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Jensen’s Inequality

Definition 111.7.2 A set C C R¥ is convex if whenever x;,x, € C and
a € [0,1], then ax; + (1 —a)xx € C. A function f : C — R! is convex if
C is convex and for every a € [0, 1],then

f((XXl + (1 — (X)Xz) < ocf(xl) + (1 — tX)f(Xg)

and f is concave if f(ax; + (1 —a)xp) > af(x1) + (1 —a)f(xz). W

- L(x1,%2) = {ax; + (1 —a)x2 : « € [0,1]} is the line segment joining x;
and x;

-if f: C — R' is convex then —f is concave and conversely

- fact: if f : C — R! is defined on open convex C C R, then f is convex
whenever the Hessian matrix

azf(X]_,...,Xk) kxk
< 0x;0x; > <R

is positive semidefinite for every x € C
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Exercise 111.7.5 (i) Prove the line segment L(x1, x2) is convex.

(ii) Prove [a,b] C R* is convex. What about (a, b], (a,b), [a,b)?

(iii) Prove B,(u) C R* is convex.

(iv) Prove E,(u, %) is convex (hint: use E,(u, %) = u + Z/2B,(0).

(v) Prove that the affine function f : R — R! given by f(x) = a+ ¢/x
for constants a € R, c € R is convex on R

(vi) Prove that f(x) = — log x is convex on C = (0, o).

(vii) If = € Rk* is positive semidefinite, then prove f(x) = x'Zx is
convex on R¥.

Example 111.7.2 - suppose Px({x1,x2}) = 1 with Px({x1}) = a1,
Px({XQ}) =1- X1

- then L(x1,x2) is convex and note Px(L(x1,%2)) = 1 (L(x1,x2) € B¥)
- suppose f : L(x1,x2) — Rl is convex

- then for this simple context Jensen's inequality is immediate

E(f(X)) = oclf(xl) + (1 - le)f(Xg) > f(lexl + <1 — IX]_)XQ) = f(E(X)>
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- geometrically consider the line segment
{a(x1, f(x1)) + (1 —a)(x2, f(x2)) : 2 € [0, 1]}

in RKT1 and convexity of f on the line segment implies the line segment
lies above the graph

{(ax; + (1 —a)xp, fax; + (1 —a)xp)) :a € [0,1]}

and E(X) = a1x; + (1 —a1)xp gives E(f(X)) > f(E(X)) B

Exercise 111.7.6 Suppose C;, Co C R¥ are convex. Prove that C; N G, is
convex.

Exercise 111.7.7 Suppose C C R¥ is convex and let
C.=a+BC= {y —a+Bx:x¢€ C}. Prove that C. is convex.

Exercise 111.7.8 If C is a linear subspace of R¥, then C is convex.
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Proposition 111.7.5 (Supporting Hyperplane Theorem) If C C R* is
convex and xg € R¥ is not an interior point of C (there isn't a ball
B,(xg) C C with r > 0), then there exists c € R\{0} such that
c/x > c'xq for every x € C.

Proof: See a text on convex analysis.

- for a set A C R¥ it is always possible to find a set of the form
{x €R¥ :a+ Bx = 0} for some a € R/, B € R"*¥ for some | < k s.t.
AC {x€eRk:a+ Bx=10}

-eg, takea=0€ RK,B=0¢€ R so {x:a+ Bx =0} = RK

- the set {x €R¥ : a+ Bx = 0} is called an affine subset of R* and it has
a dimension (point has dimension 0, line has dimension 1, ..., hyperplane
has dimension k — 1, R¥ has dimension k)

Definition 111.7.3 If A C R¥ the affine dimension of A is the smallest
dimension of an affine set containing A.
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Proposition 111.7.7 If C C R¥ is convex, Px(C) = 1 and E(X) € Rk,
then E(X) € C.

Proof: (Induction on the affine dimension of C.)

If the affine dim of C is 0, then C = {x} and E(X) = x € C and the

result holds.

Assume wlog that E(X) =0, else put Y = X — E(X), C. = C — E(X) is

convex (Exercise 111.7.7) and note
Py(C)=P(Ye(C)=PXe(C)=Px(C)=1

and E(X) € Ciff E(Y)=0¢€ C.

Now assume the result holds for affine dim C < k.

