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Computer Exercises, Problems, Computer Problems, and Challenges
are included.
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Chapter 1

Probability Models

1.2 Probability Models

Exercises
1.2.1
(a) P ({1, 2}) = P ({1}) + P ({2}) = 1/2 + 1/3 = 5/6.
(b) P ({1, 2, 3}) = P ({1}) + P ({2}) + P ({3}) = 1/2 + 1/3 + 1/6 = 1.
(c) P ({1}) = P ({2, 3}) = 1/2.
1.2.2
(a) P ({1, 2}) = P ({1}) + P ({2}) = 1/8 + 1/8 = 1/4.
(b) P ({1, 2, 3}) = P ({1}) + P ({2}) + P ({3}) = 1/8 + 1/8 + 1/8 = 3/8.
(c) There are

¡
8
4

¢
= 8!/4!4! = 70 such events.

1.2.3 P ({2}) = P ({1, 2})− P ({1}) = 2/3− 1/2 = 1/6.
1.2.4 No, since P ({2, 3}) 6= P ({2}) + P ({3}).
1.2.5 Here P ({s}) = P ([s, s]) = s− s = 0 for any s ∈ [0, 1].
1.2.6 We have that a = A ∩ Bc ∩ Cc, b = A ∩ B ∩ Cc, c = Ac ∩ B ∩ Cc,
d = A ∩Bc ∩C, e = A ∩B ∩C, f = Ac ∩B ∩C, and g = Ac ∩Bc ∩C.
1.2.7 This is the subset (A ∩Bc) ∪ (Ac ∩B).
1.2.8 P ({1}) = P (S − {2, 3}) = P (S)− P ({2, 3}) = 1− 2/3 = 1/3, P ({2}) =
P ({1, 2})+P ({2, 3})−P (S) = 1/3+2/3−1 = 0, and P ({3}) = P (S−{1, 2}) =
P (S)− P ({1, 2}) = 1− 1/3 = 2/3.
1.2.9 P ({1}) = 1/12, P ({2}) = P ({1, 2}) − P ({1}) = 1/6 − 1/12 = 1/12,
P ({3}) = P ({1, 2, 3})−P ({1, 2}) = 1/3−1/6 = 1/6, and P ({4}) = P ({1, 2, 3, 4})−
P ({1, 2, 3}) = 1− 1/3 = 2/3.
1.2.10 From the totality, 1 = P (S) = P ({1}) + P ({2}) + P ({3}) = 5P ({2}).
Hence, P ({2}) = 1/5, P ({1}) = 2P ({2}) = 2/5, and P ({3}) = P ({1}) = 2/5.

1
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1.2.11 From the totality, 1 = P (S) = P ({1}) + P ({2}) + P ({3}) = 4P ({2}) +
1/6. Hence, P ({2}) = 5/24, P ({1}) = P ({2}) + 1/6 = 3/8, and P ({3}) =
2P ({2}) = 5/12.
1.2.12 From the totality, 1 = P (S) = P ({1}) + P ({2}) + P ({3}) + P ({4}) =
(31/12)P ({2}) + 1/8. Hence, P ({2}) = 21/62, P ({1}) = P ({2}) + 1/8 =
115/248, P ({3}) = P ({2})/3 = 7/62 and P ({4}) = P ({2})/4 = 21/248.
Problems
1.2.13 No, since P ([0, 1]) = 1, while

P
s∈[0,1] P ({s}) =

P
s∈[0,1] 0 = 0. Here

additivity fails because [0, 1] is not countable.

1.2.14 No, since for countable S we would then have P (S) =
P
s∈S P ({s}) =P

s∈[0,1] 0 = 0, contradicting the fact that P (S) = 1.

1.2.15 Yes. For example, this is true for the uniform distribution on [0, 1]. Since
[0, 1] is not countable, there is no contradiction.

1.3 Basic Results for Probability Models

Exercises
1.3.1
(a) P ({2, 3, 4, . . . , 100}) = P ({1, 2, 3, 4, . . . , 100})− P ({1}) = 1− 0.1 = 0.9.
(b) P ({1, 2, 3}) = P ({1})+P ({2})+P ({3}) ≥ P ({1}) = 0.1. And, P ({1, 2, 3}) =
0.1 if P ({2}) = P ({3}) = 0. So, 0.1 is the smallest possible value of P ({1}).
1.3.2 Let A be the event �Al watches the six o�clock news� and B be the
event �Al watches the eleven o�clock news.� Then P (A) = 2/3, P (B) = 1/2 and
P (A∩B) = 1/3. Therefore, the probability that Al only watches the six o�clock
news is P (A\ (A ∩B)) = P (A)−P (A∩B) = 2/3− 1/3 = 1/3. The probability
that Al watches neither news is given by P ((A ∪B)c) = 1 − P (A ∪ B) = 1 −
P (A)− P (B) + P (A ∩B) = 1− 2/3− 1/2 + 1/3 = 1/6.
1.3.3 P (late or early or both) = P (late) +P (early)−P (both) = 10%+ 20%−
5% = 25%.

1.3.4 P (at least one knee sore) = P (right knee sore) + P (left knee sore)−
P (both knees sore) = 25%− P (both knees sore). The maximum is when
P (both knees sore) = 0, where P (at least one knee sore) = 25%. The minimum
is when P (both knees sore) = 10% (so the right knee is always sore whenever
the left one is), where P (at least one knee sore) = 15%.

1.3.5 (a) There are 25 = 32 possibilities and the size of the event having all Þve
heads is 1. Thus, the probability of getting all Þve heads is 1/32 = 0.03125.
(b) Let A be the event having at least one tail and B be the event having all
Þve heads. There will be at least one tail unless Þve heads are observed. Thus,
A = Bc and the probability of A is

P (A) = P (Bc) = 1− P (B) = 1− (1/32) = 31/32 = 0.96875.
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1.3.6 (a) There are only 4 Jacks in a standard 52-card deck. Hence, the prob-
ability having a Jack from a standard 52-card deck is 4/52 = 1/13 = 0.0769.
(b) There are 13 Clubs ♣. Thus, the probability having a Club is 13/52 =
1/4 = 0.25.
(c) There is only one card showing a Jack and a Club. So, the probability having
a Club Jack is 1/52 = 0.01923.
(d) There are 4 Jacks and 13 Clubs. Among 52 cards, only one card is both
Club and Jack. By Theorem 1.3.3, the probability having either a Jack or a
Club is 4/52 + 13/52− 1/52 = 16/52 = 4/13 = 0.3077.
1.3.7 The event tying the game is the remainder part of the event winning
or tying the game after subtracting the event winning the game. Thus, the
probability of tying is 40%− 30% = 10%.
1.3.8 Suppose a student was chosen. The probability of being a female is 55%,
the probability of having long hair is 44%+15% = 59%, and the probability that
the student is a long haired female is 44%. By Theorem 1.3.3, the probability
of either being female or having long hair is 55%+ 59%− 44% = 70%.
Problems
1.3.9 We see that P ({2, 3, 4, 5}) = P ({1, 2, 3, 4, 5}) − P ({1}) = 0.3 − 0.1 =
0.2. Hence, the largest is P ({2}) = 0.2 (with P ({6}) = 0.4). The smallest is
P ({2}) = 0 (with, e.g., P ({3}) = 0.2 and P ({6}) = 0.4).
Challenges
1.3.10

(a) LetD = B∪C. Then P (A∪B∪C) = P (A∪D) = P (A)+P (D)−P (A∩D) =
P (A) + P (B ∪ C) − P ((A ∩ B) ∪ (A ∩ C)) = P (A) + (P (B) + P (C) − P (B ∩
C))− (P (A∩B)+P (A∩C)−P ((A∩B)∩ (A∩C)) = P (A)+ (P (B)+P (C)−
P (B ∩C))− P (A ∩B)− P (A ∩C)− P (A ∩B ∩C), which gives the result.
(b) We use induction on n. We know the result is true for n = 2 from the text
(and for n = 3 from part (a)). Assume it is true for n − 1, so that P (B1 ∪
. . . ∪Bn−1) =

Pn−1
i=1 P (Bi)−

Pn−1
i,j=1
i<j

P (Bi ∩Bj) +
Pn−1

i,j,k=1
i<j<k

P (Bi ∩Bj ∩Bk)−
. . .±P (B1∩ . . .∩Bn−1) for any events B1, . . . , Bn−1. Let D = A1∪ . . .∪An−1.
Then P (A1 ∪ . . . ∪ An) = P (D ∪ An) = P (D) + P (An) − P (D ∩ An). Now,
by the induction hypothesis, P (D) = P (A1 ∪ . . . ∪ An−1) =

Pn−1
i=1 P (Ai) −Pn−1

i,j=1
i<j

P (Ai ∩ Aj) +
Pn−1

i,j,k=1
i<j<k

P (Ai ∩ Aj ∩ Ak) − . . . ± P (A1 ∩ . . . ∩ An−1).
Also, P (D ∩ An) = P ((A1 ∩ An) ∪ (A2 ∩ An) ∪ . . . ∪ (An−1 ∩ An)), so by the
induction hypothesis this equals

Pn−1
i=1 P (Ai ∩An)−

Pn−1
i,j=1
i<j

P (Ai ∩Aj ∩An)+Pn−1
i,j,k=1
i<j<k

P (Ai ∩ Aj ∩ Ak ∩ An) − . . . ± P (A1 ∩ . . . ∩ An−1 ∩ An). Putting this
all together, we see that P (A1 ∪ . . .∪An) =

Pn
i=1 P (Ai)−

Pn
i,j=1
i<j

P (Ai ∩Aj)+Pn
i,j,k=1
i<j<k

P (Ai ∩ Aj ∩Ak)− . . . ± P (A1 ∩ . . . ∩An). This proves the statement
for this value of n. The general result then follows by induction.
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1.4 Uniform Probability on Finite Spaces

Exercises
1.4.1
(a) By independence, P (all eight show six) = (1/6)8 = 1/1679616.
(b) By additivity, P (all eight show same) =

P6
i=1 P (all eight show i) =P6

i=1(1/6)
8 = 6 (1/6)8 = (1/6)7 = 1/279936.

(c) For the sum to equal 9, we need seven of the dice to show 1, and the eighth
die to show 2. There are eight ways this can happen, each having probability
(1/6)8. So, P (sum equals nine) = 8 (1/6)8 = 1/209952.

1.4.2 There are
¡
10
2

¢
= 45 ways of choosing which two dice will have 2 showing.

Then the probability that those two dice show 2, and the other eight do not, is
(1/6)2(5/6)8. So, the answer is 45 (1/6)2(5/6)8 = 1953125/6718464 = 0.2907.

1.4.3

P (at least three heads) = 1− P (≤ two heads)
= 1− P (0 heads)− P (one head)− P (two heads)

= 1− (1/2)100 −
µ
100

1

¶
(1/2)100 −

µ
100

2

¶
(1/2)100

= 1− (1 + 100 + 4950)(1/2)100 = 1− 5051/2100

1.4.4
(a) There is only one way this can happen, so the probability is 1 /

¡
52
5

¢
=

1/2598960.
(b) There are

¡
13
5

¢
ways this can happen, so the probability is

¡
13
5

¢
/
¡
52
5

¢
=

33/66640.
(c) The number of ways this can happen is equal to (52 · 48 · 44 · 40 · 36) / 5! =
1317888, so the probability is 1317888 /

¡
52
5

¢
= 2112/4165.

(d) The number of ways this can happen is equal to (13)(12)
¡
4
3

¢¡
4
2

¢
= 3744, so

the probability is 3744 /
¡
52
5

¢
= 6/4165.

1.4.5
(a) The number of ways this can happen is equal to

¡
4
1

¢¡
13
13

¢¡
39

13 13 13

¢
= 337912392291465600, so the probability is

337912392291465600 /

µ
52

13 13 13 13

¶
= 1/158753389900.

(b) The number of ways this can happen is equal to
¡
4
1

¢¡
4
4

¢¡
48
9

¢¡
39

13 13 13

¢
, so the

probability isµ
4

1

¶µ
4

4

¶µ
48

9

¶µ
39

13 13 13

¶
/

µ
52

13 13 13 13

¶
= 44/4165 = 0.0106.

1.4.6 The complement of this event is the event that the sum is less than 4,
which means we chose either two Aces, or one Ace and one 2. P (two Aces) =
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¡
4
2

¢
/
¡
52
2

¢
= 1/221. P (one Ace and one 2) =

¡
4
1

¢¡
4
1

¢
/
¡
52
2

¢
= 8/663. So, P (sum ≥

4) = 1− 1/221− 8/663 = 652/663.
1.4.7 This is the probability that the Þrst ten cards contain no Jack, so it equals¡
48
10

¢
/
¡
52
10

¢
= 246/595 = 0.4134.

1.4.8 Out of all 52! different orderings, the number where the Ace of Spades
follows the Ace of Clubs is equal to 51! (since the two Aces can then be treated
as a single card). The same number have the Ace of Clubs following the Ace
of Spades. Hence, the probability that those two Aces are adjacent equals
2 · 51! / 52! = 1/26.
1.4.9 The probability of getting 7 on any one role equals 6/36 = 1/6. Hence,
the probability of not getting 7 on the Þrst two roles, and then getting it on the
third role, is equal to (5/6)2(1/6) = 25/216.

1.4.10 There are
¡
3
2

¢
ways of choosing which two dice are the same, and six ways

of choosing which number comes up twice, and then 5 ways of choosing which
number comes up once. Hence, the probability equals

¡
3
2

¢
(6)(5)/(6 ·6·6) = 5/12.

1.4.11 The probability they are all red equals
¡¡
5
3

¢
/
¡
12
3

¢¢ ¡¡
6
3

¢
/
¡
18
3

¢¢
= 5/4488.

Similarly, the probability they are all blue equals
¡¡
7
3

¢
/
¡
12
3

¢¢ ¡¡
12
3

¢
/
¡
18
3

¢¢
=

35/816. Hence, the desired probability equals 5/4488 + 35/816 = 395/8976 =
0.0440.

1.4.12 The number of heads are 0, 1, 2 and 3. The probability that the total
number of heads is equal to the number showing on the die is

P (die = 1 and 1 heads) + P (die = 2 and 2 heads) + P (die = 3 and 3 heads)

=
1

6

µ
3

1

¶
1

23
+
1

6

µ
3

2

¶
1

23
+
1

6

µ
3

3

¶
1

23
=
7

48
= 0.1458.

1.4.13 There are two possible combinations: (1) $0.01×1+$0.05×2+$0.1×2
and (2) $0.01× 1+$0.1× 3. Let A be the event that the total value of all coins
showing heads is equal to $0.31. Hence, the probability of A isµ

2

1

¶
1

22
·
µ
3

2

¶
1

23
·
µ
4

2

¶
1

24
+

µ
2

1

¶
1

22
·
µ
3

0

¶
1

23
·
µ
4

3

¶
1

24
=
11

128
= 0.0859.

Problems
1.4.14 If A1, A2, . . . are disjoint sets, then |A1 ∪ A2 ∪ . . . | = |A1| + |A2|+ . . ..
Hence, P (A1 ∪ A2 ∪ . . .) = |A1 ∪ A2 ∪ . . . | / |S| =

¡|A1| + |A2| + . . . ¢ / |S| =
|A1|/|S|+ |A2|/|S|+ . . . = P (A1) + P (A2) + . . .. Hence, P is additive.
1.4.15 By considering all 8-tuples of numbers between 1 and 6, we see that 9
can occur if and only if one of the dice takes the value 2 and the remaining
seven take the value 1. This occurs with probability

¡
8
1

¢ ¡
1
6

¢8
= 4.7630× 10−6.

The value 10 can occur if and only if one of the dice takes the value 3 and
the remaining seven take the value 1 or two of the dice take the value 2 and the
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remaining six take the value 1. This occurs with probability
¡
8
1

¢ ¡
1
6

¢8
+
¡
8
2

¢ ¡
1
6

¢8
=

2.1433× 10−5.
The value 11 can occur if and only if one of the dice takes the value 4 and

the remaining seven take the value 1 or one of the dice takes the value 3, one of
the dice takes the value 2, and the remaining six take the value 1. This occurs
with probability

¡
8
1

¢ ¡
1
6

¢8
+
¡
8
1

¢¡
7
1

¢ ¡
1
6

¢8
= 3.8104× 10−5.

1.4.16 For 1 ≤ i ≤ 6, the probability that the die equals i and the number of
heads equals i is equal to (1/6)

¡
6
i

¢
/ 26. Hence, by additivity, the total proba-

bility is equal to
P6
i=1(1/6)

¡
6
i

¢
/ 26 = (1/6)

P6
i=1

¡
6
i

¢
/ 26 = (1/6)(1) = 1/6.

1.4.17 There are
¡
10

2 3 5

¢
= 2520 ways of choosing which two dice show 2, and

which three dice show 3. For each such choice, the probability is
(1/6)2(1/6)3(4/6)5 that the dice show the proper combination of 2, 3, and other.
Hence, the desired probability equals 2520(1/6)2(1/6)3(4/6)5 = 280/6561.

1.4.18 For 1 ≤ i ≤ 6, the number of ways of apportioning the Spades to North,
East, and Other (i.e., West and South combined), so that North and East each
have i Spades, is equal to

¡
13

i i 13−2i
¢
. The number of ways of apportioning the

non-Spades to North, East, and Other is then
¡

39
13−i 13−i 13+2i

¢
. Hence, the

number of deals such that North and East each have i Spades is equal toµ
13

i i 13− 2i
¶µ

39

13− i 13− i 13 + 2i
¶
.

On the other hand, the number of ways of apportioning all the cards to North,
East, and Other is equal to

¡
52

13 13 26

¢
. It then follows by additivity that the

desired probability is equal to

6X
i=1

µ
13

i i 13− 2i
¶µ

39

13− i 13− i 13 + 2i
¶.µ 52

13 13 26

¶
= 28033098249/158753389900 = 0.1766.

1.4.19 For 1 ≤ i ≤ 9 the probability that the card�s value is i and that the num-
ber of heads equals i is equal to (4/52)

¡
10
i

¢
/ 210. For i = 10, (4/52) is replaced

by (20/52) since any Ten, Jack, Queen, or King will do. Hence, by additiv-
ity, the total probability is equal to

P9
i=1(4/52)

¡
10
i

¢ ±
210 + (20/52)

¡
10
10

¢ ±
210 =

79/1024 = 0.0771.

Challenges
1.4.20 For 2 ≤ i ≤ 7, the probability that the sum of the numbers equals i
is equal to (i − 1)/36, while for 7 ≤ i ≤ 12 it is equal to (13 − i)/36. Hence,
the desired probability is equal to

P7
i=2((i − 1)/36)

¡
12
i

¢ ±
212 +

P12
i=8((13 −

i)/36)
¡
12
i

¢ ±
212 = 18109/147456 = 0.1228.

1.4.21
(a) This equals 365/3652 = 1/365.
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(b) This equals 365/365C = 1/365C−1.
(c) This equals 1− (365 · 364 · · · 366−C) / 365C = 1− 365!/(365−C)! 365C .
(d) When C = 23, the probability equals 0.507297. That is, with 23 people in
a room, there is more than a 50% chance that two share the same birthday. (If
C = 40 this probability is 0.891232.) Many people Þnd this surprising.

1.5 Conditional Probability and Independence

Exercises
1.5.1
(a) Here P (Þrst die 6, and three dice 6) = (1/6)

¡
3
2

¢
(1/6)2(5/6) = 15/64. Also,

P (three dice 6) =
¡
4
3

¢
(1/6)3(5/6) = 20/64. Hence, the conditional probability

equals (15/64) / (20/64) = 3/4 = 0.75. (This also follows intuitively since any
three of the four dice could have shown 6.)
(b) Here P (Þrst die 6, and at least three dice 6) = P (Þrst die 6, and three dice
6) + P (Þrst die 6, and four dice 6) = 15/64 + (1/6)4 = 16/64. Also, P (at least
three dice 6) = P (three dice 6)+P (four dice 6) = 20/64+1/64 = 21/64. Hence,
the conditional probability equals (16/64) / (21/64) = 16/21 = 0.762.

1.5.2
(a) This probability equals P (one head, and die shows 1) + P (two heads, and
die shows 2) =

¡
2
1

¢
(1/2)2(1/6) +

¡
2
2

¢
(1/2)2(1/6) = 1/12 + 1/24 = 1/8.

(b) This probability equals P (one head, and die shows 1) /P (die shows 1) =
(1/12) / (1/6) = 1/2. (This makes sense since it is the same as the probability
that the number of heads equals 1.)
(c) It is larger, since the die showing 1 makes it much easier for the number of
heads to equal the number showing on the die.

1.5.3
(a) This probability equals (1/2)3 = 1/8.
(b) Here P (number of heads odd) = P (one head)+P (three heads) =

¡
3
1

¢
(1/2)3+¡

3
3

¢
(1/2)3 = 4/8 = 1/2. Also P (number of heads odd, and all three coins

heads) = P (all three coins heads) = (1/2)3 = 1/8. Hence, desired conditional
probability equals (1/8) / (1/2) = 1/4.
(c) Here P (number of heads even) = P (0 heads) +P (two heads) =

¡
3
0

¢
(1/2)3+¡

3
2

¢
(1/2)3 = 4/8 = 1/2. Also P (number of heads even, and all three coins

heads) = 0 since this is impossible. Hence, desired conditional probability
equals 0/(1/2) = 0.

1.5.4 P (Þve Spades) =
¡
13
5

¢
/
¡
52
5

¢
= 33/66640. Also, P (four Spades) =¡

13
4

¢¡
39
1

¢
/
¡
52
5

¢
= 143/13328. Hence, P (Þve Spades | at least 4 Spades) =

P (Þve Spades) /P (four Spades)+P (Þve Spades) = (33/66640) / [(143/13328)+
(33/66640)] = 3/68 = 0.044.

1.5.5 This probability equals P (four Aces) /P (four Aces) = 1.

1.5.6 This probability equals
¡
13
5

¢¡
3
1

¢5
/
¡
39
5

¢
= 0.54318.
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1.5.7 This equals P (home run | fastball)P (fastball)+P (home run | curve ball)×
P (curve ball) = (8%)(80%) + (5%)(20%) = (0.08)(0.80) + (0.05)(0.20) = 0.074.

1.5.8 By Bayes� Theorem, P (snow | accident) = [P (snow) /P (accident)]×
P (accident | snow) = [0.20/0.10] (0.40) = 0.80.
1.5.9 Here P (A) = 1/6, P (B) = 1/36, P (C) = 1/6, and P (D) = 1/6.
(a) P (A∩B) = P (both dice show 6) = 1/36 6= (1/6)(1/36) = P (A)P (B), so A
and B are not independent.
(b) P (A ∩C) = P (both dice show 4) = 1/36 = (1/6)(1/6) = P (A)P (C), so A
and C are independent.
(c) P (A ∩D) = P (both dice show 4) = 1/36 = (1/6)(1/6) = P (A)P (D), so A
and D are independent.
(d) P (C ∩D) = P (both dice show 4) = 1/36 = (1/6)(1/6) = P (C)P (D), so C
and D are independent.
(e) P (A ∩C ∩D) = P (both dice show 4) = 1/36 6= (1/6)(1/6)(1/6) =
P (A)P (C)P (D), so A and C and D are not all independent. (Thus, A and C
and D are pairwise independent, but not independent.)

1.5.10 We have from the Exercise 1.4.11 solution that P (all red) = 5/4488,
while P (all blue) = 35/816. Hence, P (all red | all same color) = P (all red) /P (all
same color) = (5/4488)/[(5/4488) + (35/816)] = 2/79 = 0.025.

1.5.11
(a) The number showing on the die must be greater than or equal to 3. Hence,
the probability that the number of heads equals 3 is

6X
i=3

P (die = i, # of heads = 3) =
6X
i=1

1

6

µ
i

3

¶
1

2i
=
1

6
= 0.1667.

(b) The conditional probability is

P (die = 5|# of heads = 3) =
P (die = 5, # of heads = 3)

P (# of heads = 3)
=

1
6

¡
5
3

¢
1
25

1/6
=
5

16

= 0.3125.

1.5.12
(a) Let D be the number showing on the die and J be the number of Jacks in
our hands. Then, the distribution of J given D = d is Hypergeometric
(52, 4, d). Hence,

P (J = 2) =
6X
d=1

P (J = 2|D = d)P (D = d) =
6X
d=1

¡
4
2

¢¡
48
d−2
¢¡

52
d

¢ 1

6
=
208

8925
= 0.0233.

(b) Since P (D = 3, J = 2) = 1
6

(42)(
48
1 )

(523 )
= 12/5525 = 0.002172,

P (D = 3|J = 2) = P (D = 3, J = 2)/P (J = 2) = 1071/11492 = 0.093195.
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Problems
1.5.13
(a) P (red) = P (card #1)P (red | card #1) + P (card #2)P (red | card #2) +
P (card #3)P (red | card #3) = (1/3)(1) + (1/3)(0) + (1/3)(1/2) = 1/2.
(b) P (card #1 | red) = P (card #1, red) /P (red) = P (card #1)P (red | card
#1) /P (red) = (1/3)(1) / (1/2) = 2/3. (Many people think the answer will be
1/2.)
(c) Make three cards as speciÞed, and repeatedly run the experiment. Discard
all experiments where the one side showing is black. Of the experiments where
the one side showing is red, count the fraction where the other side is also red.
After many experiments, it should be close to 2/3.

1.5.14 Assume A and B are independent. Then since AC ∩B and A ∩B are
disjoint with union B, P (AC ∩B) + P (A ∩B) = P (B). Hence, P (AC ∩B) =
P (B)−P (A∩B) = P (B)−P (A)P (B) = P (B)[1−P (A)] = P (B)P (AC). So,
AC and B are independent. The converse then follows by interchanging A and
AC throughout.

1.5.15 If P (A |B) > P (A), then P (A ∩ B) /P (B) > P (A), so P (A ∩ B) >
P (A)P (B), so P (A ∩ B) /P (A) > P (B), so P (B |A) > P (B). The converse
follows by interchanging A and B throughout.

Challenges
1.5.16 Let qi be the probability that the sum of the second and third dice
(to be called the �other dice�) equals i. Then the desired probability equals
P (Þrst die 4, sum of three dice 12) /P (sum of three dice 12) = P (Þrst die
4, sum of other dice 8) /

P6
i=1 P (Þrst die i, sum of other dice 12 − i) =

(1/6) q8 /
P6
i=1(1/6) q12−i = q8 /

P12
j=7 qj = (5/36) / [(6/36)+(5/36)+(4/36)+

(3/36) + (2/36) + (1/36)] = 5 / [6 + 5 + 4+ 3+ 2 + 1] = 5/21.

1.5.17
(a) This probability is equal to P (sum is 4 | sum is 4 or 7) = (3/36) / [(3/36) +
(6/36)] = 3/9 = 1/3.
(b) p2 = p3 = p12 = 0, and p7 = p11 = 1. Also p4 = 1/3 from part (a). For
other i, let qi = P (sum is i) as in the previous solution. Then pi = P (sum
is i | sum is i or 7) = qi / [qi + (6/36)] = qi / [qi + (1/6)] = 1 / [1 + (1/6qi)].
Thus, p5 = 1 / [1 + (1/6(4/36))] = 2/5, p6 = 1 / [1 + (1/6(5/36))] = 5/11,
p8 = 1 / [1 + (1/6(5/36))] = 5/11, p9 = 1 / [1 + (1/6(4/36))] = 2/5, and p10 =
1 / [1 + (1/6(3/36))] = 1/3.
(c) By the law of total probability, the probability of winning at craps isP12
i=2 P (Þrst sum i)P (win |Þrst sum i) =

P12
i=2 qipi = (1/36)(0) + (2/36)(0) +

(3/36)(1/3)+(4/36)(2/5)+(5/36)(5/11)+(6/36)(1)+(5/36)(5/11)+(4/36)(2/5)+
(3/36)(1/3) + (2/36)(1) + (1/36)(0) = 244/495 = 0.492929. This is just barely
less than 50%; but that �barely less� is still enough to ensure that, if you play
craps repeatedly, then eventually you will lose money (and the casino will get
rich).
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1.5.18

(a) Since you chose door A, the host will always open either door B or door
C. Without any further information, those two events are equally likely, i.e.,
P (host opens B) = P (host opens C) = 1/2. Also, the car was originally equally
likely to be behind any of the three doors, so P (car behind A) = P (car behind
B) = P (car behind C) = 1/3. Also, if the car is actually behind A, then the host
had a choice of opening door B or C, so P (host opens B | car behind A) = 1/2.
Then by Bayes� Theorem P (win if don�t switch |host opens B) = P (car behind
A |host opens B) = [P (car behind A) /P (host opens B)]P (host opens B | car
behind A) = [(1/3) / (1/2)] (1/2) = 1/3. So, if you don�t switch, then only 1/3 of
the time will you win the car. (This makes sense if you consider that originally,
you had 1/3 chance of guessing the correct door. When the host opens another
door it may change the probabilities of the other doors concealing the car, but
it won�t change the probability that you guessed right in the Þrst place, which
is still 1/3.)

(b) If the car is actually behind C, then the host had to open door B, so P (host
opens B | car behind C) = 1. Then P (win if switch |host opens B) = P (car
behind C |host opens B) = [P (car behind C) /P (host opens B)]P (host opens
B | car behind C) = [(1/3) / (1/2)] (1) = 2/3. (This makes sense since we must
have P (win if don�t switch |host opens B)+P (win if switch |host opens B) = 1.)
(c) Many people Þnd this very surprising. To do an experiment, hide a pebble
under one of three cups (say), let a volunteer guess one cup, then reveal an
unselected non-pebbled cup, and give a volunteer the option to switch to the
other cup or stick with the original cup. Do this repeatedly, and compute what
fraction of the time they win if they do or do not switch.

(d) In this case, we would instead have P (host opens B | car behind C) = 1. Also,
we would have P (host opens B) = P (host opens B, car behind A)+P (host opens
B, car behind C) = 1/3+1/3 = 2/3. So, in this case, P (win if don�t switch |host
opens B) = P (car behind A |host opens B) = [P (car behind A) /P (host opens
B)]P (host opens B | car behind A) = [(1/3) / (2/3)] (1) = 1/2. Also, P (win
if switch |host opens B) = P (car behind C |host opens B) = [P (car behind
C) /P (host opens B)]P (host opens B | car behind C) = [(1/3) / (2/3)] (1) = 1/2.
So in this case, it doesn�t matter if you switch or not.

