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|.1 What is probability?

- let Q) be a set, called the sample space, and w € Q), (w is an element of
) called the outcome or response, is not known

-let AC Q) (Ais a subset of Q) called an event and it is desired to assess
whether or not w € A

- how?
- let 22 be the power set of () = the set which consists of all subsets of Q)
- 50 an element of 22 is a subset of O

- somehow we come up with a function P : 22 — [0.1] s.t. (such that)
P(A) measures our belief that w € A is true
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- P(A) = 0 means it is known categorically that w € A is false and the
closer P(A) is to 0 the stronger is our belief that w € A is false

- P(A) =1 means it is known categorically that w € A is true and the
closer P(A) is to 1 the stronger is our belief that w € A is true

- P(A) = 1/2 means there is no belief one way or the other as to the
truth that w € A, sometimes referred to as ignorance

Example I.1.1 - rolling a labelled symmetrical cube

- suppose we have a symmetric cube such that two sides are labelled 1,
three sides are labelled 2 and one side is labelled 3

- the cube is rolled and the label w on the face up is concealed and our
concern is whether or not w is odd

-so 0 =4{1,2,3} and A= {1,3}
- here 29 = {¢, {1}, {2}, {3}, {1, 2}, {1,3},{2,3},Q} and A € 29
- ¢ is the set with no elements (the null set) and ¢ C Q) always
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- note - the cardinality (number of elements) of 2 is
#(29) = 8 = 23 = 2#(?) and the formula

#(2%) = 24

holds generally

- since the cube is symmetrical it seems reasonable to say that each face
has the same weight in our belief about which face will be up

- as such it then seems reasonable that we assign
P({1}) = 2/6,=1/3

P({2}) = 3/6=1/2
P({3}) = 1/6
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- what about P(A) = P({1,3})?

- a reasonable assignment is clearly

P({1,3}) = P{1)+P({3})=1/3+1/6=1/2
P({1,2}) = P({1})+P({2})=1/3+1/2=5/6
P({2,3}) = P({2)+P({3})=1/2+1/6=2/3

and together with

this completes the definition of P : 22 — [0, 1]

- P({1,3}) = 1/2 indicates we are ignorant as to whether or not the face
up is odd

B (end of example, proof or definition)
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- the assignment of probability in the example was based on symmetry and
counting and this works quite often to give a reasonable assignment

- in general suppose that () is a finite set and the context in question
possesses a symmetry that leads to the assignment P({w}) = 1/#(Q)
for each element w € Q)

- then for A C ) symmetry also suggests that P(A) = #(A)/#(Q)
- this counting definition implies that for A, B € 2 such that ANB = ¢

(i) (additive) P(ALB) = TAVE)_ #(A) +#(5)

#(Q) #(Q)
_ #A) , #(B) _
B ORETCRA R
(if) (normed) P(Q)) = zgg; =1
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- any P: 29 —[0,1] satisfying (i) and (ii) is called a probability measure
on Q) and when Q) is finite with P({w}) = 1/#(Q) for each element
w € ), then P is called the uniform probability measure on ()

- note - the P defined in Example I.1.1 is not the uniform probability
measure on () = {1, 2,3} although it is derived from a uniform probability
measure on the six faces of a symmetrical cube

- so one probability measure can be derived from another

- in this course it does not matter where the probability measure P comes
from only that it is a function defined on a set of events into [0, 1] that is
additive and normed and we study the mathematical properties of such
functions

- we want to give a definition of P for much more complicated sets () than
just finite ones and for this to work we need to restrict the domain of P
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Assume throughout these exercises that P is a probability measure defined
on a finite Q).

Exercise 1.1.1 Give an argument that shows how P in Example 1.1.1 is
derived from a uniform probability measure.

Exercise 1.1.2 Use induction to prove that if Ay, ..., A, €29 are
mutually disjoint, then P(U"_, A;) = Y71 P(Ai).

Exercise 1.1.3 Prove that for A € 27, then P(A°) =1 — P(A).

Exercise 1.1.4 For A, B € 29 prove that
P(AUB) = P(A)+ P(B) — P(ANB).

Exercise 1.1.5 Suppose that a roulette wheel is divided into 4 equal
sectors labelled as 1,2,3 and 4 respectively. The wheel is spun and the
sector where the wheel comes stops under the pointer is recorded. ldentify
w, ), 22 and a relevant P. What is the relevant P if the sector formerly
labeled 4 is now labeled 37
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|.2 Sigma Algebras

- consider sample spaces like

QO = Rl={w: -0 <w<ow}
O = [01]]={w:0<w<1}
O = RF=R'xR'x---xR!

