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1. Suppose the cdf of (X1, X2) is given by

Flzy,20) =1— e_”“l'—_e*mz +eM T for 1y > 0,51 > 0

and is O otherwise. .
{a} (5 marks) Determine the joint probability density function of (X1, Xy).
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(b) (5 marks) Are X; and X, étatistically independent? Justify your answer.
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() (5 marks) Determne the mean vector and variance matrix of (X1, Xa).
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(d} {5 marks} Determine the mean function and variance matrix of 71,Y2)

where (w)-(L5)(%)
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(¢) (5 marks) Are ¥; and Yz in (d) statistically independent? Justify your
answer. .




(f) (5 marks) Determine the joint density function of (¥3, ¥3).
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2. Suppose Zy, Z1,... are i.i.d. N(0,1). With T = {1,2,...} define the stochas-
tic process {(t,Xy):t € T} by Xy = Z4 7 1.
(a) (5 marks) Determne the mean and autocovariance functions of this process.
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(b) (5 marks) If Zy = 1,2y = 3.1, Z2 = —4, Z3 = 2, then plot the first three
values of the sample function of the X, process.




(¢} (10 marks) Determine the moment generating function mx, (s) of X,. {Hint:
use the theorem of total expectation.) Does the mef exist for all s € Ri?
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3. Suppose that h: R* — R' is given by h(z1,za, 73, 24) = 1 + 2 + 22 + T3,
(a) {5 marks) Prove that h is convex.
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(b} (5 marks) Suppose that X = (X1, X, X3, X4)' has a joint distribution with
mean vector and variance matrix given by

1 2 1.1 2
-1 1 2 0 1
p=1 g |adZ=| " 4 5 ]
1 2 11 3

Determine a general lower bound on E(h(X)).
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{c) (5 marks) If X ~ N4(,U,,.Z), then determine F(h(X)) exactly.
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(d) (5 marks) V hat is the best affine predictor of Xy = (X3, X4} when X5 =
(X1, X0} = ( =2) is observed (no need to do all the arithmetic the formula
is good enough)'? Under what conditions is this also the best predictor and
explam what “best” means.
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4. Suppose that X1,..., X is a sample (4.3.d.) from a distribution with mean
w and variance o2 > (.

{a) (5 marks) Determine the limiting value of the sequence of random variables

W, = % Y iy X? as n - oo, Explain clearly what this convergence means and
justify your answer.
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(b) (5 marks) Repeat part (a) but for the sequence of random variables Y,
X/s where X =15 X, s 215 (X - X
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(c) {10 marks} Now consider the sequence of random variables Z,, = nl/ X —

1)/ s. Me the 11m1t1ng distributions of ¥, and Z,, and Justlfy your answer.
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5. (10 marks) Suppose that Zy, Z1, ... are i.i.d. N(0,1) and X, = 1/n+ aZ, +
BZn-1. Determine whether or not {(n, X,,) : 7 € N} is a stationary Gasussian

process,
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