(e) This is a standard conditional probability calculation. We have P (win if
don�t switch | car not behind B) = P (car behind A | car not behind B) = P (car
behind A, car not behind B) /P (car not behind B) = (1/3) / (2/3) = 1/2. Simi-
larly, P (win if switch | car not behind B) = P (car behind C | car not behind B) =
P (car behind C, car not behind B) /P (car not behind B) = (1/3) / (2/3) = 1/2.
So in this case also, it doesn�t matter if you switch or not. (When the original
Monty Hall problem was Þrst proposed, many people incorrectly interpreted it
as this case, leading to confusion over whether the correct answer was 1/3 or
1/2.)
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1.6 Continuity of P

Exercises
1.6.1 For the Þrst way, let An = {2, 4, 6, . . . , 2n}. Then by Þnite additivity,
P (An) = P (2) + P (4) + · · · + P (2n) = 2−2 + 2−4 + . . . + 2−2n = (1/4)[1 −
(1/4)n] / [1 − (1/4)] = (1/3)[1− (1/4)n]. But also {An} % A. Hence, P (A) =
limn→∞ P (An) = limn→∞(1/3)[1 − (1/4)n] = 1/3. For the second way, by
countable additivity, P (A) = P (2) + P (4) + P (6) + · · ·+ = 2−2 + 2−4 + 2−6 +
· · ·+ 2−2n = (1/4) / [1− (1/4)] = 1/3.
1.6.2 Let An = [1/4, 1− e−n]. Then {An} % A, where A = [1/4, 1). Hence,
limn→∞ P ([1/4, 1− e−n]) = limn→∞ P (An) = P (A) = P ([1/4, 1)) = 1− 1/4 =
3/4.

1.6.3 Let An = {1, 2, . . . , n}. Then {An} % A, where A = {1, 2, 3, . . .} = S.
Hence, limn→∞ P (An) = P (A) = P (S) = 1.

1.6.4 The event of the interest is {0} = [0, 0] = T∞n=1[0, 8/(4 + n)]. Theorem
1.6.1 implies P ({0}) = limn→∞ P ([0, 8/(4+n)]) = limn→∞(2+e−n)/6 = 2/6 =
1/3.

1.6.5 The event {0} is the complement of (0, 1] which can be represented as
(0, 1] =

S∞
n=1[1/n, 1]. Using Theorem 1.6.1, we have

P ((0, 1]) =
∞
lim
n=1

P ([1/n, 1]) = lim
n→∞ 0 = 0.

Thus, P ({0}) = P ([0, 1])− P ((0, 1]) = 1− 0 = 1.
1.6.6
(a) Note [1/n, 1/2] ⊂ (0, 1/2) for all n ≥ 1. Monotonicity of a probability
measure (see Corollary 1.3.1) and Theorem 1.6.1 imply

P ((0, 1/2]) = lim
n→∞P ([1/n, 1/2]) ≤ lim

n→∞ 1/3 = 1/3.

(b) Suppose P ({0}) = 2/3 and P ({1/2}) = 1/3. Then, P ([1/n, 1/2]) = P ({1/2})
= 1/3 ≤ 1/3 for n = 1, 2, . . .. However, P ([0, 1/2]) = P ({0, 1/2}) = 1 > 1/3.
Hence, P ([0, 1/2]) ≤ 1/3 does not hold.
1.6.7 Suppose that there is no n such that P ([0, n]) > 0.9. Note [0,m] ⊂
[0, n] whenever 0 < m ≤ n and [0,∞) = S∞

n=1[0, n]. Theorem 1.6.1 implies
1 = P ([0,∞)) = limn→∞ P ([0, n]) ≤ 0.9. It makes a contradiction. Hence, there
must exist a number N > 0 such that P ([0, n]) > 0.9 for all n ≥ N .
1.6.8 Suppose that P ([1/n, 1/2]) ≤ 1/4 for all n. Note (0, 1/2] = S∞n=1[1/n, 1/2].
Theorem 1.6.1 implies 1/3 = P ((0, 1/2]) = limn→∞ P ([1/n, 1/2]) ≤ 1/4. It
makes a contradiction. Hence, there must exist N > 0 such that P ([1/n, 1/2]) >
1/4 for all n ≥ N .
1.6.9 If P ((0, 1/2]) > 1/4, then there must be a number n such that P ([1/n, 1/2])
> 1/4. Otherwise, i.e. P ((0, 1/2]) ≤ 1/4, P ([1/n, 1/2]) ≤ P ((0, 1/2]) ≤ 1/4 for



12 CHAPTER 1. PROBABILITY MODELS

all n > 0. Unfortunately, P ([0, 1/2]) = 1/3 doesn�t guarantee P ((0, 1/2]) > 1/4.
For example, a probability measure having P ({0}) = 1/3 and P ({1}) = 2/3 also
satisÞes P ([0, 1/2]) = P ({0}) = 1/3 but P ([1/n, 1/2]) = 0 < 1/4 for all n > 0.
Problems
1.6.10
(a) Let An = (0, 1/n). Then {An} & A, where A = ∅ is the empty set. Hence,
limn→∞ P (An) = P (A) = P (∅) = 0.
(b) Suppose P ({0}) = 1, so that P puts all of the probability at the single value
0. Then P ([0, 1/n)) = 1 for all n, so limn→∞ P ([0, 1/n)) = 1 > 0. (However,
here P ((0, 1/n)) = 0 for all n.)

Challenges
1.6.11 Let A1, A2, A3, . . . be disjoint, and let B =

S∞
n=1An. We must prove

that
P∞
n=1 P (An) = P (B). Well, let Bn = A1 ∪ A2 ∪ · · · ∪ An. Then P (Bn) =

P (A1) + P (A2) + · · · + P (An) by Þnite additivity. Also, Bn ⊆ Bn+1, andS
nBn = B, so that {Bn} % B. It follows that limN→∞ P (BN) = P (B). But

limN→∞ P (BN) = limN→∞[P (A1) + P (A2 + · · ·+ P (AN)] =
limN→∞

PN
n=1 P (An) =

P∞
n=1 P (An). So,

P∞
n=1 P (An) = P (B).



Chapter 2

Random Variables and
Distributions

2.1 Random Variables

Exercises
2.1.1
(a) mins∈SX(s) = X(1) = 1 since X(s) > 1 for all other s ∈ S.
(b) maxs∈SX(s) does not exist since lims→∞X(s) = ∞ but X(s) 6=∞ for all
s ∈ S.
(c) mins∈S Y (s) does not exist since lims→∞ Y (s) = 0 but Y (s) 6= 0 for all
s ∈ S.
(d) maxs∈S Y (s) = Y (1) = 1 since Y (s) < 1 for all other s ∈ S.
2.1.2
(a) No, since X(low) > Y (low).
(b) No, since X(low) > Y (low).
(c) No, since Y (middle) = Z(middle).
(d) Yes, since Y (s) ≤ Z(s) for all s ∈ S.
(e) No, since X(middle)Y (middle) = Z(middle).
(f) Yes, since X(middle)Y (middle) ≤ Z(middle) for all s ∈ S.
2.1.3
(a) For example, let X(s) = s and Y (s) = s2 for all s ∈ S.
(b) For the above example, Z(1) = X(1) + Y (1)2 = 1 + 12 = 2, Z(2) =
X(2) + Y (2)2 = 2 + 42 = 18, Z(3) = X(3) + Y (3)2 = 3 + 92 = 84, Z(4) =
X(4) + Y (4)2 = 4 + 162 = 260, and Z(5) = X(5) + Y (5)2 = 5 + 252 = 630.

2.1.4 Here Z(1) = X(1)Y (1) = (1)(13 + 2) = 3, Z(2) = X(2)Y (2) = (2)(23 +
2) = 20, Z(3) = X(3)Y (3) = (3)(33+2) = 87, Z(4) = X(4)Y (4) = (4)(44+2) =
1032, Z(5) = X(5)Y (5) = (5)(55 + 2) = 15, 635, and Z(6) = X(6)Y (6) =
(6)(66 + 2) = 279, 948.

13
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2.1.5 Yes, X is an indicator function of the event A ∩B, i.e., X = IA∩B.

2.1.6
(a) By the deÞnition, W (1) = X(1) + Y (1) + Z(1) = I{1,2}(1) + I{2,3}(1) +
I{3,4}(1) = 1 + 0 + 0 = 1.
(b) By the deÞnition, W (2) = X(2) + Y (2) + Z(2) = I{1,2}(2) + I{2,3}(2) +
I{3,4}(2) = 1 + 1 + 0 = 2.
(c) By the deÞnition, W (4) = X(4) + Y (4) + Z(4) = I{1,2}(4) + I{2,3}(4) +
I{3,4}(4) = 0 + 0 + 1 = 1.
(d) Note that IA ≥ 0. Thus, IA(s) ≥ 0 for all s ∈ S. Then, W (s) = X(s) +
Y (s) + Z(s) = I{1,2}(s) + I{2,3}(s) + Z(s) ≥ Z(s) for all s ∈ S. Therefore,
W ≥ Z.
2.1.7
(a) By deÞnition,W (1) = X(1)−Y (1)+Z(1) = I{1,2}(1)−I{2,3}(1)+I{3,4}(1) =
1− 0 + 0 = 1.
(b) By deÞnition,W (2) = X(2)−Y (2)+Z(2) = I{1,2}(2)−I{2,3}(2)+I{3,4}(2) =
1− 1 + 0 = 0.
(c) By deÞnition,W (3) = X(3)−Y (3)+Z(3) = I{1,2}(3)−I{2,3}(3)+I{3,4}(3) =
0− 1 + 1 = 0.
(d) In (c), W (3) = 0 but Z(3) = 1. Hence W ≥ Z is not true.
2.1.8
(a) By deÞnition W (1) = X(1)− Y (1) + Z(1) = 1− 1 + 0 = 0.
(b) By deÞnition W (2) = X(2)− Y (2) + Z(2) = 1− 1 + 0 = 0.
(c) By deÞnition W (5) = X(5)− Y (5) + Z(5) = 0− 0 + 1 = 1.
(d) Suppose that A ⊂ B ⊂ S. We will show that IA − IB = IA−B. For all
s ∈ Ac, IA(s) = IB(s) = IA−B(s) = 0. Hence IA(s) − IB(s) = 0 = IA−B(s).
For all s ∈ B, IA(s) = IB(s) = 1 and IA−B(s) = 0. Thus, IA(s) − IB(s) =
0 = IA−B(s). Finally, for s ∈ A − B, IA(s) = IA−B(s) = 1 and IB(s) = 0.
Hence, IA(s)− IB(s) = 1 = IA−B(s). Since {1, 2} ⊂ {1, 2, 3}, we have X −Y =
I{1,2,3} − I{1,2} = I{3} ≥ 0. Therefore W (s) = X(s)− Y (s) + Z(s) ≥ Z(s) for
all s ∈ S.
2.1.9
(a) By deÞnition, Y (1) = 12X(1) = 1.
(b) By deÞnition, Y (2) = 22X(2) = 4.
(c) By deÞnition, Y (4) = 42X(4) = 0.

Problems
2.1.10
(a) No, we could have X(s) < 0 for some s ∈ S.
(b) No, if S is inÞnite, then it could be that for all c there is some s ∈ S with
X(s) < c, so that X(s) + c < 0.
(c) Yes, if S is Þnite, then we can take c = −mins∈SX(s) < ∞ and then
X(s) + c ≥ 0 for all s ∈ S.
2.1.11 No, if S is Þnite, then maxs∈S |X(s)| must be Þnite, so X must be
bounded.
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2.1.12 Yes, then X = IA, where A = {s ∈ S; X(s) = 1}.
2.1.13 If |S| = m, then the number of subsets of S is 2m (since each s ∈ S can
be either included or not). Since subsets are in one-to-one correspondence with
indicator functions, this means there are 2m indicator functions as well.

2.1.14 No, if X(s) < 0 for some s ∈ S, then Y (s) = pX(s) is undeÞned (or,
at least, not a real number), so Y is not a random variable.

2.2 Distributions of Random Variables

Exercises
2.2.1 Clearly, X must equal 0, 1, or 2. Also, X = 0 if and only if the coins
are both tails, which has probability (1/2)2 = 1/4. Similarly, X = 2 if and only
if the coins are both heads, which also has probability (1/2)2 = 1/4. Hence,
P (X = 0) = P (X = 2) = 1/4 and P (X = 1) = 1−P (X = 0)−P (X = 2) = 1/2,
with P (X = x) = 0 for x 6= 0, 1, 2.
2.2.2
(a) Clearly, P (X = x) = 0 for x 6= 0, 1, 2, 3. For x ∈ {0, 1, 2, 3}, there are ¡3x¢
ways we could end up with x heads, and each has probability (1/2)3 = 1/8.
Hence, P (X = x) =

¡
3
x

¢
/ 8 for x = 0, 1, 2, 3, so that P (X = 0) = P (X = 3) =

1/8, and P (X = 1) = P (X = 2) = 3/8.
(b) Here P (X ∈ B) = (1/8)IB(0) + (3/8)IB(1) + (3/8)IB(2) + (1/8)IB(3).
2.2.3
(a) Here P (Y = y) = 0 for y 6= 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. For

y ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
P (Y = y) equals the number of ways the two dice can add up to y, divided by
36. Thus, P (Y = 2) = 1/36, P (Y = 3) = 2/36, P (Y = 4) = 3/36, P (Y = 5) =
4/36, P (Y = 6) = 5/36, P (Y = 7) = 6/36, P (Y = 8) = 5/36, P (Y = 9) = 4/36,
P (Y = 10) = 3/36, P (Y = 11) = 2/36, and P (Y = 12) = 1/36.
(b) Here

P (Y ∈ B) =(1/36)IB(2) + (2/36)IB(3) + (3/36)IB(4) + (4/36)IB(5)
+ (5/36)IB(6) + (6/36)IB(7) + (5/36)IB(8) + (4/36)IB(9)

+ (3/36)IB(10) + (2/36)IB(11) + (1/36)IB(12).

2.2.4 Here P (Z = z) = 1/6 for z = 1, 2, 3, 4, 5, 6. Hence:
(a) P (W = w) = 1/6 for w = 5, 12, 31, 68, 129, 220, with P (W = w) = 0
otherwise.
(b) P (V = v) = 1/6 for v = 1,

√
2,
√
3, 2,

√
5,
√
6, with P (V = v) = 0 otherwise.

(c) P (ZW = x) = 1/6 for w = 5, 24, 93, 272, 645, 1320, with P (ZW = x) = 0
otherwise.
(d) P (VW = y) = 1/6 for y = 5, 12

√
2, 31

√
3, 136, 129

√
5, 220

√
6, with P (VW =

y) = 0 otherwise.
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(e) P (V +W = r) = 1/6 for r = 6, 12 +
√
2, 31 +

√
3, 72, 129 +

√
5, 220 +

√
6,

with P (V +W = r) = 0 otherwise.

2.2.5
(a) P (X = 1) = .3, P (X = 2) = .2, P (X = 3) = .5, and P (X = x) = 0 for all
x /∈ {1, 2, 3} .
(b) P (Y = 1) = .3, P (Y = 2) = .2, P (Y = 3) = .5, and P (Y = y) = 0 for all
y /∈ {1, 2, 3} .
(c) P (W = 2) = (.3)

2 = 0.09, P (W = 3) = 2 (.3) (.2) = 0.12, P (W = 4) =

(.2)2+2 (.3) (.5) = 0.34, P (W = 5) = 2 (.2) (.5) = 0.2, P (W = 6) = (.5)2 = 0.25
and P (W = w) = 0 for all other choices of w.

2.2.6
(a) P (X = x) = 4/52 = 1/13 for x ∈ {1, 2, . . . , 13} and P (X = x) = 0
otherwise.
(b) P (Y = y) = 13/52 = 1/4 for y ∈ {1, 2, 3, 4} and P (Y = y) = 0 otherwise.
(c) P (W = 2) = P (X = 1, Y = 1) = 1/52, P (W = 3) = P (X = 1, Y =
2) + P (X = 2, Y = 1) = 2/52, P (W = 4) = 3/52, P (W = 5) = 4/52, P (W =
6) = 4/52, P (W = 7) = 4/52, P (W = 8) = 4/52, P (W = 9) = 4/52, P (W =
10) = 4/52, P (W = 11) = 4/52, P (W = 12) = 4/52, P (W = 13) = 4/52, and
P (W = 14) = 4/52, P (W = 15) = 3/52, P (W = 16) = 2/52, P (W = 17) =
1/52.

2.2.7 P (X = 25) = .45, P (X = 30) = .55, and P (X = x) = 0 otherwise.

2.2.8 Note that each number w ∈ {0, 1, . . . , 99} can occur and

P (W = w) = P (X2 = bw/10c ,X1 = w − 10 bw/10c) = (1/10)2 = 1/100.

Problem
2.2.9 Note that each number w ∈ {0, 1, . . . .99} ∩ {0, 11, 22, . . . , 99} can occur
and so

P (W = w) = P (X2 = bw/10c ,X1 = w − 10 bw/10c) = (1/10) (1/9) = 1/90.

Challenges
2.2.10 Clearly, P (Z = z) = 0 unless z ∈ {−5,−4, . . . , 2, 3}, in which case

P (Z = z) =
X

0≤x≤3, 0≤y≤5, x−y=z
P (X = x, Y = y)

=
X

0≤x≤3, 0≤y≤5, x−y=z

µ
3

x

¶
(1/2)3

µ
5

y

¶
(1/2)5

= (1/2)8
X

0≤x≤3, 0≤y≤5, x−y=z

µ
3

x

¶µ
5

y

¶
.
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Hence,

P (Z = 3) = (1/2)8
µ
3

3

¶µ
5

0

¶
= 1/28

P (Z = 2) = (1/2)8
·µ
3

3

¶µ
5

1

¶
+

µ
3

2

¶µ
5

0

¶¸
= 8/28

P (Z = 1) = (1/2)8
·µ
3

3

¶µ
5

2

¶
+

µ
3

2

¶µ
5

1

¶
+

µ
3

1

¶µ
5

0

¶¸
= 28/28

P (Z = 0) = (1/2)8
·µ
3

3

¶µ
5

3

¶
+

µ
3

2

¶µ
5

2

¶
+

µ
3

1

¶µ
5

1

¶
+

µ
3

0

¶µ
5

0

¶¸
= 56/28

P (Z = −1) = (1/2)8
·µ
3

3

¶µ
5

4

¶
+

µ
3

2

¶µ
5

3

¶
+

µ
3

1

¶µ
5

2

¶
+

µ
3

0

¶µ
5

1

¶¸
= 70/28

P (Z = −2) = (1/2)8
·µ
3

3

¶µ
5

5

¶
+

µ
3

2

¶µ
5

4

¶
+

µ
3

1

¶µ
5

3

¶
+

µ
3

0

¶µ
5

2

¶¸
= 56/28

P (Z = −3) = (1/2)8
·µ
3

2

¶µ
5

5

¶
+

µ
3

1

¶µ
5

4

¶
+

µ
3

0

¶µ
5

3

¶¸
= 28/28

P (Z = −4) = (1/2)8
·µ
3

1

¶µ
5

5

¶
+

µ
3

0

¶µ
5

4

¶¸
= 8/28

P (Z = −5) = (1/2)8
µ
3

0

¶µ
5

5

¶
= 1/28.

2.3 Discrete Distributions

Exercises
2.3.1 Here pY (2) = 1/36, pY (3) = 2/36, pY (4) = 3/36, pY (5) = 4/36, pY (6) =
5/36, pY (7) = 6/36, pY (8) = 5/36, pY (9) = 4/36, pY (10) = 3/36, pY (11) =
2/36, and pY (12) = 1/36, with pY (y) = 0 otherwise.

2.3.2
(a) pZ(1) = pZ(3) = 1/2, with pZ(z) = 0 otherwise.
(b) pW (2) = pW (12) = 1/2, with pW (w) = 0 otherwise.

2.3.3 Here pZ(1) = pZ(5) = 1/4, with pZ(0) = 1/4 + 1/4 = 1/2 and pZ(z) = 0
otherwise.

2.3.4
(a) pZ(0) = pZ(2) = 1/4, with pZ(1) = 1/4 + 1/4 = 1/2 and pZ(z) = 0
otherwise.
(b) pW (1) = 1/4, with pW (0) = 1/4+1/4+1/4 = 3/4 and pW (w) = 0 otherwise.

2.3.5 Here pW (1) = 1/36, pW (2) = 2/36, pW (3) = 2/36, pW (4) = 2/36 +
1/36 = 3/36, pW (5) = 2/36, pW (6) = 2/36 + 2/36 = 4/36, pW (8) = 2/36,
pW (9) = 1/36, pW (10) = 2/36, pW (12) = 2/36 + 2/36 = 4/36, pW (15) = 2/36,
pW (16) = 1/36, pW (18) = 2/36, pW (20) = 2/36, pW (24) = 2/36, pW (25) =
1/36, pW (30) = 2/36, and pW (36) = 1/36, with pW (w) = 0 otherwise.
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2.3.6 P (5 ≤ Z ≤ 9) =P9
z=5(1− p)zp = p (1−p)

5−(1−p)10
1−(1−p) = (1− p)5 − (1− p)10.

2.3.7 Here P (X = 11) =
¡
12
11

¢
p11(1 − p)1 = 12p11(1 − p). This has derivative

12 · 11p10(1−p)− 12p11, which equals 0 if either p = 0, or 11(1−p) = p whence
p = 11/12. We see that p = 11/12 maximizes P (X = 11).

2.3.8 Here P (W = 11) = e−λλ11 / 11!. This is maximized when e−λλ11 is
maximized. This has derivative −e−λλ11 + e−λ11λ10, which equals 0 if either
λ = 0, or λ = 11. We see that λ = 11 maximizes P (W = 11).

2.3.9

P (Z ≤ 2) = P (Z = 0) + P (Z = 1) + P (Z = 2)

=

µ
2

0

¶
(1/4)3(1− 1/4)0 +

µ
3

1

¶
(1/4)3(1− 1/4)1

+

µ
4

2

¶
(1/4)3(1− 1/4)2

= 1/43 + 9/44 + 54/45 = 53/512

2.3.10

P (X2 ≤ 15) = P (X ≤
√
15) = P (X ≤ 3) =

3X
k=0

P (X = k)

=
3X
k=0

(1− 1/5)k(1/5) = 1− (4/5)4
1− (4/5) (1/5) = 369/625

2.3.11 P (Y = 10) =
¡
10
10

¢
p10(1− p)10−10 = p10.

2.3.12 pY (y) = P (Y = y) = P (X−7 = y) = P (X = y+7) = e−λλy+7 / (y+7)!
for y = −7,−6,−5, . . ., with pY (y) = 0 otherwise.
2.3.13 pX(3) =

¡
7
3

¢¡
13
5

¢
/
¡
20
8

¢
= 0.35759 and P (X = 8) = 0 since there are only

seven elements in the population with the label in question.

2.3.14
(a) Binomial(20, 2/3).
(b) P (X = 5) =

¡
20
5

¢
(2/3)5 (1/3)15 = 1.4229× 10−4.

2.3.15
(a)

¡
10
3

¢
(.35)3 (.65)

7
= 0.25222.

(b) (.35) (.65)9 = 7.2492× 10−3.
(c)

¡
9
1

¢
(.35)2 (.65)8 = 3.5131× 10−2.

2.3.16
(a)

¡
15
5

¢
(4/9)5 (5/9)10 = 0.14585.

(b) (4/9) (5/9)14 = 1.1858× 10−4.
(c)

¡
15
4

¢
(4/9)5 (5/9)10 = 6.6297× 10−2.
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2.3.17
(a) Hypergeometric(9, 4, 2) .
(b) Hypergeometric(9, 5, 2) .

2.3.18
(a) P (X = 5) =

³
(2 · 2)5 /5!

´
exp {−2 · 2} = 0.15629.

(b) P (X = 5, Y = 5) = P (X = 5)P (Y = 5) = (0.15629)
2
= 2.4427× 10−2.

(c) P (X = 0) = (2 · 10)0 exp {−2 · 10} = 2.0612× 10−9.
2.3.19 The number of black balls observed is distributed Binomial(10, 1/1000) .
Then

P (X = 5) ≈ (100/1000)
5

5!
exp {−100/1000} = 7.5403× 10−8.

2.3.20 This is the probability that the test fails 4 times and passes on the Þfth
test, so this probability is (1/3) (2/3)4 = 6.5844× 10−2.
Computer Exercises
2.3.21 The tabulation is given by
0 0.000357
1 0.009526
2 0.075018
3 0.240057
4 0.350083
5 0.240057
6 0.075018
7 0.009526
8 0.000357
and the plot is as below.

876543210

0.3

0.2

0.1

0.0

x

p

2.3.22 The Binomial(30, .3) probability function is plotted below.

3020100

0.15

0.10

0.05

0.00

x

p
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The Binomial(30, .7) probability function is plotted below.

3020100

0.15

0.10

0.05

0.00

x

p

We have thatµ
n

x

¶
px (1− p)n−x =

µ
n

n− x
¶
(1− p)n−x (1− (1− p))x .

Problems
2.3.23
(a) pY (y) = 2−

√
y for y = 1, 4, 9, 16, 25, . . . (i.e., for y a positive perfect square),

with pY (y) = 0 otherwise.
(b) pZ(z) = 2−z−1 for z = 0, 1, 2, . . ., with pZ(z) = 0 otherwise. Hence, Z ∼
Geometric(1/2).

2.3.24 Here Z ∼ Binomial(n1 + n2, p). This is because X corresponds to the
number of heads on the Þrst n1 coins (where each coin has probability p of being
heads), and Y corresponds to the number of heads on the next n2 coins, so Z
corresponds to the number of heads on the Þrst n1 + n2 coins.

2.3.25 Z ∼ Negative Binomial(2, θ) since X + Y is equal to the number of
tails until the second head is observed in independent tosses with heads oc-
curring with probability θ. With r coins the sum will be distributed Negative
Binomial(r, θ) .

2.3.26

P (X ≤ Y ) =
∞X
y=0

P (X ≤ y)θ (1− θ)y =
∞X
y=0

Ã
yX
x=0

θ1 (1− θ1)x
!
θ2 (1− θ2)y

=
∞X
y=0

³
1− (1− θ1)y+1

´
θ2 (1− θ2)y = 1− θ2 (1− θ1)

∞X
y=0

(1− θ1)y (1− θ2)y

= 1− θ2 (1− θ1)
1− (1− θ1) (1− θ2)

This is the probability that, in tossing two coins that have probability θ1 and
θ2 of yielding a head respectively, the Þrst head occurs on the Þrst coin.

2.3.27 limn→∞ P (X ≤ n) = limn→∞ 1− (1− λ/n)n+1 = 1− e−λ.
2.3.28 Z ∼ Negative Binomial(r + s, θ) since X + Y is equal to the number
of tails until the (r + s)th head is observed in independent tosses with heads
occurring with probability θ.
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2.3.29 The probability is
¡
M1

f1

¢¡
M2

f2

¢¡
N−M1−M2

f3

¢
/
¡
N
n

¢
, provided

max {0, n− (N −M1)} ≤ f1 ≤ min {M1, n} ,
max {0, n− (N −M2)} ≤ f2 ≤ min {M2, n} ,
max {0, n− (M1 +M2)} ≤ f3 ≤ min {N −M1 −M2, n} ,
and f1 + f2 + f3 = n.

2.3.30 P (T > t) = P (no units arrive in (0, t]) =
³
(λt)0 /0!

´
exp {−λt} .

2.4 Continuous Distributions

Exercises
2.4.1
(a) P (U ≤ 0) = 0.
(b) P (U = 1/2) = 0.
(c) P (U < −1/3) = 0.
(d) P (U ≤ 2/3) = 2/3.
(f) P (U < 1) = 1.
(g) P (U ≤ 17) = 1.
2.4.2
(a) P (W ≥ 5) = 0.
(b) P (W ≥ 2) = 2/3.
(c) P (W 2 ≤ 9) = P (W ≤ 3) = 2/3.
(d) P (W 2 ≤ 2) = P (W ≤ √2) = (√2− 1)/3.
2.4.3
(a) P (Z ≥ 5) = e−20.
(b) P (Z ≥ −5) = 1.
(c) P (Z2 ≥ 9) = P (Z ≥ 3) = e−12.
(d) P (Z2 − 17 ≥ 9) = P (Z2 ≥ 25) = P (Z ≥ 5) = e−25.
2.4.4
(a) 1 =

R 1
0
cx dx = c/2 so c = 2.

(b) 1 =
R 1
0
cxn dx = c/ (n+ 1) so c = n+ 1.

(c) 1 =
R 2
0
cx1/2 dx = c (2/3)x3/2

¯̄2
0
= c (2/3) 23/2 so c = 3/

¡√
24
¢
.

(d) 1 =
R π/2
0 c sinxdx = −c cosx|π/20 = c.

2.4.5 This is not a density because it takes negative values.

2.4.6 Let F (x) = P (0 < X < x) for x ∈ [0,∞). Then, F (x) = R x0 3e−3ydy =−e−3y|y=xy=0 = 1− e−3x.
(a) P (0 < X < 1) = F (1) = 1− e−3 = 0.95021.
(b) P (0 < X < 3) = F (3) = 1− e−9 = 0.99988.
(c) P (0 < X < 5) = F (5) = 1− e−15 = 0.9999997.
(d) P (2 < X < 5) = P (0 < X < 5) − P (0 < X ≤ 2) = F (5) − F (2) =
1− e−15− (1− e−6) = e−6(1− e−9) = 0.00247845. (e) P (2 < X < 10) = P (0 <
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X < 10)−P (0 < X ≤ 2) = F (10)−F (2) = 1−e−30−(1−e−6) = e−6(1−e−24) =
0.00247875. (f) P (X > 2) = 1−P (0 < X ≤ 2) = 1−F (2) = e−6 = 0.00247852.

2.4.7 To be a density function, f must satisfy f ≥ 0 and RM0 f(x)dx = 1. The
Þrst condition is equivalent to c ≥ 0. The second condition is

1 =

Z M

0

f(x)dx = c

Z M

0

x2dx = c
x3

3

¯̄̄̄x=M
x=0

= cM3/3.

Hence, the constant is c = 3/M3.

2.4.8 The probability P (0.3 < X < 0.4) is

P (0.3 < X < 0.4) =

Z 0.4

0.3

f(x)dx ≥
Z 0.4

0.3

2dx = 2x|x=0.4x=0.3 = 2(0.4− 0.3) = 0.2.