Q = [0,1K=100,1] x[0,1] x --- x [0,1]
= {(wl,...,wk):w,- S [0,1],i: 1,...,/(}
which are all infinite sets, namely, #(Q)) = oo

- to get "nice" probability measures on such sets we often have to restrict
the domain of P to some subset of 2
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Example 1.2.1 Uniform probability on [0, 1]
- would like such a P to satisfy P([a, b]) = b— a for any [a, b] C [0, 1]

- also would like P to be countably additive: if A1, Ay, ... are mutually
disjoint subsets of [0, 1], then P(U®,A;) = Y72, P(A))
- fact:there is no such P defined for every element of 201 m

- one general solution to this problem is to require only that the domain of
P be a subset A C 29

- we want A closed under countable Boolean operations (intersection,
union and complementation) so, for example if

if Aj, Az, ... € Athen U2, A ={w:w € A forsomei} € A
if A1, Ap,...€ Athen N2, A ={w:weA foralli} e A
fAc Athen A={w:w¢ A} e A
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Proposition 1.2.1. (i) (U2;A;)° = N2, AS and (i) (N%,A) = URAS

Proof: (i) Let w € (U2, A;)°. Then w ¢ U2, A; and w ¢ A; for all i and
so w € Af for all i, which implies w € N2 ; A¢. Therefore

(UPZ1A))° C N2 AF.

Now let w € N2, AS. Then w € AS for all i, which implies w & A; for all
i, which implies w ¢ U | A;, which implies w € (U® [ A;)°. Therefore
N, AS C (U2, A)° and conclude that (i) holds. H

Exercise 1.2.1 Prove Proposition 1.2.1(ii).
Definition The set A C 2 is a o-algebra (o-field) on the set Q) if

(i) p € A,
(ii) if A1, Ay, ... € A then Uj-)o:lA,' e A,
(iii) if A€ A then A€ A. I
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Exercise 1.2.2 Prove: if A1, Ay, ... € A where A is a 0-algebra then
N, A; € A. Also prove that () € A.

Exercise 1.2.3 Prove: if Aj, Ay, ..., A, € A where A is a o-algebra then
U A € A and n'_,A; € A.

Example 1.2.2
- clearly for any set Q) then 2 is a o-algebra on Q called the finest
o-algebra on ()

- also {¢, O} is a o-algebra on Q) called the coarsest o-algebra on Q)
- also if A is a o-algebra on ), then {¢,Q} C AC2° R

Example 1.2.3
- suppose Q) = {1,2,3,4}

- then A = {¢, {1, 2}, {3,4},Q} is a o-algebra on Q)

- but A={¢, {1,2}, {1,3,4},Q} is not a o-algebra on Q) since
{1,3,4} = {2} ¢ A and this violates condition (iii) I
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|.3 Probability Measures and Probability Models

- we can now give the formal definition of a probability measure P

Definition. A probability measure P defined on a set () with o-algebra A
is a function P : A — [0, 1] that satisfies

(i) (normed) P(Q)) = 1,
(ii) (countably additive) if A1, Az, ... are mutually disjoint
elements of A, then P(U,A;) = Y21 P(A)).

The triple (Q), A, P) is called a probability model. W

Proposition 1.3.1. If (0, A, P) is a probability model, then P(¢) = 0.
Proof: Let A; = ¢ fori=1,2,... so ¢ = U2, A; and the A; are mutually
disjoint. Suppose now that P(¢) > 0 and we will obtain a contradiction.
By countable additivity of P we have

P(¢) = Y521 P(¢p) = 00 - P(¢) = oo. This contradicts P(¢) € [0, 1] and
so we must have P(¢) =0. l
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Example 1.3.1 Uniform probability on a finite set ().
- (0,29, P) where P(A) = #(A)/#(Q) is additive
- now 29 is a o-algebra on Q)

- the only way for there to be infinitely many mutually disjoint A; € 22 is
for all but finitely many of the A; to be equal to ¢ (27 is a finite set)

- so since U2, Aj = Uy, 29} Ai is a finite union, P is finitely additive and
P(¢) = 0, then

P(UZ1A) = P(Ugia 2t Al) = ). P(A) =) P(A)
{i:Ai#p} i

00
=1

so P is countably additive and P(Q)) = #(Q)/#(Q) =1

- therefore P is a probability measure
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Exercise 1.3.1 For probability model (Q), A, P) and Ay, Ay, ..., A, € A
mutually disjoint, prove that P(U?_;A;) = Y71 P(A)).

Exercise 1.3.2 For probability model (), A, P) and A B€ Ast. ACB
prove that P(A) < P(B).

Exercise 1.3.3 For probability model (Q), A, P) and A € A prove that
P(AS) =1— P(A).

Exercise 1.3.4 Let O = {1,2,3,4} with A = {¢, {1,2},{3,4},Q} and P

defined by P(¢) =0, P({1,2}) =1/3, P({3,4}) =2/3 and P(Q) = 1. Is
(Q), A, P) a probability model? Why or why not?
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