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[1.8 Conditional Distributions

- consider a random vector X with prob. measure Px and suppose Y =y,
where Y = T(X), is observed

- we want the conditional distribution of X given T(X) =y
discrete case
- so suppose X has a discrete distribution with probability function px

- then the conditional probability function of X given T(X) =y is 0 when
T(x) # y for no x, where px(x) > 0 and otherwise

pxiv(xly) = Pxiy({x}| T {y})
Px({x} N T {y})
Px(T-{y})
px (x) _ px(x)
Yzer1yyy Px(2)  py(y)
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Example 11.8.1 Conditioning the multinomia/(n, pi, ... ,pk)
- suppose Y = T(Xy,..., Xx) = Xy ~ binomial(n, p)

- now we want the conditional probability function of
(X1,..., Xk) | X1 = x1 or equivalently (Xa,..., Xx) | X1 = x1 so, for

2, xk €{0,...,n—x1t, 0+ xk=n—x
(x X ]x) _ (X1X2n-..xk)pi(1p§2 . -p:k
p(X2 ..... AR N ()g)pfl(l—pl)”—n
- P} P\ ¥
- therefore, (Xz, ..., Xk) | X1 = x1 ~ muItinomiaI(n—xl, 1fz’pl,..., 1fkpl>
[ |

Exercise 11.8.1 If X ~ multinomial(n,p1,...,px) and Y = X1 +---+ X
for some | < k, then determine the conditional distribution of X given
Y =y.
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absolutely continuous case

- so suppose X has a.c. distribution with density function fx and
T : Rk — R!is smooth (k > /)

- then the conditional density function of X given T(X) =y is, when
x €T Hy}

[ Px(Ba()N T Bs(Y) , Pr(Ba(y)
fivixly) = m'éf?gw{v:/wil(xmT—lBZ(y»/ v3/<852<y>>}

fact ix(x)J7 (x)

A (y)
where
AT (x) AT (%) AT (x) ATix) \ /|2
dx1 te X dx1 te X
Jr(x) = |det : : :
9T;(x) 9T;(x) T;(x) aT;(x)
aX1 an a)q axk
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Example 11.8.2 Projections

-if T(x, ..., xk) = (x1,x2) then [ =2
ATi(x)  ATa(x) \ |~1/2
BT1 (X) E)Tl(x) aX1 ax1
Jr (X) = |det ( B'Ia':%x) 87§)2<‘Ex) )
ox1 e X 0Ty (X) a7, (X)
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Example 11.8.3 Projection conditionals of the Ny (p, %)
- suppose X ~Nj(p,X) and X; = T(X) =(Xq,..., X)) for I < k

- partition u and X as

po= <‘u1 ) WhereyIER/,,uQERk_’

Mo
_ i X Y1 € RX, gy € R,
= ( le2 200 > where Yoo € R(k—/)x(k—l)

Exercise 11.8.3 Prove that X1; and Xy, are p.d. when X is p.d.

- we need to obtain the distribution of X; and for this we need another
matrix decomposition
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Gram-Schmidt (QR) decomposition

- consider a matrix A = (a; - -+ ax) € R¥¥ of rank k (so nonsingular)
- so the columns of A form a basis for R : a, ..., ax are linearly
independent (cja; + -+ ckax =0iffcg = ... = ¢, =0) and

L{al, ...,ak} = {c1a1+---—|—ckak 1Cl,...,Ck € Rl} = R¥

- applying the Gram-Schmidt process to {a, ...,ax} we obtain an
orthonormal basis {q, ..., qx} for R

- then @ = (q1 - -+ qx) € R¥*¥ is an orthogonal matrix and

ni nz2 - Nk
0 rmo o
A= QR=(@-a)| . T and
0 0 - r
q = a1/||a1|\,f11:||al|‘>0
a) — (q}a
@ = 2@ e — (dan)ar]| > 0
a2 — qjas||
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- so R is an upper triangular matrix with positive diagonals and it is unique

Exercise 11.8.4 Prove that if A = QR as just described, then R is unique
given Q.

- applying the QR decomposition to £1/2 = QR gives
Z — 21/221/2 — (21/2)/21/2 — R/R

and this is known as the Cholesky decomposition of %

Exercise 11.8.5 Restrict to 2 x 2 matrices. (i) Prove that the product of
two upper triangular 2 X 2 matrices with positive diagonals is upper
triangular with positive diagonals. (ii) Prove that an upper triangular
matrix with positive diagonal is nonsingular and its inverse is upper
triangular with positive diagonal equal to the inverse of the diagonal
elements of the original matrix. (iii) Show that the upper triangular matrix
in the Cholesky decomposition of p.d. X is unique. (iv) (Challenge)
Generalize (i), (ii) and (iii) to k X k upper triangular matrices.
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- now

Z:< 211 X2 >:< Riy O )/< Ri1 R )
X, X Ri, R 0 R
- let Z ~ Nk (0, /) and then using the fact that Zi, ..., Zx are mut. stat.

ind.