2.4.9 By the deÞnition of a density,

P (1 < X < 2) =

Z 2

1

f(x)dx ≥
Z 2

1

g(x)dx = P (1 < Y < 2).

Suppose P (1 < X < 2) = P (1 < Y < 2). Then,

0 = P (1 < X < 2)− P (1 < Y < 2) =
Z 2

1

(f(x)− g(x))dx

implies f(x) = g(x) for almost everywhere on (1, 2). It contradicts to the
assumption f(x) > g(x). Hence, we must have P (1 < X < 2) > P (1 < Y < 2).

2.4.10 Suppose X takes values on (1, 2) and f(x) > g(x) for all x ∈ (1, 2).
Then, P (1 < X < 2) = P (1 < Y < 2) = 1 but, from Exercise 2.4.9, P (1 < X <
2) > P (1 < Y < 2) = 1 and this is a contradiction. Hence, f(x) > g(x) for all
x is impossible.

2.4.11 Let c = supy∈(1,2) f(y). Then, f(x) ≥ c ≥ f(y) for all 0 < x < 1 < y < 2.
Hence, P (0 < X < 1) =

R 1
0 f(x)dx ≥

R 1
0 cdx = c ≥

R 2
1 f(y)dy = P (1 < X < 2).

Note that f(x)− f(x+1) > 0 for all 0 < x < 1. If P (0 < X < 1) = P (1 < X <

2), then
R 1
0
f(x) − f(x + 1)dx = P (0 < X < 1) − P (1 < X < 2) = 0. Hence,

we get f(x) = f(x+ 1) almost everywhere on (0, 1) and this is a contradiction.
Thus, P (0 < X < 1) > P (1 < X < 2) holds.

2.4.12 Let f be a density function given by f(x) = 2/5 if x ∈ (0, 1), f(x) = 3/10
if x ∈ (1, 3) and 0 otherwise. Then, f satisÞes f(x) = 2/5 > 3/10 = f(y)

whenever 0 < x < 1 < y < 3. However, P (0 < X < 1) =
R 1
0
2/5dx = 2/5 <

3/5 =
R 3
1 3/10dy = P (1 < X < 3). Therefore, P (0 < X < 1) > P (1 < X < 3)

doesn�t hold.
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2.4.13 The density of N(µ, σ2) is (2πσ2)−1/2 exp(−(x− µ)2/(2σ2)).

P (Y < 3) =

Z 3

−∞
(2π)−1/2 exp(−(y − 1)2/2)dy

=

Z 2

−∞
(2π)−1/2 exp(−u2/2)du = P (X < 2).

Hence, P (Y < 3) = P (X < 2) < P (X < 3) by the monotonicity.

Problems
2.4.14 P (Y − h ≥ y |Y ≥ h) = P (Y ≥ y + h) /P (Y ≥ y) = e−λ(y+h) / e−λh =
e−λy = P (Y ≥ y).
2.4.15
(a) Using integration by parts, Γ(α+1) =

R∞
0
tαe−t dt = 0−R∞

0
(αtα−1)(−e−t) dt =

α
R∞
0 tα−1e−t dt = αΓ(α).

(b) Γ(1) =
R∞
0
t0e−t dt = (−e−t)

¯̄̄t=∞
t=0

= 1.

(c) We use induction on n. By part (b), the statement is true for n = 1. By
part (a), if the statement is true for n, then it is also true for n+ 1.

2.4.16 Using the substitution t = x2/2,Z ∞

−∞
φ(x) dx = 2

Z ∞

0

φ(x) dx = 2

Z ∞

0

1√
2π
e−x

2/2 dx

=
2√
2π

Z ∞

0

e−t
1

2
(2t)−1/2 dt =

2√
2π

1

2
2−1/2 Γ(1/2) = 1

since Γ(1/2) =
√
π.

2.4.17 Using the substitution t = λx,
R∞
0
f(x) dx =

R∞
0

λαxα−1
Γ(α) e−λx dx =

λα

Γ(α)

R∞
0
xα−1 e−λx dx = λα

Γ(α)

R∞
0
(t/λ)α−1 e−t (1/λ) dt = 1

Γ(α)

R∞
0
tα−1 e−t dt =

1
Γ(α) Γ(α) = 1.

2.4.18 We have that f (x) ≥ 0 for every x and putting u = e−x, du = −e−x dx
we have

R∞
−∞ e

−x (1 + e−x)−2 dx =
R∞
0 (1 + u)

−2
du = − (1 + u)−1

¯̄̄∞
0
= 1.

2.4.19 We have that f (x) ≥ 0 for every x and putting u = xα, du = αxα−1 dx
we have

R∞
0
αxα−1e−x

α

dx =
R∞
0
e−u du = −e−u|∞0 = 1.

2.4.20 We have that f (x) ≥ 0 for every x, and we have R∞
0
α (1 + x)−α−1 dx =

− (1 + x)−α
¯̄̄∞
0
= 1.

2.4.21 We have that f (x) ≥ 0 for every x, and we have
R∞
−∞

1
π(1+x2) dx =

1
π arctanx|∞−∞ = 1

π

¡
π
2 −

¡−π
2

¢¢
= 1.
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2.4.22 We have that f (x) ≥ 0 for every x, and we haveZ ∞

−∞

1

2
e−|x| dx =

Z ∞

0

1

2
e−x dx+

Z 0

−∞

1

2
ex dx

=
1

2
+
1

2

³
ex|0−∞

´
=
1

2
+
1

2
= 1.

2.4.23We have that f (x) ≥ 0 for every x, and we have R∞−∞ e−x exp {−e−x} dx =
exp {−e−x}|∞−∞ = 1− 0 = 1.
2.4.24
(a) We have that f (x) ≥ 0 for every x, and R 1

0
B−1(a, b)xa−1 (1− x)b−1 dx =

B−1(a, b)B(a, b) = 1.
(b) f (x) = 1 for 0 < x < 1 and this is the Uniform(0,1) distribution.
(c) f (x) = B−1(2, 1)x = (Γ (2)Γ (1) /Γ (3))−1 x = 2x for 0 < x < 1.
(d) f (x) = B−1(1, 2) (1− x) = (Γ (1)Γ (2) /Γ (3))−1 x = 2 (1− x) for 0 < x <
1.

(e) f (x) = B−1(2, 2)x (1− x) = (Γ (2)Γ (2) /Γ (4))−1 x = 6x (1− x) for 0 <
x < 1.

Challenges

2.4.25 The transformation u = x+ y, v = x/u has inverse x = uv, y = u(1− v)
and therefore Jacobian¯̄̄̄

det

µ
v u

1− v −u
¶¯̄̄̄
= uv + u (1− v) = 1

so we have that

Γ (a)Γ (b)

=

Z ∞

0

Z ∞

0

xa−1yb−1e−x−y dx dy =
Z 1

0

Z ∞

0

(uv)
a−1

ub−1(1− v)b−1e−u dudv

=

Z 1

0

va−1(1− v)b−1
µZ ∞

0

ua+b−1e−u du
¶
dv

= Γ (a+ b)

Z 1

0

va−1(1− v)b−1 dv.

2.5 Cumulative Distribution Functions (cdfs)

Exercises

2.5.1 Properties (a) and (b) follow by inspection. Properties (c) and (d) follow
since FX(x) = 0 for x < 1, and FX(x) = 1 for x > 6.
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2.5.2

FX(x) =



0 x < 1
1/6 1 ≤ x < 4
2/6 4 ≤ x < 9
3/6 9 ≤ x < 16
4/6 16 ≤ x < 25
5/6 25 ≤ x < 36
1 36 ≤ x

Properties (a) and (b) follow by inspection. Properties (c) and (d) follow since
FY (y) = 0 for y < 1, and FY (y) = 1 for y > 36.

2.5.3
(a) No, since F (x) > 1 for x > 1.
(b) Yes.
(c) Yes.
(d) No, since, e.g., F (2) = 4 > 1.
(e) Yes.
(f) Yes. (This distribution has mass 1/9 at the point 1.)
(g) No, since F (−1) > F (0) so F is not non-decreasing.
2.5.4
(a) P (X ≤ −5) = Φ(−5) = 2.87× 10−7.
(b) P (−2 ≤ X ≤ 7) = Φ(7)−Φ(−2) = 0.977.
(c) P (X ≥ 3) = 1− P (X < 3) = 1−Φ(3) = 0.00135.
2.5.5 Here (Y + 8)/2 ∼ Normal(0, 1). Hence:
(a) P (Y ≤ −5) = P ((Y +8)/2 ≤ (−5+8)/2) = Φ((−5+8)/2) = Φ(3/2) = 0.933.
(b) P (−2 ≤ Y ≤ 7) = P ((−2+8)/2 ≤ (Y +8)/2 ≤ (7+8)/2) = Φ((7+8)/2)−
Φ((−2 + 8)/2) = Φ(15/2)− Φ(3) = 0.00135.
(c) P (Y ≥ 3) = P ((Y + 8)/2 ≥ (3 + 8)/2) = 1−Φ((3 + 8)/2) = 1−Φ(11/2) =
1.90× 10−8.
2.5.6
(a) The fact pi ≥ 0 and Fi(x) ≥ 0 for all i = 1, . . . , k impliesG(x) =

Pk
i=1 piFi(x) ≥Pk

i=1 pi · 0 = 0. Similarly, p1 + · · · + pk = 1, pi ≥ 0 and Fi(x) ≤ 1 for all
i = 1, . . . , k implies G(x) =

Pk
i=1 piFi(x) ≤

Pk
i=1 pi · 1 = 1.

(b) Suppose y > x. Then, Fi(y) ≥ Fi(x) for all i = 1, . . . , k.

G(y) =
kX
i=1

piFi(y) ≥
kX
i=1

piFi(x) = G(x).

(c) For all i = 1, . . . , k, limx→∞ Fi(x) = 1. Hence,

lim
x→∞G(x) = lim

x→∞

kX
i=1

piFi(x) =
kX
i=1

pi lim
x→∞Fi(x) =

kX
i=1

pi = 1.
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(d) For i = 1, . . . , k, limx→−∞ Fi(x) = 0. Thus,

lim
x→−∞G(x) = lim

x→−∞

kX
i=1

piFi(x) =
kX
i=1

pi lim
x→−∞Fi(x) =

kX
i=1

pi · 0 = 0.

2.5.7 By deÞnition FX(x) = P (X ≤ x). Since FX(x) is a continuous function,
P (X = x) = F (x) − limy%x F (y) = x2 − limy%x y2 = x2 − x2 = 0. Hence,
P (X < x) = P (X ≤ x) − P (X = x) = F (x) − 0 = F (x). (a) P (X < 1/3) =
P (X ≤ 1/3) = F (1/3) = (1/3)2 = 1/9. (b) P (1/4 < X < 1/2) = P (X <
1/2)− P (X ≤ 1/4) = F (1/2)− F (1/4) = (1/2)2 − (1/4)2 = 3/16. (c) P (2/5 <
X < 4/5) = P (X < 4/5)−P (X ≤ 2/5) = F (4/5)−F (2/5) = (4/5)2− (2/5)2 =
12/25. (d) P (X < 0) = F (0) = 0. (e) P (X < 1) = F (1) = 12 = 1. (f) Since
0 ≤ P (X < −1) ≤ P (X ≤ 0) = F (0) = 0, we have P (X < −1) = 0. (g) Since
1 ≥ P (X < 3) ≥ P (X ≤ 1) = F (1) = 12 = 1, we have P (X < 3) = 1. (h)
P (X = 3/7) = P (X ≤ 3/7)− P (X < 3/7) = F (3/7)− F (3/7) = 0.
2.5.8 The function FY is continuous on (0, 1/2) and (1/2, 1). Hence, P (Y <
y) = limx%y P (Y ≤ x) = limx%y FY (x) = FY (y) = P (Y ≤ y) for all y ∈
(0, 1/2) ∪ (1/2, 1). (a) P (1/3 < Y < 3/4) = P (Y < 3/4) − P (Y ≤ 1/3) =
FY (3/4)− FY (1/3) = 1− (3/4)3 − (1/2)3 = 29/64. (b) P (Y = 1/3) = P (Y ≤
1/3) − P (Y < 1/3) = FY (1/3) − FY (1/3) = 0. (c) P (Y = 1/2) = P (Y ≤
1/2)− P (Y < 1/2) = FY (1/2)− limx%1/2 FY (x) = 1− (1/2)3 − limx%1/2 x

3 =
1− (1/2)3 − (1/2)3 = 3/4.
2.5.9
(a)

(b) The given F doesn�t satisfy (a) and (c) in Theorem 2.3.2 because F (2) =
22 = 4 > 1 and limx→∞ F (x) = 4 > 1. Thus F can�t be a cumulative distribu-
tion function.
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2.5.10
(a)

(b) The given F doesn�t satisfy (b) and (c) in Theorem 2.3.2 because F (0) =
1 > e−1 = F (1) even though 0 < 1, limx→∞ F (x) = limx→∞ e−x = 0. Hence,
F is not a cumulative distribution function.

2.5.11
(a)

(b) Since 0 < e−x ≤ 1 for x ≥ 0, 0 ≤ F (x) ≤ 1 for all x. On [0,∞), F 0(x) > 0.
Hence, F is increasing on [0,∞). limx→∞ F (x) = limx→∞(1 − e−x) = 1 and
limx→−∞ F (x) = 0. Hence, F is a cumulative distribution function.

2.5.12 The density of X is fX(x) = 3e−3xI(x ≥ 0). Since X is deÞned on
[0,∞), FX(x) = P (X ≤ x) = 0 for all x < 0. For x ≥ 0,

FX(x) =

Z x

−∞
fX(y)dy =

Z x

0

3e−3ydy = −e−3y ¯̄y=x
y=0

= −e−3x + 1 = 1− e−3x.
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2.5.13
(a)

(b) The function F is non-decreasing in (a) and the range of F is [0, 1]. Finally,
limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. Hence, F is a valid cumulative
distribution function. (c) P (X > 4/5) = 1−P (X ≤ 4/5) = 1−F (4/5) = 1−1 =
0. P (−1 < X < 1/2) = P (X < 1/2)−P (X ≤ −1) = limx%1/2 F (x)−F (−1) =
3/4 − 0 = 3/4. P (X = 2/5) = P (X ≤ 2/5) − P (X < 2/5) = F (2/5) −
limx%2/5 F (x) = 3/4 − 1/3 = 5/12. P (X = 4/5) = P (X ≤ 4/5) − P (X <
4/5) = F (4/5)− limx%4/5 F (x) = 1−3/4 = 1/4. Besides, it is not hard to show
that P (X = 0) = 1/3. Hence, P (X ∈ {1, 2/5, 4/5}) = 1/3 + 5/12 + 1/4 = 1,
that is,

P (X = x) =


1/3 if x = 0,
5/12 if x = 2/5,
1/4 if x = 4/5,
0 otherwise.

2.5.14
(a) For all x ≥ 0, 0 < e−x ≤ 1. Hence, 0 ≤ G(x) < 1 for all x ≥ 0. Since G0(x),
for x > 0, is non-negative, G is non-decreasing, i.e., G(x) ≥ G(y) whenever
x ≥ y. Finally, limx→−∞G(x) = 0 and limx→∞G(x) = limx→∞ 1 − e−x =
1 − limx→∞ e−x = 1 − 0 = 1. Hence, G is a valid cumulative distribution
function. (b) Since G is a continuous function, P (Y < y) = limx%yG(x) =
G(y). P (Y > 4) = 1−P (Y ≤ 4) = 1−G(4) = 1−e−4 = 0.98168. P (−1 < Y <
2) = P (Y < 2)−P (Y ≤ −1) = G(2)−G(−1) = 1−e−2−0 = 1−e−2 = 0.86466.
P (Y = 0) = P (Y ≤ 0)− P (Y < 0) = G(0)−G(0) = 0.
2.5.15 Since G is continuous, limy%zG(y) = G(z). P (Z = z) = P (Z ≤ z) −
P (Z < z) = H(z)−limx%zH(x) = (1/3)F (z)+(2/3)G(z)−(1/3) limx%z F (x)−
(2/3) limx%zG(x) = (1/3)(F (z)− limx%z F (x)) + (2/3)(G(z)−G(z)) =
(1/3)P (X = z). We already showed that P (X = z) > 0 only if z ∈ {0, 2/5, 4/5}
in Exercise 2.5.13.
(a) P (Z > 4/5) = 1−P (Z ≤ 4/5) = 1−H(4/5) = 1−(F (4/5)/3+2G(4/5)/3) =
1 − (1/3 + 2(1 − e−4/5)/3) = 2e−4/5/3 = 0.29955. (b) P (−1 < Z < 1/2) =
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P (Z < 1/2) − P (Z ≤ −1) = limz%1/2H(z)−H(−1) = (1/3) limz%1/2 F (z) +
(2/3) limz%1/2G(z) − ((1/3) · 0 + (2/3) · 0) = (1/3)(3/4) + (2/3)(1 − e−1/2) =
11/12 − 2e−1/2/3 = 0.51231. (c) P (Z = 2/5) = P (Z ≤ 2/5) − P (Z < 2/5) =
H(2/5)− limz%2/5H(z) = (1/3)F (2/5) + (2/3)G(2/5)− (1/3) limz%2/5 F (z)−
(2/3) limz%2/5G(z) = (1/3)(3/4) + (2/3)(1 − e−2/5) − (1/3)(1/3) − (2/3)(1 −
e−2/5) = 5/36 = 0.13889. (d) P (Z = 4/5) = P (Z ≤ 4/5) − P (Z < 4/5) =
H(4/5)− limz%4/5H(z) = (1/3)F (4/5) + (2/3)G(4/5)− (1/3) limz%4/5 F (z)−
(2/3) limz%4/5G(z) = (1/3)1+(2/3)(1−e−4/5)−(1/3)(3/4)−(2/3)(1−e−4/5) =
1/12 = 0.08333. (e) P (Z = 0) = P (Z ≤ 0)−P (Z < 0) = H(0)− limz%0H(z) =
(1/3)F (0) + (2/3)G(0)− (1/3) limz%0 F (z)− (2/3) limz%0G(z) = (1/3)(1/3)+
(2/3) · 0 − (1/3) · 0 − (2/3) · 0 = 1/9 = 0.11111. (f) P (Z = 1/2) = P (Z ≤
1/2)−P (Z < 1/2) = H(1/2)− limz%1/2H(z) = (1/3)(3/4)+(2/3)(1−e−1/2)−
(1/3) limz%1/2 F (z) − (2/3) limz%1/2G(z) = (1/3)(3/4) + (2/3)(1 − e−1/2) =
11/12− 2e−1/2/3 = 0.51231.
Problems
2.5.16 Since F is non-decreasing, limn→∞ |F (2n)− F (n)| = limn→∞[F (2n)−
F (n)] = limn→∞ F (2n) − limn→∞ F (n) = 1 − 1 = 0. (Hence, limn→∞ P (n <
X ≤ 2n) = 0 for any X.)
2.5.17 Let X have cdf F , let A be the event {X ≤ x}, and let An be the
event {X ≤ x + 1

n}. Then An+1 ⊆ An and
T
nAn = A. Hence, {An} & A,

so by continuity of probabilities, limn→∞ P (An) = P (A), i.e., limn→∞ P (X ≤
x+ 1

n) = P (X ≤ x), i.e., limn→∞ F (x+ 1
n) = F (x).

2.5.18 Since F is non-decreasing, then F is continuous at a if and only if
F (a+) = F (a−). But the previous exercise shows F (a+) = F (a). Hence, F is
continuous at a if and only if F (a) = F (a−), i.e., F (a)−F (a−) = 0. The result
follows since P (X = a) = F (a)− F (a−).
2.5.19 Note that φ(−x) = φ(x). Hence, using the substitution s = −t, we
have Φ(−x) = R−x−∞ φ(t) dt = −

R∞
x φ(s) (−ds) = R∞x φ(s) ds = Φ(∞)− Φ(x) =

1−Φ(x).
2.5.20 F (x) =

R x
−∞ e

−z (1 + e−z)−2 dz = (1 + e−x)−1 .

2.5.21 F (x) =
R x
0
αzα−1 exp {−zα} dz = 1− exp {−xα} .

2.5.22 F (x) = α
R x
0
(1 + z)−α−1 dz = 1− (1 + x)−α .

2.5.23 F (x) = π−1
R x
−∞

¡
1 + z2

¢−1
dz = (arctan (x) + π/2) /π.

2.5.24

F (x) =

(
1
2

R x
−∞ e

z dz = 1
2e

x x ≤ 0
1
2 +

1
2

R x
0
e−z dz = 1

2 +
1
2 (1− e−x) x > 0

2.5.25 F (x) =
R x
−∞ e

−z exp {−e−z} dz = exp {−e−z}|x−∞ = exp{−e−x} .
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2.5.26
(b) F (x) =

R x
0 dz = x for 0 < x < 1.

(c) F (x) =
R x
0 2z dz = x

2 for 0 < x < 1.
(d) F (x) =

R x
0 2 (1− z) dz = 1− (1− x)2 for 0 < x < 1.

(e) F (x) =
R x
0
6z (1− z) dz = R x

0
6
¡
z − z2¢ dz = 3x2 − 2x3 for 0 < x < 1.

2.6 One-dimensional Change of Variable

Exercises
2.6.1 Let h(x) = cx + d. Then Y = h(X) and h is strictly increasing, so
fY (y) = fX(h

−1(y)) / |h0(h−1(y))| = fX((y− d)/c) / c, which equals 1/(R−L)c
for L ≤ (y − d)/c ≤ R, i.e., cL + d ≤ y ≤ cR + d, otherwise equals 0. Hence,
Y ∼ Uniform[cL+ d, cR+ d].
2.6.2 Let h(x) = cx + d. Then Y = h(X) and h is strictly decreasing, so
fY (y) = fX(h

−1(y)) / |h0(h−1(y))| = fX((y − d)/c) / |c|, which equals 1/(R −
L)|c| = 1/(cL− cR) for L ≤ (y− d)/c ≤ R, i.e., cR+ d ≤ y ≤ cL+ d, otherwise
equals 0. Hence, Y ∼ Uniform[cR+ d, cL+ d].
2.6.3 Let h(x) = cx + d. Then Y = h(X) and h is strictly increasing, so
fY (y) = fX(h

−1(y)) / |h0(h−1(y))| = e−[((y−d)/c)−µ]2/2σ2/σ√2πc
= e−[y−d−cµ]

2/2c2σ2/cσ
√
2π. Hence, Y ∼ Normal(cµ+ d, c2σ2).

2.6.4 Let h(x) = cx. Then Y = h(X) and h is strictly increasing, so fY (y) =
fX(h

−1(y)) / |h0(h−1(y))| = fX(y/c) / c, which equals λe−λy/c/c = (λ/c)e−(λ/c)y
for y > 0, otherwise equals 0. Hence, Y ∼ Exponential(λ/c).
2.6.5 Let h(x) = x3. Then Y = h(X) and h is strictly increasing, and h−1(y) =
y1/3. Hence, fY (y) = fX(h−1(y)) / |h0(h−1(y))| = fX(y1/3) / 3(y1/3)2, which
equals λe−λy

1/3

/3y2/3 = (λ/3)y−2/3e−λy
1/3

for y > 0, otherwise equals 0.

2.6.6 Let h(x) = x1/4. Then Y = h(X), and h is strictly increasing over
the region {x > 0}, where fX(x) > 0. Also, h−1(y) = y4 on this region.
Hence, for y > 0, fY (y) = fX(h−1(y)) / |h0(h−1(y))| = fX(y4) / (1/4)(y4)−3/4 =
λe−λy

4

/(1/4)y−3 = 4λy3e−λy
4

, with fY (y) = 0 for y ≤ 0.
2.6.7 Let h(x) = x2. Then Y = h(X), and h is strictly increasing over the
region {0 < x < 3}, where fX(x) > 0. Also, h−1(y) = y1/2 on this region.
Hence, fY (y) = 0 unless y > 0 and 0 < y1/2 < 3, i.e., 0 < y < 9, in which case
fY (y) = fX(h−1(y)) / |h0(h−1(y))| = fX(y1/2) / 2y1/2 = 1/3

¡
2y1/2

¢
= 1/6y1/2

for 0 < y < 9.

2.6.8 The transformation is y = h(x) = 2µ − x and so h−1 (y) = 2µ − y
and h0(x) = −1 and so the density of Y is given by fY (y) = fX

¡
h−1 (y)

¢
=

fX (2µ− y) = fX (µ+ (µ− y)) = fX (µ− (µ− y)) = fX(y) so X and Y have
the same distribution. Since the N

¡
µ, σ2

¢
density is symmetric about µ, this

proves that Y ∼ N ¡µ, σ2¢ .
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2.6.9
(a) The inverse function of Y is Y −1(y) = y1/2 and the derivative of Y is
Y 0(x) = 2x. Hence, fY (y) = fX(Y −1(y))/|Y 0−1(y))| = fX(y1/2)/2y1/2 = y/8.
(b) Since Z−1(z) = z and Z0(z) = 1, fZ(z) = fX(z)/1 = z3/4.

2.6.10 The density function of X is fX(x) = 2/π if 0 ≤ x ≤ π/2 and fX(x) = 0
otherwise. The inverse image of y is Y −1(y) = arcsin(y). The derivative of Y
is Y 0(x) = cos(x). fY (y) = fX(arcsin(y))/|Y 0(arcsin(y))| = 2/(π

p
1− y2) for

y ∈ [0, 1].
2.6.11 Since fX is deÞned on 0 < x < π, the inverse of Y is Y −1(y) =

√
y. The

derivative of Y is Y 0(x) = 2x. From Theorem 2.6.2,

fY (y) = fX(
√
y)/|2√y| = y−1/2 sin(y1/2)/4

for y > 1 and fY (y) = 0 otherwise.

2.6.12 Since Y (x) = x1/3 is increasing, Y is also 1�1. The inverse if Y −1(y) = y3

and the derivative is Y 0−2/3/3. By applying Theorem 2.6.2, we get

fY (y) = fX(y
3)/|(y3)−2/3| = y−6/y−2 = y−4.

2.6.13 Note fX(x) = (2π)−1/2 exp(−x2/2). The transformation x 7→ x3 is
monotone increasing. The inverse of Y is Y −1(y) = y1/3 and the derivative is
Y 02. By Theorem 2.6.3, we have

fY (y) = fX(y
1/3)/|3(y1/3)2| = (2π)−1/2(3|y|2/3)−1 exp(−|y|2/3/2).

Problems
2.6.14
(a) First, let h(x) = x3. Then Y = h(X) and h is strictly increasing and
h−1(y) = y1/3. Hence, fY (y) = fX(h−1(y)) / |h0(h−1(y))| = fX(y1/3) / 3(y1/3)2,
which equals (1/5)/3y2/3 = y−2/3/15 for 2 < y1/3 < 7, i.e., 8 < y < 343,
otherwise equals 0. Second, let h(y) = y1/2. Then Z = h(Y ) and h is strictly
increasing over the region {8 < y < 343}, where fY (y) > 0. Also, h−1(z) = z2
on this region. Hence, for

√
8 < z <

√
343, fZ(z) = fY (h−1(z)) / |h0(h−1(z))| =

fY (z2) / (1/2)(z2)−1/2 = [(z2)−2/3/15] / (1/2)(z2)−1/2 = 2z−1/3/15, with fZ(z)
= 0 otherwise.
(b) Let h(x) = x3/2. Then Z = h(X) and h is strictly increasing over the region
{2 < x < 7}, where fX(x) > 0. Hence, fZ(z) = fX(h

−1(y)) / |h0(h−1(y))| =
fX(z

2/3) / (3/2)(z2/3)1/2, which equals (1/5)/(3/2)z1/3 = 2z−1/3/15 for 2 <
z2/3 < 7, i.e., 23/2 < z < 73/2, otherwise equals 0.

2.6.15 Here h is strictly decreasing on x ≤ c, and is strictly increasing on
x ≥ c. Hence, we can apply Theorem 2.6.2 if c ≤ L < R and Theorem 2.6.3 if
L < R ≤ c.
2.6.16 Let h(x) = cx + d. Then Y = h(X) and h is strictly decreasing, so
fY (y) = fX(h

−1(y)) / |h0(h−1(y))| = 1
σ
√
2π
e−[((y−d)/c)−µ]

2/2σ2/ |c|
= 1

|c|σ√2πe
−[y−d−cµ]2/2c2σ2 . Hence, Y ∼ Normal(cµ+ d, c2σ2).
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2.6.17 The transformation y = h(x) = ex has h0(x) = ex and h−1(y) = ln y.
Therefore, Y has density

1√
2πτ

exp

Ã
−(ln y)

2

2τ2

!
e− ln y =

1√
2πτ

exp

Ã
−(ln y)

2

2τ2

!
1

y

for y > 0.

2.6.18 The transformation y = h(x) = xβ has h0(x) = βxβ−1 and h−1(y) =
y1/β. Therefore, Y has density (α/β)

¡
y1/β

¢α−1
e−(y

1/β)α/
¡
y1/β

¢β−1
= (α/β)y(α/β)−1e−y

α/β

for y > 0, so Y ∼ Weibull(α/β) .
2.6.19 The transformation y = h(x) = (1 + x)

β − 1 has h0(x) = β (1 + x)β−1
and h−1(y) = (1 + y)1/β − 1. Therefore, Y has density

α

β

³
1 + (1 + y)1/β − 1

´−α−1
/
³
1 + (1 + y)1/β − 1

´β−1
=
α

β
(1 + y)−(α/β)−1

for y > 0, so Y ∼ Pareto(α/β) .
2.6.20 The transformation y = h(x) = e−x has h0(x) = −e−x and h−1(y) =
− ln y. Therefore Y has density eln y exp

©−eln yª /eln y = e−y for y > 0 and so
Y ∼ Exponential(1) .
Challenges
2.6.21 We have that, for y > 0,

fY (y) =
d

dy
FY (y) =

d

dy
P (Y ≤ y) = d

dy
P (Y ≤ y) = d

dy
P (−√y ≤ X ≤ √y)

=
d

dy
(Φ (

√
y)−Φ (−√y)) = ϕ

¡√
y
¢

2
√
y
+
ϕ
¡−√y¢
2
√
y

=
ϕ
¡√
y
¢

2
√
y
+
ϕ
¡√
y
¢

2
√
y

=
ϕ
¡√
y
¢

√
y

=
exp {−y/2}√

2π
√
y

for y > 0.

