y)}(\mathbf{x},y)}{p_{\mathbf{X}}(\mathbf{x})} \\ &= & \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \sum_{y,p_{(\mathbf{X},Y)}(\mathbf{x},y) > 0} |y| p_{(\mathbf{X},Y)}(\mathbf{x},y) \\ &\leq & \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \sum_{(\mathbf{z},y)} |y| p_{(\mathbf{X},Y)}(\mathbf{z},y) = \frac{1}{p_{\mathbf{X}}(\mathbf{x})} E(|Y|) < \infty \end{split}$$

- so when $E(|Y|) < \infty$, the conditional expectation is also finite

- sometimes we write $E_{p_{Y\,|\,\mathbf{X}}}(Y\,|\,\mathbf{X}=\mathbf{x}) = E_{p_{Y\,|\,\mathbf{X}}}(Y\,|\,\mathbf{X})(\mathbf{x})$

- but we want to think of $E_{P_{Y|X}}(Y|X):(R^k,\mathcal{B}^k)\to(R^1,\mathcal{B}^1)$ and then define $E(Y|X):(\Omega,\mathcal{A})\to(R^1,\mathcal{B}^1)$ by

$$E(Y | \mathbf{X})(\omega) = E_{P_{Y|\mathbf{X}}}(Y | \mathbf{X})(\mathbf{X}(\omega))$$

Proposition III.8.1 If $h:(R^k,\mathcal{B}^k)\to(R^1,\mathcal{B}^1)$ is s.t. $E(|Yh(\mathbf{X})|)<\infty$, then

$$E(Yh(\mathbf{X})) = E(h(\mathbf{X})E(Y | \mathbf{X})).$$

Proof:

$$E(Yh(\mathbf{X})) = \sum_{(\mathbf{x}, y)} yh(\mathbf{x}) p_{(\mathbf{X}, Y)}(\mathbf{x}, y) = \sum_{(\mathbf{x}, y)} yh(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) \frac{p_{(\mathbf{X}, Y)}(\mathbf{x}, y)}{p_{\mathbf{X}}(\mathbf{x})}$$

$$= \sum_{(\mathbf{x}, y)} yh(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) p_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) = \sum_{\mathbf{x}} h(\mathbf{x}) \left(\sum_{y} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) \right) p_{\mathbf{X}}(\mathbf{x})$$

$$= \sum_{\mathbf{x}} h(\mathbf{x}) E_{p_{Y \mid \mathbf{X}}}(Y \mid \mathbf{X})(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) = E(h(\mathbf{X})E(Y \mid \mathbf{X})). \blacksquare$$

Corollary III.8.2 E(Yh(X) | X) = h(X)E(Y | X)

note - E(Y | X) has all the properties of E as it is an expectation

Corollary III.8.3 (*Theorem of Total Expectation*) For random vector (\mathbf{X}, Y) such that $E(|Y|) < \infty$,

$$E(Y) = E(E(Y | \mathbf{X})).$$

Proof: Put $h(\mathbf{x}) \equiv 1$.

- if $Y = I_A$ for $A \in \mathcal{A}$, then

$$E(Y | \mathbf{X})(\mathbf{x}) = \sum y p_{Y | \mathbf{X}}(y | \mathbf{x}) = 0 p_{Y | \mathbf{X}}(0 | \mathbf{x}) + 1 p_{Y | \mathbf{X}}(1 | \mathbf{x}) = P(A | \mathbf{X})(\mathbf{x})$$

