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III.2 Convergence With Probability 1

Definition III.2.1 The sequence of r.v.’s {Xn} converges with probability
1 to r.v. X if

P({ω : lim
n→∞

Xn(ω) = X (ω)}) = 1

and write Xn
wp1→ X . �

note

{ω : lim
n→∞

Xn(ω) = X (ω)}

= ∩∞
m=1 lim infn

{ω : |Xn(ω)− X (ω)| < 1/m}

= ∩∞
m=1 ∪∞

n=1 ∩∞
i=n{ω : |Xi (ω)− X (ω)| < 1/m} ∈ A
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Example III.2.1
(Ω,A,P) = (R1,B1,P) where P is the uniform distribution on [0, 1] so

P(B) =
∫
B∩[0,1]

dx

and let Xn(ω) = n
n+1ω2 and X (ω) = ω2

- then {ω : limn→∞ Xn(ω) = X (ω)} = R1 and P(R1) =
∫
[0.1] dx = 1 so

Xn
wp1→ X

- let

X∗(ω) =
{

ω2 if ω 6= 1/2
1 if ω = 1/2

then {ω : limn→∞ Xn(ω) = X∗(ω)} = R1\{1/2} and

P(R1\{1/2}) =
∫
[0,1/2)

dx +
∫
(1/2,1]

dx = 1/2+ 1/2 = 1

and so Xn
wp1→ X∗ too

- we could change X at every rational q ∈ Q to obtain X∗∗ and since

P(Q) = 0 we still have Xn
wp1→ X∗∗ �
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- a measure ν defined on (Ω,A) is a function ν : A → [0,∞] that
satisfies ν(φ) = 0 and ν(∪∞

i=1Ai ) = ∑∞
i=1 ν(Ai ) whenever A1,A2, . . . ∈ A

are mutually disjoint

Example III.2.2
- a probability measure ν defined on (Ω,A) is a measure
- counting measure defined by ν(A) = #(A) is a measure

- if (Ω,A) = (Rk ,Bk ) and ν(A) = Vol(A) is a measure �
- now suppose h : (Ω,A)→ (R1,B1) (h : Ω→ R1 and h−1B ∈ A for
every B ∈ B1)
- then just as we did for r.v. X and P we can define a kind of average of h
with respect to ν (simple functions h, nonnegative functions h, general
functions h = h+ − h−) which, when it exists, is denoted∫

Ω
h(ω) ν(dω)

called the integral of h with respect to ν
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- so, for example, the expectation of r.v. X can also be written as the
integral of X with respect to ν = P, namely,

E (X ) =
∫

Ω
X (ω)P(dω)

- with ν = counting measure on (Ω,A) (fact)∫
Ω
h(ω) ν(dω) = ∑

ω∈Ω
h(ω)

and with ν = volume measure on (Rk ,Bk ) (fact)∫
Ω
h(ω) ν(dω) =

∫
R k
h(x) dx

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 15 2023 5 / 16



- if {hn} is a sequence of such functions, then we say the sequence
converges almost surely ν to h if

ν({ω : lim
n→∞

hn(ω) 6= h(ω)}) = 0

and write hn
a.s . ν→ h

- so convergence almost surely P to h is convergence with probability 1

- we need the following results

Proposition III.2.1 Suppose hn
a.s . ν→ h.

(i) (Monotone Convergence MCT ) If 0 ≤ h1 ≤ h2 ≤ · · · , then∫
Ω hn(ω) ν(dω) ↑

∫
Ω h(ω) ν(dω).

(ii) (Dominated Convergence DCT ) If there exists g : (Ω,A)→ (R1,B1)
such that

∫
Ω |g(ω)| ν(dω) < ∞ and |hn | ≤ |g | for very n, then∫

Ω hn(ω) ν(dω)→
∫

Ω h(ω) ν(dω).

Proof: Accept. �
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Corollary III.2.1 Suppose Xn
wp1→ X .

(i) If 0 ≤ X1 ≤ X2 ≤ · · · , then E (Xn) ↑ E (X ).
(ii) If there exists r.v. Y such that E (|Y |) < ∞ and |Xn | ≤ |Y | for very
n, then E (Xn)→ E (X ).