2.7 Joint Distributions

Exercises
2.7.1

FX,Y (x, y) =

 0 min[x, (y + 2)/4] < 0
1/3 0 ≤ min[x, (y + 2)/4] < 1
1 min[x, (y + 2)/4] ≥ 1
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2.7.2

FX,Y (x, y) =


0 x < 0 and y < 0
0 x < 1 and y < −7
1/4 0 ≤ x < 1 and y ≥ 0
3/4 x ≥ 1 and − 7 ≤ y < 0
1 x ≥ 1 and y ≥ 0

2.7.3
(a) pX(2) = pX(3) = pX(−3) = pX(−2) = pX(17) = 1/5, with pX(x) = 0
otherwise.
(b) pY (3) = pY (2) = pY (−2) = pY (−3) = pY (19) = 1/5, with pY (y) = 0
otherwise.
(c) P (Y > X) = pX,Y (2, 3) + pX,Y (−3,−2) + pX,Y (17, 19) = 3/5.
(d) P (Y = X) = 0 since this never occurs.
(e) P (XY < 0) = 0 since this never occurs.

2.7.4
(a) C = 4, and P (X ≤ 0.8, Y ≤ 0.6) = 0.0863.
(b) C = 18/5 and P (X ≤ 0.8, Y ≤ 0.6) = 0.209.
(c) C = 9/1024003600 and P (X ≤ 0.8, Y ≤ 0.6) = 5.09× 10−10.
(d) C = 9/1024000000 and P (X ≤ 0.8, Y ≤ 0.6) = 2.99× 10−12.
2.7.5 Since {X ≤ x, Y ≤ y} ⊆ {X ≤ x} and {X ≤ x, Y ≤ y} ⊆ {Y ≤ y},
then P (X ≤ x, Y ≤ y) ≤ P (X ≤ x) and P (X ≤ x, Y ≤ y) ≤ P (Y ≤ y), i.e.,
FX,Y (x, y) ≤ FX(x) and FX,Y (x, y) ≤ FY (y), so FX,Y (x, y) ≤ min

¡
FX(x), FY (y)

¢
.

2.7.6
(a) The joint cdf is deÞned by FX,Y (x, y) = P (X ≤ x, Y ≤ y). Since both
variables are discrete, the value of FX,Y is constant on some rectangles. For
example, for x < 3 and y ∈ R1,

FX,Y (x, y) = P (X ≤ x, Y ≤ y) ≤ P (X ≤ x) ≤ P (X < 3) = 0.

The rectangles having the same FX,Y value are (−∞, 3), [3, 5), and [5,∞) for X
and (−∞, 1), [1, 2), [2, 4), [4, 7), and [7,∞). Hence, the joint cdf is summarized
in the following table.

FX,Y (x, y) y < 1 1 ≤ y < 2 2 ≤ y < 4 4 ≤ y < 7 y ≥ 7
x < 3 0 0 0 0 0

3 ≤ x < 5 0 1/8 1/4 3/8 1/2
x ≥ 5 0 1/4 1/2 3/4 1

(b) Recall pX,Y (x, y) = P (X = x, Y = y). Hence, pX,Y (x, y) = 1/8 if x = 3, 5
and y = 1, 2, 4, 7, otherwise pX,Y (x, y) = 0.
(c) Since pX,Y (x, y) > 0 holds only for x = 3 or x = 5 among x ∈ R1, we have
pX(x) > 0 only for x = 3 or x = 5. By deÞnition, pX(3) =

P
y∈R1 P (X =

3, Y = y) = P (X = 3, Y = 1) + P (X = 3, Y = 2) + P (X = 3, Y = 4) + P (X =
3, Y = 7) = 1/2. Similarly, pX(5) = 1/2. In sum, pX(x) = 1/2 if x = 3 or
x = 5, otherwise pX(x) = 0.
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(d) Similar to (c), pY (y) > 0 only for y = 1, 2, 4, and 7. Note pY (1) = P (X =
3, Y = 1)+P (X = 5, Y = 1) = 1/4. Similar computations give pY (y) = 1/4 for
y = 1, 2, 4, and 7, otherwise pY (y) = 0.
(e) By deÞnition, FX(x) = P (X ≤ x) =Pz≤x pX(z). Since pX(x) > 0 only for
x = 3 and x = 5, FX(x) = 0 for x < 3, FX(x) = pX(3) = 1/2 for 3 ≤ x < 5,
and FX(x) = pX(3) + pX(5) = 1 for x ≥ 5.
(f) Similar to (e), the range of y is separated into (−∞, 1), [1, 2), [2, 4), [4, 7)
and [7,∞). Hence, we have FY (y) = 0 for y < 1, FY (y) = 1/4 for 1 ≤ y < 2,
FY (y) = 1/2 for 2 ≤ y < 4, FY (y) = 3/4 for 4 ≤ y < 7, and FY (y) = 1 for
y ≥ 7.
2.7.7
(a) By integrating y out, the marginal density fX(x) is given by

fX(x) =

Z
R1
fX,Y (x, y)dy = c

Z 2

0

sin(xy)dy = c
£− cos(xy)/x¤y=2

y=0

= c(1− cos(2x))/x
for 0 < x < 1 and otherwise fX(x) = 0.
(b) Now integrating x out is required.

fY (y) = c

Z 1

0

sin(xy)dx = c
£− cos(xy)/y¤x=1

x=0
= c(1− cos(y))/y

for 0 < y < 2 and otherwise fY (y) = 0.

2.7.8
(a) The marginal density fX(x) is given by

fX(x) =

Z
R1

fX,Y (x, y)dy =

Z 4

0

x2 + y

36
dy =

x2y + y2/2

36

¯̄̄y=4
y=0

=
4x2 + 8

36
=
x2 + 2

9

for −2 < x < 1, otherwise fX(x) = 0.
(b) The marginal density fY (y) is given by

fY (y) =

Z
R1
fX,Y (x, y)dx =

Z 1

−2

x2 + y

36
dx =

x3/3 + xy

36

¯̄̄x=1
x=−2

=
3+ 3y

36
=
1 + y

12

for 0 < y < 4, otherwise fY (y) = 0.
(c) By integrating fY (y), we get

P (Y < 1) =

Z 1

0

1 + y

12
dy =

y + y2/2

12

¯̄̄y=1
y=0

=
1

8
.

(d) By the deÞnition of cdf, we get FX,Y (x, y) = P (X ≤ x, Y ≤ y) = 0 if x ≤ −2
or y ≤ 0. If x ≥ 1 and y ≥ 4, then FX,Y (x, y) = 1. If −2 < x < 1 and 0 < y < 4,
then

FX,Y (x, y) =

Z x

−2

Z y

0

u2 + v

36
dvdu =

Z x

−2

u2v + v2/2

36

¯̄̄v=y
v=0
du =

Z x

−2

2u2y + y2

72
du

=
2yu3/3 + y2u

72

¯̄̄u=x
u=−2

=
2y(x3 + 8) + 3y2(x+ 2)

216
.
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If −2 < x < 1 and y ≥ 4, then

FX,Y (x, y) =

Z x

−2

Z y

0

fX,Y (u, v)dvdu =

Z x

−2
fX(u)du =

Z x

−2

u2 + 2

4
du

=
u3/3 + 2u

4

¯̄̄u=x
u=−2

=
(x+ 2)(x2 − 2x+ 10)

12
.

Finally, if x ≥ 1 and 0 < y < 4, then

FX,Y (x, y) =

Z y

0

Z x

−2
fX,Y (u, v)dudv =

Z y

0

fY (v)dv =

Z y

0

1 + v

12
dv

=
v + v2/2

12

¯̄̄v=y
v=0

=
2y + y2

24
.

In sum, the joint cdf is

FX,Y (x, y) =


0 if x ≤ −2 or y ≤ 0,
1 if x ≥ 1, y ≥ 4,

(x+ 2)(3y2 + 2y(x2 − 2x+ 4))/216 if − 2 < x < 1, 0 < y < 4,
(x+ 2)(x2 − 2x+ 10)/12 if − 2 < x < 1, y ≥ 4,

y(2 + y)/24 if x ≥ 1, 0 < y < 4.
2.7.9
(a) It is not hard to see that fX(x) = 0 if x 6∈ (0, 2). For x ∈ (0, 2),

fX(x) =

Z
R1
fX,Y (x, y)dy =

Z 2

x

x2 + y

4
dy =

x2y + y2/2

4

¯̄̄y=2
y=x

=
4+ 3x2 − 2x3

8
.

(b) From the range of fX,Y , fY (y) = 0 if y 6∈ (0, 2). For y ∈ (0, 2),

fY (y) =

Z
R1
fX,Y (x, y)dx =

Z y

0

x2 + y

4
dx =

x3/3 + xy

4

¯̄̄x=y
x=0

=
y3 + 3y2

12
.

(c) By integrating fY (y), we get

P (Y < 1) =

Z 1

−∞
fY (y)dy =

Z 1

0

y3 + 3y2

12
dy =

y4/4 + y3

12

¯̄̄y=1
y=0

=
5

48
.

2.7.10 Note that fX,Y (x, y) = (2πσ1σ2)−1(1 − ρ2)−1/2 exp
h
− 1

2(1−ρ2)
¡
(x −

µ1)
2/σ21+(y−µ2)2/σ22−2ρ(x−µ1)(y−µ2)/(σ1σ2)

¢i
. (a) Let z1 = (x−µ1)/σ1

and z2 = (y − µ2)/σ2. Since z21 + z22 − 2ρz1z2 = (1− ρ)2z21 + (z2 − ρz1)2,

fX(x) =

Z ∞

−∞

exp(−(x− µ1)2/(2σ21))
(2πσ21)

1/2
·
exp(− (y−µ2−ρ(x−µ1)σ2/σ1)2

2σ22(1−ρ2) )

(2πσ22(1− ρ2))1/2
dy

=
exp(−(x− µ1)2/(2σ21))

(2πσ21)
1/2

·
Z ∞

−∞

exp(−u2/2)
(2π)1/2

du

=
exp(−(x− µ1)2/(2σ21))

(2πσ21)
1/2

.
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Hence, X ∼ N(µ1, σ21). In the question, µ1 = 3, σ1 = 2. Thus, X ∼ N(3, 4).
(b) By changing X and Y , we have Y ∼ N(µ2, σ

2
2). Since µ2 = 5, σ2 = 4,

Y ∼ N(5, 16).
(c) We know that X and Y are independent if and only if fX(x)fY (y) =
fX,Y (x, y).

fX(x)fY (y) =
1

2πσ1σ2
exp

³
− 1
2

³x− µ1
σ1

´2
− 1
2

³y − µ2
σ2

´2´
.

Hence, fX(x)fY (y) = fX,Y (x, y) if and only if ρ = 0. Thus, X and Y are
independent if and only if ρ = 0. In the question ρ = 1/2 is given. Therefore,
X and Y are not independent.

Problems
2.7.11 FX,Y (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x, X3 ≤ y) = P (X ≤
x, X ≤ y1/3) = P (X ≤ min(x, y1/3)), which equals 1 − e−λ min(x, y1/3) for
x, y > 0, otherwise equals 0.

2.7.12 We know FX,Y (x, y) ≤ FX(x) and that limx→−∞ FX(x) = 0. Hence,
limx→−∞ FX,Y (x, y) ≤ limx→−∞ FX(x) = 0.

2.7.13 Let z = (x − µ1)/σ1 and w = [(y − µ2)/σ2] − [ρ(x − µ1)/σ1]. Then
fX,Y (x, y) = (2πσ1σ2

p
1− ρ2)−1 exp©−[2(1 − ρ2)]−1[(1 − ρ2)z2 + w2]ª. Also,

dy = σ2 dw. Hence,Z ∞

−∞
fX,Y (x, y) dy

= (2πσ1σ2
p
1− ρ2)−1

Z ∞

−∞
exp

©−[2(1− ρ2)]−1[(1− ρ2)z2 +w2]ªσ2 dw
= (2πσ1σ2

p
1− ρ2)−1 exp©−[2(1− ρ2)]−1(1− ρ2)z2ª[p2π(1− ρ2)σ2]

=
1

σ1
√
2π
e−z

2/2 =
1

σ1
√
2π
e−(x−µ1)

2/2σ1 .

2.7.14
(a)

R 1
0

R 1
0 Cye

−xy dxdy =
R 1
0 −Ce−xy|

1
0 dy = C

R 1
0 (1− e−y) dy

= C
³
1 + e−y|10

´
= Ce−1 and so C = e

(b) e
R 1
1/2

R 1
1/2
ye−xy dx dy = e

R 1
1/2

e−xy|11/2 dy = e
R 1
1/2

¡
e−y/2 − e−y¢ dy

= e
³
−2e−y/2¯̄1

1/2
+ e−y|11/2

´
= e

¡
2e−1/4 − 2e−1/2 + e−1 − e−1/2¢ = 0.28784

(c) Using integration by parts with u = y, du = 1, dv = e−xy+1, and
v = −e−xy+1/x, we have that fX (x) =

R 1
0
ye−xy+1 dy = −y

xe
−xy+1¯̄1

0
+

1
x

R 1
0
e−xy+1 dy = − e−x+1

x − 1
x2 e

−xy+1¯̄1
0
= e

³
1
x2 − e−x

x − e−x
x2

´
for 0 < x < 1.

Also, we have that fY (y) =
R 1
0
ye−xy+1 dx = −e−xy+1¯̄1

0
= e (1− e−y) for

0 < y < 1.
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2.7.15
(a)

R 1
0

R y
0 Cye

−xy dxdy =
R 1
0 −Ce−xy|

y
0 dy = C

R 1
0

³
1− e−y2

´
dy

= C
¡
1 +

√
π
¡
Φ (0)−Φ ¡√2¢¢¢ and so C = ¡1 +√π ¡Φ (0)−Φ ¡√2¢¢¢−1

(b)

C

Z 1

1/2

Z y

1/2

ye−xy dx dy = C
Z 1

1/2

e−xy
¯̄y
1/2

dy = C

Z 1

1/2

³
e−y/2 − e−y2

´
dy

= C

µ
−2e−y/2

¯̄̄1
1/2
+
√
π
³
Φ
³√
2/2
´
−Φ

³√
2
´´¶

= C
³
2e−1/4 − 2e−1/2 +√π

³
Φ
³√
2/2
´
−Φ

³√
2
´´´

(c) Using integration by parts with u = y, du = 1, dv = e−xy+1, v = −e−xy+1/x
we have that

fX (x) =

Z 1

x

ye−xy+1 dy = −y
x
e−xy+1

¯̄̄1
x
+
1

x

Z 1

x

e−xy+1 dy

= e−x
2+1 − e

−x+1

x
− 1

x2
e−xy+1

¯̄1
x
= e

Ã
e−x

2 − e
−x

x
+
e−x

2

x2
− e

−x

x2

!

for 0 < x < 1. Also, we have that fY (y) =
R y
0
ye−xy+1 dx = −e−xy+1¯̄y

0
=

e
³
1− e−y2

´
for 0 < y < 1.

2.7.16
(a)
R∞
0

R y
0 Ce

−(x+y) dxdy = C
R∞
0 −e−(x+y)¯̄y

0
dx dy = C

R∞
0 e−y (1− e−y) dy =

C
¡
1− R∞

0
e−2y dy

¢
= C (1− 1/2) = C/2, so C = 2.

(b) We have that fX (x) = 2
R∞
x e−(x+y) dy = 2e−x

R∞
x e−y dy = 2e−2xso X ∼

Exponential(2) and fY (y) = 2
R y
0
e−(x+y) dx = 2e−y

R y
0
e−x dx = 2e−y (1− e−y)

for y > 0.

2.7.17
(a) We need to calculate

R 1
0

R 1−x2
0 xα1−11 xα2−12 (1− x1 − x2)α3−1 dx1 dx2

=
R 1
0
xα2−12 (1− x2)α1+α3−2

µR 1−x2
0

³
x1
1−x2

´α1−1 ³
1− x1

1−x2

´α3−1
dx1

¶
dx2 and,

making the transformation u = x1/ (1− x2) , du = (1− x2)−1 dx1, we have that
this integral equalsZ 1

0

xα2−12 (1− x2)α1+α3−1
µZ 1

0

uα1−1 (1− u)α3−1 du
¶
dx2

=
Γ (α1)Γ (α3)

Γ (α1 + α3)

Z 1

0

xα2−12 (1− x2)α1+α3−1 dx2

=
Γ (α1)Γ (α3)

Γ (α1 + α3)

Γ (α2)Γ (α1 + α3)

Γ (α1 + α2 + α3)
=
Γ (α1)Γ (α2)Γ (α3)

Γ (α1 + α2 + α3)

by two applications of (2.4.10). This establishes that fX1,X2 is a density.



38 CHAPTER 2. RANDOM VARIABLES AND DISTRIBUTIONS

(b) We have that

fX1
(x1)

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)

Z 1−x1

0

xα1−11 xα2−12 (1− x1 − x2)α3−1 dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
xα1−11 (1− x1)α2+α3−2

×
Z 1−x1

0

µ
x2

1− x1

¶α2−1µ
1− x2

1− x1

¶α3−1
dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
xα1−11 (1− x1)α2+α3−1 ×

Z 1−x1

02

uα2−1 (1− u)α3−1 du

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
xα1−11 (1− x1)α2+α3−1 Γ (α2)Γ (α3)

Γ (α2 + α3)

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2 + α3)
xα1−11 (1− x1)α2+α3−1 ,

so X1 ∼ Beta(α1, α2 + α3) . Similarly, X2 ∼ Beta(α2, α1 + α3) .
2.7.18 We have thatZ 1

0

. . .

Z 1−x3−···−xk

0

Z 1−x2−···−xk

0

xα1−11 xα2−12 · · ·xαk−1k

× (1− x1 − x2 − · · ·− xk)αk+1−1 dx1 dx2 · · · dxk
=

Z 1

0

. . .

Z 1−x3−···−xk

0

xα2−12 · · ·xαk−1k (1− x2 − · · ·− xk)α1+αk+1−2×ÃZ 1−x2−···−xk

0

µ
x1

1− x2 − · · ·− xk

¶α1−1µ
1− x1

1− x2 − · · ·− xk

¶αk+1−1
dx1

!
× dx2 · · · dxk
=

Z 1

0

. . .

Z 1−x3−···−xk

0

xα2−12 · · ·xαk−1k (1− x2 − · · ·− xk)α1+αk+1−1

×
µZ 1

0

uα1−1 (1− u)αk+1−1 du
¶
dx2 · · · dxk

and this in turn equals

Γ (α1)Γ (αk+1)

Γ (α1 + αk+1)

Z 1

0

. . .

Z 1−x3−···−xk

0

xα2−12 · · ·xαk−1k

× (1− x2 − · · ·− xk)α1+αk+1−1 dx2 · · · dxk
= . . . . =

Γ (α1)Γ (αk+1)

Γ (α1 + αk+1)

Γ (α2)Γ (α1 + αk+1)

Γ (α1 + α2 + αk+1)
· · · Γ (αk)Γ (α1 + · · ·+ αk)

Γ (α1 + · · ·+ αk+1)
=
Γ (α1)Γ (α2) · · ·Γ (αk+1)
Γ (α1 + · · ·+ αk+1)
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and this establishes that fX1,...,Xk
is a density.

Challenges
2.7.19 For example, take X and Y to be i.i.d. ∼ Normal(0, 1), with h(x) = −x.
Then FX,Y (x, h(x)) = P (X ≤ x, Y ≤ −x) ≤ P (Y ≤ −x) = Φ(−x) → 0 as
x→∞.

2.8 Conditioning and Independence

Exercises
2.8.1
(a) pX(−2) = pX,Y (−2, 3) + pX,Y (−2, 5) = 1/6 + 1/12 = 1/4. pX(9) =
pX,Y (9, 3)+pX,Y (9, 5) = 1/6+1/12 = 1/4. pX(13) = pX,Y (13, 3)+pX,Y (13, 5) =
1/3 + 1/6 = 1/2. Otherwise, pX(x) = 0.
(b) pY (3) = pX,Y (−2, 3) + pX,Y (9, 3) + pX,Y (13, 3) = 1/6 + 1/6 + 1/3 = 2/3.
pY (5) = pX,Y (−2, 5) + pX,Y (9, 5) + pX,Y (13, 5) = 1/12 + 1/12 + 1/6 = 1/3.
Otherwise, pY (y) = 0.
(c) Yes, since pX(x) pY (y) = pX,Y (x, y) for all x and y.

2.8.2
(a) pX(−2) = pX,Y (−2, 3) + pX,Y (−2, 5) = 1/16 + 1/4 = 5/16. pX(9) =
pX,Y (9, 3)+pX,Y (9, 5) = 1/2+1/16 = 9/16. pX(13) = pX,Y (13, 3)+pX,Y (13, 5) =
1/16 + 1/16 = 1/8. Otherwise, pX(x) = 0.
(b) pY (3) = pX,Y (−2, 3) + pX,Y (9, 3) + pX,Y (13, 3) = 1/16 + 1/2 + 1/16 = 5/8.
pY (5) = pX,Y (−2, 5) + pX,Y (9, 5) + pX,Y (13, 5) = 1/4 + 1/16 + 1/16 = 3/8.
Otherwise, pY (y) = 0.
(c) No, since, e.g., pX(−2) pY (3) 6= pX,Y (−2, 3).
2.8.3

(a) For 0 ≤ x ≤ 1, fX(x) =
R 1
0
(12/49)(2+x+xy+4y2) dy = (18x/49)+(40/49),

otherwise fX(x) = 0.
(b) For 0 ≤ y ≤ 1, fY (y) =

R 1
0 (12/49)(2+x+xy+4y

2) dx = (48y2+6y+30)/49,
otherwise fY (y) = 0.
(c) No, since fX(x) fY (y) 6= fX,Y (x, y).
2.8.4
(a) For 0 ≤ x ≤ 1, fX(x) =

R 1
0
(2/5(2+e))(3+ex+3y+3yey+yex+yex+y) dy =

(3 + ex)/(2 + e), otherwise fX(x) = 0.
(b) For 0 ≤ y ≤ 1, fY (y) =

R 1
0 (2/5(2+e))(3+e

x+3y+3yey+yex+yex+y) dx =
2(1 + y + yey)/5, otherwise fY (y) = 0.
(c) Yes, since fX(x) fY (y) = fX,Y (x, y) for all x and y.

2.8.5
(a) P (Y = 4 |X = 9) = P (X = 9, Y = 4) /P (X = 9) = (1/9) / (3/9 + 2/9 +
1/9) = 1/6.
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(b) P (Y = −2 |X = 9) = P (X = 9, Y = −2) /P (X = 9) = (3/9) / (3/9+2/9+
1/9) = 1/2.
(c) P (Y = 0 |X = −4) = P (X = −4, Y = 0) /P (X = −4) = 0 / (1/9) = 0.
(d) P (Y = −2 |X = 5) = P (X = 5, Y = −2) /P (X = 5) = (2/9) / (2/9) = 1.
(e) P (X = 5 |Y = −2) = P (X = 5, Y = −2) /P (Y = −2) = (2/9) / (1/9 +
2/9 + 3/9) = 1/3.

2.8.6 P (Z = 0) = P (X = 0, Y = 0) = (1−p)p. For z, a positive integer, P (Z =
z) = P (X = 0, Y = z)+P (X = 1, Y = z−1) = (1−p)(1−p)zp+p(1−p)z−1p
= (1− p)z−1[(1− p)2p+ p2] = p(1− p)z−1[1− p+ p2].
2.8.7
(a) Recall C = 4. Hence, fX(x) =

R 1
0 (2x

2y + 4y5) dy = x2 + 2/3 and fY (y) =R 1
0
(2x2y+4y5) dx = 4y5+2y/3. Then for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, fY |X(y |x) =

fX,Y (x, y) / fX(x) = (2x2y+4y5) / (x2+2/3) (otherwise fY |X(y |x) = 0). Thus,
X and Y are not independent since fY |X(y |x) 6= fY (y).
(b) Here fX(x) =

R 1
0
C(xy+ x5y5) dy = C(x5/6+ x/2) and fY (y) =

R 1
0
C(xy+

x5y5) dx = C(y5/6 + y/2). Then for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, fY |X(y |x) =
fX,Y (x, y) / fX(x) = C(xy + x5y5) /C(x5/6 + x/2) = (xy + x5y5) / (x5/6 +
x/2) (otherwise fY |X(y |x) = 0). Thus, X and Y are not independent since
fY |X(y |x) 6= fY (y).
(c) Here fX(x) =

R 10
0
C(xy + x5y5) dy = C(50000x5/3 + 50x) and fY (y) =R 4

0 C(xy + x
5y5) dx = C(2048y5/3 + 8y). Then for 0 ≤ x ≤ 4 and 0 ≤ y ≤

10, fY |X(y |x) = fX,Y (x, y) / fX(x) = C(xy + x5y5) /C(50000x5/3 + 50x) =
(xy + x5y5) / (50000x5/3 + 50x) (otherwise fY |X(y |x) = 0). Thus, X and Y
are not independent since fY |X(y |x) 6= fY (y).
(d) Here fX(x) =

R 10
0
C(x5y5) dy = C(50000x5/3) and fY (y) =

R 4
0
C(xy +

x5y5) dx = C(2048y5/3). Then for 0 ≤ x ≤ 4 and 0 ≤ y ≤ 10, fY |X(y |x) =
fX,Y (x, y) / fX(x) = C(x

5y5) /C(50000x5/3) = 3y5 / 50000 (otherwise fY |X(y |x)
= 0). Here X and Y are independent since fY |X(y |x) = fY (y) for all x and y.
2.8.8 We have that e−3x = P (Y > 5 |X = x) =

R∞
5
fY |X(y |x) dy. Hence,

P (Y > 5) = P (Y > 5, X > 0) =
R∞
0

R∞
5 fX(x) fY |X(y |x) dy dx

=
R∞
0 2e−2x e−3x dx = −(2/5)e−5x ¯̄x=∞

x=0
= 2/5.

2.8.9 For example, suppose P (X = 1, Y = 1) = P (X = 1, Y = 2) = P (X =
2, Y = 1) = P (X = 3, Y = 3) = 1/4. Then P (X = 1) = P (Y = 1) = 1/2,
so P (X = 1)P (Y = 1) = 1/4 = P (X = 1, Y = 1). On the other hand,
P (X = 3)P (Y = 3) = (1/4)(1/4) 6= 1/4 = P (X = 3, Y = 3), so X and Y are
not independent.

2.8.10 Here P (X = 1, Y = 0) = P (X = 1) − P (X = 1, Y = 1) = P (X =
1) − P (X = 1)P (Y = 1) = P (X = 1)(1 − P (Y = 1)) = P (X = 1)P (Y = 0).
Similarly, P (X = 0, Y = 1) = P (Y = 1)−P (X = 1, Y = 1) = P (Y = 1)P (X =
0). Finally, P (X = 0, Y = 0) = P (X = 0) − P (X = 0, Y = 1) = P (X =
0) − P (X = 0)P (Y = 1) = P (X = 0)(1 − P (Y = 1)) = P (X = 0)P (Y = 0).
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Hence, P (X = x, Y = y) = P (X = x)P (Y = y) for all x and y, so X and Y
are independent.

2.8.11 If X = C is constant, then P (X ∈ B1) = IB1(C) and P (X ∈ B1, Y ∈
B2) = IB1

(C)P (Y ∈ B2). Hence, P (X ∈ B1, Y ∈ B2) = P (X ∈ B1)P (Y ∈
B2) = IB1(C)P (Y ∈ B2) for any subsets B1 and B2, so X and Y are indepen-
dent.

2.8.12 Since X and Y are independent, P (X = 1 |Y = 5) = P (X = 1) = 1/3.

2.8.13 In Exercise 2.7.6, we show that pX(x) = 1/2 for x = 3 or x = 5 and
pX(x) = 0 otherwise. Also pY (y) = 1/4 for y = 1, 2, 4, 7 and otherwise pY (y) =
0. (a) By deÞnition, pY |X(y|x) = pX,Y (x, y)/pX(x). Hence, we have the next
conditional probability table.

pY |X(y|x) y = 1 y = 2 y = 4 y = 7 others
x = 3 1/4 1/4 1/4 1/4 0
x = 5 1/4 1/4 1/4 1/4 0

(b) By deÞnition, pX|Y (x|y) = pX,Y (x, y)/pY (y). pX|Y (3|1) = pX,Y (3, 1)/pY (1)
= 1/8/(1/4) = 1/2. Similar calculation gives the next conditional probability
table.

pX|Y (x|y) x = 3 x = 5 others
y = 1 1/2 1/2 0
y = 2 1/2 1/2 0
y = 4 1/2 1/2 0
y = 7 1/2 1/2 0

(c) Note that pY |X(y|x) = 1/4 = pY (y) for all x = 3, 5 and y = 1, 2, 4, 7. By
Theorem 2.8.4 (a), X and Y are independent.

2.8.14 In Exercise 2.7.8, we already showed that fX(x) = (x2 + 2)/4 for −2 <
x < 1 and otherwise fX(x) = 0. Also we showed that fY (y) = (1 + y)/12 for
0 < y < 4, otherwise fY (y) = 0.
(a) Since fX(x) > 0 for −2 < x < 1, the conditional density is fY |X(y|x) = (x2+
y)/36/[(x2+2)/9] = (x2+ y)/(4x2+8) for 0 < y < 4, otherwise fY |X(y|x) = 0.
(b) Since fY (y) > 0 for 0 < y < 4, the conditional density is fX|Y (x|y) = (x2+
y)/36/[(1+y)/12] = (x2+y)/(3y+3) for −2 < x < 1, otherwise fX|Y (x|y) = 0.
(c) We compare fY |X(y|x) and fY (y). Note that fY |X(y|x) = (x2 + y)/(4x2 +
8) 6= (1 + y)/12 = fY (y) for −2 < x < 1, 0 < y < 4 except x = −1, y = 2.
Hence, X and Y are not independent.

2.8.15 In Exercise 2.7.9, we already showed that fX(x) = (4+3x2− 2x3)/8 for
0 < x < 2 and otherwise fX(x) = 0 as well as fY (y) = (y3+3y2)/12 for 0 < y <
2, otherwise fY (y) = 0. (a) Since fX(x) > 0 only for 0 < x < 2, the conditional
density is fY |X(y|x) = (x2+y)/4/[(4+3x2−2x3)/8] = 2(x2+y)/(4+3x2−2x3)
for x < y < 2, otherwise fY |X(y|x) = 0.
(b) Since fY (y) > 0 for 0 < y < 2, the conditional density is fX|Y (x|y) =
(x2 + y)/4/[(y3 + 3y2)/12] = 3(x2 + y)/(y3 + 3y2) for 0 < x < y, otherwise
fX|Y (x|y) = 0.
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(c) We compare fY |X(y|x) and fY (y). Note that fY |X(y|x) = 2(x2+y)/(4+3x2−
2x3) = (y3 + 3y2)/12 = fY (y) holds only on a curve amongst 0 < x < y < 2.
Hence, X and Y are not independent.

