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II.7 Mutual Statistical Independence of Random Variables

- suppose we have a s.p. {(λ,Xλ) : λ ∈ Λ}
- what does it mean to say that the Xλ random variables are mutually
statistically independent?

- recall
Definition 1.6.2 When (Ω,A,P) is a probability model and
{Aλ : λ ∈ Λ} is a collection of sub σ-algebras of A, then the
Aλ are mutually statistically independent whenever
{λ1, . . . ,λn} ⊂ Λ and for any A1 ∈ Aλ1 , . . . ,An ∈ Aλn , then
P(A1 ∩ · · · ∩ An) = ∏n

i=1 P(Ai ).�

- also, for random variable X , then

AX = X−1B1 = {X−1B : B ∈ B1}

is a sub σ-algebra of A called the σ-algebra generated by X

Exercise II.7.1 Prove that AX is a sub σ-algebra of A.
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Definition II.7.1 For the collection of random variables {Xλ : λ ∈ Λ}, the
Xλ are mutually statistically independent if in the collection of σ-algebras
{AXλ

: λ ∈ Λ} the AXλ
are mutually statistically independent. �

Proposition II.7.1 For the collection of random variables {Xλ : λ ∈ Λ},
the Xλ are mutually statistically independent iff whenever
{λ1, . . . ,λn} ⊂ Λ, then the joint cdf of (Xλ1 , . . . ,Xλn ) factors as the
product of the marginal cdfs, namely, for every (x1, . . . , xn)

F(Xλ1 ,...,Xλn )
(x1, . . . , xn) =

n
∏
i=1
FXλi

(xi ).

Proof: =⇒ ) We have

F(Xλ1 ,...,Xλn )
(x1, . . . , xn)

= P(Xλ1 ,...,Xλn )
((−∞, x1]× · · · × (−∞, xn ])

= P({Xλ1 ∈ (−∞, x1]} ∩ · · · ∩ {Xλn ∈ (−∞, xn ]})

=
n
∏
i=1
P({Xλi ∈ (−∞, xi ]} =

n
∏
i=1
FXλi

(xi ).
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⇐= ) Recall that by the Extension Theorem the cdf F(Xλ1 ,...,Xλn )

determines P(Xλ1 ,...,Xλn )
. Also ∏n

i=1 FXλi
arises as the cdf of the joint

probability measure obtained by the product of the marginal probability
measures PXλi

and so Xλ1 , . . . ,Xλn are mutually statistically independent.
Clearly the collection of cdf’s

{
n
∏
i=1
FXλi

: {λ1, . . . ,λn} ⊂ Λ for some n}

is consistent. By KCT this determines PX and so the collection of random
variables {Xλ : λ ∈ Λ} are mutually statistically independent. �
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Proposition II.7.2 For the collection of random variables {Xλ : λ ∈ Λ}
and each {λ1, . . . ,λn} ⊂ Λ :
(i) if each (Xλ1 , . . . ,Xλn ) has a discrete distribution, then the Xλ are
mutually statistically independent iff, for every (x1, . . . , xn),

p(Xλ1 ,...,Xλn )
(x1, . . . , xn) =

n
∏
i=1
pXλi

(xi ),

(ii) if each (Xλ1 , . . . ,Xλn ) has an a.c. distribution, then the Xλ are
mutually statistically independent iff, for every (x1, . . . , xn),

f(Xλ1 ,...,Xλn )
(x1, . . . , xn) =

n
∏
i=1
fXλi
(xi ).

Proof: Exercise II.7.2. �
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Example II.7.1 Bernoulli(p) process

- for any T and {t1, . . . , tn} ⊂ T then, for (x1, . . . , xn) ∈ {0, 1}n,

p(Xt1 ,...,Xtn )(x1, . . . , xn)

= p∑n
i=1 xi (1− p)n−∑n

i=1 xi

=
n
∏
i=1
pxi (1− p)1−xi

=
n
∏
i=1
pXti (xi ),

with Xti ∼Bernoulli(p) and so by Prop. II.7.2 the Xλ are mut. stat. ind.
�
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Example II.7.2 Gaussian white noise process

- for any T and {t1, . . . , tn} ⊂ T then, since

(Xt1 , . . . ,Xtn ) ∼ Nn(0, diag(σ2(t1), . . . , σ2(tn)))

and for (x1, . . . , xn) ∈ Rn,

f(Xλ1 ,...,Xλn )
(x1, . . . , xn)

= (2π)−n/2(σ2(t1) · · · σ2(tn))−1/2 exp

(
−1
2

n

∑
i=1

x2i
σ2(ti )

)

=
n
∏
i=1
(2π)−1/2σ−1(ti ) exp

(
−1
2

x2i
σ2(ti )

)
=

n
∏
i=1
fXti (xi )

with Xti ∼ N(0, σ2(ti )) and so by Prop. II.7.2 the Xλ are mut. stat. ind.
�
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Example II.7.3 Principal components

- suppose X ∼ Nk (µ,Σ) where Σ = QΛQ ′ (spectral decomposition)

- then Y = Q ′X ∼ Nk (Q ′µ,Q ′ΣQ) = Nk (Q ′µ,Λ) so

fY(y) =
n
∏
i=1
(2π)−1/2λ−1/2

i exp
(
−1
2
(yi − q′iµ)2

λi

)
=

n
∏
i=1
fYi (yi )

with Yi = q′iX =∑k
j=1 qjiXj ∼ N(q′iµ,λi ) = N(∑k

j=1 qjiµj ,λi ) and so the
principal components Y1, . . . ,Yk are mut. stat. ind. �
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