Example III.2.1 (continued)

- then Xn(ω) = n
n+1ω2 ↑ X (ω) = ω2 and so by MCT

E (Xn) ↑ E (X ) and E (Xn) ↑ E (X∗) �
Example III.2.2

- suppose X is s.t. E (X ) is finite and let Xn = XI{|X |≤n}

- then Xn
wp1→ X and |Xn | ≤ |X | so by DCT E (Xn)→ E (X ) �
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III.3 Computing Expectations

Lemma III.3.1 If X is a r.v. with respect to (Ω,A,P) and
h : (R1,B1)→ (R1,B1), then Y = h(X ) is a r.v. with respect to
(Ω,A,P).
Proof: Let B ∈ B1. Then

Y −1B = {ω : Y (ω) = h(X (ω)) ∈ B}
= {ω : X (ω) ∈ h−1B} = X−1h−1B ∈ A

since h−1B ∈ B1 and X is a r.v. �
- when h is a r.v. with respect to (R1,B1,PX ) does E (Y ) = EPX (h)?
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Proposition III.3.2 If X is a r.v. with respect to (Ω,A,P) and
h : (R1,B1)→ (R1,B1), then E (Y ) = EPX (h) when it exists.
Proof: Suppose h = ∑k

i=1 bi IBi is a simple function. Then

Y (ω) = h(X (ω)) =
k

∑
i=1
bi IBi (X (ω)) =

k

∑
i=1
bi IX −1Bi (ω)

is a simple function on Ω and so

E (Y ) =
k

∑
i=1
biP(X−1Bi ) =

k

∑
i=1
biPX (Bi ) = EPX (h).

If h ≥ 0 so Y = h(X ) ≥ 0, then there exist nonnegative simple Wn ↑ h
which implies Wn(X ) ↑ h(X ) = Y . So using definition of expectation for
nonnegative r.v.’s,

EPX (h) = lim
n→∞

EPX (Wn) = lim
n→∞

E (Wn(X )) = E (Y ).

In general write h = h+ − h− so h(X ) = h+(X )− h−(X ) and apply the
above result to both parts. �
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Proposition III.3.3 Suppose X is a r.v. with respect to (Ω,A,P),
h : (R1,B1)→ (R1,B1) and EPX (h) exists.
(i) If Px is discrete with prob. fn pX , then EPX (h) = ∑x∈R 1 h(x)pX (x).

(ii) If Px is a.c. with density fn fX , then EPX (h) =
∫ ∞
−∞ h(x)fX (x) dx .

Proof: Suppose h(x) = ∑k
i=1 bi IBi (x) is a simple function in canonical

form. Then

EPX (h) =
k

∑
i=1
biPX (Bi ) =

{
∑k
i=1 bi ∑x∈Bi pX (x), if X discrete

∑k
i=1 bi

∫
Bi
fX (x) dx , if X a.c.

=

{
∑x∈R 1 h(x)pX (x), if X discrete∫ ∞
−∞ h(x)fX (x) dx , if X a.c.

=

{ ∫ ∞
−∞ h(x)pX (x) ν(dx), ν = counting measure∫ ∞
−∞ h(x)fX (x) ν(dx), ν = volume measure

which proves the result for simple h.
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If h ≥ 0 and nonnegative simple hn ↑ h then (i) hnpX ↑ hpX (ii)
hnfX ↑ hfX and the result follows by MCT. The result follows for general h
via the decomposition h = h+ − h−. �
Example III.2.3 X ∼ N(µ, σ2)
- then with h(x) = x

E (X ) =
∫ ∞

0
x

1√
2πσ

exp

(
−1
2

(
x − µ

σ

)2)
dx −

∫ 0

−∞
(−x) 1√

2πσ
exp

(
−1
2

(
x − µ

σ

)2)
dx

and making the change of variable t = T (x) = (x − µ)/σ in both
integrals (with JT (x) = σ and T−1(t) = µ+ σt) and putting

ϕ(t) = (2π)−1/2 exp(−t2/2)
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E (X ) =
∫ ∞

