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III Expectation
III.1 Definition

- probability model (Ω,A,P)
- recall the definition of the indicator function for A ∈ A

IA(ω) =
{
1 ω ∈ A
0 ω /∈ A ∼ Bernoulli(P(A))

- some properties of indicator functions

IAc (ω) = 1− IA(ω), I∩ni=1Ai =
n
∏
i=1
IAi ,

I∪ni=1Ai = 1−
n
∏
i=1
IAci = 1−

n
∏
i=1
(1− IAi )

=
n
∑
i=1
IAi − ∑

i<j
IAi IAj + · · ·+ (−1)n+1

n
∏
i=1
IAi (induction)

=
n
∑
i=1
IAi − ∑

i<j
IAi∩Aj + · · ·+ (−1)n+1I∩ni=1Ai
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Definition III.1.1 If A1, . . . ,Al ∈ A and a1, . . . , al ∈ R1, a function
X : Ω→ R1 given by X (ω) = ∑l

i=1 ai IAi (ω) is called a simple function.
�
note - a simple function takes only finitely many values and it is a random
variable (a sum of r.v.’s is a r.v.) and any r.v. that takes only finitely
many values is a simple function (Exercise III.1.1)

- let c1, . . . , cm ∈ R1 be the distinct values taken by simple function X and
Ci = X−1{ci} ∈ A so Ci ∩ Cj = φ when i 6= j , ∪ni=1Ci = Ω and

X (ω) =
m

∑
i=1
ci ICi (ω)

is in canonical form with a discrete distribution

pX (x) = PX ({x}) = P(X−1{x}) =
{
0 x /∈ {c1, . . . , cm}
P(Ci ) x = ci
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- when ω1, . . . ,ωn are i.i.d. (independently and identically distributed) P,
then

1
n

n

∑
i=1
X (ωi )

=
1
n

n

∑
i=1

l

∑
j=1
aj IAj (ωi ) =

l

∑
j=1
aj

(
1
n

n

∑
i=1
IAj (ωi )

)
→

l

∑
j=1
ajP(Aj )

=
1
n

n

∑
i=1

m

∑
j=1
cj ICj (ωi ) =

m

∑
j=1
cj

(
1
n

n

∑
i=1
ICj (ωi )

)
→

m

∑
j=1
cjP(Cj )

as n→ ∞ so
l

∑
j=1
ajP(Aj ) =

m

∑
j=1
cjP(Cj )

- this leads to the following definition
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Definition III.1.2 For a simple function X = ∑l
i=1 ai IAi the expectation of

X is defined by

E (X ) =
l

∑
i=1
aiP(Ai ). �

- if X1,X2 are simple functions, then so is a0 + a1X1 + a2X2 for any
constants a0, a1, a2 and also X1X2 is a simple function

Proposition III.1.1 If X1,X2 are simple functions, then
(i) E (a0 + a1X1 + a2X2) = a0 + a1E (X1) + a2E (X2),
(ii) if X1 ≤ X2, then E (X1) ≤ E (X2),
(iii) if P({ω : X1(ω) 6= X2(ω)}) = 0, then E (X1) = E (X2).
Proof: (i) Exercise III.1.2

(ii) Since X2 − X1 is a nonnegative simple function so distinct values taken
are nonnegative which implies, using (i),

0 ≤ E (X2 − X1) = E (X2)− E (X1).
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(iii) Suppose X1 = ∑l
i=1 ai IAi ,X2 = ∑m

i=1 bi IBi are in canonical form. Note
that if P(Aj ) = 0, then

E (X1) =
l

∑
i=1
aiP(Ai ) = ∑

i 6=j
aiP(Ai )

and similarly for X2. So assume that P(Ai ) > 0,P(Bj ) > 0 for all i , j .
Then for each ai there exists bj (and conversely) such that ai = bj and Ai
and Bj satisfy P(Ai ∩ Bcj ) = P(Aci ∩ Bj ) = 0 which implies
P(Ai ) = P(Bj ). This gives the result. �
- now we want to extend the definition of expectation to as many r.v.’s as
possible
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- suppose X is a nonnegative r.v. and for i ∈ {1, . . . , n}, j ∈ {1, . . . , 2n}
let

Ai ,j ,n = {ω : (i − 1) + (j − 1)/2n ≤ X (ω) < (i − 1) + j/2n} ∈ A

Xn =
n

∑
i=1

2n

∑
j=1
((i − 1) + (j − 1)/2n)IAi ,j ,n

and then Xn is a nonnegative simple function satisfying Xn(ω) ≤ X (ω)
- suppose n ≤ n′,

if X (ω) ≥ n, then 0 = Xn(ω) ≤ Xn′(ω),
if ω ∈ Ai ,j ,n, then ω ∈ Ai ,j ′,n′ for some j ′ and Xn(ω) ≤ Xn′(ω)

- furthermore limn→∞ Xn(ω) = X (ω) for all ω ∈ Ω
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- by Prop. III.1.1(ii) E (Xn) is increasing and so limn→∞ E (Xn) exists
(could be ∞) and it makes sense then to define

E (X ) = lim
n→∞

E (Xn)

provided this limit is the same for any increasing sequence of simple
functions Xn satisfying limn→∞ Xn(ω) = X (ω) for all ω ∈ Ω and (fact)
this is true

- suppose X is a r.v. and define

X+(ω) = max{0,X (ω)} the positive part of X
X−(ω) = max{0,−X (ω)} the negative part of X

so X = X+ − X− and for any Borel set B ⊂ R1

X−1+ B =
{
X−1(B ∩ (0,∞)) if 0 /∈ B
X−1(−∞, 0] ∪ X−1(B ∩ (0,∞)) if 0 ∈ B ∈ A

so X+ is a nonnegative r.v. and similarly X− is a nonnegative r.v.
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Definition III.1.3 For a r.v. X define the expectation of X by

E (X ) = E (X+)− E (X−)

provided at least one of E (X+),E (X−) is finite, otherwise E (X ) is not
defined. �
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