Z— ( él > where Zy ~ N;(0, /) stat. ind. of Z; ~ N,—(0,/)
2

- now (recall a+ AZ ~ Ni(a, AA"))
Xy u Ri1 R >/< Z, >
X = = 1 —+
(e )=(m)+(% &) (2
NORERNES
Ho R, Ry Z;
_ #y + R Zy

- therefore X; = p; + R{;Z1 ~ Nj(py, R{;Ri1) = Ny(pt;, Z11) and we
have proved
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Proposition 11.8.1 If

X J7i Y1
X = ~ N, 1),
o )~m () (52 52))
where X; € R/, then X; ~ Ni(py, 211).

Exercise 11.8.4 If /, denotes an r X r identity matrix, then use a matrix of

the form
(0 ey
(1 %)

to determine the distribution of X, in Proposition 11.8.1. In general a
permutation matrix A has a single 1 in each row and column with all the
remaining entries 0. Use such a matrix to determine the marginal
distribution of any subvector of X.
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Proposition 11.8.2 If
X1 7 211 X2
X = ~ N 1,
(o)~ )- (5 52)
where X; € R/, then
Y =X, — Z"/1221711)(1 ~ Ni—(py — llzzfllﬂlv 22 — Z{Lzzﬂlzlﬁ

stat. ind. of X; ~ N,(yl,le).
Proof: We have

X1 / 0 X1
= _ = AX
( Y ) ( _2/122111 / ) < X2 )
~  Ni(Apu, ALA") where (Exercise 11.8.6)
_ g >
Au = _
: < 1y, — XXt

211 0
AXA = _
< 0 Yoy — Z/122111212 )

which proves the first part.
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Now observe in general, if

wo (Yo (). (3 2).

a0 ) 2
fv (w1, wo) = (27r) k/2 <det< 81 S0 )) X

exp L wi—n / 2;11 0 . wi — v
2 Wy — Vo 0 252 Wy — V2
= (27{)_’/2(det211)_1/2 exp(—(w1 — 1/1)/2.1_11 (Wl — 1/1)/2) X
(2n)*(k*’)/2(det222)*1/2 exp(—(w2 — 1/2)’2551 (W2 — 1/2)/2)

then

and so W; and W, are statistically independent and this proves the
second part. l
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Corollary 11.8.2
Xo | Xy = x1 ~ Ny (py + Z3, 500 (%1 — py), Tz — £, 507 T0)

Proof: So the joint density of X; and Y is fx, (x1)fy(y). Now make the
transformation

() =700 )= (oemtiom )
X2 y y+ILE 0%

-1
I 0
det ( stuff I )
So by the change of variable

=1.
fx(x1,%2) = fx, (x1) v (x2 — Z1,Z 1 %1)

which has

Jr(x1y) =

and therefore by conditioning on projections

fx X1, X2 —
o, (e [x0) = X222 o o )
1
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and
Ay (xo — 21,501 %1)
= (21)"*N/2(det(Zgp — 21T E12)) M2 x

exp <_ (2~ (p + T4 50— 1)) (B0 — zazzlfzm%))
2

which establishes the result. H

- the linear function g, + X}, 2171 (x1 — ;) is called the regression of X
on X1
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note Monte Carlo estimates of probability contents
- suppose we want to compute Px(A)

- sometimes this can be computed exactly but typically we need to resort
to Monte Carlo simulation and estimate Px(A)

- suppose then we have an algorithm that allows us to generate X ~ Px
and recall [4(X) ~ Bernoulli(Px(A))

- then generate X1, ..., X,~Px and estimate Px(A) by
~ 12
Px(A) = =Y _ Ia(X;) = proportion of sampled values falling in A
niz

with standard error

V/Px(A) (1 — Px(A))/n

and the interval

[ﬁ’x(A) — 31/ Px(A) (1 — Px(A))/n, Px(A) +3\/ Px(A) (1 — Px(A)) /

contains the value Px(A) with virtual certainty provided n is large enough
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Exercise 11.8.7 Suppose

21 26 24
=1 26 34 30
24 30 36

(a) Using the R software compute X172 (command eigen). Verify

Y. = 212312 numerically (up to small rounding errors).

(b) Using the R software compute the Cholesky factor R. (command chol).
Verify ¥ = R'R numerically (up to small rounding errors).

Exercise 11.8.8 Suppose p = (0,1,2)" and X is as in Exercise 11.8.7.

(a) Using the R software and the representation X = u+X/?Z, where

Z ~ N3(0, /), generate a sample of n = 10% from the N3(u,X) distribution
and based on this sample estimate P(||X|| < 10) and provide the interval
containing the exact value with virtual certainty.

(b) Using the R software and the representation X = u+R’'Z, where

Z ~ N;(0, /), generate a sample of n = 103 from the N3(u,X) distribution
and based on this sample estimate P(||X|| < 10) and provide the interval
containing the exact value with virtual certainty.

(c) Compare the two estimates.
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Exercise 11.8.9 Suppose

1 5/2 1/2
<~ ((2)-(72 572))
(a) Determine the conditional distribution X, | X; = 2.
(b) Using the conditional distribution in (a) compute the conditional

probability of A = {(x1,x2) : x? + x3 < 5}.
(c) Estimate the unconditional probability of A.
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