0
(µ+ σt)ϕ(t) dt +

∫ 0

−∞
(µ+ σt)ϕ(t) dt

= µ
∫ ∞

−∞
ϕ(t) dt + σ

(∫ ∞

0
tϕ(t) dt +

∫ 0

−∞
tϕ(t) dt

)
= µ

since
∫ 0
−∞ tϕ(t) dt = −

∫ ∞
0 tϕ(t) dt on putting w = −t

- also, with t as before, h(x) = (x − µ)2

E
(
(X − µ)2

)
=

∫ ∞

−∞
(x − µ)2

1√
2πσ

exp

(
−1
2

(
x − µ

σ

)2)
dx

= σ2
∫ ∞

−∞
t2ϕ(t) dt

- using integration by parts with u = t, dv = tϕ(t), then
du = dt, v = −ϕ(t)∫ ∞

−∞
t2ϕ(t) dt = −tϕ(t)|t=∞

t=−∞ +
∫ ∞

−∞
ϕ(t) dt = 0+ 1 = 1

- so E
(
(X − µ)2

)
= σ2 �
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Definition III.3.1 The k-th moment of a r.v. X is given by µk = E (X
k )

when this exists. When the first moment exists, the k-th central moment
of a r.v. X is given by µ̄k = E ((X − µ1)

k ) when it exists. The mean of X
is given by µX = E (X ) and the variance of X is given by
σ2X = Var(X ) = E ((X − µX )

2) when µX exists. �
Proposition III.3.4 If µk is finite then µl is finite for l = 1, 2, . . . , k.

Proof: Note µk is finite iff E (|X |k ) is finite and putting h(x) = |x |l

0 ≤ E (|X |l ) = EPX (h) =
∫ ∞

−∞
|x |l PX (dx)

=
∫ −1
−∞
|x |l PX (dx) +

∫ 1

−1
|x |l PX (dx) +

∫ ∞

1
|x |l PX (dx)

≤
∫ −1
−∞
|x |k PX (dx) +

∫ 1

−1
1PX (dx) +

∫ ∞

1
|x |k PX (dx)

≤
∫ ∞

−∞
|x |k PX (dx) + PX ([−1, 1]) < ∞. �
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Exercise III.3.1 When X ∼ N(µ, σ2) compute E (X 3) and E (X 4).
Exercise III.3.2 When X ∼ Standard Cauchy, namely, X has density
fX (x) = 1/π(1+ x2) for −∞ < x < ∞, show that µ1 doesn’t exist.

Exercise III.3.3 E&R 3.1.17.

Exercise III.3.4 E&R 3.1.22, E&R 3.3.18 and E&R 3.3.19.

Exercise III.3.5 E&R 3.2.16 and E&R 3.3.20.

Exercise III.3.6 E&R 3.2.22 and E&R 3.3.24.
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Example III.2.4 Monte Carlo Approximations

- suppose Y = h(X ) for some h : (R1,B1)→ (R1,B1) and we want to
compute E (Y )

- often this can be very diffi cult unless PY is easy to work with

- but if we can generate X1,X2, . . . i .i .d .∼ PX then Y1,Y2, . . . i .i .d .∼ PY

- then a very natural estimator of E (Y ) is

Ȳ =
1
n

n

∑
i=1
Yi =

1
n

n

∑
i=1
h(Xi )

and we will show (later) that this converges to E (Y ) as n→ ∞

- how accurate is this estimate for some specific n?

- the Central Limit Theorem (later) says, for large n,

Ȳ − E (Y )√
Var(Y )/n

≈ N(0, 1)

provided Var(Y ) < ∞
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- Var(Y ) = E ((Y − E (Y ))2) = E (Y 2)− (E (Y ))2 can be estimated
(later) by

s2 =
1
n

n

∑
i=1
Y 2i − Ȳ 2 =

1
n

n

∑
i=1
(Yi − Ȳ )2

and indeed (later)
Ȳ − E (Y )√

s2/n
≈ N(0, 1)

- if Z ∼ N(0, 1) then P(−3 < Z < 3) = 0.9973002 ≈ 1
- combining these statements we can say that the true value of E (Y ) lies
in the interval

[Ȳ − 3s/
√
n, Ȳ + 3s/

√
n]

with “virtual certainty”and the length of the interval assesses the
accuracy of the estimate

note when Y = IA then Ȳ = the relative frequency of A in X1,X2, . . . ,Xn
and Y 2i = Yi so s

2 = Ȳ (1− Ȳ ) and this is the same estimation procedure
as previously discussed for estimating PX (A)
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