Probability and Stochastic Processes - Lecture 17

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC622021.html

2021

III.6 Expectations for Processes

Definition III.6.1 Suppose $\{(t,X_t):t\in T\}$ is a stochastic process such that $E(X_t^2)<\infty$ for all $t\in T$. Then define the *mean function* by $\mu:T\to R^1$ by $\mu(t)=E(X_t)$ and the *autocovariance function* by $\sigma:T\times T\to R^1$ by $\sigma(s,t)=Cov(X_s,X_t)$ provided these expectations exist. The *autocorrelation function* $\rho:T\times T\to R^1$ is defined by $\rho(s,t)=\sigma(s,t)/\sigma^{1/2}(s,s)\sigma^{1/2}(t,t)$ provided $\sigma(t,t)>0$ for every $t\in T$.

Example III.6.1 i.i.d. process

- the r.v.'s $\{X_t: t\in T\}$ are mutually statistically independent with each $E(X_t)=m$ and $Var(X_t)=v$
- then $\mu(t) = E(X_t) = m$ and

$$\sigma(s,t) = \left\{ egin{array}{ll} v & s=t \ 0 & s
eq t \end{array}
ight.$$
 , $ho(s,t) = \left\{ egin{array}{ll} 1 & s=t \ 0 & s
eq t \end{array}
ight.$

- for Bernoulli(p) process m = p, v = p(1-p)

Example III.6.2 Gaussian processes

- recall the r.v.'s $\{X_t:t\in T\}$ are such that for any $\{t_1,\ldots,t_n\}\subset T$ then

$$(X_{t_1}, \ldots, X_{t_n}) \sim N_n \left(\begin{pmatrix} \mu(t_1) \\ \vdots \\ \mu(t_n) \end{pmatrix}, \begin{pmatrix} \sigma(t_1, t_1) & \cdots & \sigma(t_1, t_n) \\ \vdots & & \vdots \\ \sigma(t_n, t_1) & \cdots & \sigma(t_n, t_n) \end{pmatrix} \right)$$

$$= N_n \left((\mu(t_i)), (\sigma(t_i, t_j)) \right)$$

- note that a Gaussian process is completely specified by the mean and autocovariance functions ■
- so if we specify $\mu:T\to R^1$ and $\sigma:T\times T\to R^1$ have we correctly defined a Gaussian process?
- there are no restrictions on μ but σ has to have the property that for any $\{t_1,\ldots,t_n\}\subset T$ then the $n\times n$ matrix $(\sigma(t_i,t_j))$ is symmetric and positive semidefinite

- so a function $\sigma: T \times T \to R^1$ is a valid autocovariance function whenever $\sigma(s,t) = \sigma(t,s)$ and for any $\{t_1,\ldots,t_n\} \subset T$ and $\mathbf{c} = (c_1,\ldots,c_n)' \in R^n$ then

$$\sum_{i=1}^n \sum_{i=1}^n c_i c_j \sigma(t_i, t_j) = \mathbf{c}'(\sigma(t_i, t_j)) \mathbf{c} \ge 0$$

- a Gaussian process exists with given time domain T, mean function $\mu: T \to R^1$ and autocovariance function $\sigma: T \times T \to R^1$ since if $\{Z_t: t \in T\}$ is a collection of i.i.d. N(0,1) random variables, then define, for any $\{t_1,\ldots,t_n\} \subset T$,

$$\begin{pmatrix} X_{t_1} \\ \vdots \\ X_{t_n} \end{pmatrix} = \begin{pmatrix} \mu(t_1) \\ \vdots \\ \mu(t_n) \end{pmatrix} + \begin{pmatrix} \sigma(t_1, t_1) & \cdots & \sigma(t_1, t_n) \\ \vdots & & \vdots \\ \sigma(t_n, t_1) & \cdots & \sigma(t_n, t_n) \end{pmatrix}^{1/2} \begin{pmatrix} Z_{t_1} \\ \vdots \\ Z_{t_n} \end{pmatrix} \tag{1}$$

and this is a valid s.p. by what we have proved about marginalizing the multivariate normal and the Kolmogorov Consistency Theorem