2.8.16 The observed data 12, 8, 9, 9, 7, 11 is sorted as 7, 8, 9, 9, 11, 12. Hence,
X(1) = 7, X(2) = 8, X(3) = 9, X(4) = 9, X(5) = 11, and X(6) = 12.

Problems
2.8.17 We compute that fX(x) = C1(x2+C2/6) and fY (y) = C1(C2y5+2y/3),
with

R 1
0

R 1
0 fX,Y (x, y) dxdy = C1(C2/6 + 1/3). So, we require that C1(C2/6 +

1/3) = 1 and that C1(x2 + C2/6)C1(C2y5 + 2y/3) = C1(2x
2y + C2y

5) for
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The second condition requires that C2 = 0, while the
Þrst requires that C1 = 3, which gives the solution.

2.8.18 Let C1 =
P
x g(x), and C2 =

P
y h(y). then

P
x,y pX,Y (x, y) = C1C2 =

1. Also, pX(x) =
P
y pX,Y (x, y) = g(x)

P
y h(y) = g(x)C2 and pY (y) =P

x pX,Y (x, y) = h(y)
P
x g(x) = h(y)C1. Hence, pX(x)pY (y) = g(x)C2h(y)C1 =

(C1C2)g(x)h(y) = g(x)h(y) = pX,Y (x, y), so X and Y are independent.

2.8.19 Let C1 =
R∞
−∞ g(x), and C2 =

R∞
−∞ h(y). Then

R∞
−∞

R∞
−∞ fX,Y (x, y) =

C1C2 = 1. Also, fX(x) =
R∞
−∞ fX,Y (x, y) dy = g(x)

R∞
−∞ h(y) dy = g(x)C2 and

fY (y) =
R∞
−∞ fX,Y (x, y) dx = h(y)

R∞
−∞ g(x) dx = h(y)C1. Hence, fX(x)fY (y) =

g(x)C2h(y)C1 = (C1C2)g(x)h(y) = g(x)h(y) = fX,Y (x, y), so X and Y are in-
dependent.

2.8.20 If X and Y were independent, then we would have P (Y = 1) = P (Y =
1 |X = 1) = 3/4, and P (Y = 2) = P (Y = 2 |X = 2) = 3/4. This is impossible
since we must always have P (Y = 1) + P (Y = 2) ≤ 1.
2.8.21 We have from Problem 2.7.13 that fX(x) =

¡
σ1
√
2π
¢−1

e−(x−µ1)
2/2σ1

and, similarly, fY (y) =
¡
σ2
√
2π
¢−1

e−(y−µ2)
2/2σ2 . Multiplying these together,

we see that they are equal to the expression for fX,Y (x, y), except with ρ = 0.
Hence, fX(x)fY (y) = fX,Y (x, y) if and only if ρ = 0.

2.8.22 We have that P (X1 = f1) =
Pn−f1
f2=0

¡
n

f1 f2 n−f1−f2
¢
θf11 θ

f2
2 θ

n−f1−f2
3 =Pn−f1

f2=0

¡
n
f1

¢¡
n−f1
f2

¢
θf11 θ

f2
2 (1− θ1 − θ2)n−f1−f2 =

¡
n
f1

¢
θf11 (1− θ1)n−f1 ×Pn−f1

f2=0

¡
n−f1
f2

¢ ³
θ

1−θ1

´f2 ³
1− θ2

1−θ1

´n−f1−f2
=
¡
n
f1

¢
θf11 (1− θ1)n−f1 ×³

θ
1−θ1 + 1− θ2

1−θ1

´n−f1
=
¡
n
f1

¢
θf11 (1− θ1)n−f1 , so X1 ∼ Binomial(n, θ1) .

2.8.23 We have that

P (X2 = f2 |X1 = f1)

=

µ
n

f1 f2 n− f1 − f2

¶
θf11 θ

f2
2 θ

n−f1−f2
3 /

µ
n

f1

¶
θf11 (1− θ1)n−f1

=

µ
n− f1
f2

¶µ
θ2

1− θ1

¶f2 µ
1− θ2

1− θ1

¶n−f1−f2
,
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so X2 |X1 = f1 ∼ Binomial(n− f1, θ2/ (1− θ1)) .
2.8.24 The cdf of the Exponential(λ) is given by F (x) = 1 − e−λx for x > 0
and is 0 otherwise. Therefore for X > 0, P

¡
X(n) ≤ x

¢
=
¡
1− e−λx¢n, so

fX(n)
(x) = d

dx

¡
1− e−λx¢n = nλ

¡
1− e−λx¢n−1 . Also, P ¡X(1) ≤ x¢ = 1 −

e−nλx, so fX(1)
(x) = d

dx

¡
1− e−nλx¢ = nλ ¡1− e−λx¢n−1 .

2.8.25 We have that P
¡
X(i) ≤ x

¢
= P (at least i sample values are ≤ x) =Pn

j=i P (exactly j sample values are ≤ x) =
Pn
j=i

¡
n
j

¢
F j(x) (1− F (x))n−j .

2.8.26 From Problem 2.8.25 the distribution function of X(3), for 0 < x < 1, is
given by P

¡
X(3) ≤ x

¢
=
P5
j=3

¡
5
j

¢
xj (1− x)5−j = 10x3 (1− x)2+5x4 (1− x)+

x5 = 10x3 − 15x4 +6x5, so f(x) = 30x2− 60x3 + 30x4 = 30x2 (x− 1)2. This is
the Beta(3,3) density.

2.8.27 From (2.7.1) we have thatX = µ1+σ1Z1, Y = µ2+σ2(ρZ1+
p
1− ρ2Z2),

so specifying X = x implies that Z1 = (x− µ1) /σ1, so Y = µ2+ρσ2 (x− µ1)+
σ2
p
1− ρ2Z2, and this immediately implies the result.
By symmetry we can also write that the distribution of (X,Y ) is obtained

from Y = µ2 + σ2Z1, X = µ1 + σ1(ρZ1 +
p
1− ρ2Z2), so the conditional

distribution of X given Y = y is N
¡
µ1 + ρσ1 (y − µ2) ,

¡
1− ρ2¢σ21¢ .

Challenges
2.8.28
(a) The �only if� part follows from Theorem 2.8.4(a). For the �if� part, the
condition says that P (X = x, Y = y) = P (X = x)P (Y = y) whenever P (X =
x) > 0. But if P (X = x) = 0, then P (X = x, Y = y) ≤ P (X = x) = 0, so
P (X = x, Y = y) = P (X = x)P (Y = y) = 0. We conclude that P (X = x, Y =
y) = P (X = x)P (Y = y) for all x and y. Hence, X and Y are independent.
(b) Very similar to (a).

2.9 Multi-dimensional Change of Variable

Exercises
2.9.1 We compute that

∂h1
∂u1

= − cos(2πu2) / u1
p
2 log(1/u1),

∂h1
∂u2

= −2
√
2π sin(2πu2)

p
2 log(1/u1)

∂h2
∂u1

= − sin(2πu2) / u1
p
2 log(1/u1),

∂h2
∂u2

= −2
√
2π cos(2πu2)

p
2 log(1/u1).

Then J(u1, u2) = ∂h1
∂u1

∂h2
∂u2

− ∂h2
∂u1

∂h1
∂u2

= −2π/u1.
2.9.2
(a) fX,Y (x, y) = e−x for x ≥ 0 and 1 ≤ y ≤ 4, otherwise fX,Y (x, y) = 0.
(b) h(x, y) = (x+ y, x− y).
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(c) h−1(z,w) = ((z +w)/2, (z −w)/2).
(d) Here J(x, y) = ∂h1

∂x
∂h2
∂y − ∂h2

∂x
∂h1
∂y = |(1)(−1)− (1)(1)| = 2, so fZ,W (z,w) =

fX,Y (h−1(z,w)) / |J(h−1(z,w))| = fX,Y ((z+w)/2, (z−w)/2) / 2, which equals
e−(z+w)/2 for (z + w)/2 ≥ 0 and 1 ≤ (z − w)/2 ≤ 4, i.e., for z ≥ 1 and
max(−z, z − 8) ≤ w ≤ z − 2, otherwise fZ,W (z,w) = 0.
2.9.3
(b) h(x, y) = (x2 + y2, x2 − y2)
(c) h−1(z,w) = (

p
(z +w)/2,

p
(z −w)/2), at least for z+w ≥ 0 and z−w ≥ 0

(d) Here J(x, y) = ∂h1
∂x

∂h2
∂y − ∂h2

∂x
∂h1
∂y = |(2x)(−2y)−(2y)(2x)| = 4xy for x, y ≥ 0,

so

fZ,W (z,w) = fX,Y (h
−1(z,w)) / |J(h−1(z,w))|

= fX,Y (
p
(z +w)/2,

p
(z −w)/2) / 4

p
(z +w)/2

p
(z −w)/2

= fX,Y (
p
(z +w)/2,

p
(z −w)/2) / 2

p
z2 −w2

which equals e−
√
(z+w)/2 / 2

√
z2 −w2 forp(z +w)/2 ≥ 0 and 1 ≤p(z −w)/2

≤ 4, i.e., for z ≥ 4 and max(−z, z− 64) ≤ w ≤ z− 4, otherwise fZ,W (z,w) = 0.
2.9.4
(b) h(x, y) = (x+ 4, y − 3)
(c) h−1(z,w) = (z − 4, w + 3)
(d) Here J(x, y) = ∂h1

∂x
∂h2
∂y − ∂h2

∂x
∂h1
∂y = |(1)(1) − (0)(0)| = 1, so fZ,W (z,w) =

fX,Y (h
−1(z,w)) / |J(h−1(z,w))| = fX,Y (z− 4, w+3) / 1, which equals e−(z−4)

for z − 4 ≥ 0 and 1 ≤ w + 3 ≤ 4, i.e., for z ≥ 4 and −2 ≤ w ≤ 1, otherwise
fZ,W (z,w) = 0.

2.9.5
(b) h(x, y) = (y4, x4)
(c) h−1(z,w) = (w1/4, z1/4)
(d) Here J(x, y) = ∂h1

∂x
∂h2
∂y − ∂h2

∂x
∂h1
∂y = |(0)(0) − (4y3)(4x3)| = 4x3y3, at least

for x, y ≥ 0, so fZ,W (z,w) = fX,Y (h−1(z,w)) / |J(h−1(z,w))| =
fX,Y (w

1/4, z1/4) / 4w3/4z3/4, which equals e−w
1/4

for w1/4 ≥ 0 and 1 ≤ z1/4 ≤
4, i.e., for w ≥ 0 and 1 ≤ z ≤ 256, otherwise fZ,W (z,w) = 0.
2.9.6
(a) pZ,W (5, 5) = 1/7; pZ,W (8, 2) = 1/7; pZ,W (9, 1) = 1/7; pZ,W (8, 0) = 3/7;
pZ,W (12, 4) = 1/7; pZ,W (z,w) = 0 otherwise.
(b) pA,B(25, 10) = 1/7; pA,B(34,−17) = 1/7; pA,B(41,−38) = 1/7;
pA,B(64, 16) = 3/7; pA,B(80,−32) = 1/7; pA,B(a, b) = 0 otherwise.
(c) pZ,A(5, 25) = 1/7; pZ,A(8, 34) = 1/7; pZ,A(9, 41) = 1/7; pZ,A(8, 64) = 3/7;
pZ,A(12, 80) = 1/7; pZ,A(z, a) = 0 otherwise.
(d) pZ,B(5, 10) = 1/7; pZ,B(8,−17) = 1/7; pZ,B(9,−38) = 1/7; pZ,B(8, 16) =
3/7; pZ,B(12,−32) = 1/7; pZ,B(z, b) = 0 otherwise.
2.9.7 pZ(2) = (1/3)(1/6) = 1/18; pZ(4) = (1/2)(1/6) = 1/12; pZ(5) =
(1/3)(1/12) + (1/6)(1/6) = 1/18; pZ(7) = (1/2)(1/12) = 1/24; pZ(8) =
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(1/6)(1/12) = 1/72; pZ(9) = (1/3)(3/4) = 1/4; pZ(11) = (1/2)(3/4) = 3/8;
pZ(12) = (1/6)(3/4) = 1/8; pZ(z) = 0 otherwise.

2.9.8 If w is an integer between 2 and 4, then pW (w) = P (Y = 2, X = w−2) =
(1/6)(3/4)w−2(1/4) = (3/4)w−2/24. If w is an integer between 5 and 8, then
pW (w) = P (Y = 2, X = w−2)+P (Y = 5, X = w−5) = (1/6)(3/4)w−2(1/4)+
(1/12)(3/4)w−5(1/4). If w is an integer ≥ 9, then pW (w) = P (Y = 2, X =
w− 2)+P (Y = 5, X = w− 5)+P (Y = 9, X = w− 9) = (1/6)(3/4)w−2(1/4)+
(1/12)(3/4)w−5(1/4) + (3/4)(3/4)w−9(1/4). Otherwise, pW (w) = 0.

2.9.9 From the given probability measure, we have

(x, y) (1,1) (1,2) (1,3) (2,2) (2,3) otherwise
P (X = x, Y = y) 1/5 1/5 1/5 1/5 1/5 0

Z(x, y) 0 −3 −8 −2 −7 x− y2
W (x, y) 6 11 16 14 19 x2 + 5y

(a) From the above table we have

(z,w) (-8,16) (-7,19) (-3,11) (-2,14) (0,6) otherwise
P (Z = z,W = w) 1/5 1/5 1/5 1/5 1/5 0

(b) From the probability table we have pZ(z) = 1/5 for z = −8,−7,−3,−2, 0,
otherwise pZ(z) = 0. (c) From the probability table we have pW (w) = 1/5 for
w = 6, 11, 14, 16, 19, otherwise pW (w) = 0.

2.9.10
(a) From Theorem 2.8.3 (b), fX,Y (x, y) = fX(x)fY (y). Hence, fX,Y (x, y) =
5x3y4/128 for 0 < x < 2, 0 < y < 2, otherwise fX,Y (x, y) = 0.
(b) The density of fZ(z) can be obtained using Theorem 2.9.3 (b). Since X and
Y have positive density only when 0 < x, y < 2, new random variable Z has
positive density only when 0 < z = x + y < 4. Thus, fZ(z) = 0 for z 6∈ (0, 4).
For 0 < z < 4,

fZ(z) =

Z ∞

−∞
fX(x)fY (z − x)dx =

Z min(2,z)

max(0,z−2)
5x3(z − x)4/128dx.

For 0 < z < 2, the integration range is (max(0, z − 2),min(2, z)) = (0, z). Let
u = x/z. Then,

fZ(z) =
5

128

Z z

0

x3(z−x)4dx = 5z8

128

Z 1

0

u3(1−u)4du = 5z8

128
Beta(4, 5) =

z8

7168
.

For 2 ≤ z < 4, the integration range is (max(0, z − 2),min(2, z)) = (z − 2, 2).

fZ(z) =
5

128

Z 2

z−2
x7 − 4zx6 + 6z2x5 − 4z3x4 + z4x3dx

=
5

128

hx8
8
− 4zx

7

7
+ z2x6 − 4z

3x5

5
+
z4x4

4

ix=2
x=z−2

=
1

28

³
− 20z + 35z2 − 21z3 + 35

8
z4 − z

8

28

´
.
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Problems
2.9.11
(a) The transformation h : (x, y) 7→ (z,w) = (x − y, 4x + 3y) has inverse
h−1(z,w) = ((3z + w)/7, (w − 4z)/7). J(x, y) = ∂z

∂x
∂w
∂y − ∂z

∂y
∂w
∂x = 1 · 3− (−1) ·

4 = 7. From Theorem 2.9.2, fZ,W (z,w) = fX,Y (h−1(z,w))/|J(h−1(z,w))| =
(5/128)((3z + w)/7)3((w − 4z)/7)4/7 = 5(3z + w)3(w − 4z)4/(2778) for 0 <
3z +w < 14, 0 < w − 4z < 14, otherwise fZ,W (z,w) = 0.
(b) By integrating w out, we have

fZ(z) =

Z
R1

fZ,W (z,w)dw =

Z min(14−3z,14+4z)

max(−3z,4z)
5(3z +w)3(w − 4z)4/(2778)dw

For −2 < z < 0, the integration range is (max(−3z, 4z),min(14−3z, 14+4z)) =
(−3z, 14 + 4z). Hence,

fZ(z) =
5

2778

Z 14+4z

−3z

µ
w7 − 7zw6 − 21z2w5 + 203z3w4+
112z4w3 − 2016z5w2 + 6912z7

¶
dw

=
1

28

³
35 + 60z + 35z2 + 7z3 +

z8

28

´
.

For 0 ≤ z < 2, the integration range is (max(−3z, 4z),min(14− 3z, 14 + 4z)) =
(4z, 14− 3z). Hence,

fZ(z) =
5

2778

Z 14−3z

4z

µ
w7 − 7zw6 − 21z2w5 + 203z3w4+
112z4w3 − 2016z5w2 + 6912z7

¶
dw

=
1

28

³
35− 80z + 70z2 − 28z3 + z

4

25
− z

8

28

´
.

(c) By integrating z out, we have

fW (w) =

Z
R1
fZ,W (z,w)dz =

Z min((14−w)/3,w/4)

max(−w/3,(w−14)/4)
5(3z+w)3(w− 4z)4/(2778)dz

For 0 < w < 6, the integration range is (max(−w/3, (w − 14)/4),min((14 −
w)/3, w/4)) = (−w/3, w/4). Hence,

fW (w) =
5

2778

Z w/4

−w/3

µ
w7 − 7zw6 − 21z2w5 + 203z3w4+
112z4w3 − 2016z5w2 + 6912z7

¶
dz

=
w8

218357

For 6 ≤ w < 8, the integration range is (max(−w/3, (w − 14)/4),min((14 −
w)/3, w/4)) = ((w − 14)/4, w/4). Hence,

fW (w) =
5

2778

Z w/4

(w−14)/4

µ
w7 − 7zw6 − 21z2w5 + 203z3w4+
112z4w3 − 2016z5w2 + 6912z7

¶
dz

=
1

2107

³
− 945 + 540w − 105w2 + 7w3

´
.
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For 8 ≤ w < 14, the integration range is (max(−w/3, (w − 14)/4),min((14 −
w)/3, w/4)) = ((w − 14)/4, (14−w)/3). Hence,

fW (w) =
5

2778

Z (14−w)/3

(w−14)/4

µ
w7 − 7zw6 − 21z2w5 + 203z3w4+
112z4w3 − 2016z5w2 + 6912z7

¶
dz

=
z8

21035

³
294875− 168500w + 37315w2 − 3853w3 + 160w4 − w8

287

´
.

2.9.12 For z, an integer between 0 and n1 + n2,

P (Z = z) =
X
x

pX(x)pY (z − x)

=

min(z, n1)X
x=max(0, z−n2)

µ
n1
x

¶
px(1− p)n1−x

µ
n2
z − x

¶
pz−x(1− p)n2−(z−x)

= pz(1− p)n1+n2−z
min(z, n1)X

x=max(0, z−n2)

µ
n1
x

¶µ
n2
z − x

¶
.

Now this sum represents the number of ways of choosing z positions out of n1+n2
positions, so it equals

¡
n1+n2
z

¢
. (Indeed, of the z positions chosen, some number

x of them must be among the Þrst n1 positions, with the remaining z−x choices
among the Þnal n2 positions.) Thus, P (Z = z) =

¡
n1+n2
z

¢
pz(1− p)n1+n2−z for

z, an integer between 0 and n1 + n2. Hence, Z ∼ Binomial(n1 + n2, p).
2.9.13 For z a non-negative integer,

P (Z = z) =
X
x

pX(x)pY (z − x)

=
zX
x=0

µ
r1 − 1 + x

x

¶
pr1(1− p)x

µ
r2 − 1 + z − x

z − x
¶
pr2(1− p)z−x

= pr1+r2(1− p)z
zX
x=0

µ
r1 − 1 + x

x

¶µ
r2 − 1 + z − x

z − x
¶
.

Now this sum represents the number of ways of lining up z red balls and r1+ r2
black balls, such that a black ball comes last. (Indeed, all balls up to and includ-
ing the r1th black ball are responsible for the Þrst factor, with the remaining
balls responsible for the second factor.) Thus,

zX
x=0

µ
r1 − 1 + x

x

¶µ
r2 − 1 + z − x

z − x
¶
=

µ
r1 + r2 − 1 + z

z

¶
.

Hence, P (Z = z) = pr1+r2(1 − p)z¡r1+r2−1+zz

¢
, for z, a non-negative integer.

Hence, Z ∼ Negative-Binomial(r1 + r2, p).
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2.9.14We have that fZ(z) =
R∞
−∞ fX(x) fY (z−x) dx =

R∞
−∞

1
σ1
√
2π
e−(x−µ1)

2/2σ1

× 1
σ2
√
2π
e−(z−x−µ2)

2/2σ2 dx. Squaring out the exponents, and remembering thatR∞
−∞ e

−t2/2 dt =
√
2π, we compute that

fZ(z) =
¡
2π(σ21 + σ

2
2)
¢−1/2

exp

µ
−(z − µ1 − µ2)2/2

q
σ21 + σ

2
2

¶
so that Z ∼ Normal(µ1 + µ2, σ21 + σ22).
2.9.15 We have that

fZ(z) =

Z ∞

−∞
fX(x) fY (z − x) dx

=

Z z

0

Γ(α1)
−1λα1xα1−1e−λxΓ(α2)−1λα2(z − x)α2−1e−λ(z−x) dx

=
1

Γ(α1)Γ(α2)
λα1+α2e−λz

Z z

0

xα1−1(z − x)α2−1 dx.

We recognize this integral as a Beta integral, withZ z

0

xα1−1(z − x)α2−1 dx = zα1+α2−1Γ(α1)Γ(α2)/Γ(α1 + α2).

Hence, fZ(z) = Γ(α1 + α2)−1λα1+α2zα1+α2−1e−λz, so that Z ∼ Gamma(α1 +
α2, λ).

2.9.16 The joint density of (Z1, Z2) is (2π)
−1 exp

©− ¡z21 + z22¢ /2ª . The inverse
of the transformation given by (2.7.1) is Z1 = (X − µ1) /σ1,
Z2 = ((Y − µ2) /σ2 − ρ (X − µ1) /σ1) /

p
1− ρ2, and this has Jacobian¯̄̄̄

¯det
Ã

1/σ1 0

−ρ/
³
σ1
p
1− ρ2

´
1/
³
σ2
p
1− ρ2

´ !¯̄̄̄¯ = ³σ1σ2p1− ρ2´−1 .
So the joint density of (X,Y ) is given by

1

2πσ1σ2
p
1− ρ2 exp

− 1

2 (1− ρ2)

 ¡
1− ρ2¢ ³X−µ1σ1

´2
+ ρ2

³
X−µ1
σ1

´2
−

2ρ
³
X−µ1
σ1

´³
Y−µ2
σ2

´
+
³
Y−µ2
σ2

´2



=
1

2πσ1σ2
p
1− ρ2 exp

− 1

2 (1− ρ2)


³
X−µ1
σ1

´2
−

2
³
X−µ1
σ1

´³
Y−µ2
σ2

´
+
³
Y−µ2
σ2

´2



and this proves the result.
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2.10 Simulating Probability Distributions

Exercises
2.10.1 We can let Z = −7 if U ≤ 1/2, Z = −2 if 1/2 < U ≤ 5/6, and Z = 5 if
U > 5/6.

2.10.2
(a) Here F−1(t) = t, so we can let X = U .
(b) Here F−1(t) =

√
t, so we can let X =

√
U .

(c) Here F−1(t) = 3
√
t, so we can let X = 3

√
U .

(d) Here F−1(t) = 3
√
t for t ≥ 1/9, with F−1(t) = 1 for t ≤ 1/9. Hence, we can

let X = 1 for U ≤ 1/9, with X = 3
√
U for U > 1/9.

(e) Here F−1(t) = 5t1/5, so we can let X = 5U1/5.
(f) Here F−1(t) equals 0 for t ≤ 1/3, and equals 7 for 1/3 < t ≤ 3/4, and equals
11 for t > 3/4. Hence, we can let X = 0 for U ≤ 1/3, X = 7 for 1/3 < U ≤ 3/4,
and X = 11 for U > 3/4.

2.10.3 Since U ∈ [0, 1], the range Y is [0,∞). For y ∈ [0,∞),
P (Y ≤ y) = P (ln(1/U)/3 ≤ y) = P (1/U ≤ e3y) = P (U ≥ e−3y) = 1− e−3y.

Hence, the density of Y is fY (y) = d
dyP (Y ≤ y) = d

dy (1− e−3y) = 3e−3y that is
a density of Exponential(3). Therefore, Y ∼ Exponential(3).
2.10.4
(a) From Exercise 2.10.3, Y = ln(1/U)/3 ∼ Exponential(3). Note W =
ln(1/U)/λ = Y (3/λ). It is not hard to show that ln(1/U) ∼ Exponential(1).

P (W ≤ w) = P (Y (3/λ) ≤ w) = P (Y ≤ wλ/3) = 1− e−3(wλ/3) = 1− e−λw.
Hence, the density of W is fW (w) = d

dwP (W ≤ w) = d
dw (1 − e−λw) = λe−λw

that is a density of Exponential(λ). Therefore, W ∼ Exponential(λ).
(b) It is not difficult to generate a pseudo random number u having Uniform[0, 1]
distribution. Then, y = ln(1/u)/λ has an Exponential(λ) distribution.

2.10.5 In Example 2.10.7, it is shown that X1 =
p
2 ln(1/U1) cos(2πU2) has a

N(0, 1) distribution and X = X1c1/
√
2 + c2 ∼ N(c2, c21/2). Hence, c2 = 5 and

c21/2 = 9. The solution is c1 = ±3
√
2 and c2 = 5.

2.10.6 Let Y = 3 if 0 ≤ U ≤ 2/5, Y = 4 if 2/5 < U ≤ 4/5, and Y = 7
if U > 4/5. Then, Y = 3I[0,2/5](U) + 4I(2/5,4/5](U) + 7I(4/5,1](U). Hence,
P (Y = 3) = P (0 ≤ U ≤ 2/5) = 2/5, P (Y = 4) = P (2/5 < U ≤ 4/5) =
P (U ≤ 4/5) − P (U ≤ 2/5) = 4/5 − 2/5 = 2/5, and P (Y = 7) = P (4/5 <
U ≤ 1) = P (U ≤ 1) − P (U ≤ 4/5) = 1 − 4/5 = 1/5. For any y 6∈ {3, 4, 7},
P (Y = y) = P (U 6∈ [0, 1]) = 0.
2.10.7
(a) By deÞnition, FX(x) = P (X ≤ x). Hence, FX(x) = 0 for x < 1. For
1 ≤ x < 2, FX(x) = P (X ≤ x) = P (X = 1) = 1/3. For 2 ≤ x < 4, FX(x) =
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P (X ≤ x) = P (X = 1 or X = 2) = P (X = 1) + P (X = 2) = 1/2. For x ≥ 4,
FX(x) = P (X ≤ x) ≥ P (X ≤ 4) ≥ P (X = 1) + P (X = 2) + P (X = 4) = 1
implies FX(x) = 1. (b) The range of t must be restricted on (0, 1] because
F−1X (0) = −∞. F−1X (t) = 1 for t ∈ (0, 1/3], F−1X (t) = 2 for t ∈ (1/3, 1/2], and
F−1X (t) = 4 for t ∈ (1/2, 1]. (c) Let Y = F−1X (U). Then FY (y) = P (Y ≤ y) is the
same to FX . For y < 1, FY (y) = P (Y ≤ y) = P (F−1X (U) ≤ y) = P (∅) = 0. For
1 ≤ y < 2, FY (y) = P (F−1X (U) ≤ y) = P (F−1X (U) = 1) = P (U ∈ (0, 1/3]) =
1/3. For 2 ≤ y < 4, FY (y) = P (F−1X (U) ≤ y) = P (F−1X (U) = 1 or 2) =
P (U ∈ (0, 1/2]) = 1/2. For y ≥ 4, FY (y) = P (F−1X (U) ≤ y) = P (F−1X (U) =
1 or 2 or 4) = P (U ∈ (0, 1]) = 1. Hence, the cdf FY of Y is the same to FX .
2.10.8
(a) From the density, FX(x) = 0 for all x ≤ 0, and FX(x) = 1 for all x ≥ 1. For
x ∈ (0, 1),

FX(x) = P (X ≤ x) =
Z x

0

fX(y)dy =
3

4

Z x

0

√
ydy =

3

4

2

3
y3/2

¯̄̄y=x
y=0

= x3/2/2.

(b) For t ∈ (0, 1], we will Þnd x satisfying t = FX(x) = x3/2/2. Hence, F−1X (t) =
x = (2t)2/3. (c) Let Y = F−1X (U). Then, by Theorem 2.10.2, Y had the cdf FX .
The density fY of Y is

fY (y) =
d

dy
P (Y ≤ y) = d

dy
FX(y) =

d

dy
y3/2/2 = y1/23/4.

Hence, fY = fX .

2.10.9 The cdf of Z is given by, for z ∈ (0, 1),

FZ(z) = P (Z ≤ z) =
Z z

0

4y3dy = y4
¯̄y=z
y=0

= z4.

For t ∈ (0, 1], we can solve the equation t = FZ(z) = z4 for the inverse cdf
F−1Z (t) = z = t1/4. Hence, Y = F−1Z (U) = U1/4 has the cdf FZ and the density
fZ .

Problems
2.10.11 First choose a random variable I, independent of all the Xi, such that
I{1, 2, . . . , k}, with P (I = i) = αi. Then set Y = XI . [That is, Y is equal to
Xi for the choice i = I.] Then P (Y ≤ y) =

P
i P (I = i)P (Y ≤ y | I = i) =P

i αi Fi(y) = G(y), as desired.

2.10.12 Here FX(x) = 0 for x < 1, while for x ≥ 1, FX(x) =
R x
−∞ fX(t) dt =R x

1
t−2 dt = −t−1¯̄t=x

t=1
= 1− (1/x). Hence, F−1(t) = 1/(1− t). Thus, we can let

Z = 1/(1− U).
2.10.13 From Problem 2.5.20 we have that F (x) = (1 + e−x)−1 = u, so invert-
ing this we have that x = F−1(u) = ln (u/ (1− u)) for 0 ≤ u ≤ 1.



