Probability and Stochastic Processes | - Lecture 15

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://\Probability and Stochastic Processes | - Lectt



[11.2 Convergence With Probability 1

Definition 111.2.1 The sequence of r.v.'s {X,} converges with probability
Itorv. Xif
P{w: lim X,(w) =X(w)}) =1

n—oo

and write X, wel X.
note
{w: nlilnan(w) = X(w)}
= NS Iimir;f{w D Xn(w) — X(w)| < 1/m}
AL, U P fw s X (@) — X(@)| < 1/m} € A
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Example 111.2.1
(Q, A, P) = (R, B, P) where P is the uniform distribution on [0, 1] so

P(B) = / dx
B(0,1]

and let X, (w) = -5 w? and X(w) = w?

- then {w : lim, e Xp(w) = X(w)} = R! and P(RY) = f[o.l] dx =1 so
X, "% X

- let

[ W fw#1/2
X*(w)_{1 if w=1/2

then {w : lim,_e Xy (w) = X (w)} = R*\{1/2} and

1 _ _ _
P(RM\{1/2}) = /[0'1/2) dx + /(lm dx=1/2+4+1/2=1

1
and so X, i Xi too
- we could change X at every rational g € Q to obtain X, and since
. 1
P(Q) = 0 we still have X, > X, R
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- a measure v defined on (Q), .A) is a function v : A — [0, 00| that
satisfies v(¢) = 0 and v(U; A;) = Y52, v(Aj) whenever Aj, Ay, ... € A
are mutually disjoint

Example 111.2.2
- a probability measure v defined on (Q, .A) is a measure

- counting measure defined by v(A) = #(A) is a measure
-if (Q, A) = (R, B¥) and v(A) = Vol(A) is a measure B

- now suppose h: (Q, A) — (R, BY) (h: Q — R and h"1B € A for
every B € B)

- then just as we did for r.v. X and P we can define a kind of average of h
with respect to v (simple functions h, nonnegative functions h, general
functions h = hy — h_) which, when it exists, is denoted

/ h(w)v(dw)
0

called the integral of h with respect to v
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- so, for example, the expectation of r.v. X can also be written as the
integral of X with respect to v = P, namely,

E(X) = /QX(w) P(dew)

- with v = counting measure on (Q, A) (fact)

/Qh(w)v(dw) = Y h(w)

we)

and with v = volume measure on (R¥, B¥) (fact)

/Q h(w) v(dw) = /R h(x) dx
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- if {hn} is a sequence of such functions, then we say the sequence
converges almost surely v to h if

v({w: nILmoo hp(w) # h(w)}) =0

SV

and write hj, h
- so convergence almost surely P to h is convergence with probability 1
- we need the following results

Proposition 111.2.1 Suppose h, *=" h.

(i) (I\/Ionotone Convergence MCT)If0< h < hy < , then
Ja (@) v(dw) T [o h(w) v(dw).
(i) (Dom/nated Convergence DCT) If there exists g : (O, A) — (R, BY)
such that f \g )| v (da)) < o0 and |h,,\ < |g| for very n, then

Ja ha(w) v — Jah

Proof: Accept. [ |

Michael Evans University of Toronto http://\Probability and Stochastic Processes | - Lectt



Corollary 111.2.1 Suppose X, Pl X.
MHIF0O<Xg <Xp <---,then E(X,) T E(X).

(i) If there exists r.v. Y such that E(|Y]|) < o0 and |X,| < |Y] for very
n, then E(X,) — E(X).

Example 111.2.1 (continued)

- then X, (w) = #7w? T X(w) = w? and so by MCT

E(X,) T E(X)and E(X,) T E(X,) R
Example 111.2.2

- suppose X is s.t. E(X) is finite and let X, = X/f|x|<p

_ then X, % X and |Xn| < |X]soby DCT E(X,) — E(X) R
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[11.3 Computing Expectations

Lemma I11.3.1 If X is a r.v. with respect to (Q), A, P) and
h: (R, BY) — (R, B!), then Y = h(X) is a r.v. with respect to
(O, A P).

Proof: Let B € B!. Then
YIB = {w:Y(w)=hXw)) <€ B}
{w:X(w)eh By =X"th"'Bc A
since !B e Bland Xisarv. B
- when his a r.v. with respect to (R!, B, Px) does E(Y) = Ep, (h)?
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Proposition 111.3.2 If X is a r.v. with respect to (2, .4, P) and
h: (R, BY) — (R, BY), then E(Y) = Ep,(h) when it exists.

Proof: Suppose h = Zf‘zl bilg, is a simple function. Then

Y(w) = h(X(w ZbIB Zblx 18, (

is a simple function on () and so

E(Y)=) bP(X'Bj) = i biPx (B;) = Ep, (h).
j i=1

If h>0so Y = h(X) >0, then there exist nonnegative simple W, T h
which implies W, (X) T h(X) = Y. So using definition of expectation for

nonnegative r.v.’s,

Ep, (h) = lim Ep, (Wy) = lim E(W,(X)) = E(Y).

n—oo

In general write h = hy — h_ so h(X) = h;(X) — h_(X) and apply the
above result to both parts. B
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Proposition 111.3.3 Suppose X is a r.v. with respect to (Q, A4, P),

h: (RY,B) — (R, B') and Ep, (h) exists.