(ㅁ) (라) (분) (분) · 분 · 이익(C)

- note (1) gives a method for simulating a Gaussian process (not necessarily the best way for large n)
- suppose $T=[0,\infty)$
- since T is a continuous, unbounded set we can't generate a full sample function
- so choose $t_{up} \in T$ and $N \in \mathbb{N}$ and put $t_i = t_{up}(i-1)/2^N$ for $i = 1, \dots, 2^N + 1$
- then generate the Z_{t_i} i.i.d. N(0,1) and use (*) to get the values of the X_{t_i} plotting the points (t_i, X_{t_i}) to approximate a sample function
- the following is an example of a sample function, with $t_{up}=2.5$, N=10, of a Brownian motion $\{(t,B_t):t\in[0,\infty)\}$ which is a Gaussian process with

$$T = [0, \infty), B_0 = 0, \mu(t) = 0, \sigma(s, t) = \tau^2 \min(s, t)$$

and $\tau^2 > 0$

Figure: Simulated Brownian motion.

Definition III.6.2 When $T \subset R^k$ a process with mean function μ and autocovariance function σ is called *weakly stationary* if $\mu(t)$ is constant in t and $\sigma(s,t)=\kappa(s-t)$ for some $\kappa:R^k\to R^1$.

note - κ must satisfy $\kappa(0) \geq 0$, $\kappa(t) = \kappa(-t)$ and for all $\{t_1, \ldots, t_n\} \subset T$ and $\mathbf{c} = (c_1, \ldots, c_n)' \in R^n$ then $\sum_{i=1}^n \sum_{j=1}^n c_j c_j \kappa(t_i - t_j) \geq 0$ and such a κ is called a *positive semidefinite function* (positive definite when corresponding matrices are p.d.)

- there are theorems concerning such κ , for example, $\kappa(t)=\exp(-\tau^2||t||^2)$ for $\tau^2>0$ is positive definite

Example III.6.3 Random walks

- suppose the r.v.'s $\{Z_t: t \in \mathbb{N}\}$ are i.i.d. with mean and variance
- then the process $\{(t, X_t): t \in \mathbb{N}\}$ defined by $X_t = \sum_{i=1}^t Z_i$ is called a random walk (starting from 0)
- a simple random walk arises when $Z_t \sim -1 + 2$ Bernoulli(p) so $P(Z_t = -1) = 1 p$, $P(Z_t = 1) = p$ and so for the random walk

$$\mu(t) = E(X_t) = \sum_{i=1}^t E(Z_t) = tE(Z_1) = t(-(1-p)+p) = (2p-1)t$$

$$\sigma(s,t) = Cov(X_s, X_t) = Cov\left(\sum_{i=1}^s Z_i, \sum_{j=1}^t Z_j\right) = \sum_{i=1}^s \sum_{j=1}^t Cov(Z_i, Z_j)$$

$$\min\{s,t\}$$

$$= \sum_{i=1}^{\min\{s,t\}} Var(Z_i) = \min\{s,t\} Var(Z_1) = 4p(1-p) \min\{s,t\}$$

so not weakly stationary

$$\rho(s,t) = \frac{4p(1-p)\min\{s,t\}}{\sqrt{4p(1-p)s}\sqrt{4p(1-p)t}} = \frac{\min\{s,t\}}{\sqrt{st}}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ◆ ○ ○ ○

- a Gaussian random walk when $\{Z_t: t \in \mathbb{N}\}$ are i.i.d. $N(m, \tau^2)$

$$\begin{array}{lcl} \mu(t) & = & E(X_t) = \sum_{i=1}^t E(Z_t) = tE(Z_1) = mt \\ \sigma(s,t) & = & Cov(X_s,X_t) \stackrel{\text{as above}}{=} \min\{s,t\} \textit{Var}(Z_1) = \tau^2 \min\{s,t\} \\ \rho(s,t) & = & \frac{\tau^2 \min\{s,t\}}{\sqrt{\tau^2 s} \sqrt{\tau^2 t}} = \frac{\min\{s,t\}}{\sqrt{st}} \end{array}$$