2.10. SIMULATING PROBABILITY DISTRIBUTIONS 51

2.10.14 From Problem 2.5.21 we have that F (x) = 1−exp {−xα} = u for x > 0,
so inverting this we have that x = F−1(u) = (− ln (1− u))1/α for 0 ≤ u ≤ 1.
2.10.15 From Problem 2.5.22 we have that F (x) = 1−(1 + x)−α = u for x > 0,
so inverting this we have that x = F−1(u) = (1− u)−1/α − 1 for 0 ≤ u ≤ 1.
2.10.16 From Problem 2.5.23 we have that F (x) = (arctan (x) + π/2) /π = u,
so inverting this we have that x = F−1(u) = tan (πu− π/2) for 0 ≤ u ≤ 1.
2.10.17 From Problem 2.5.24 we have that F (x) = 1

2

R x
−∞ e

z dz = 1
2e

x = u

for x ≤ 0, and F (x) = 1
2 +

1
2

R x
0 e

−z dz = 1
2 +

1
2 (1− e−x) = u for x > 0. So,

for 0 ≤ u ≤ 1/2, inverting this we have that x = F−1(u) = ln (2u) and, for
1/2 ≤ u ≤ 1, x = F−1(u) = − ln 2 (1− u) .
2.10.18 From Problem 2.5.25 we have that F (x) = exp {−e−x} = u, so inverting
this we have that x = F−1(u) = − ln (− lnu) for 0 ≤ u ≤ 1.
2.10.19 From Problem 2.5.26 we have that
(b) u = F (x) = x for 0 < x < 1, so x = u for 0 ≤ u ≤ 1.
(c) u = F (x) = x2 for 0 < x < 1, so x =

√
u for 0 ≤ u ≤ 1.

(d) u = F (x) = 1− (1− x)2 for 0 < x < 1, so x = 1−√1− u for 0 ≤ u ≤ 1.
2.10.20 We have that P (Y ≤ y) =

R∞
−∞

³R y
−∞ fY |X (z |x) dz

´
fX (x) dx =R y

−∞
R∞
−∞ f (x, z) dxdz =

R y
−∞ fY (z) dz = FY (y).

Challenges
2.10.21
(a)

P (a ≤ Y ≤ b | f(Y ) ≥ Ucg(Y )) = P (a ≤ Y ≤ b, f(Y ) ≥ Ucg(Y ))
P (f(Y ) ≥ Ucg(Y ))

=
E (P (a ≤ y ≤ b, f(Y ) ≥ Ucg(u) |Y = y))

E (f(y) ≥ Ucg(y) |Y = y) =
E
¡
I(a,b)(Y )f(Y )/cg(Y )

¢
E (f(Y )/cg(Y ))

=
E (P (a ≤ y ≤ b, f(Y ) ≥ Ucg(u) |Y = y))

E (f(y) ≥ Ucg(y) |Y = y) =
E
¡
I(a,b)(Y )f(Y )/cg(Y )

¢
E (f(Y )/cg(Y ))

=

Z b

a

f (y)

cg(y)
g (y) dy/

Z ∞

−∞

f (y)

cg(y)
g (y) dy =

Z b

a

f (y) dy

(b) Let p = P (f(Y ) ≥ Ucg(Y )) . Then, using (a) and the independence of the
Ui and Yi, we have that

P (Xi1 ≤ x) =
∞X
j=1

P (Yj ≤ x, i1 = j)

=
∞X
j=1

P

µ
Yj ≤ x, f(Y1) < U1cg(Y1), . . . , f(Yj−1) < Uj−1cg(Yj−1),

f(Yj) ≥ Uj−1cg(Yj)
¶

=
∞X
j=1

P (Yj ≤ x, f(Yj) ≥ Ujcg(Yj))P
µ

f(Y1) < U1cg(Y1), . . . ,
f(Yj−1) < Uj−1cg(Yj−1)

¶
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=
∞X
j=1

P (Yj ≤ x | f(Yj) ≥ Ujcg(Yj)) p(1− p)j−1 =
Z x

−∞
f (y) dy,

so Xi1 ∼ f.
Further, we have that

P (Xi1 ≤ x1, ,Xi2 ≤ x2) =
∞X
j1=1

∞X
j2=j1+1

P (Yj1 ≤ x1, i1 = j1, Yj2 ≤ x2, i2 = j2)

=
∞X
j1=1

∞X
j2=j1+1

P


Yj1 ≤ x1, f(Y1) < U1cg(Y1), . . . ,

f(Yj1−1) < Uj1−1cg(Yj1−1), f(Yj1) ≥ Uj1cg(Yj1),
Yj2 ≤ x2, f(Yj1+1) < Uj1+1cg(Yj1+1), . . . ,

f(Yj2−1) < Uj2−1cg(Yj2−1), f(Yj2) ≥ Uj2cg(Yj2)


=

∞X
j1=1

∞X
j2=j1+1

{P (Yj1 ≤ x1, f(Yj1) ≥ Uj1cg(Yj1))×

P (f(Y1) < U1cg(Y1), . . . , f(Yj1−1) < Uj1−1cg(Yj1−1))×
P (Yj2 ≤ x2, f(Yj2) ≤ Uj2−1cg(Yj2))×
P (f(Yj1+1) < Uj1+1cg(Yj1+1), . . . , f(Yj2−1) < Uj2−1cg(Yj2−1))}

=
∞X
j1=1

∞X
j2=j1+1

{P (Yj1 ≤ x1 | f(Yj1) ≥ Uj1cg(Yj1)) p(1− p)j1−1×

P (Yj2 ≤ x2 | f(Yj2) ≤ Uj2−1cg(Yj2)) p(1− p)j2−j1−1}

=

µZ x1

−∞
f (y) dy

¶µZ x2

−∞
f (y) dy

¶
.

so Xi1 ∼ f independently of Xi2 ∼ f. Continuing in this fashion proves that

Xi1 ,Xi2 , . . . is an i.i.d. sequence from the distribution, with density given by f.



Chapter 3

Expectation

3.1 The Discrete Case

Exercises
3.1.1
(a) E(X) = (−4)(1/7) + (0)(2/7) + (3)(4/7) = 8/7.
(b) We recognize thatX ∼ Geometric(1/2). Hence, E(X) = (1−(1/2)) / (1/2) =
1.
(c) Using the substitution y = x − 7, we have E(X) = P∞

x=7 x 2
−x+6 =P∞

y=0(y + 7) 2
−y−1 = 7 +

P∞
y=0 y 2

−y−1 = 7+ 1 = 8 since
P∞
y=0 y 2

−y−1 = 1 is
the mean of a Geometric(1/2) distribution.

3.1.2
(a) E(X) = (5)(1/7) + (5)(1/7) + (5)(1/7) + (8)(3/7) + (8)(1/7) = 47/7.
(b) E(Y ) = (0)(1/7) + (3)(1/7) + (4)(1/7) + (0)(3/7) + (4)(1/7) = 11/7.
(c) By linearity, E(3X + 7Y ) = 3E(X) + 7E(Y ) = 3(47/7) + 7(11/7) = 218/7.
(d) E(X2) = (5)2(1/7)+ (5)2(1/7)+ (5)2(1/7)+ (8)2(3/7)+ (8)2(1/7) = 331/7.
(e) E(Y 2) = (0)2(1/7) + (3)2(1/7) + (4)2(1/7) + (0)2(3/7) + (4)2(1/7) = 41/7.
(f)E(XY ) = (5)(0)(1/7)+(5)(3)(1/7)+(5)(4)(1/7)+(8)(0)(3/7)+(8)(4)(1/7) =
67/7.
(g) By linearity, E(XY + 14) = E(XY ) + 14 = 67/7 + 14 = 165/7.

3.1.3
(a)E(X) = (2)(1/2)+(−7)(1/6)+(2)(1/12)+(−7)(1/12)+(2)(1/12)+(−7)(1/12)
= −173/12 = −14.4.
(b) E(Y ) = (10)(1/2) + (10)(1/6) + (12)(1/12) + (12)(1/12) + (14)(1/12) +
(14)(1/12) = 11.
(c) E(X2) = (2)2(1/2) + (−7)2(1/6)+ (2)2(1/12) + (−7)2(1/12)+ (2)2(1/12)+
(−7)2(1/12) = 19.
(d) E(Y 2) = (10)2(1/2)+(10)2(1/6)+(12)2(1/12)+(12)2(1/12)+(14)2(1/12)+
(14)2(1/12) = 370/3 = 123.3.
(e) E(X2 + Y 2) = E(X2) +E(Y 2) = 19 + 370/3 = 427/3 = 142.3.
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(f) E(XY − 4Y ) = (2 · 10− 4 · 10)(1/2) + ((−7) · 10− 4 · 10)(1/6) + (2 · 12− 4 ·
12)(1/12)+((−7)·12−4·12)(1/12)+(2·14−4·14)(1/12)+((−7)·14−4·14)(1/12) =
−113/2 = −56.5.

3.1.4 E(4X − 3Y ) = 4E(X)− 3E(Y ) = 4(p1)− 3(np2).

3.1.5 E(8X − Y + 12) = 8E(X)−E(Y ) + 12 = 8((1− p)/p)− λ+ 12.

3.1.6 E(Y + Z) = E(Y ) +E(Z) = (100)(0.3) + (7) = 37.

3.1.7 SinceX and Y are independent, E(XY ) = E(X)E(Y ) = ((80)(1/4))(3/2)
= 30.

3.1.8 Let Z be the number showing on the die. Then X = 1 + 3Z, so E(X) =
1 + 3E(Z) = 1 + 3(3.5) = 11.5.

3.1.9 Let Y = 1 if the coin comes up tails, otherwise Y = 0 if the coin comes
up heads. Then X = 8 − 4Y and E(Y ) = 1(1/2) + 0(1/2) = 1/2. Hence,
E(X) = 8− 4E(Y ) = 8− 4(1/2) = 6.

3.1.10 P (Y = 3) = P (the same face) = P (HH or TT ) = P (HH) + P (TT ) =
(1/2)(1/2) + (1/2)(1/2) = 1/2. Hence, P (Y = 5) = 1− P (Y = 3) = 1− 1/2 =
1/2. The expectation is

E(Y ) = 3P (Y = 3) + 5P (Y = 5) = 3 · (1/2) + 5 · (1/2) = 4.

3.1.11 LetX1 andX2 be the two numbers showing on two dice. The expectation
of X1 is

E(X1) =
6X
i=1

iP (X1 = i) =

yX
i=1

i
1

6
=
6 · 7
2

1

6
=
7

2
.

Since X1 and X2 are identically distributed, E(X1) = E(X2) = 7/2.
(a) The random variable Z becomes Z = X1 + X2. From Theorem 3.1.2,
E(Z) = E(X1 +X2) = E(X1) +E(X2) = 2E(X1) = 2(7/2) = 7.
(b) The random variable W = X1X2. Since X1 and X2 are independent, The-
orem 3.1.3 is applicable. Hence, we get E(W) = E(X1X2) = E(X1)E(X2) =
(7/2)2 = 49/4.

3.1.12 Let Y be the number of heads and Z be the number showing on the
die. The expectations of Y and Z are E(Y ) = 0P (Y = 0) + 1P (Y = 1) = 1/2
and E(Z) = 1P (Z = 1) + · · · + 6P (Z = 6) = 7/2. Then, X = Y Z. Note Y
and Z are independent. From Theorem 3.1.3, we have E(X) = E(Y )E(Z) =
(1/2)(7/2) = 7/4.

3.1.13 Let X be the number showing on the die. When X = x is shown on the
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die, the distribution of Y is Y ∼ Binomial(x, 1/2). Hence,

E(Y ) =
6X
y=0

yP (Y = y) =
6X
y=0

y
6X

x=1

P (Y = y,X = x)

=
6X
y=0

y
6X

x=y

P (Y = y,X = x) =
6X
y=0

y
6X

x=y

µ
x

y

¶³1
2

´y³1
2

´x−y 1
6

=
1

6

6X
x=1

xX
y=0

y

µ
x

y

¶
(1/2)x =

1

6

6X
x=1

x

2
=
1

6

6 · 7
4
=
7

4
.

3.1.14 Let T be the number of heads. Then, X = T 3. Hence, the expectation
of X is

E(X) = E(T 3) =
3X
t=0

t3·
µ
3

t

¶³1
2

´3
= (03)(

1

8
)+(13)(

3

8
)+(23)(

3

8
)+(33)(

1

8
) =

27

4
.

Problems

3.1.15 Let Z be the number of heads before the Þrst tail. Then we know that
P (Z = k) = 1/2k+1 for k = 0, 1, 2, . . ., and E(Z) = (1− (1/2))/(1/2) = 1. Now,
X = 1 + 2Z, so E(X) = 1 + 2E(Z) = 1 + 2(1) = 3.

3.1.16 Again, let Z be the number of heads before the Þrst tail, so P (Z =
k) = 1/2k+1 for k = 0, 1, 2, . . .. Then X = 2Z , so E(X) =

P∞
k=0 2

k(1/2k+1) =P∞
k=0(1/2) =∞. Hence, E(X) is inÞnite in this case.

3.1.17
(a) E(Y ) =

P∞
x=0min(x, 100) (1−θ)xθ = θ

P100
x=0 x (1−θ)x+θ(100)

P∞
x=101(1−

θ)x = θS + 100(1 − θ)101, where S =
P100
x=0 x (1 − θ)x. Then (1 − θ)S =P100

x=0 x (1 − θ)x+1 =
P101
y=1(y − 1) (1 − θ)y. Hence, θS = S − (1 − θ)S =P100

x=1(1− θ)x − 100(1− θ)101 = θ−1(1− θ − (1− θ)101)− 100(1− θ)101.
(b) E(Y −X) = E(Y )−E(X) = −(1− θ)101(1/θ + 100).

3.1.18 Any X with X ≤ 100 will do since then min(X, 100) = X. For example,
X = 29, or X ∼ Bernoulli(80, 1/3).

3.1.19 For one example, let P (X = 200) = 1. For another, let P (X = 300) =
P (X = 100) = 1/2.

3.1.20 Let pX,Y (1, 1) = PX,Y (1, 0) = 1/4 , with pX,Y (0, 0) = 1/2. Then
P (X = 1) = 1/2 and P (Y = 1) = 1/4, but E(XY ) = 1/4.
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3.1.21 We have that

E(X) =

min(n,M)X
x=max(0, n+M−N)

x

¡
M
x

¢¡
N−M
n−x

¢¡
N
n

¢ =

min(n,M)X
x=max(1, n+M−N)

x

¡
M
x

¢¡
N−M
n−x

¢¡
N
n

¢
= n

M

N

min(n,M)X
x=max(1, n+M−N)

¡
M−1
x−1

¢¡N−1−(M−1)
n−1−(x−1)

¢¡
N−1
n−1

¢
= n

M

N

min(n−1,M−1)X
x=max(0, n−1+(M−1)−(N−1))

¡
M−1
x

¢¡
N−1−(M−1)

n−1−x
¢¡

N−1
n−1

¢ = n
M

N

since the Þnal sum is the sum of all Hypergeometric(N − 1,M − 1, n) probabil-
ities.

3.1.22 We have that if X1, . . . ,Xr are i.i.d. Geometric(θ) , then X = X1+ · · ·+
Xr ∼ Negative Binomial(r, θ) so E(X) = E (X1 + · · ·+Xr) = r (1− θ) /θ.
3.1.23 This follows immediately since Xi ∼ Binomial(n, θi) .
Challenges
3.1.24 Here E(X2) =

P
k k

2 P (X = k) =
P∞
k=0 k

2 (1 − p)kp. Hence, (1 −
p)E(X2) =

P∞
k=0 k

2 (1 − p)k+1p = P∞
j=1(j − 1)2 (1 − p)jp. Then pE(X2) =

E(X2) − (1 − p)E(X2) =
P∞
k=1[k

2 − (k − 1)2] (1 − p)kp = P∞
k=1[2k − 1] (1 −

p)kp = 2E(X)− (1− p) = 2(1− p)/p− (1− p) = 2(1− p)/p− (1− p). Hence,
E(X2) = 2(1− p)/p2 − (1− p)/p.
3.1.25 Let Y = X−min(X,M). Then Y is also discrete. Also, sincemin(X,M) ≤
X, we have Y ≥ 0. Now, if E(min(X,M)) = E(X), then E(Y ) = 0, so that
0 =

P
y y P (Y = y) =

P
y≥0 y P (Y = y). But the only way a sum of non-

negative terms can be 0 is if each term is 0, i.e., y P (Y = y) = 0 for all
y ∈ R1. This means that P (Y = y) = 0 for y 6= 0, so that P (Y = 0) = 1.
But {Y = 0} = {min(X,M) = X} = {X ≤ M}, so P (X ≤ M) = 1, i.e.,
P (X > M) = 0.

3.2 The Absolutely Continuous Case

Exercises
3.2.1
(a) 1 =

R∞
−∞ fX(x) dx =

R 9
5 C dx = 4C, where C = 1/4. Then E(X) =R∞

−∞ xfX(x) dx =
R 9
5
x (1/4) dx = (92 − 52)/8 = 7.

(b) 1 =
R∞
−∞ fX(x) dx =

R 8
6 C(x+1) dx = C(9

2−72)/2 = 16C, where C = 1/16.
Then E(X) =

R∞
−∞ xfX(x) dx =

R 8
6
x (1/16) (x+ 1) dx = (83 − 63)/48 + (82 −

62)/32 = 169/24 = 7.04.
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(c) 1 =
R∞
−∞ fX(x) dx =

R−2
−5 Cx

4 dx = C((−2)5 − (−5)5)/5 = C 3093/5,

where C = 5/3093. Then E(X) =
R∞
−∞ xfX(x) dx =

R −2
−5 x (5/3093) (x

4) dx =

(5/3093)((−2)6 − (−5)6)/6 = −8645/2062 = −4.19.
3.2.2
(a) E(X) =

R 1
0

R 1
0
x (4x2y + 2y5) dxdy = 2/3.

(b) E(Y ) =
R 1
0

R 1
0 y (4x

2y + 2y5) dxdy = 46/63.
(c) E(3X + 7Y ) = 3E(X) + 7E(Y ) = 3(2/3) + 7(46/63) = 64/9.
(d) E(X2) =

R 1
0

R 1
0
x2 (4x2y + 2y5) dxdy = 23/45.

(e) E(Y 2) =
R 1
0

R 1
0 y

2 (4x2y + 2y5) dxdy = 7/12.

(f) E(XY ) =
R 1
0

R 1
0
xy (4x2y + 2y5) dxdy = 10/21.

(g) E(XY + 14) = E(XY ) + 14 = (10/21) + 14 = 304/21.

3.2.3
(a) E(X) =

R∞
−∞

R∞
−∞ xfX,Y (x, y) dxdy =

R 3
0

R 1
0
x((4xy + 3x2y2)/18) dxdy =

17/24.
(b) E(Y ) =

R∞
−∞

R∞
−∞ y fX,Y (x, y) dxdy =

R 3
0

R 1
0 y((4xy + 3x

2y2)/18) dxdy =
17/8.
(c) E(X2) =

R∞
−∞

R∞
−∞ x

2 fX,Y (x, y) dxdy =
R 3
0

R 1
0
x2((4xy+3x2y2)/18) dxdy =

11/20.
(d) E(Y 2) =

R∞
−∞

R∞
−∞ y

2 fX,Y (x, y) dxdy =
R 3
0

R 1
0 y

2((4xy+3x2y2)/18) dxdy =
99/20.
(e) E(Y 4) =

R∞
−∞

R∞
−∞ y

4 fX,Y (x, y) dx dy =
R 3
0

R 1
0
y4((4xy+3x2y2)/18) dxdy =

216/7.
(f)E(X2Y 3) =

R∞
−∞

R∞
−∞ x

2y3 fX,Y (x, y) dxdy =
R 3
0

R 1
0 x

2y3((4xy+3x2y2)/18)×
dxdy = 27/4.

3.2.4
(a) E(X) =

R∞
−∞

R∞
−∞ xfX,Y (x, y) dxdy =

R 1
0

R 1
y
x(6xy + (9/2)x2y2) dx dy =

57/70.
(b) E(Y ) =

R∞
−∞

R∞
−∞ y fX,Y (x, y) dxdy =

R 1
0

R 1
y y(6xy + (9/2)x

2y2) dx dy =

157/280.
(c) E(X2) =

R∞
−∞

R∞
−∞ x

2 fX,Y (x, y) dxdy =
R 1
0

R 1
y x

2(6xy + (9/2)x2y2) dxdy =

11/16.
(d) E(Y 2) =

R∞
−∞

R∞
−∞ y

2 fX,Y (x, y) dxdy =
R 1
0

R 1
y
y2(6xy + (9/2)x2y2) dxdy =

29/80.
(e) E(Y 4) =

R∞
−∞

R∞
−∞ y

4 fX,Y (x, y) dx dy =
R 1
0

R 1
y
y4(6xy + (9/2)x2y2) dx dy =

53/280.
(f) E(X2Y 3) =

R∞
−∞

R∞
−∞ x

2y3 fX,Y (x, y) dx dy =
R 1
0

R 1
y x

2y3(6xy+(9/2)x2y2)×
dxdy = 133/660.

3.2.5 E(−5X − 6Y ) = −5E(X)− 6E(Y ) = −5((3 + 7)/2)− 3(1/9) = −76/3.
3.2.6 E(11X + 14Y + 3) = 11E(X) + 14E(Y ) + 3 = 11(((−12) + (−9))/2) +
14(−8) + 3 = −449/2.
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3.2.7 E(Y + Z) = E(Y ) +E(Z) = (1/9) + (1/8) = 17/72.

3.2.8 E(Y + Z) = E(Y ) +E(Z) = (1/9) + (5/4) = 49/36.

3.2.9 Let µk = E(Xk) for k > −3.

µk =

Z
R1
xkf(x)dx =

Z 2

0

xk · 3
20
(x2 + x3)dx =

3

20

h xk+3
k + 3

+
xk+4

k + 4

ix=2
x=0

=
3

20

³ 2k+3
k + 3

+
2k+4

k + 4

´
=
3 · 2k+1(3k + 10)
5(k + 3)(k + 4)

.

Hence, µ1 = 39/25 = 1.56, µ2 = 64/25 = 2.56, µ3 = 152/35 = 4.34. Therefore,
E(X3) > E(X2) > E(X).

3.2.10 Let µk = E(Xk) for k > −3.

µk =

Z
R1
xkf(x)dx =

Z 1

0

xk · 12
7
(x2 + x3)dx =

12

7

h xk+3
k + 3

+
xk+4

k + 4

ix=1
x=0

=
12

7

³ 1

k + 3
+

1

k + 4

´
=

12(2k + 7)

7(k + 3)(k + 4)
.

Hence, µ1 = 54/70 = 0.771, µ2 = 22/35 = 0.629, and µ3 = 26/49 = 0.531.
Therefore, E(X) > E(X2) > E(X3).

3.2.11 Let X and Y be the height of wife and husband. The expected value of
Z = X + Y is

E(Z) = E(X + Y ) = E(X) +E(Y ) = 174 + 160 = 334.

Here, we used Theorem 3.2.2 and Example 3.2.7.

3.2.12
(a) From Theorem 3.2.2, E(Z) = E(X + Y ) = E(X) +E(Y ) = 5 + 6 = 11.
(b) We have E(Z) = E(XY ) = E(X)E(Y ) = 5 × 6 = 30 by Theorem 3.2.3
based on the independence of X and Y .
(c) From Theorem 3.2.2, we have E(Z) = E(2X − 4Y ) = 2E(X) − 4E(Y ) =
2 · 5− 4 · 6 = −14.
(d) From Theorem 3.2.2, E(Z) = E(2X(3 + 4Y )) = E(6X +8XY ) = 6E(X) +
8E(XY ) = 6 · 5 + 8 · 30 = 270. The result in part (b) was also used in this
computation.
(e) The formula of Z is simpliÞed as Z = (2+X)(3+4Y ) = 6+3X+8Y +4XY .
By Theorem 3.2.2, E(Z) = 6+3E(X)+8E(Y )+4E(XY ) = 6+3·5+8·6+4·30 =
189. (f) The formula is simpliÞed as Z = (2+X)(3X+4Y ) = 6X+8Y +4XY +
3X2. By Theorem 3.2.2, E(Z) = 6E(X) + 8E(Y ) + 4E(XY ) + 3E(X2) =
6 · 5 + 8 · 6 + 4 · 30 + 3E(X2) = 198 + 3E(X2). The value E(X2) is unknown.
Hence, E(Z) can be determined based on the given information.

3.2.13 Since the dart�s point is 0.1 centimeters thick, the random variable Y
must be Y = X + 0.1. By Theorem 3.2.2, E(Y ) = E(X + 0.1) = E(X) + 0.1 =
214.1.
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3.2.14 Let X be the citizen�s height from the top of his/her head and Y be the
citizen�s height from the top of his/her head or hat. Then, Y ≥ X. Therefore,
we have E(Y ) ≥ E(X) by Theorem 3.2.4.

3.2.15 Let x1, . . . , x5 be the heights of the members of team A. Let y1, . . . , y5
be the heights of the member of team B who is guarding x1, . . . , x5 respectively.
From the assumption, xi > yi. Hence, the mean height of team A = (x1+ · · ·+
x5)/5 > (y1 + · · · + y5)/5 = the mean height of team B. Therefore, the mean
height of team A is larger than the mean height of team B.

Problems
3.2.16 Letting t = λx, we have that E(X) =

R∞
0
x λ

αxα−1
Γ(α) e

−λx dx

=
R∞
0

λαxα

Γ(α) e
−λx dx =

R∞
0

λαtα

λαΓ(α)e
−t (1/λ) dt = 1

λΓ(α)

R∞
0 tαe−t dx

= 1
λΓ(α)Γ(α+ 1) =

1
λΓ(α)αΓ(α) = α/λ.

3.2.17 We have E (X) =
R 0
−∞ xe

−x (1 + e−x)−2 dx+
R∞
0
xe−x (1 + e−x)−2 dx

= − R∞
0
xe−x (1 + e−x)−2 dx+

R∞
0
xe−x (1 + e−x)−2 dx, so E (X) = 0, providedR∞

0 xe−x (1 + e−x)−2 dx <∞. This is the case becauseR∞
0 xe−x (1 + e−x)−2 dx ≤ R∞0 xe−x dx = 1.

3.2.18 We have that E (X) =
R∞
0
xαxα−1e−x

α

dx =
R∞
0
αxαe−x

α

dx and
putting u = xα, x = u1/α, du = αxα−1dxwe have thatE (X) =

R∞
0
u1/αe−u du =

Γ (1/α+ 1) .

3.2.19 We have that

E (X) =

Z ∞

0

xα (1 + x)−α−1 dx =
Z ∞

0

α (1 + x)−α dx− 1

=

 α
−α+1 (1 + x)

−α+1
¯̄̄∞
0
− 1 α 6= 1

α ln (1 + x)|∞0 α = 1

=

½ ∞ 0 < α ≤ 1
1/ (α− 1) if α > 1.

3.2.20 We have that
R∞
0
xπ−1

¡
1 + x2

¢−1
dx =

¡
ln
¡
1 + x2

¢¢
/2
¯̄∞
0
= ∞ andR 0

−∞ xπ
−1 ¡1 + x2¢−1 dx = −∞, so E(X) doesn�t exist.

3.2.21 We have that

E (X) =

Z 0

−∞
xex dx+

Z ∞

0

xe−x dx = −
Z ∞

0

xe−x dx+
Z ∞

0

xe−x dx = −1+1 = 0.

3.2.22 We have that

E (X) =

Z 1

0

x
Γ (a+ b)

Γ (a)Γ (b)
xa−1 (1− x)b−1 dx = Γ (a+ b)

Γ (a)Γ (b)

Z 1

0

xa (1− x)b−1 dx

=
Γ (a+ b)

Γ (a)Γ (b)

Γ (a+ 1)Γ (b)

Γ (a+ b+ 1)
=
Γ (a+ b)

Γ (a)Γ (b)

aΓ (a)Γ (b)

(a+ b)Γ (a+ b)
=

a

a+ b
.
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3.2.23 We have that

E (X1)

=

Z 1

0

Z 1−x2

0

x1
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
xα1−11 xα2−12 (1− x1 − x2)α3−1 dx1 dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)

Z 1

0

Z 1−x2

0

xα11 x
α2−1
2 (1− x1 − x2)α3−1 dx1 dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)

Γ (α1 + 1)Γ (α2)Γ (α3)

Γ (α1 + α2 + α3 + 1)
=

α1
α1 + α2 + α3

.

3.3 Variance, Covariance, and Correlation

Exercises
3.3.1
(a) Cov(X,Y ) = E(XY )−E(X)E(Y ) = 26− (4)(19/3) = 2/3.
(b) E(X2) = 32(1/2) + 32(1/6) + 62(1/6) + 62(1/6) = 18, so Var(X) = E(X2)
−E(X)2 = 18− 42 = 2. Also E(Y 2) = 52(1/2) + 92(1/6) + 52(1/6) + 92(1/6)
= 131/3, so Var(Y ) = E(Y 2)−E(Y )2 = 131/3− (19/3)2 = 32/9.
(c) Corr(X,Y ) = Cov(X,Y ) /

p
Var(X)Var(Y ) = (2/3) /

p
(2)(32/9) = 1/4.