(i) If Py is discrete with prob. fn px, then Ep, (h) = Y, cr1 h(x)px (x).
(ii) If Py is a.c. with density fn fx, then Ep, (h) = [~ h(x)fx(x) dx.

[ee]

Proof: Suppose h(x) = Y%_; bilg,(x) is a simple function in canonical
form. Then

Y, b Yowes Px(x), if X discrete
i1 bi fB,- fx(x)dx, if X a.c.
x), if X discrete

Eoi(h) = Y biPx(B) = {
=1

- { erRl h

px (x)v(dx), v = counting measure

fx(x)v(dx), v = volume measure

which proves the result for simple h.
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If h > 0 and nonnegative simple h, T h then (i) h,px T hpx (ii)
hnfx T hfx and the result follows by MCT. The result follows for general h
via the decomposition h=h; —h_. R

Example 111.2.3 X ~ N(u,o?)
- then with h(x) = x

E(X) = / 27wexp< ;< UV>2> dx —
/_000( x) 2n0exp< % - >2> dx

and making the change of variable t = T(x) = (x — u) /0 in both
integrals (with J7(x) = ¢ and T71(t) = u + ot) and putting

¢(t) = (2m) 2 exp(—17/2)
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E(X) = /Ooo(erat)q)(t)dt+/_ooo(y+at)go(t)dt

= y/ dt+(7(/()wtq)(t)dt+/oootq0(t)dt>:;4

since fi)oo to(t) dt = — [;” te(t) dt on putting w = —t

- also, with t as before, h(x) = (x — u)?

E((xX=pP) = [ c-mwieew (—é(ﬁj”)z) o
= az/it%p(t)dt

- using integration by parts with u = t, dv = t¢(t), then
du = dt,v=—¢(t)

/_ootz(p(t) t= —to(t);=" OO+/ t)dt=0+1=1
-so E(X—p)?) =01
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Definition 111.3.1 The k-th moment of a r.v. X is given by u, = E(X*)
when this exists. When the first moment exists, the k-th central moment

of arv. X is given by fi, = E((X — p;)¥) when it exists. The mean of X
is given by p,, = E(X) and the variance of X is given by

0% = Var(X) = E((X — puy)?) when i, exists. B

Proposition 111.3.4 If p, is finite then y, is finite for / =1,2,..., k.
Proof: Note y, is finite iff E(|X|¥) is finite and putting h(x) = |x|’

0.< E(IXI) = Ep () = [ IxI' Px(c)

= /o: \x!’Px(dx)Jr/_ll \xy’PX(dx)+/l°°|xy'pX(dX)

/o: ‘X’kPX(dX)JF/_lllPx(dX)+/1°°|xykPX(dx)

IN

< /Z Ix[% Py (dx) + Px([=1,1]) < co. W
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Exercise 111.3.1 When X ~ N(u, 0?) compute E(X3) and E(X*).

Exercise 111.3.2 When X ~ Standard Cauchy, namely, X has density
fx(x) = 1/7(1+ x?) for —oo < x < oo, show that i, doesn't exist.

Exercise 111.3.3 E&R 3.1.17.

Exercise 111.3.4 E&R 3.1.22, E&R 3.3.18 and E&R 3.3.19.
Exercise 111.3.5 E&R 3.2.16 and E&R 3.3.20.

Exercise 111.3.6 E&R 3.2.22 and E&R 3.3.24.
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Example 111.2.4 Monte Carlo Approximations

- suppose Y = h(X) for some h: (R, B}) — (R!, B!) and we want to
compute E(Y)

- often this can be very difficult unless Py is easy to work with

. d. d.
- but if we can generate X1,X2,...'f'v Px then Y7, Yo,. .'r’v Py

- then a very natural estimator of E(Y) is

o1 18

Y = - ,221 Yi = - ,221 h(X
and we will show (later) that this converges to E(Y) as n — oo
- how accurate is this estimate for some specific n?
- the Central Limit Theorem (later) says, for large n,

Y —E(Y)
/' Var(Y)/n

~ N(0,1)

provided Var(Y) < oo
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- Var(Y)=E((Y = E(Y))?) = E(Y?) — (E(Y))? can be estimated
(later) by

n _ 120 _
2 _ = 2 2 = — — 2
2= ni}:llv, y ni}:l;(y, Y)
and indeed (later) )
Y=EW) & no,1)

~if Z ~ N(0,1) then P(—3 < Z < 3) = 0.9973002 ~ 1

- combining these statements we can say that the true value of E(Y) lies
in the interval

Y —3s/v/n, Y +3s/+/n]

with “virtual certainty” and the length of the interval assesses the
accuracy of the estimate

note when Y = [, then Y = the relative frequency of A in X1, Xo,..., X,
and Y? = Y; so s> = Y(1 — Y) and this is the same estimation procedure
as previously discussed for estimating Px (A)
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