Suppose 0 ¢ C, then the SHT gives ¢ € R¥\ {0} s.t. ¢/x > ¢/0 = 0 for

every x € C. This implies P(¢/X > 0) =1 (so ¢’X is a nonnegative r.v.)

and since E(c’X) = ¢/E(X) = 0 then P(c’X = 0) = 1. Therefore,

P(X € {x:cx=0}NC)=1and {x:cx=0}NCisa convex set

(Exercises 111.7.8 and 111.7.6) having affine dimension no greater than

k — 1. So by the inductive hypothesis 0 € {x : c'x = 0} N C which implies

0 € C which is a contradiction. This implies E(X)=0¢ C. R
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Proposition 111.7.8 (Jensen’s Inequality) If C C R¥ is convex,
Px(C) =1,E(X) € R¥, and f : C — R! is convex, then

E(f(X)) = f(E(X)).

Equality is obtained iff f(x) "2l 3+ b'x for constants a, b.

Proof: (Induction on the affine dimension of C.)
If affine dim C is 0, then C = {x} and E(f(X)) = f(x) = f(E(X)) and
f(x) el f(x) + 0’x so the result holds.

Now assume the result holds for affine dim C < k. Let

S={(x,y):xe C,y>f(x)}

note that S C RK*1 is convex (Exercise 111.7.9) and (E(X), f(E(X))) is
a boundary point of S (not an interior point). Then by SHT there exists
c € RKFI\{0} s.t. foreveryz€ S

k k
cdz= ,; Cizi+ Crr12zi41 > € < f(i-((xx))) > = ,; GE(Xi) + i1 f(E(X)).
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If ck+1 < 0O, then the inequality can be violated by taking zx1 large so
cky1 2> 0.

Case 1: ¢11 >0
Let .
Y = ;C:’(Xi — E(X)) + ekt (F(X) = F(E(X))
and note that P(Y >0) =150 0 < E(Y) = ck+1(E(f(X)) — F(E(X))

which implies E(f(X)) > f(E(X)). Also E(f(X)) = f(E(X) iff
E(Y) = 0 which occurs iff P(Y =0) =1 and so

k .
FX) = FEX) -} oy~ EX)
o k ]
— (f(E(X)) + ; Ckll E(X;)> + ; (_ck;) X

which is of the required form.
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Case 2: ¢11 =0

Then Y = Y%, ¢;(X; — E(X;)) and since P(Y > 0) = 1 with E(Y) =0,

this implies P(Y = 0) = 1 which in turn implies
P(Xec{x:dx=cdEX)}nC)=1

and {x:c'x = cE(X)} N C is a convex set of affine dim < k and so by

the inductive hypothesis the result holds. B

- f:C — RYis concave and Px(C) = 1, E(X) € R¥ then the concave
version of Jensen says E(f(X)) < f(E(X))
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Definition 111.7.4 Suppose P, Q are probability measures on (Q), A) with
probability (density) functions p and q respectively. The Kullback-Liebler
distance between P and Q@ is defined to be

KL(P|| Q) = E (— |ogz> = [ p(w)tog m v(dew)

when Ep (— log q/p) exists, where v is counting (discrete case) or volume
measure (abs. cont. case).

- KL(P || Q) serves as a distance measure between probability measures P
and Q

Proposition 111.7.9 When Ep (—log q/p) exists then KL(P|| Q) > 0
with equality iff P = Q.

Proof: Since — log x is convex on (0, o) (Exercise 111.7.5(vi)), applying
Jensen gives

K(P1Q) = —og (£ (1)) = 105 ([ p@) L s(dw))

— log (/Q q(w)v(dw)> — logl=0.
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Equality holds iff there exist a, b such that for every w,

pl@) 7T Pp(w)

Then (*) holds when p vt g, and so P = Q, with a= b =0.
Otherwise. (*) implies a = —b since KL(P || Q) = 0 implies 0 = a+ b by
taking the expectation of both sides of (*) wrt P. This implies

o), (9.

%8 h(w) p(w)

p(w)
Now — log x and a(1 — x) agree at x = 1 and at most at one other point
(draw the graphs). Let A= {w: q(w) = p(w)}. If P(A) =1 then
P = Q.If P(A) <1, then on A° we have g(w) = rp(w) for some real
number r. This implies Q(A) = P(A), Q(A®) = rP(A°) = rQ(A°) which
wpl
= q. 1

—o q(w) wp bM (*)

implies r =1 and p
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Exercise 111.7.10 Suppose P is the N(p,0%) probability measure and Q
is the N(ji,, 03) probability measure. Compute KL(P || Q).

Exercise 111.7.11 Does KL(P|| Q) = KL(Q || P)?
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