3.3.2
(a) E(X) = (5)(1/7) + (5)(1/7) + (5)(1/7) + (8)(3/7) + (8)(1/7) = 47/7. Also,
E(Y ) = (0)(1/7) + (3)(1/7) + (4)(1/7) + (0)(3/7) + (4)(1/7) = 11/7.
(b)E(XY ) = (5)(0)(1/7)+(5)(3)(1/7)+(5)(4)(1/7)+(8)(0)(3/7)+(8)(4)(1/7) =
67/7. Then Cov(X,Y ) = E(XY ) − E(X)E(Y ) = 67/7 − (47/7)(11/7) =
−48/49.
(c) E(X2) = (5)2(1/7)+ (5)2(1/7)+ (5)2(1/7)+ (8)2(3/7)+ (8)2(1/7) = 331/7.
Then Var(X) = E(X2)− E(X)2 = 331/7− (47/7)2 = 108/49. Also, E(Y 2) =
(0)2(1/7)+(3)2(1/7)+(4)2(1/7)+(0)2(3/7)+(4)2(1/7) = 41/7. Then Var(Y ) =
E(Y 2)−E(Y )2 = 41/7− (11/7)2 = 166/49.
(d) Corr(X,Y ) = Cov(X,Y ) /

p
Var(X)Var(Y ) =

(−48/49) /p(108/49)(166/49) = −4p2/249 = −0.3585.
3.3.3 We have that
E(X) =

R 1
0

R 1
0
x (4x2y + 2y5) dxdy = 2/3,

E(Y ) =
R 1
0

R 1
0
y (4x2y + 2y5) dxdy = 46/63,

E(X2) =
R 1
0

R 1
0 x

2(4x2y + 2y5) dxdy =
R 1
0

¡
4
5y +

2
3y
5
¢
dy = 2

5 +
2
9 =

23
45 ,

E(Y 2) =
R 1
0

R 1
0 y

2 (4x2y + 2y5) dxdy =
R 1
0

¡
4
3y
3 + 2y7

¢
dy = 7

12 ,

E(XY ) =
R 1
0

R 1
0 xy (4x

2y + 2y5) dx dy =
R 1
0

¡
y2 + y6

¢
dy = 10

21 ,

Corr (X,Y ) =
10
21 −

¡
2
3

¢ ¡
46
63

¢q
23
45 −

¡
2
3

¢2q 7
12 −

¡
46
63

¢2 = −0.18292.
3.3.4 Here
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E(X) =
R 1
0

R 1
0
x (15x3y4 + 6x2y7) dx dy = 63/80,

E(Y ) =
R 1
0

R 1
0 y (15x

3y4 + 6x2y7) dxdy = 61/72. E(X2) =
R 1
0

R 1
0 x

2 (15x3y4 +
6x2y7) dxdy = 13/20.
E(Y 2) =

R 1
0

R 1
0
y2 (15x3y4 + 6x2y7) dxdy = 103/140. Var(X) = E(X2) −

E(X)2 = (13/20)− (63/80)2 = 191/6400.
Var(Y ) = E(Y 2) − E(Y )2 = (103/140) − (61/72)2 = 3253/181440. E(XY ) =R 1
0

R 1
0
xy (15x3y4 + 6x2y7) dx dy = 2/3.

Cov(X,Y ) = E(XY )−E(X)E(Y ) = (2/3)− (63/80)(61/72) = −1/1920.

Corr(X,Y ) = Cov(X,Y ) /
p
Var(X)Var(Y )

= (−1/1920) /
p
(191/6400)(3253/181440) = −3

p
35/621323 = −0.0225.

3.3.5 If X and Y are independent, then Cov(X,Y ) = E(XY )− E(X)E(Y ) =
E(X)E(Y )−E(X)E(Y ) = 0, so Corr(X,Y ) = Cov(X,Y ) /pVar(X)Var(Y ) =
0.

3.3.6 IfX and Z are independent, then Cov(X+Y,Z) =Cov(X,Z)+Cov(Y,Z) =
0+ Cov(Y,Z) = Cov(Y,Z).

3.3.7
(a) Cov(X,Z) = Cov(X,X + Y ) = Cov(X,X)+ Cov(X,Y ) = Var(X) + 0 =
1/32 = 1/9.
(b) Corr(X,Z) = Cov(X,Z) /

p
Var(X)Var(Z) = (1/9) /

p
(1/9)((1/9) + 5) =

1 /
√
46 = 0.147.

3.3.8 We can write X = L+(R−L)U, where U ∼ Uniform[0, 1] . Then E (X)=
L+(R−L)E (U) = L+(R−L)/2 = (L+R) /2 and Var(X) = (R−L)2Var(U) .
Now E

¡
U2
¢
=
R 1
0
u2 du = 1/3, so Var(U) = 1/3− 1/4 = 1/12.

3.3.9 E (X (X − 1)) = E ¡X2
¢−E (X), so E (X (X − 1))−E (X) (E (X)− 1)

= E
¡
X2
¢ − (E (X))2 = Var(X) . Then, when X ∼ Binomial(n, θ) , we have

that,

E (X (X − 1)) =
nX
x=0

x (x− 1)
µ
n

x

¶
θx (1− θ)n−x

= n (n− 1) θ2
nX
x=2

µ
n− 2
x− 2

¶
θx−2 (1− θ)n−2−(x−2)

= n (n− 1) θ2
n−2X
x=0

µ
n− 2
x

¶
θx (1− θ)n−2−x = n (n− 1) θ2,

so Var(X) = n (n− 1) θ2 − nθ (nθ − 1) = nθ (1− θ) .
3.3.10 Since X ∼ Binomial(3, 1/2), the probability is given by P (X = 0) =
P (X = 3) = 1/8 and P (X = 1) = P (X = 2) = 3/8. Thus, E(X) = (0 +
3)(1/8) + (1 + 2)(3/8) = 3/2, E(X2) = (02 + 32)(1/8) + (12 + 22)(3/8) = 3,
E(X3) = (03+33)(1/8)+(13+23)(3/8) = 27/4, E(X4) = (04+34)(1/8)+(14+
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24)(3/8) = 33/2, E(X5) = (05+35)(1/8)+(15+25)(3/8) = 171/4, and E(X6) =
(06 + 36)(1/8) + (16 + 26)(3/8) = 231/2. Hence, we get E(X) = 3/2, E(Y ) =
E(X2) = 3, Var(X) = E(X2)−(E(X))2 = 3−(3/2)2 = 3/4, Var(Y ) = E(Y 2)−
(E(Y ))2 = E(X4) − (E(X2))2 = 33/2 − 32 = 15/2, Cov(X,Y ) = E(XY ) −
E(X)E(Y ) = E(X3)−E(X)E(X2) = 27/4−(3/2)(3) = 9/4, and Corr(X,Y ) =
Cov\(X,Y )/pVar(X)Var(Y ) = (9/4)/p(3/4)(15/2) = 3√10/10 = 0.9487.
3.3.11 We know P (X = x) = 1/6 for x = 1, . . . , 6, otherwise P (X = x) = 0.
Since Y is also a fair die, P (Y = y) = P (X = y). Two dice cannot affect each
other, so X and Y are independent. Thus, E(X) = E(Y ) = (1)(1/6) + · · · +
(6)(1/6) = 7/2. From Theorem 3.2.3, E(XY ) = E(X)E(Y ) = (7/2)(7/2) =
49/4. Hence, Cov(X,Y ) = E(XY )−E(X)E(Y ) = 0.
3.3.12 The distribution of X is Binomial(4, 1/2). Since X + Y = 4, the dis-
tribution of Y is the same to the distribution of 4 − X. In Example 3.1.7,
E(X) = 4(1/2) = 2. The expectation of Y is E(Y ) = E(4 − X) = 4 −
E(X) = 4 − 2 = 2. For the covariance, E(X2) is required because E(XY ) =
E(X(4 − X)) = 4E(X) − E(X2) = 8 − E(X2). Theorem 3.3.1 and Example
3.3.11 implies Var(X) = E(X2) − (E(X))2 = 4(1/2)(1 − (1/2)) = 1. Hence,
E(X2) = 1 + (2)2 = 5. Thus, E(XY ) = 8 − E(X2) = 3. By the deÞnition
of the covariance, Cov(X,Y ) = E(XY ) − E(X)E(Y ) = 3 − 2 · 2 = −1. Since
Var(Y ) = Var(4−X) = Var(X) = 4(1/2)(1− 1/2) = 1, we have Corr(X,Y ) =
Cov(X,Y )/

p
Var(X)Var(Y ) = −1/1 = −1.

3.3.13 It is know that for U ∼ Bernoulli(θ), E(U) = E(U2) = θ and Var(U) =
θ(1−θ). The expectations are E(Z) = E(X+Y ) = E(X)+E(Y ) = 1/2+1/3 =
5/6 and E(W ) = E(X −Y ) = E(X)−E(Y ) = 1/2− 1/3 = 1/6. The variances
are Var(Z) = Var(X + Y ) = Var(X)+ Var(Y ) = 1/4 + 2/9 = 17/36 and
Var(W) = Var(X − Y ) = Var(X)+ Var(Y ) = 1/4 + 2/9 = 17/36. E(ZW ) =
E((X+Y )(X−Y )) = E(X2−Y 2) = E(X2)−E(Y 2) = 1/2−1/3 = 1/6. Hence,
Cov(Z,W ) = E(ZW)−E(Z)E(W ) = 1/6− (1/2)(1/3) = 0 and Corr(Z,W ) =
Cov(Z,W )/

p
Var(Z)Var(W ) = 0.

3.3.14 It is known that E(X) = 1/2, E(Y ) = 0, Var(X) = 1/4, and Var(Y ) = 1.
Hence, E(Z) = E(X+Y ) = E(X)+E(Y ) = 1/2, E(W ) = E(X−Y ) = E(X)−
E(Y ) = 1/2, Var(Z) = Var(X + Y ) = Var(X)+ Var(Y ) = 5/4, Var(W ) =
Var(X − Y ) = Var(X)+ Var(Y ) = 5/4, and E(ZW ) = E(X2 − Y 2) = E(X)−
Var(Y ) = 1/2−1 = −1/2. Thus, Cov(Z,W ) = E(ZW )−E(Z)E(W ) = −1/2−
(1/2)(0) = −1/2 and Corr(Z,W ) = Cov(Z,W )/pVar(Z)Var(W ) = −2/5.
3.3.15 The joint probability P (X = x, Y = y) = (1/6) · ¡xy¢(1/2)x for x =
1, . . . , 6, y = 0, . . . , x, otherwise P (X = x, Y = y) = 0. The expectations are
E(X) =

P6
x=1

Px
y=0 x(1/6)

¡
x
y

¢
2−x =

P6
x=1 x/6 = 7/2 andE(Y ) =

P6
x=1

Px
y=0

y(1/6)
¡
x
y

¢
2−x =

P6
x=1 x/12 = 7/4. E(XY ) =

P6
x=1

Px
y=0 xy(1/6)

¡
x
y

¢
2−x =P6

i=1 x
2/12 = 91/12. Hence, Cov(X,Y ) = E(XY ) − E(X)E(Y ) = 91/12 −

(7/2)(7/4) = 35/24.
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Problems
3.3.16 Here Cov(X,Y ) = E(XY ) − E(X)E(Y ) = E(cX2) − E(X)E(cX) =
c(1)−(0)(0) = c, and Corr(X,Y ) =Cov(X,Y ) /pVar(X)Var(Y ) = c /p(1)(c2)
= c / |c| = sgn(c), where sgn(c) = 1 for c > 0, sgn(c) = 0 for c = 0, and
sgn(c) = −1 for c < 0. Hence,
(a) limc&0 Cov(X,Y ) = limc&0 c = 0.
(b) limc%0Cov(X,Y ) = limc%0 c = 0.
(c) limc&0Corr(X,Y ) = limc&0 sign(c) = 1.
(d) limc%0Corr(X,Y ) = limc%0 sign(c) = −1.
(e) As c passes from positive to negative, Corr(X,Y ) is not continuous but
rather �jumps� from +1 to −1.
3.3.17 We have that E (X) = µ1, Var(X) = σ21 , E (Y ) = µ2, Var(Y ) = σ22, and
using (2.7.1) we have that

E(XY ) = E
³
(µ1 + σ1Z1)

³
µ2 + σ2

³
ρZ1 +

p
1− ρ2Z2

´´´
= E

µ
µ1µ2 + σ1µ2Z1 + ρσ2µ1Z1 + ρσ1σ2Z

2
1

+σ2µ1
p
1− ρ2Z2 + σ1σ2

p
1− ρ2Z1Z2

¶
= µ1µ2 + ρσ1σ2

where we have usedE (Z1) = E (Z2) = E (Z1Z2) = E (Z1)E (Z2) = 0, E
¡
Z21
¢
=

1. So Cov(XY ) = ρσ1σ2 and Corr(X,Y ) = Cov(X,Y ) /
p
Var(X)Var(Y ) =

(σ1σ2ρ) /
p
(σ21)(σ

2
2) = ρ.

3.3.18 We have that

E (X (X − 1)) = θ
∞X
x=0

x (x− 1) (1− θ)x = θ (1− θ)2
∞X
x=2

x (x− 1) (1− θ)x−2

= θ (1− θ)2
∞X
x=2

d2 (1− θ)x
dθ2

= θ (1− θ)2 d
2

dθ2

∞X
x=2

(1− θ)x

= θ (1− θ)2 d
2

dθ2

µ
1

θ
− 1− (1− θ)

¶
= θ (1− θ)2 2

θ3
=
(1− θ)2
θ

.

Therefore

Var (X) =
2 (1− θ)2

θ2
− (1− θ)

θ

µ
(1− θ)
θ

− 1
¶

=
(1− θ)2
θ2

+
(1− θ)
θ

=
(1− θ)
θ

µ
(1− θ)
θ

+ 1

¶
=
(1− θ)
θ2

.

3.3.19 We have that when X1, . . . ,Xr are i.i.d. Geometric(θ) then X = X1 +
· · ·+Xr ∼ Negative Binomial(r, θ) . Therefore, Var(X) = r (1− θ) /θ2.
3.3.20 We have that

E(X2) =

Z ∞

0

x2
λαxα−1

Γ(α)
e−λx dx =

Z ∞

0

λαxα+1

Γ(α)
e−λx dx

=

Z ∞

0

λαtα+1

λα+1Γ(α)
e−t (1/λ) dt =

1

λ2Γ(α)

Z ∞

0

tα+1e−t dx =
Γ(α+ 2)

λ2Γ(α)
=
α (α+ 1)

λ2
,
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so Var(X) = α (α+ 1) /λ2 − α2/λ2 = α/λ2.

3.3.21 We have that E
¡
X2
¢
=
R∞
0
x2αxα−1e−x

α

dx =
R∞
0
αxα+1e−x

α

dx, and
putting u = xα, x = u1/α, du = αxα−1dxwe have thatE

¡
X2
¢
=
R∞
0 u2/αe−u du

= Γ (2/α+ 1) and Var(X) = E
¡
X2
¢− (E (X))2 = Γ (2/α+ 1)− Γ2 (1/α+ 1) .

3.3.22 We have that

E
³
(X + 1)

2
´
=

Z ∞

0

(x+ 1)2α (1 + x)
−α−1

dx =

Z ∞

0

α (1 + x)
−α+1

dx

=

(
α

−α+2 (1 + x)
−α+2

¯̄̄∞
0

α 6= 2
α ln (1 + x)|∞0 α = 2

=

½ ∞ 0 < α ≤ 2
α/ (α− 2) if α > 2.

Therefore, when α > 2,

Var(X) = E
³
(X + 1)2

´
− 2E (X)− 1− (E (X))2

=
α

α− 2 −
2

α− 1 − 1−
1

(α− 1)2

=
α (α− 1)2 − 2 (α− 1) (α− 2)− (α− 1)2 (α− 2)− (α− 2)

(α− 1)2 (α− 2)
=

α

(α− 1)2 (α− 2) .

3.3.23 We have that E
¡
X2
¢
=
R∞
0
x2e−x dx = Γ (3) = 2 = Var(X) since

E(X) = 0.

3.3.24 We have that

E(X2) =

Z 1

0

x2
Γ (a+ b)

Γ (a)Γ (b)
xa−1 (1− x)b−1 dx = Γ (a+ b)

Γ (a)Γ (b)

Z 1

0

xa+1 (1− x)b−1 dx

=
Γ (a+ b)

Γ (a)Γ (b)

Γ (a+ 2)Γ (b)

Γ (a+ b+ 2)
=

a (a+ 1)

(a+ b) (a+ b+ 1)
.

Therefore

Var (X) = E(X2)− (E(X))2 = a (a+ 1)

(a+ b) (a+ b+ 1)
−
µ

a

a+ b

¶2
=
a (a+ 1) (a+ b)− a (a+ b+ 1)

(a+ b)
2
(a+ b+ 1)

=
ab

(a+ b)
2
(a+ b+ 1)

.

3.3.25 We have that Xi ∼ Binomial(n, θi) so that E(Xi) = nθi, Var(Xi) =
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nθi (1− θi) . Also,

E (X1X2) =
nX

x1=0

n−x1X
x2=0

x1x2

µ
n

x1 x2 n− x1 − x2

¶
θx11 θ

x2
2 θ

n−x1−x2
3

= n (n− 1) θ1θ2
nX

x1=1

n−x1X
x2=1

µ
n− 2

x1 − 1x2 − 1n− 2− (x1 − 1)− (x2 − 1)
¶

× θx1−11 θx2−12 θ
n−2−(x1−1)−(x2−1)
3

= nθ1θ2

n−2X
x1=0

n−2−x1X
x2=0

µ
n− 2

x1 x2 n− 2− x1 − x2

¶
θx11 θ

x2
2 θ

n−2−x1−x2
3 = nθ1θ2

since the sum is the sum of all Multinomial(n− 2, θ1, θ2, θ3) probabilities. There-
fore, Cov(X1,X2) = n (n− 1) θ1θ2 − n2θ1θ2 = −nθ1θ2.
3.3.26 We have that X1 ∼ Beta(α1, α2 + α3) , so E(X1) = α1/ (α1 + α2 + α3)
and Var(X1) = α1 (α2 + α3) / (α1 + α2 + α3)

2 (α1 + α2 + α3 + 1) by Problem
3.3.24. Also,

E (X1X2)

=

Z 1

0

Z 1−x2

0

x1x2
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
xα1−11 xα2−12 (1− x1 − x2)α3−1 dx1 dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)

Z 1

0

Z 1−x2

0

xα11 x
α2
2 (1− x1 − x2)α3−1 dx1 dx2

=
Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)

Γ (α1 + 1)Γ (α2 + 1)Γ (α3)

Γ (α1 + α2 + α3 + 2)

=
α1α2

(α1 + α2 + α3) (α1 + α2 + α3 − 1)
so

Cov (X1,X2) =
α1α2

(α1 + α2 + α3) (α1 + α2 + α3 + 1)
− α1α2

(α1 + α2 + α3)
2

=
−α1α2

(α1 + α2 + α3)
2
(α1 + α2 + α3 + 1)

.

3.3.27 We have that

E(X (X − 1)) =
min(n,M)X

x=max(0, n+M−N)
x (x− 1)

¡
M
x

¢¡
N−M
n−x

¢¡
N
n

¢
=

min(n,M)X
x=max(2, n+M−N)

x (x− 1)
¡
M
x

¢¡
N−M
n−x

¢¡
N
n

¢
= n (n− 1)M (M − 1)

N (N − 1)
min(n,M)X

x=max(2, n+M−N)

¡
M−2
x−2

¢¡
N−2−(M−2)
n−2−(x−2)

¢¡
N−2
n−2

¢
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= n (n− 1)M (M − 1)
N (N − 1)

min(n−2,M−2)X
x=max(0, n−2+(M−2)−(N−2))

¡
M−2
x

¢¡
N−2−(M−2)

n−2−x
¢¡

N−2
n−2

¢
= n (n− 1)M (M − 1)

N (N − 1)
as we are summing all Hypergeometric(N − 2,M − 2, n− 2) probabilities. There-
fore,

Var(X) = n (n− 1)M (M − 1)
N (N − 1) − n

M

N

µ
n
M

N
− 1
¶

= n
M

N

(n− 1) (M − 1)N − (N − 1) (nM −N)
N (N − 1) = n

M

N

µ
1− M

N

¶
(N − n)
(N − 1) .

3.3.28 In Exercise 3.3.15, we showed that (1) the joint probability P (X =
x, Y = y) = (1/6) · ¡xy¢(1/2)x for x = 1, . . . , 6, y = 0, . . . , x, otherwise P (X =

x, Y = y) = 0 and (2) E(X) = 7/2,E(Y ) = 7/4, E(XY ) = 91/12 and
Cov(X,Y ) = 35/24. To compute Corr(X,Y ), the variances are required. E(X2) =P6
x=1

Px
y=0 x

2(1/6)
¡
x
y

¢
2−x =

P6
x=1 x

2/6 = 91/6 and E(Y 2) =
P6
x=1

Px
y=0

y2(1/6)
¡
x
y

¢
2−x =

P6
i=1 x(x + 1)/24 = 14/3. Hence, Var(X) = E(X2) −

(E(X))2 = 35/12 and Var(Y ) = E(Y 2)−(E(Y ))2 = 77/48. Therefore, Corr(X,Y )
= 35/24/

p
(35/12)(77/48) =

√
55/11 = 0.6742.

Challenges
3.3.29 Assume Y is discrete, with Y ≥ 0 and E(Y ) = 0. Then 0 =Py y P (Y =
y) =

P
y≥0 y P (Y = y). But the only way a sum of non-negative terms can be

0 is if each term is 0, i.e., y P (Y = y) = 0 for all y ∈ R1. This means that
P (Y = y) = 0 for y 6= 0, so that P (Y = 0) = 1.
3.3.30 Let C = E(X), and let Y = (X − C)2. Then Y ≥ 0, and E(Y ) =
Var(X) = 0. Hence, from the previous challenge, P (Y = 0) = 1. But Y = 0 if
and only if X = C. Hence, P (X = C) = 1.

3.3.31 Let C =
P∞
k=1 1/k

3. (Then C = ζ(3) = 1.202, but C cannot be ex-
pressed precisely in elementary terms.) Let P (Y = k) = 1/Ck3 for k =
1, 2, 3, . . .. LetX = Y +5−π2/6. Then E(Y ) =P∞

k=1 k(1/k
3) =

P∞
k=1(1/k

2) =
π2/6, so E(X) = E(Y ) + 5− π2/6 = π2/6 + 5− π2/6 = 5. On the other hand,
E(Y 2) =

P∞
k=1 k

2(1/k3) =
P∞
k=1(1/k) = ∞. It follows that E(X2) = ∞ and

that Var(X) =∞.

3.4 Generating Functions

Exercises
3.4.1
(a) rZ(t) = E(tZ) =

P∞
z=1 t

z(1/2z) = (t/2) / [1− (t/2)] = t/(2− t). Hence,



3.4. GENERATING FUNCTIONS 67

r0Z(t) = ((2 − t)(1) − (t)(−1))/(2 − t)2 = 2/(2 − t)2, so r0Z(0) = 2/22 = 1/2 =
P (Z = 1). Also, r00Z(t) =

d
dt [2/(2− t)2] = −4/(t− 2)3, so r00Z(0) = (−4)/(−2)3 =

1/2 = 2(1/4) = 2P (Z = 2).
(b) Note that Z = X +1, where X ∼ Geometric(1/2). Hence, E(Z) = E(X) +
1 = 1+1 = 2, and Var(Z) = Var(X) = (1− (1/2))/(1/2)2 = 2, where E(Z2) =
Var(Z) +E(Z)2 = 2 + 22 = 6. On the other hand, mZ(t) = E(e

tZ) = rZ(e
t) =

et/(2− et). Hence, m0
Z(t) = [(2− et)(et)− et(−et)]/(2− et)2 = 2et/(2−et)2, so

m0
Z(0) = 2 = E(Z). Also, m

00
Z(t) = 2e

t(2+ et)/(2− et)3, so m00
Z(0) = 2(3)/1

3 =
6 = E(Z2).

3.4.2 Here mX(s) = (esθ + 1− θ)n. Hence, m0
X(s) = e

sθn(esθ + 1− θ)n−1, so
m0
X(0) = nθ. Thenm

00
X(s) = e

2sθ2n(n−1)(esθ+1−θ)n−2+esθn(esθ+1−θ)n−1,
so m00

X(0) = θ2n(n − 1) + θn. Hence, Var(X) = E(X2) − E(X)2 = m00
X(0) −

(m0
X(0))

2 = θ2n(n− 1) + θn− (nθ)2 = nθ(1− θ).
3.4.3 Here mY (s) = eλ(e

s−1). Hence, m0
Y (s) = λeseλ(e

s−1), so m0
Y (s) = λ.

Also, m00
Y (s) = (λes + λ2e2s)eλ(e

s−1), so m00
Y (s) = λ + λ2. Hence, Var(Y ) =

E(Y 2)−E(Y )2 = m00
Y (0)− (m0

Y (0))
2 = λ+ λ2 − (λ)2 = λ.

3.4.4 rY (t) = E(tY ) = E(t3X+4) = t4E((t3)X) = t4rX(t3).

3.4.5 mY (s) = E(esY ) = E(es(3X+4)) = e4sE(e3sX) = e4smX(3s).

3.4.6 We knowm00
X(s) = e

2sθ2n(n−1)(esθ+1−θ)n−2+esθn(esθ+1−θ)n−1, so
m000
X(s) = e

snθ(1−(es−1)θ)n−3[1−(es(3n−1)+2)θ+(1−es(3n−1)+e2sn2)θ2],
so E(X3) =m000

X(0) = nθ[1− 3(n− 1)θ + (n2 − 3n+ 2)θ2].
3.4.7 We know from previously that m00

Y (s) = (λe
s+λ2e2s)eλ(e

s−1) som000
Y (s) =

eλ(e
s−1)esλ(1 + 3esλ+ e2sλ2), and E(Y 3) = m000

Y (0) = λ(1 + 3λ+ λ
2).

3.4.8
(a) rX(t) = E(tX) = (t2)(1/2) + (t5)(1/3) + (t7)(1/6).
(b) r0X(t) = (2t)(1/2) + (5t

4)(1/3)+ (7t6)(1/6). Hence, r0X(0) = 0 = P (X = 1).
Also, r00X(t) = (2)(1/2) + (20t

3)(1/3) + (42t5)(1/6). Hence, r00X(0) = (2)(1/2) =
1 = 2P (X = 2).
(c) mX(s) = E(esX) = (e2s)(1/2) + (e5s)(1/3) + (e7s)(1/6).
m0
X(s) = (2e

2s)(1/2) + (5e5s)(1/3) + (7e7s)(1/6). Hence, m0
X(0) = (2)(1/2) +

(5)(1/3) + (7)(1/6) = E(X). Also, m00
X(s) = (22e2s)(1/2) + (52e5s)(1/3) +

(72e7s)(1/6). Hence, m00
X(0) = (2

2)(1/2) + (52)(1/3) + (72)(1/6) = E(X2).

Problems
3.4.9
(a) mX(s) = E(e

sX) =
R 10
0
esx(1/10)dx = (1/10)(e10s− 1)/s for s 6= 0, with (of

course) mX(0) = 1.
(b) For s 6= 0, m0

X(s) = (1/10)(s(10e10s) − (e10s − 1))/s2. We then compute
using L�Hôpital�s Rule (twice) that m0

X(0) = lims→∞m
0
X(s) = 5 = E(X).

3.4.10 We have that rX (t) =
P∞
x=0 (t (1− θ))x θ = θ (1− t (1− θ))−1 , pro-

vided |t (1− θ)| < 1. Then r0X (t) = θ (1− θ) (1− t (1− θ))−2 ,
r00X (t) = 2θ (1− θ)2 (1− t (1− θ))−3, so r00X (0) /2 = θ (1− θ)2 .
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3.4.11We have that rX (t) =
P∞
x=0

¡
r+x−1
x

¢
(t (1− θ))x θr = θr (1− t (1− θ))−r ,

provided |t (1− θ)| < 1. Then r0X (t) = rθr (1− θ) (1− t (1− θ))−r−1 , r00X (t) =
r (r − 1) θr (1− θ)2 (1− t (1− θ))−r−2, so r00X (0) /2 = r (r + 1) θr (1− θ)2 /2
=
¡
r+2−1
2

¢
θr (1− θ)2 .

3.4.12
(a)mX(s) = E(e

sX) =
P∞
x=0 e

sx(1−θ)xθ = θ/ (1− es(1− θ)) , provided |es(1−
θ)| < 1, i.e., s < − log(1− θ).
(b) m0

X(s) =
d
ds

¡
θ / [1 − es(1 − θ)]¢ = θ(1 − θ)es / [1 − es(1 − θ)]2. Hence,

E(X) = m0
X(0) = θ(1− θ) / [1− (1− θ)]2 = (1− θ)/θ.

(c) m00
X(s) =

¡
esθ(1 − θ)(1 + es(1 − θ))¢/ [1 − es(1 − θ)]3. Hence, E(X2) =

m00
X(0) =

¡
θ(1 − θ)(2 − θ)¢ / [θ]3 = (1 − θ)(2 − θ)/θ2, so Var(X) = E(X2) −

E(X)2 = [(1− θ)(2− θ)/θ2]− [(1− θ)/θ]2 = (1− θ)/θ2.

3.4.13 We use the result of 3.4.12 and the fact that if X1, . . . ,Xr is a sam-
ple from the Geometric(θ) distribution, then X = X1 + · · · +Xr ∼ Negative-
Binomial(r, θ) .
(a) mX(s) = mX1

(s) · · ·mXr
(s) = θr/ (1− es(1− θ))r .

(b) m0
X(s) = res(1 − θ)θr/ (1− es(1− θ))r+1, so E(X) = m0

X(0) = r(1 −
θ)θr/θr+1 = r(1− θ)/θ.
(c) m00

X(s) = re
s(1− θ)θr/ (1− es(1− θ))r+1+

r (r + 1) e2s(1− θ)2θr/ (1− es(1− θ))r+2, so Var(X) =m00
X(0)− (r(1− θ)/θ)2

= r(1 − θ)θr/θr+1 + r (r + 1) (1 − θ)2θr/θr+2 − (r(1− θ)/θ)2 = r(1 − θ)/θ +
r(1− θ)2/θ2 = r(1− θ)/θ2.

3.4.14 rY (t) = E
¡
tY
¢
= E

¡
ta+bX

¢
= E

¡
tatbX

¢
= taE

¡
tbX
¢
= taE

³¡
tb
¢X´

=

tarX
¡
tb
¢
and mY (t) = E

¡
etY
¢
= E

¡
eat+btX

¢
= E

¡
eatebtX

¢
= eatE

¡
ebtX

¢
=

eatE
¡
e(bt)X

¢
= eatmX (bt) .

3.4.15 Write Z = µ+ σX, where X ∼ Normal(0, 1). Then mZ(s) = E(e
sZ) =

E(es(µ+σX)) = esµ +E(esσX) = esµ +mX(σs) = e
sµ+ e(σs)

2/2 = esµ + eσ
2s2/2.

