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[11.6 Expectations for Processes

Definition 111.6.1 Suppose {(t, X;) : t € T} is a stochastic process such
that E(X?) < oo for all t € T. Then define the mean function by

p: T — R by u(t) = E(X;) and the autocovariance function by
c:TxT— R byo(s t) = Cov(Xs, X;) provided these expectations
exist. The autocorrelation function p: T x T — R is defined by

o(s, t) = o(s, t)/c'/?(s,s)o'/?(t, t) provided o(t, t) > 0 for every
teT.1

Example 111.6.1 /.i.d. process

- the r.v.'s {X; : t € T} are mutually statistically independent with each
E(X:) = mand Var(X;) = v

- then pu(t) = E(X;) = m and

0 ={ g 10 ee0={g 5]

- for Bernoulli(p) process m = p,v=p(1—p) A
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Example 111.6.2 Gaussian processes

- recall the r.v.’s {X; : t € T} are such that for any {ti,.

ll(tl) (T(tlytl)
Xy Xe) ~ Ny f f
p(tn) o(tn, t1)
= N, ((u(t;)), (o(ti, t))))

.y ta} C T then

o(t1, tn)

U(t,,., tn)

- note that a Gaussian process is completely specified by the mean and

autocovariance functions l

- so if we specify u: T — R and 0: T x T — R! have we correctly

defined a Gaussian process?

- there are no restrictions on y but ¢ has to have the property that for any
{t1,....ta} C T then the n x n matrix (¢ (t;, t;)) is symmetric and

positive semidefinite
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-so afunction o : T x T — R is a valid autocovariance function
whenever o (s, t) = o(t,s) and for any {t1,...,t,} C T and
c=(c,...,cn) € R" then

Z Z cicio(ti, t;) =c (ot t;))e >0
i=1li=

- a Gaussian process exists with given time domain T, mean function

p: T — R and autocovariance function o : T x T — R! since if

{Z; : t € T} is a collection of i.i.d. N(0,1) random variables, then define,
forany {t;,..., t,} C T,

1/2
X, u(ty) ot t1) - ottt ' [ Z

Xt, p(tn) oty t1) - o(ta, ty) Z,

and this is a valid s.p. by what we have proved about marginalizing the
multivariate normal and the Kolmogorov Consistency Theorem
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- note - (1) gives a method for simulating a Gaussian process (not
necessarily the best way for large n)

- suppose T = [0, o)

- since T is a continuous, unbounded set we can't generate a full sample
function

- so choose t,, € T and N € N and put t; = t,,(i — 1)/2"N for
i=1,....2V+1

- then generate the Z;, i.i.d. N(0,1) and use (*) to get the values of the
Xt plotting the points (t;, X;,) to approximate a sample function

- the following is an example of a sample function, with t,, = 2.5, N = 10,
of a Brownian motion {(¢t, B;) : t € [0,00)} which is a Gaussian process
with

T =[0,00), By = 0, 1u(t) = 0,0(s, t) = T2 min(s, t)

and T2 >0
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Figure: Simulated Brownian motion.
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Definition 111.6.2 When T C R a process with mean function u and
autocovariance function ¢ is called weakly stationary if p(t) is constant in
t and o(s, t) = k(s — t) for some x : R — R'. W

note - k¥ must satisfy x(0) > 0, x(t) = x(—t) and for all
{t,....tn} C Tandc=(c1,...,cy) € R" then

1Y cicik(ti — tj) > 0 and such a « is called a positive semidefinite
function (positive definite when corresponding matrices are p.d.)

- there are theorems concerning such «x, for example,
x(t) = exp(—72||t||?) for T2 > 0 is positive definite
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Example 111.6.3 Random walks
- suppose the r.v.'s {Z; : t € N} are i.i.d. with mean and variance

- then the process {(t, X;) : t € IN} defined by X; = Y_f_, Z; is called a
random walk (starting from 0)
- a simple random walk arises when Z; ~ —1 + 2Bernoulli(p) so
P(Z; =—-1)=1—p, P(Z; = 1) = p and so for the random walk
t

ut) = E(X) =Y E(Z)=tE(Z) = t(—(1—p)+p) = (2p— 1)t
i=1

o(s,t) = Cov(Xs, X;) = Cov (Z Z;, i;) Z Z Cov(Z;, Z;)
i=1  j=1

i=1j=
min{s,t}
= ) Var(Z) =min{s, t}Var(Z) = 4p(1 — p) min{s, t}
i=1
so not weakly stationary
4p(1—p)min{s,t} min{s, t}

Pt = Vap(l—p)s\/ap(L—p)t /st
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- a Gaussian random walk when {Z, : t € N} are i.i.d. N(m, t2)

t

]/l(t) = Xt = ZE Zt tE Zl)
i=1
o(s,t) = Cov(Xs, Xe) 2™ min{s, t}Var(Z)) = T min{s, t}

>min{s, t} _ min{s, t}

et = e T W

- in general
X1 1 0 0 V4]
X5 1 1 0 7
. =| . = AZ;
: : 0 :
X; 1 1 1 Z;

and the finite joint distributions of {X; : t € IN} are defined consistently
and so by KCT this defines a s.p. and it is a Gaussian process Hl
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Example 111.6.4

- suppose the r.v.'s {Z, : t € Z} arei.i.d. N(0,7?) and define
{X;:t€Z} by Xy = Z; +0Z;_1 for some constant 6 € R! so
u(t) = E(Xy) = u(t) = E(Z;) + 0E(Z;—1) = 0 and
o(s,t) = Cov(Xs, X¢) = E(XsXt) — E(Xs)E(X})
= E((Zs+60Zs_1)(Zt +62Z:-1))
E(Z:Z)) +0|E(Z:Z 1) + E(Ze 1 2Z4)] + 0*E(Z 12 1)

0 s<t—1
20 s=t—1
= 2 +120°  s=t
20 s=t+1

0 s>t+1
X: e 1 0 --- 0 Zi 1
Xt+1 o 6 1 - 0 t
. e . - Azt—l,t+n
0
1
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- note - 0 (s, t) = k(s — t) where

0 t< —1
720 t=—1
k(t) =4 T24+7%0*> t=0
720 t=1
0 t>1

and so this is a weakly stationary Gaussian process B
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Exercise I11.6.1 If r.v.'s Xi, ..., Xm, Y1i...., Y, all have finite second
moments, then for constants ag, a1, ,...,am, bo, b1,,..., b, prove that.

Cov ao+ia;Xi,bo+iijj = iiaibjCov(X,-, Yj)

i=1 j=1 i=1j=1
Exercise 111.6.2 If r.v.'s Xy, ..., X, all have finite second moments then
for constants ag, a1, , ..., an prove that

Var | ag + Z aiXi| = Z a?Var(X;) +2 Z ajajCov(X;, Xj).
' i1

i=1 i<j
Specialize this result to the case where X1, ..., X, are mutually
statistically independent.

Exercise 111.6.3 In Examples I11.6.3 and 111.6.4 determine the joint
distribution of (Xi,..., X;)" in the Gaussian case.
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