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II.7 Inequalities for Expectations

- there are several important inequalities we need to know: Markov’s
inequality, Cauchy-Schwartz inequality and Jensen’s inequality

Markov’s Inequality

Proposition III.7.1 (Markov’s Inequality) If X is a nonnegative r.v. and
x > 0, then

P(X ≥ x) ≤ E (X )
x

with equality iff P(X = x) = 1− P(X = 0).
Proof: We have

P(X ≥ x) = E (I{X≥x}) ≤ E
(
X
x
I{X≥x}

)
=
E
(
XI{X≥x}

)
x

≤ E (X )
x

.

If P(X = x) = 1− P(X = 0), then PX is concentrated on {0, x} and so
E (X ) = xP(X = x) = xP(X ≥ x). Conversely, if E (X ) = xP(X ≥ x) at
x > 0, then
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0 = E (X )− E (xI{X≥x}) = E (XI{X<x}) + E ((X − x)I{X≥x})
and since XI{X<x} and (X − x)I{X≥x} are both nonnegative r.v.’s this
implies

E (XI{X<x}) = E ((X − x)I{X≥x}) = 0
which implies 1 = P(XI{X<x} = 0) = P((X − x)I{X≥x} = 0) which
implies P(0 < X < x) = 0 and P(X > x) = 0 which implies
P(X = x) = 1− P(X = 0). �
- note - Markov’s inequality gives bounds on tail probabilities of X

Exercise III.7.1 If X is a r.v., then determine an upper bound for
P(exp(tX ) ≥ k) when k > 0.
Exercise III.7.2 If X is a r.v. and k > 0, then prove
P(|X | ≥ k) ≤ E (|X |)/k and also P(|X | ≥ k) ≤ E (X 2)/k2. If X ∼
exponential(1) which inequality is sharper. What is the exact value of
P(X ≥ 2) when X ∼ exponential(1) and compare this with the bounds.
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Corollary III.7.2 (Chebyshev’s Inequality) If X has mean µ and variance
σ2, then for k > 0

P(|X − µ| ≥ kσ) ≤ 1/k2

with equality iff P(X ∈ {µ− kσ, µ+ kσ}) = 1− P(X = µ).

Proof: Since |X − µ| is nonnegative we can apply Markov and obtain

P(|X − µ| ≥ kσ) = P((X − µ)2 ≥ k2σ2) ≤ E ((X − µ)2)

k2σ2
=

σ2

k2σ2
=
1
k2

and the equality result follows as with Markov. �
- note - P(|X − µ| ≥ kσ) = P(X ≥ µ+ kσ) + P(X ≤ µ− kσ) so
Chebyshev is a bound on two tail probabilities of X

Example III.7.1 5 sigma

- P(|X − µ| ≥ 5σ) ≤ 1/25 = 0.04 while if X ∼ N(µ, σ2), then
P(|X − µ| ≥ 5σ) = 5.733031e − 07 �
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Corollary III.7.3 (Chernoff Bounds) If E (exp{tX}) is finite for all
t ∈ (a, b) where a < 0 < b, then

P(X ≥ x) ≤ inft∈(0,b)
{
E
(
etX
)
e−tx

}
if x > 0

P(X ≤ x) ≤ inft∈(a,0)
{
E
(
etX
)
e−tx

}
if x < 0

Proof: When x > 0, then for every t ∈ (0, b), by Markov’s inequality

P(X ≥ x) = P(tX ≥ tx) = P(exp{tX} ≥ exp{tx})
≤ E (exp{tX})/ exp{tx}.

When x < 0, then for every t ∈ (a, 0), by Markov’s inequality

P(X ≤ x) = P(tX ≥ tx) = P(exp{tX} ≥ exp{tx})
≤ E (exp{tX})/ exp{tx}.�
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Example III.7.2 Standard Normal

- suppose X ∼ N(0, 1) then

E
(
etX
)
=

1√
2π

∫ ∞

−∞
etxe−x

2/2 dx =
et

2/2
√
2π

∫ ∞

−∞
e−(x−t)

2/2 dx = et
2/2

so for x > 0

1−Φ(x) = P(X ≥ x) ≤ inf
t>0
et

2/2−tx = e−x
2/2

since t2/2− tx is minimized at t = x
- note - X+ has mean E (X+) = (2π)−1/2

∫ ∞
0 xe

−x 2/2 dx = (2π)−1/2 so
using Markov’s inequality when x > 0, then

1−Φ(x) = P(X ≥ x) = P(X+ ≥ x) ≤ (2π)−1/2/x

but e−x
2/2/(1/x) = xe−x

2/2 → 0 as x → ∞ so the Chernoff bound is
better but even better bounds can be obtained �
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Cauchy-Schwartz Inequality

Proposition III.7.3 (Cauchy-Schwartz Inequality) If
E (X 2) < ∞,E (Y 2) < ∞, then

|E (XY )| ≤
√
E (X 2)

√
E (Y 2)

with equality iff Y = cX (or X = cY ) wp1 with c = 0 when
P(Y = 0) = 1 (P(X = 0) = 1) and c = E (XY )/E (X 2) otherwise.