- in general

$$\left(egin{array}{c} X_1 \ X_2 \ dots \ X_t \end{array}
ight) = \left(egin{array}{ccc} 1 & 0 & \cdots & 0 \ 1 & 1 & \cdots & 0 \ dots & dots & 0 \ 1 & 1 & \cdots & 1 \end{array}
ight) \left(egin{array}{c} Z_1 \ Z_2 \ dots \ Z_t \end{array}
ight) = A \mathbf{Z}_t$$

and the finite joint distributions of $\{X_t : t \in \mathbb{N}\}$ are defined consistently and so by KCT this defines a s.p. and it is a Gaussian process \blacksquare

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ○

Example III.6.4

- suppose the r.v.'s $\{Z_t: t \in \mathbb{Z}\}$ are i.i.d. $N(0, \tau^2)$ and define $\{X_t: t \in \mathbb{Z}\}$ by $X_t = Z_t + \theta Z_{t-1}$ for some constant $\theta \in R^1$ so $\mu(t) = E(X_t) = \mu(t) = E(Z_t) + \theta E(Z_{t-1}) = 0$ and $\sigma(s,t) = Cov(X_s, X_t) = E(X_sX_t) - E(X_s)E(X_t)$ $= E((Z_s + \theta Z_{s-1})(Z_t + \theta Z_{t-1}))$ $= E(Z_sZ_t) + \theta[E(Z_sZ_{t-1}) + E(Z_{s-1}Z_t)] + \theta^2E(Z_{s-1}Z_{t-1})$ $= \left\{ egin{array}{ll} 0 & s < t-1 \ au^2 heta & s = t-1 \ au^2 + au^2 heta^2 & s = t \ au^2 heta & s = t+1 \ 0 & s > t+1 \ \end{array}
ight.$

$$= \begin{cases} \tau^2 + \tau^2 \theta^2 & s = t \\ \tau^2 \theta & s = t+1 \\ 0 & s > t+1 \end{cases}$$

$$\begin{pmatrix} X_t \\ X_{t+1} \\ \vdots \\ X_{t+n} \end{pmatrix} = \begin{pmatrix} \theta & 1 & 0 & \cdots & 0 \\ 0 & \theta & 1 & \cdots & 0 \\ \vdots & & \vdots & 0 \\ 0 & 0 & \cdots & \theta & 1 \end{pmatrix} \begin{pmatrix} Z_{t-1} \\ Z_t \\ \vdots \\ Z_{t+n} \end{pmatrix} = A\mathbf{Z}_{t-1,t+n}$$
and so $\{(t, X_t) : t \in \mathbb{Z}\}$ is a Gaussian process.

 $: t \in \mathbb{Z}$ is a Gaussian process

- **note** - $\sigma(s,t) = \kappa(s-t)$ where

$$\kappa(t) = \left\{ egin{array}{ll} 0 & t < -1 \ au^2 heta & t = -1 \ au^2 + au^2 heta^2 & t = 0 \ au^2 heta & t = 1 \ 0 & t > 1 \end{array}
ight.$$

and so this is a weakly stationary Gaussian process

Michael Evans University of Toronto https://Probability and Stochastic Processes - Lecture

Exercise III.6.1 If r.v.'s $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ all have finite second moments, then for constants $a_0, a_1, \ldots, a_m, b_0, b_1, \ldots, b_n$ prove that.

$$Cov\left(a_0 + \sum_{i=1}^m a_i X_i, b_0 + \sum_{j=1}^n b_j Y_j\right) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j Cov(X_i, Y_j).$$

Exercise III.6.2 If r.v.'s X_1, \ldots, X_m all have finite second moments then for constants a_0, a_1, \ldots, a_m prove that

$$Var\left(a_0 + \sum_{i=1}^m a_i X_i\right) = \sum_{i=1}^m a_i^2 Var(X_i) + 2\sum_{i < j} a_i a_j Cov(X_i, X_j).$$

Specialize this result to the case where X_1, \ldots, X_m are mutually statistically independent.

Exercise III.6.3 In Examples III.6.3 and III.6.4 determine the joint distribution of $(X_1, \ldots, X_t)'$ in the Gaussian case.

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < ©