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[1.7 Inequalities for Expectations

- there are several important inequalities we need to know: Markov's
inequality, Cauchy-Schwartz inequality and Jensen's inequality

Markov’s Inequality

Proposition 111.7.1 (Markov's Inequality) If X is a nonnegative r.v. and
x > 0, then
E(X)

P(X > x) <

with equality iff P(X = x) =1— P(X =0).
Proof: We have

X E (Xlix>x E(X
P(X > x) = E(lx=y)) < E (X/{sz}> _ EXlpen) _ EX)

X X

If P(X =x) =1— P(X =0), then Px is concentrated on {0, x} and so
E(X) = xP(X = x) = xP(X > x). Conversely, if E(X) =xP(X > x) at
x > 0, then
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0=E(X) — E(xl{x>x}) = E(Xlix<xy) + E((X = x)l1x>x})
and since Xlyx .,y and (X — x)/;x >} are both nonnegative r.v.'s this
implies

E(Xlix<xy) = E((X = X)lix>x3) =0

which implies 1 = P(Xl(x -, = 0) = P((X — x)/{x=x} = 0) which
implies P(0 < X < x) =0 and P(X > x) = 0 which implies
P(X=x)=1-P(X=0).1
- note - Markov's inequality gives bounds on tail probabilities of X

Exercise 111.7.1 If X is a r.v., then determine an upper bound for
P(exp(tX) > k) when k > 0.

Exercise 111.7.2 If X is a r.v. and k > 0, then prove

P(|X| > k) < E(|X]|)/k and also P(|X| > k) < E(X?)/Kk%. If X ~
exponential(1) which inequality is sharper. What is the exact value of
P(X > 2) when X ~ exponential(1) and compare this with the bounds.
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Corollary 111.7.2 (Chebyshev's Inequality) If X has mean u and variance
02, then for k >0
P(IX —u| > ko) < 1/k
with equality iff P(X € {y — ko, u+ ko})=1—P(X =pn).
Proof: Since |X — | is nonnegative we can apply Markov and obtain
E(X—p)?) _ o* 1

PUX =l 2 ko) = P((X — ) 2 Ko?) < =B = 20—

and the equality result follows as with Markov. H

-note - P(|X —u| > ko) =P(X > u+ko)+ P(X < u—ko) so
Chebyshev is a bound on two tail probabilities of X

Example 111.7.1 5 sigma

- P(]X — u| > 50) < 1/25 = 0.04 while if X ~ N(u,0?), then
P(|X — u| > 50) = 5.733031e — 07 W
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Corollary 111.7.3 (Chernoff Bounds) If E(exp{tX}) is finite for all
€ (a, b) where a < 0 < b, then

P(X > x) <infc(o, {E(e e ™} if x>0
P(X < x) < infoe, {E( XY e if x <0

Proof: When x > 0, then for every t € (0, b), by Markov's inequality

P(X >x) = P(tX > tx) = P(exp{tX} > exp{tx})
< E(exp{tX})/ exp{tx}.

When x < 0, then for every t € (a,0), by Markov's inequality

P(X <x) = P(tX > tx) = P(exp{tX} > exp{tx})
< E(ep{tX})/ exp{tx} M
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Example 111.7.2 Standard Normal
- suppose X ~ N(0, 1) then

2
E (etX _ / X xX*/2 dh — el /2 oo e (=272 g ot2/2
V27T V27T
so for x >0

1—®(x) = P(X > x) < inf e /27 = /2

- >0

since t2/2 — tx is minimized at t = x

- note - X1 has mean E(Xy) = (27m)71/2 [¥ xe™ /2 dx = (271) 712 so
using Markov's inequality when x > 0, then

1—®(x)=P(X >x)=P(X, >x) < (2m)712/x

but e*/2/(1/x) = xe /2 — 0 as x — o so the Chernoff bound is
better but even better bounds can be obtained W
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Cauchy-Schwartz Inequality
Proposition 111.7.3 (Cauchy-Schwartz Inequality) If
E(X?) < 00, E(Y?) < 0, then

EOXY)| < \JEO)E(Y?)
with equality iff Y = cX (or X = cY) wpl with ¢ = 0 when
P(Y=0)=1(P(X=0)=1)and c = E(XY)/E(X?) otherwise.
Proof: If E(X2) = 0, then P(X = 0) = 1 which implies P(XY = 0) = 1

so E(XY) =0 and X = 0Y so the result follows. So assume hereafter
that E(X?) >0, E(Y?) > 0.

For any c € R!
0 < (Y —cX)?=Y?—-2cXY + c®X? which implies
0 < E(Y?) —2cE(XY)+ PE(X?)

which is a convex parabola in ¢ with minimum at ¢ = (XY)/E( )
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which gives the inequality. Equality occurs iff, when ¢ = E(XY)/E(X?),
0= E((Y — cX)?) which occurs iff
1=P(Y-cX)??=0)=P(Y-cX=0)=P(Y=cX). &

Corollary 111.7.4 (Correlation Inequality) If 0 < 0% < 0,0 < 0%, < o0,
then
—1<pyy =Corr(X,Y) <1
with equality iff Y "2 1, + oy (X — 1, ) /ox when pyy = 1 and
wpl
y 2 Hy — 0y (X —py)/0x when pyy, = —1.

Proof: In CS inequality replace X by (X — iy )/0x and Y by
(Y —py)/oy so E(X —px)?/0%) = E((Y = uy)?/0%) =1and so

_ X =y Y — iy <
‘pXY‘—’E< Tx )( Ty <1

with equality iff
Y — Uy Wél c X — Hx
Oy ox

where
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() )
e ((52))

wpl X —
Y:pVY+UYPXY( VX)
Ox

which implies

and py, = +1. W
note - a measure of the total variation in Y is given by
Var(Y) = E((Y = piy)?)

- if we approximate Y by a+ bX for some constants a and b then the
amount of variation in Y that is not explained (the residual variation) by
a+bXis

E((Y —a— bX)?)
Definition 111.7.1 The best affine predictor (linear regression) of Y from

X is given by a+ bX where a, b are constants that minimize
E(Y—a—bX)?). 1
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Exercise 111.7.3 Assume 0 < 0% < 00,0 < 02, < co. Show that if a, b
minimize E((Y —a— bX)?), then a,, b, with a. = a—uy + by, by = b
minimizes E(((Y — py) — a. — by (X — 11 ))?) over all constants ay, b,.
Exercise 111.7.4 (i) Assume y,, =y, = 0 and
0 < 0% < 0,0 < 0% < oo. For all constants a, b, and putting
Cxy = OyPxy /Tx, prove
E(Y —cxyX) =0, Cov(Y —cxyX,a+ bX) =0 and

E((Y —a—bX)? = Var(Y — cxy X) + a° + (b — cxy )? Var(X).

Use this to prove that cxy X is the best affine predictor of Y from X.

(i) Combine (i) and Exercise I11.7.3 to determine the best affine predictor
of Y from X when the assumption of 0 means is not made.

(iii) Show that the proportion of the total variation in Y explained by the
best affine predictor from X is given by p% .

(iv) When

y ) "\ oxo 2 !
Hy XO0yPxy Oy

show that Ey | x (Y | x) equals the best affine predictor of Y from X.
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