Proof: If E (X 2) = 0, then P(X = 0) = 1 which implies P(XY = 0) = 1
so E (XY ) = 0 and X = 0Y so the result follows. So assume hereafter
that E (X 2) > 0,E (Y 2) > 0.

For any c ∈ R1

0 ≤ (Y − cX )2 = Y 2 − 2cXY + c2X 2 which implies
0 ≤ E (Y 2)− 2cE (XY ) + c2E (X 2)

which is a convex parabola in c with minimum at c = E (XY )/E (X 2) so

0 ≤ E (Y 2)− 2 (E (XY ))
2

E (X 2)
+
(E (XY ))2

E (X 2)
= E (Y 2)− (E (XY ))

2

E (X 2)
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which gives the inequality. Equality occurs iff, when c = E (XY )/E (X 2),
0 = E ((Y − cX )2) which occurs iff

1 = P((Y − cX )2 = 0) = P(Y − cX = 0) = P(Y = cX ). �
Corollary III.7.4 (Correlation Inequality) If 0 < σ2X < ∞, 0 < σ2Y < ∞,
then

−1 ≤ ρXY = Corr(X ,Y ) ≤ 1

with equality iff Y
wp1
= µY + σY (X − µX )/σX when ρXY = 1 and

Y
wp1
= µY − σY (X − µX )/σX when ρXY = −1.

Proof: In CS inequality replace X by (X − µX )/σX and Y by
(Y − µY )/σY so E ((X − µX )

2/σ2X ) = E ((Y − µY )
2/σ2Y ) = 1 and so

|ρXY | =
∣∣∣∣E (X − µX

σX

)(
Y − µY

σY

)∣∣∣∣ ≤ 1
with equality iff (

Y − µY
σY

)
wp1
= c

(
X − µX

σX

)
where
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c =
E
((

X−µX
σX

) (
Y−µY

σY

))
E
((

X−µX
σX

)2) = ρXY

which implies

Y
wp1
= µY + σY ρXY

(
X − µX

σX

)
and ρXY = ±1. �
note - a measure of the total variation in Y is given by

Var(Y ) = E ((Y − µY )
2)

- if we approximate Y by a+ bX for some constants a and b then the
amount of variation in Y that is not explained (the residual variation) by
a+ bX is

E ((Y − a− bX )2)
Definition III.7.1 The best affi ne predictor (linear regression) of Y from
X is given by a+ bX where a, b are constants that minimize
E ((Y − a− bX )2). �
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Exercise III.7.3 Assume 0 < σ2X < ∞, 0 < σ2Y < ∞. Show that if a, b
minimize E ((Y − a− bX )2), then a∗, b∗ with a∗ = a− µY + bµX , b∗ = b
minimizes E (((Y − µY )− a∗ − b∗(X − µX ))

2) over all constants a∗, b∗.

Exercise III.7.4 (i) Assume µX = µY = 0 and
0 < σ2X < ∞, 0 < σ2Y < ∞. For all constants a, b, and putting
cXY = σY ρXY /σX , prove
E (Y − cXY X ) = 0,Cov(Y − cXY X , a+ bX ) = 0 and

E ((Y − a− bX )2 = Var(Y − cXY X ) + a2 + (b− cXY )2Var(X ).
Use this to prove that cXY X is the best affi ne predictor of Y from X .
(ii) Combine (i) and Exercise III.7.3 to determine the best affi ne predictor
of Y from X when the assumption of 0 means is not made.
(iii) Show that the proportion of the total variation in Y explained by the
best affi ne predictor from X is given by ρ2XY .
(iv) When(

X
Y

)
∼ N2

((
µX
µY

)
,

(
σ2X σX σY ρXY

σX σY ρXY σ2Y

))
,

show that EY |X (Y | x) equals the best affi ne predictor of Y from X .
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