Corollary III.8.3 (*Theorem of Total Probability*) If $A \in \mathcal{A}$, then

$$P(A) = E(P(A \mid \mathbf{X})).$$

Corollary III.8.4 If also $E(Y^2) < \infty$, then

$$Var(Y) = E(Var(Y | \mathbf{X})) + Var(E(Y | \mathbf{X})).$$

Proof: We have

$$Var(Y) = E((Y - E(Y))^{2}) \stackrel{\mathsf{TTE}}{=} E(E((Y - E(Y))^{2} | \mathbf{X}))$$

$$= E(E((Y - E(Y | \mathbf{X}) + E(Y | \mathbf{X}) - E(Y))^{2} | \mathbf{X}))$$
and
$$E((Y - E(Y | \mathbf{X}) + E(Y | \mathbf{X}) - E(Y))^{2} | \mathbf{X})$$

$$= E((Y - E(Y | \mathbf{X}))^{2} | \mathbf{X}) +$$

$$2E((Y - E(Y | \mathbf{X}))(E(Y | \mathbf{X}) - E(Y)) | \mathbf{X}) +$$

$$E((E(Y | \mathbf{X}) - E(Y))^{2} | \mathbf{X})$$

$$= Var(Y | \mathbf{X}) + 2(E(Y | \mathbf{X}) - E(Y | \mathbf{X}))(E(Y | \mathbf{X}) - E(Y)) +$$

$$(E(Y | \mathbf{X}) - E(Y))^{2}$$

$$= Var(Y | \mathbf{X}) + (E(Y | \mathbf{X}) - E(Y))^{2}$$

and applying E to both sides gives the result. \blacksquare

Corollary III.8.5 The random variable $E(Y \mid \mathbf{X})$ is the best predictor of Y from \mathbf{X} in the sense that it minimizes $E((Y - h(\mathbf{X}))^2)$ among all $h: (R^k, \mathcal{B}^k) \to (R^1, \mathcal{B}^1)$ and smallest residual error is $E(Var(Y \mid \mathbf{X}))$.

Proof:

$$E((Y - h(\mathbf{X}))^2) = E((Y - E(Y | \mathbf{X}) + E(Y | \mathbf{X}) - h(\mathbf{X}))^2)$$

$$= E((Y - E(Y | \mathbf{X}))^2) + 2E((Y - E(Y | \mathbf{X}))(E(Y | \mathbf{X}) - h(\mathbf{X}))) + E(E(Y | \mathbf{X}) - h(\mathbf{X}))^2)$$
and
$$E((Y - E(Y | \mathbf{X}))(E(Y | \mathbf{X}) - h(\mathbf{X})))$$

$$\stackrel{\mathsf{TTE}}{=} E(E((Y - E(Y | \mathbf{X}))(E(Y | \mathbf{X}) - h(\mathbf{X})) | \mathbf{X})) = 0$$

and so

$$E((Y - h(\mathbf{X}))^2) = E((Y - E(Y | \mathbf{X}))^2 + E(E(Y | \mathbf{X}) - h(\mathbf{X}))^2)$$

> $E((Y - E(Y | \mathbf{X}))^2) = E(Var(Y | \mathbf{X}))$

with equality when $h(\mathbf{X}) = E(Y \mid \mathbf{X})$.

| ト 4 章 ト 4 章 ト | 章 | 夕 G

- in general, if r.v. Y satisfies $E(|Y|) < \infty$, then $E(Y \mid \mathbf{X})$ is defined as the r.v. $E(Y \mid \mathbf{X}) : (\Omega, A) \to (R^1, \mathcal{B}^1)$ that satisfies

$$E(Yh(X)) = E(h(X)E(Y|X))$$
 (1)

for every $h:(R^k,\mathcal{B}^k) o (R^1,\mathcal{B}^1)$ such that $E(|\mathit{Yh}(\mathbf{X})|) < \infty$

- it can be proven that $E(Y | \mathbf{X})$ exists and two versions are the same wp1
- this can be generalized to define $E(Y | \{(t, X_t) : t \in T\})$ the conditional expectation of Y given the process $\{(t, X_t) : t \in T\}$
- all the results proved here also apply to these general contexts

Exercise III.9.1 If (X, Y) has density $f_{(X,Y)}$ and $E(|Y|) < \infty$, then prove

$$E(Y \mid \mathbf{X})(\mathbf{x}) = \int_{-\infty}^{\infty} y f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) \, dy \text{ where}$$

$$f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) = \frac{f_{(\mathbf{X}, Y)}(\mathbf{x}, y)}{f_{\mathbf{X}}(\mathbf{x})} \text{ and } f_{\mathbf{X}}(\mathbf{x}) = \int_{-\infty}^{\infty} f_{(\mathbf{X}, Y)}(\mathbf{x}, y) \, dy.$$

Hint: use (1).

4 D > 4 A > 4 B > 4 B > B 9 9 0

Example III.9.1 $N_k(\mu, \Sigma)$

- suppose Σ is p.d. and

$$\left(\begin{array}{c} \mathbf{Y} \\ \mathbf{X} \end{array} \right) \sim \mathit{N}_k(\mu, \Sigma) \text{ with } \mathbf{Y} \in \mathit{R}^l$$

$$\mu = \left(\begin{array}{c} \mu_{\mathbf{Y}} \\ \mu_{\mathbf{X}} \end{array} \right), \qquad \Sigma = \left(\begin{array}{cc} \Sigma_{\mathbf{Y}} & \Sigma_{\mathbf{YX}} \\ \Sigma'_{\mathbf{YX}} & \Sigma_{\mathbf{X}} \end{array} \right)$$

- then

$$\begin{aligned} \mathbf{Y} \, | \, \mathbf{X} &= \mathbf{x} \sim \mathit{N}_k(\mu_{\mathbf{Y}} + \Sigma_{\mathbf{Y}\mathbf{X}}\Sigma_{\mathbf{X}}^{-1}(\mathbf{x} - \mu_{\mathbf{X}}), \Sigma_{\mathbf{Y}} - \Sigma_{\mathbf{Y}\mathbf{X}}\Sigma_{\mathbf{X}}^{-1}\Sigma_{\mathbf{Y}\mathbf{X}}') \\ \text{so } E(\mathbf{Y} \, | \, \mathbf{X})(\mathbf{x}) &= \mu_{\mathbf{Y}} + \Sigma_{\mathbf{Y}\mathbf{X}}\Sigma_{\mathbf{X}}^{-1}(\mathbf{x} - \mu_{\mathbf{X}}) \text{ and this minimizes} \\ &\qquad \qquad \sum_{i=1}^{l} E((Y_i - h_i(\mathbf{X}))^2) = E(||\mathbf{Y} - \mathbf{h}(\mathbf{X})||^2) \end{aligned}$$

among all $\mathbf{h}: (R^{k-l}, \mathcal{B}^{k-l}) \to (R^l, \mathcal{B}^l) \blacksquare$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Example III.9.2 Martingales

- consider a game of coin tossing where a gambler bets on H which occurs with probability 1/2, and if the gambler bets \$x\$ the payoff is \$2x\$ so the expected gain on a toss is 0.5(2x - x) - 0.5x = 0
- the gambler adopts the following strategy: they bet \$1 on the first toss, if they lose this bet they bet \$2 on the next toss, if they lose this bet they bet \$4 on the next toss and generally if they lose the first n bets they bet $$2^n$ on the next bet and they stop as soon as they win which happens with probability 1
- if the first H occurs at time n then gain is

$$2^n-(1+2+\cdots+2^{n-1})=2^n-2^n+1=1$$
 so this guarantees a profit

- but note that expected loss just before win is

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n (2^n - 1) = \infty$$

so you need a big bank account if you want to use this strategy

- let X_n denote the gambler's gain (loss) at toss n

- so

$$X_{n+1} = \left\{ egin{array}{ll} X_n & ext{if stopped by toss } n \ X_n + 2^n & ext{if } H ext{ at toss } n \ X_n - 2^n & ext{if } T ext{ at toss } n \end{array}
ight.$$

- then

$$E(X_{n+1} | X_1, ..., X_n)(x_1, ..., x_n) = x_n \text{ and so }$$

 $E(X_{n+1} | X_1, ..., X_n) = X_n$

- a s. p. $\{(n, X_n) : n \in \mathbb{N}\}$ with this property is called a *martingale*