3.4.16
(a) mY (s) = E(e

sY ) =
R∞
−∞ e

sy e|y|/2 dy =
R∞
0
esy ey/2 dy +

R 0
−∞ e

sy e−y/2 dy =R∞
0 e(s−1/2)y dy+

R 0
−∞ e

(s+1/2)y dy = 1/(1/2−s)+1/(1/2+s), provided |s| < 1/2.
(b) m0

Y (s) = (1/2− s)−2 − (1/2 + s)−2, so E(Y ) = m0
Y (0) = 4− 4 = 0.

(c) m00
Y (s) = 2(1/2− s)−3 + 2(1/2− s)−3, so E(Y 2) = m00

Y (0) = 16 + 16 = 32,
where Var(Y ) = E(Y 2)−E(Y )2 = 32.

3.4.17 E
¡
Xk
¢
=
R∞
0
xkαxα−1e−x

α

dx =
R∞
0
αxα+k−1e−x

α

dx and putting
u = xα, x = u1/α, du = αxα−1dx we have that E (X) =

R∞
0 uk/αe−u du =

Γ (k/α+ 1) .
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3.4.18 We put u = 1/(1 + x) so x = (1/u)− 1, dx = −du/u2 so

E
¡
Xk
¢
=

Z ∞

0

xkα (1 + x)−α−1 dx = α
Z ∞

0

µ
1− u
u

¶k
uα−1 du

= α

Z ∞

0

uα−k−1 (1− u)k du

=

(
∞ 0 < α ≤ k

αΓ(α−k)Γ(k+1)Γ(α+1) α > k.
=

(
∞ 0 < α ≤ k

Γ(α−k)Γ(k+1)
Γ(α) α > k.

3.4.19 Putting z = lnx so that x = exp(z), dx = exp(z)dz, we have that

E
¡
Xk
¢

=

Z ∞

0

xk
1√
2πτ

exp

(
−(lnx)

2

2τ2

)
1

x
dx =

Z ∞

0

xk−1
1√
2πτ

exp

(
−(lnx)

2

2τ2

)
dx

=

Z ∞

0

exp(kz)
1√
2πτ

exp

½
− z2

2τ2

¾
dx = exp

½
τ2k2

2

¾
since this is the moment-generating function of the N

¡
0, τ2

¢
distribution at k.

3.4.20

m (s) =

Z ∞

0

ext
(λx)α−1

Γ (α)
e−λxλ dx = λ

Z ∞

0

(λx)α−1

Γ (α)
e−(λ−t)x dx

=

½ ∞ t ≥ λ
λα

(λ−t)α t < k

3.4.21 The mgf of the Poisson(λi) equals mi (s) = exp {λi (es − 1)} . Then the
mgf of Y = X1 + · · ·+Xn is given by (Theorem 3.4.5)

mY (s) =
nY
i=1

mi (s) =
nY
i=1

exp {λi (es − 1)} = exp
(

nX
i=1

λi (e
s − 1)

)

and we recognize this as the mgf of the Poisson(
Pn
i=1 λi) . Therefore, the unique-

ness theorem implies that this is the distribution of Y.

3.4.22 The mgf of the Geometric(θ) distribution is given by θ/ (1− es(1− θ)) .
Therefore, the Negative Binomial(r, θ) distribution has mgf given by m(s) =
θr/ (1− es(1− θ))r since it can be obtained as the sum of r independent
Geometric(θ) random variables and we use Theorem 3.4.5. Then Xi has mgf
given bymi (s) = θri/ (1− es(1− θ))ri and, using Theorem 3.4.5 again, we have
that Y has mgf

mY (s) =
nY
i=1

mi (s) =
nY
i=1

θri/ (1− es(1− θ))ri

= θ
!n

i=1 ri/ (1− es(1− θ))
!n

i=1 ri
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and we recognize this as the mgf of the Negative Binomial(ri, θ) distribution.
Therefore, by the uniqueness theorem this is the distribution of Y.

3.4.23 The Gamma(α, λ) distribution has mgf λα/ (λ− t)α for t < λ by Prob-
lem 3.4.20. Therefore, by Theorem 3.4.5, Y has mgf

mY (s) =
nY
i=1

mi (s) =
nY
i=1

λαi/ (λ− t)αi = λ
!n

i=1 αi/ (λ− t)
!n

i=1 αi

and we recognize this as the mgf of the Gamma(
Pn
i=1 αi, λ) distribution so, by

the uniqueness theorem this must be the distribution of Y.

3.4.24 By Theorem 3.4.7 the mgf is given by (using mXi
(s) = λ/ (λ− s) and

rN(t) = exp {λ (t− 1)})

mSN (s) = rN (mX1 (s)) = exp

½
λ

µ
λ

λ− s − 1
¶¾

= exp

½
λs

λ− s
¾
.

Then m0
SN
(s) = exp

n
λs
λ−s

o³
λs
λ−s

´0
= exp

n
λs
λ−s

o
λ2 (λ− s)−2 and m0

SN
(0) = 1

is the mean.

3.4.25 By Theorem 3.4.7 the mgf is given by (using mXi (s) = λ/ (λ− s) and
rN(t) = θ (1− t (1− θ))−1)

mSN (s) = rN (mX1
(s)) = θ/

µ
1− λ

λ− s(1− θ)
¶
.

Then

m0
SN (s) =

θ³
1− λ

λ−s(1− θ)
´2 (1− θ) λ

(λ− s)2 ,

so m0
SN
(0) = (1− θ) / (λθ) .

3.4.26 Here cX(s) = 1 − p + p cos s + ip sin s, so c0X(s) = −p sin s + ip cos s,
iE(X) = c0X(0) = ip, E(X) = p.

3.4.27
(a) We can write Y = X1+X2+. . .+Xn, where the {Xi} are i.i.d.∼ Bernoulli(p).
Hence, cY (s) = cX1(s)cX2(s) . . . cXn(s) = (1− p+ p cos s+ ip sin s)n.
(b) c0Y (s) = n(1− p+ p cos s+ ip sin s)n−1(−p sin s+ ip cos s). Hence, iE(Y ) =
c0Y (s) = n1

n−1(ip) = inp, so E(Y ) = np.

3.4.28 The sample mean has characteristic function given by

cX̄ (s) = E
¡
exp

©
isX̄

ª¢
= E

Ã
exp

(
i
s

n

nX
i=1

Xi

)!
=

nY
i=1

cX1

³ s
n

´
=
³
cX1

³ s
n

´´n
=

µ
exp

½
− |t|
n

¾¶n
= exp {− |t|}



3.5. CONDITIONAL EXPECTATION 71

and we recognize this as the cf of the Cauchy distribution. Then by the unique-
ness theorem we must have that X̄ is also distributed Cauchy. This implies that
the sample mean in this case is just as variable as a single observation. So in-
creasing the sample size does not make the distribution of X̄ more concentrated.
In fact, it does not change at all!

3.4.29 The cf of the N(0, 1) distribution is given by

c(t) =

Z ∞

−∞
eitx

1√
2π
e−x

2/2 dx = e−t
2/2

Z ∞

−∞

1√
2π
exp

½
−1
2
(x− it)2

¾
dx

= e−t
2/2.

Therefore, if X = µ + σZ, where Z ∼ N(0, 1), then X ∼ N(µ, σ2) and X has
mgf

cX(t) = E
¡
eitX

¢
= E

³
eit(µ+σZ)

´
= eitµE

¡
eitσZ

¢
= eitµc (tσ)

= exp

½
itµ− σ

2t2

2

¾
.

Then we have that ln cX(t) = itµ−σ2t2/2 so (ln cX(t))0 = iµ−σ2t, (ln cX(0))0 /i =
µ and the Þrst cumulant is µ. Also, (ln cX(t))

00 = −σ2 and so (ln cX(0))00 /i2 =
σ2 and the second cumulant is σ2. Also, all higher order derivatives of ln cX(t)
are 0, so all higher order cumulants are 0.

3.5 Conditional Expectation

Exercises
3.5.1
(a) E(X |Y = 3) =

P
x xP (X = x |Y = 3) = (2)((1/5)/(1/5 + 1/5)) +

(3)((1/5)/(1/5 + 1/5)) = 5/2.
(b) E(Y |X = 3) =

P
y y P (Y = y |X = 3) = (2)((1/5)/(1/5 + 1/5)) +

(3)((1/5)/(1/5 + 1/5)) + (17)((1/5)/(1/5 + 1/5 + 1/5)) = 22/3.
(c) E(X |Y = 2) =

P
x xP (X = x |Y = 2) = (2)((1/5)/(1/5 + 1/5)) +

(3)((1/5)/(1/5 + 1/5)) = 5/2. Also E(X |Y = 17) =
P
x xP (X = x |Y =

17) = (3)(1/1) = 3. Hence,

E(X |Y ) =
 5/2 Y = 2
5/2 Y = 3
3 Y = 17

(d) E(Y |X = 2) =
P
y y P (Y = y |X = 2) = (2)((1/5)/(1/5 + 1/5)) +

(3)((1/5)/(1/5 + 1/5)) = 5/2. Hence,

E(Y |X) =
½
5/2 X = 2
22/3 X = 3
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3.5.2
(a) fX(x) =

R∞
−∞ fX,Y (x, y) dy =

R 5
0 [9(xy+x

5y5)/16000900] dy = (9x+1875x5)/
1280072.
(b) fY (y) =

R∞
−∞ fX,Y (x, y) dx =

R 4
0
[9(xy + x5y5)/16000900]dx = (18y +

1536y5)/4000225.
(c) For 0 ≤ y ≤ 5,

E(X |Y = y) =
Z ∞

−∞
xfX|Y (x|y) dx =

Z ∞

−∞
x (fX,Y (x, y)/fY (y)) dx

=

Z 4

0

x (9(xy + x5y5)/16000900)/((18y + 1536y5)/4000225) dx

= [8(7 + 768y4)] / [7(3 + 256y4)].

Hence, E(X |Y ) = [8(7 + 768Y 4)] / [7(3 + 256Y 4)] for 0 ≤ Y ≤ 5.
(d) For 0 ≤ x ≤ 4,

E(Y |X = x) =

Z ∞

−∞
y fY |X(y|x) dy =

Z ∞

−∞
y (fX,Y (x, y)/fX(x)) dy

=

Z 5

0

y (9(xy + x5y5)/16000900)/((9x+ 1875x5)/1280072) dx

= [70 + 18750x4] / [21 + 4375x4].

Hence, E(Y |X) = [70 + 18750X4] / [21 + 4375X4].
(e)

E(E(X |Y )) = E([8(7 + 768Y 4)] / [7(3 + 256Y 4)])
=

Z ∞

−∞
[8(7 + 768y4)] / [7(3 + 256y4)] fY (y) dy

=

Z 5

0

[8(7 + 768y4)] / [7(3 + 256y4)] [(18y + 1536y5)/4000225] dy

= 3840168/1120063 = 3.42852857

On the other hand, E(X) =
R∞
−∞ xfX(x) dx =

R 4
0 x [(9x+1875x

5)/1280072]dx =
3840168/1120063 = E(E(X |Y )).
3.5.3
(a) E(Y |X = 6) =

P
y y P (Y = y |X = 6) =

P
y y P (Y = y, X = 6)/P (X =

6) = (2)((1/11)/(4/11)) + (3)((1/11)/(4/11)) + (7)((1/11)/(4/11))
+(13)((1/11)/(4/11)) = 25/4 = 6.24.
(b) E(Y |X = −4) =Py y P (Y = y, X = −4)/P (X = −4)
= (2)((1/11)/(7/11)) + (3)((2/11)/(7/11)) + (7)((4/11)/(7/11)) = 36/7 = 5.14.
(c) E(Y |X) = 25/4 whenever X = 6 and E(Y |X) = 36/7 whenever X = −4.
3.5.4
(a) E(X |Y = 2) =Px xP (X = x |Y = 2) =Px xP (X = x, Y = 2)/P (Y =
2) = (−4)((1/11)/(2/11)) + (6)((1/11)/(2/11)) = 1.
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(b) E(X |Y = 3) =Px xP (X = x, Y = 3)/P (Y = 3) = (−4)((2/11)/(3/11))+
(6)((1/11)/(3/11)) = −2/3.
(c) E(X |Y = 7) =Px xP (X = x, Y = 7)/P (Y = 7) = (−4)((4/11)/(5/11))+
(6)((1/11)/(5/11)) = −2.
(d) E(X |Y = 13) =Px xP (X = x, Y = 13)/P (Y = 13) = (6)((1/11)/(1/11))
= 6.
(e) E(X |Y ) = 1 whenever Y = 2; E(X |Y ) = −2/3 whenever Y = 3,
E(X |Y ) = −2 whenever Y = 7, and E(X |Y ) = 6 whenever Y = 13.
3.5.5 We have that E(earnings |Y = �takes course�) = $(1000(.1) + 2000(.3)
+3000(.4) + 4000(.2)) = $2700, while E(X |Y = �doesn�t take course�) =
$ (1000(.3) + 2000(.4) + 3000(.2) + 4000(.1)) = $2100. Therefore, by TTE we
have that E(earnings) = $ (2700 (.4) + 2100 (.6)) = $2340.

3.5.6 Let Y be the number showing on the second die. Then, X and Y are
independent and have the same distribution. Also Z = X + Y .
(a) E(X) =

P6
x=1 x(1/6) = 7/2 as well as E(Y ) = 7/2.

(b) E(Z|X = 1) = E(X + Y |X = 1) = 1 + E(Y |X = 1) = 1 + E(Y ) =
1 + (7/2) = 9/2. In the third equality, Theorem 2.8.4 (a) is used.
(c)E(Z|X = 6) = E(X+Y |X = 6) = 6+E(Y |X = 6) = 6+E(Y ) = 6+(7/2) =
19/2. For (d)-(h), note that P (Z = z) = (6− |7− z|)/36 for z = 2, . . . , 12. The
conditional probability is given by P (X = x|Z = z) = P (X = x,Z = z)/P (Z =
z) = P (X = x, Y = z − x)/P (Z = z) = 1/[36P (Z = z)] = 1/(6 − |7 − z|) for
x = max(1, z − 6), . . . ,min(6, z − 1) and z = 2, . . . , 12. Hence,

E(X|Z = z) =
min(6,z−1)X

x=max(1,z−6)

x

6− |7− z|

=
(max(1, z − 6) +min(6, z − 1))(min(6, z − 1)−max(1, z − 6) + 1)

2(6− |7− z|) =
z

2
.

(d) The event Z = 2 implies X = 1 and Y = 1. Hence, E(X|Z = 2) = 1. It
is the same to z/2 = 2/2 = 1. (e) When Z = 4, P (X = x|Z = 4) = 1/3 for
x = 1, 2, 3, otherwise 0. Hence, E(X|Z = 4) = (1+2+3)/3 = 2 = 4/2. (f) When
Z = 6, P (X = x|Z = 6) = 1/5 for x = 1, 2, 3, 4, 5, otherwise 0. Hence, E(X|Z =
6) = (1 + · · · + 5)/5 = 3 = 6/2. (g) When Z = 7, P (X = x|Z = 7) = 1/6 for
x = 1, . . . , 6, otherwise 0. Hence, E(X|Z = 7) = (1 + · · · + 6)/6 = 7/2 = 7/2.
(h) When Z = 11, P (X = x|Z = 11) = 1/2 for x = 5, 6, otherwise 0. Hence,
E(X|Z = 11) = (5 + 6)/2 = 11/2 = 11/2. Hence, the theoretic result and the
real computation coincide.

3.5.7 Let X and Y be the numbers showing on the Þrst and the second dice.
(a) The event (W = 4) occurs only when (X = 1, Y = 4), (X = 2, Y = 2),
(X = 4, Y = 1). Hence,

E(Z|W = 4) = (1 + 4)(1/3) + (2 + 2)(1/3) + (4 + 1)(1/3) = 14/3.
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(b) The event (Z = 4) occurs only when (X = 1, Y = 3), (X = 2, Y = 2),
(X = 3, Y = 1). Hence,

E(W |Z = 4) = (1 · 3)(1/3) + (2 · 2)(1/3) + (3 · 1)(1/3) = 10/3.

3.5.8 The joint probability is given by P (X = x, Y = y) = (1/6)
¡
x
y

¢
2−x for

x = 1, . . . , 6, y = 0, . . . , x, otherwise 0.
(a) The marginal probability of X is P (X = x) =

Px
y=0(1/6)

¡
x
y

¢
2−x = 1/6.

Hence, P (Y = y|X = x) = P (X = x,Y = y)/P (X = x) =
¡
x
y

¢
2−x ∼

Binomial(x, 1/2). Thus, we get E(Y |X = 5) = 5 · (1/2) = 5/2.
(b) P (Y = 0) =

P6
x=1(1/6)

¡
x
0

¢
2−x = 21/128. Hence,

E(X|Y = 0) =
6X
x=1

x
2−x/6
21/128

= 40/21.

(c) P (Y = 2) =
P6
x=1(1/6)

¡
x
2

¢
2−x = 33/128. Hence,

E(X|Y = 2) =
6X

x=1

x

¡
x
2

¢
2−x/6

33/128
= 130/33.

3.5.9 Let X1,X2,X3 be the random variables showing the status of ith coin.
X1 = 1 means that the Þrst coin shows head. Then, X = X1 +X2 +X3 and
Y = X1. It is easy to check E(Xi) = 1/2 for i = 1, 2, 3.
(a) The event Y = 0 implies X1 = 0. E(X|Y = 0) = E(X1 +X2 +X3|X1 =
0) = E(X2 +X3|X1 = 0) = (1/2) + (1/2) = 1.
(b) The event Y = 1 implies X1 = 1. E(X|Y = 1) = E(X1 +X2 +X3|X1 =
1) = 1 + E(X2 +X3|X1 = 1) = 1 + (1/2) + (1/2) = 2. (c) The event (X = 0)
implies X1 = X2 = X3 = 0. Hence, E(Y |X = 0) = E(X1|X = 0) = 0.
(d) The event (X = 1) implies only one Xi = 1 and the others are 0. Hence
P (X1 = 1|X = 1) = 1/3 and E(Y |X = 1) = E(X1|X = 1) = (1)(1/3) +
(0)(2/3) = 1/3.
(e) The event (X = 2) implies only one Xi = 0 and the others are 1. Hence
P (X1 = 1|X = 1) = 2/3 and E(Y |X = 2) = E(X1|X = 1) = (1)(2/3) +
(0)(1/3) = 2/3.
(f) The event (X = 3) implies X1 = X2 = X3 = 1. Hence, E(Y |X = 3) =
E(X1|X = 3) = 1.
(g) From (c)-(f), E(Y |X) = X/3 is obtained.
(h) It is known that E(Y ) = E(X1) = 1/2. From (g), E = E = E(X)/3 =
(3/2)/3 = 1/2. Hence, we get E[E(Y |X)] = E(Y ).
3.5.10
(a) By Theorem 3.2.3, E(Z) = E(XY ) = E(X)E(Y ) = (7/2)(1/2) = 7/4.
(b) By Theorem 3.5.4, E(Z|X = 4) = E(XY |X = 4) = 4E(Y |X = 4) =
4E(Y ) = 4(1/2) = 2.
(c) By Theorem 2.8.4 (a), E(Y |X = 4) = E(Y ) = 1/2.
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(d) The event (Z = 4) occurs only when X = 4 and Y = 1. Hence, E(Y |Z =
4) = 1.
(e) The event (Z = 4) occurs only when X = 4 and Y = 1. Hence, E(X|Z =
4) = 4.

3.5.11
(a) The marginal density of X is

fX(x) =

Z
R1

fX,Y (x, y)dy =

Z 1

0

6

19
(x2 + y3)dy =

6

19
(x2 +

1

4
)

for 0 < x < 2, otherwise fX(x) = 0. Hence,

E(X) =

Z 2

0

x · 6
19
(x2 +

1

4
)dx =

6

19

³x4
4
+
x2

8

´¯̄̄x=2
x=0

=
27

19
.

(b) The marginal density of Y is

fY (y) =

Z
R1

fX,Y (x, y)dx =

Z 2

0

6

19
(x2 + y3)dx =

4

19
(4 + 3y3).

for 0 < y < 1, otherwise fY (y) = 0. Hence,

E(Y ) =

Z 1

0

y · 4
19
(4 + 3y3)dy =

4

19

³
2y2 +

3y5

5

´¯̄̄y=1
y=0

=
52

95
.

(c) The conditional density fX|Y (x|y) = fX,Y (x, y)/fY (y) = 3(x2+y3)/(8+6y3).
Hence,

E(X|Y ) =
Z 2

0

x
3(x2 + y3)

2(4 + 3y3)
dx =

3(x4/4 + y3x2/2)

2(4 + 3y3)

¯̄̄x=2
x=0

=
3(2 + y3)

4 + 3y3
.

(d) The conditional density fY |X(y|x) = fX,Y (x, y)/fX(x) = (x2 + y3)/(x2 +
1/4). Hence,

E(Y |X) =
Z 1

0

y
x2 + y3

x2 + 1/4
dx =

x2y2/2 + y5/5

x2 + 1/4

¯̄̄y=1
y=0

=
x2/2 + 1/5

x2 + 1/4
.

(e) The expectation of E(X|Y ) is

E[E(Y |X)] =
Z 2

0

3(2 + y3)

4 + 3y3
· 4
19
(4 + 3y3)dy =

Z 1

0

12

19
(2 + y3)dy

=
12

19

³
2y +

y4

4

´¯̄̄y=1
y=0

=
27

19
.

Hence, we get E[E(Y |X)] = E(X).
(f) The expectation of E(Y |X) is

E[E(Y |X)] =
Z 1

0

x2/2 + 1/5

x2 + 1/4
· 6
19
(x2 +

1

4
)dx =

6

19

³x2
2
+
1

5

´
dx

=
6

19

³x3
6
+
x

5

´¯̄̄x=2
x=0

=
52

95
.



76 CHAPTER 3. EXPECTATION

Hence, we get E[E(Y |X)] = E(Y ).
Problems
3.5.12 We have that E(Y |X) is given by E(Y |X = 1) = 1(.3)+2(.4)+3(.3) =
2.0, E(Y |X = 0) = 1(.2) + 2(.5) + 3(.3) = 2.1.
So E(Y ) = E(E(Y |X)) = 2 (.75)+2.1(.25) = 2.025 and, of course, E(X) =

.75.
The conditional distributions of X given Y are (using Bayes� theorem):

X |Y = 1 ∼ Bernoulli(.3 (.75) / (.3 (.75) + .2(.25))) = Bernoulli (0.81818) ,
X |Y = 2 ∼ Bernoulli(.4 (.75) / (.4 (.75) + .5(.25))) = Bernoulli(0.70588) , and
X |Y = 3 ∼ Bernoulli(.3 (.75) / (.3 (.75) + .3(.25))) = Bernoulli(0.75) .
Therefore, E(X |Y ) is given by E(X |Y = 1) = 0.81818, E(X |Y = 2) =
0.70588 and E(X |Y = 3) = .75.
3.5.13 We have that Y = X1 + · · · + X5 ∼ Negative Binomial(5, θ) , and by
symmetry, each of the conditional distributions, Xi given Y = 10, are the same.
Then E(X1 |Y = 10) = E(Y −X2− · · ·−X5 |Y = 10) = 10− 4E(X1 |Y = 10),
so 5E(X1 |Y = 10) = 10 and E(X1 |Y = 10) = 2. Note that this does not
depend on θ.

3.5.14
(a) E(Y |X) is given by E(Y |X = 1) = .97 and E(Y |X = 2) = .98.
(b) E(Y |X,Z) is given by E(Y |X = 1, Z = 0) = .99, E(Y |X = 2, Z = 0) =
.987, E(Y |X = 1, Z = 1) = .962, and E(Y |X = 2, Z = 1) = .960.
(c) The conditional expectations all correspond to the conditional probabilities
of having a successful treatment, so the higher this probability is the better.
The conditional expectations E(Y |X) indicate that hospital 2 is better than
hospital 1, while the conditional expectations E(Y |X,Z) uniformly indicate
that hospital 1 is better than hospital 2.
(d) We have thatX

z

pY |X,Z (y |x, z) pZ|X (z |x) =
X
z

pX,Y,Z (x, y, z)

pX,Z (x, z)

pX,Z (x, z)

pX (x)

=
X
z

pX,Y,Z (x, y, z)

pX (x)
=
pX,Y (x, y)

pX (x)
= pY |X (y |x)

and

E(E(Y |X,Z) |X) =
X
z

E(Y |X,Z)pZ (z)

=
X
z

X
y

ypY |X,Z (y |x, z) pZ|X (z |x)

=
X
z

X
y

y
pX,Y,Z (x, y, z)

pX (x)
=
X
y

X
z

y
pX,Y,Z (x, y, z)

pX (x)

=
X
y

y
pX,Y (x, y)

pX (x)
=
X
y

ypY |X (y |x) = E(Y |X).
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(e) We have that E(Y |X = 1, Z = 0) = .99, E(Y |X = 2, Z = 0) = .987,
E(Y |X = 1, Z = 1) = .962, and E(Y |X = 2, Z = 1) = .960.

E(Y |X = 1)

= E(Y |X = 1, Z = 0)pZ|X (0 | 1) +E(Y |X = 1, Z = 1)pZ|X (1 | 1)
= .99(.286) + .962(.714) = .97

E(Y |X = 2)

= E(Y |X = 2, Z = 0)pZ|X (0 | 2) +E(Y |X = 2, Z = 1)pZ|X (1 | 2)
= .987(.75) + .960(.25) = .98,

so the result is veriÞed numerically.
The paradox is resolved by noting that the conditional distributions of Z

given X indicate that hospital 1 has a far greater proportion of seriously ill
patients than does hospital 2.

3.5.15 Let S = {1, 2, 3}, P (s) = 1/3 and X(s) = s for s ∈ S, and A = {1, 3}.
Then P (A) > 0. Also, E(X) = (1)(1/3)+(2)(1/3)+(3)(1/3) = 2, and E(X2) =
(1)2(1/3) + (2)2(1/3) + (3)2(1/3) = 14/3, so Var(X) = (14/3) − (2)2 = 2/3.
On the other hand, E(X |A) = (1)(1/2) + (3)(1/2) = 2, and E(X2 |A) =
(1)2(1/2) + (3)2(1/2) = 5, so Var(X |A) = 5− (2)2 = 1 > 2/3.

3.5.16 E(X) = E(E(X |Y )) = E(α/Y ) = αE(1/Y ) = α/λ.

3.5.17 Using the analog of (2.7.1) we have that X = µ1 + σ1Z1, Y = µ2 +

σ2(ρZ1+
p
1− ρ2Z2), where Z1, Z2 are i.i.d.N(0, 1). Then X = x is equivalent

to Z1 = (x− µ1) /σ1 and Z2 is independent of Z1 (and so of X), so

E(Y |X = x) = E
³
µ2 + σ2

³
ρZ1 +

p
1− ρ2Z2

´
|X = x

´
= E

µ
µ2 + σ2

µ
ρ

µ
X − µ1
σ1

¶
+
p
1− ρ2Z2

¶
|X = x

¶
= µ2 + σ2

µ
ρ

µ
x− µ1
σ1

¶
+
p
1− ρ2E (Z2)

¶
= µ2 + ρσ2

µ
x− µ1
σ1

¶
and

Var(Y |X = x) = Var(σ2
p
1− ρ2Z2 |X = x) = σ22

¡
1− ρ2¢ Var(Z2 |X = x)

= σ22
¡
1− ρ2¢ Var(Z2) = σ22 ¡1− ρ2¢ .

Using (2.7.1) we have that E(X |Y = y) = µ1 + ρσ1 (y − µ2) /σ2 and
Var(X |Y = y) = σ21

¡
1− ρ2¢ .

3.5.18 We have that X2 ∼ Binomial(n, θ2), so the conditional probability func-
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tion of X1 given X2 = x2 is given by

pX1|X2
(x1 |x2) =

¡
n

x1 x2 n−x1−x2
¢
θx11 θ

x2
2 (1− θ1 − θ2)n−x1−x2¡

n
x2

¢
θx22 (1− θ2)n−x2

=
(n− x2)!θx11 (1− θ1 − θ2)n−x1−x2
x1! (n− x1 − x2)! (1− θ2)n−x2

=

µ
n− x2
x2

¶µ
θ1

1− θ2

¶x1 µ
1− θ1

1− θ2

¶n−x1−x2
and this is the Binomial(n− x2, θ1/ (1− θ2)) probability function. Therefore,
E(X1 |X2 = x2) = (n− x2) θ1/ (1− θ2) and

Var(X1 |X2 = x2) = (n− x2) θ1
1− θ2

µ
1− θ1

1− θ2

¶
.

3.5.19 We have that the conditional density of X1 given X2 = x2 is given by
(using Problem 2.7.17)

fX1|X2
(x1 |x2) =

Γ(α1+α2+α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−11 xα2−12 (1− x1 − x2)α3−1
Γ(α1+α2+α3)
Γ(α2)Γ(α1+α3)

xα2−12 (1− x2)α1+α3−1

=
Γ (α1 + α3)

Γ (α1)Γ (α3)

xα1−11 (1− x1 − x2)α3−1
(1− x2)α1+α3−1

=
Γ (α1 + α3)

Γ (α1)Γ (α3)

µ
x1

1− x2

¶α1−1µ
1− x1

1− x2

¶α3−1 1

1− x2
and we see that X1/ (1− x2) given X2 = x2 is distributed Beta(α1, α3), so
(Problem 3.2.22) E(X1 |X2 = x2) = (1− x2)α1/ (α1 + α3) , Var(X1 |X2 =
x2) = (1− x2)2 α1α3/ (α1 + α3)2 (α1 + α3 + 1) .
3.5.20
(a) E(X2) =

R∞
−∞ x

2 fX(x) dx =
R 4
0 x

2 [(9x+ 1875x5)/1280072] dx

= 1920072/160009. Hence, Var(X) = E(X2) − E(X)2 = (1920072/160009) −
(3840168/1120063)2 = 307320963528/1254541123969 = 0.244967.
(b)

E(E(X |Y )2) = E(([8(7 + 768Y 4)] / [7(3 + 256Y 4)])2)
=

Z ∞

−∞
(8(7 + 768y4))2/(7(3 + 256y4))2 fY (y) dy

=

Z 5

0

(8(7 + 768y4))2/(7(3 + 256y4))2 ((18y + 1536y5)/4000225) dy

= 11.754808401



3.6. INEQUALITIES 79

Hence,

Var(E(X |Y )) = E(E(X |Y )2)−E(E(X |Y ))2 = E(E(X |Y )2)−E(X)2
= 11.754808401− (3.42852857)2 = 0.0000002196

which is extremely small.
(c) For 0 ≤ y ≤ 5,

E(X2 |Y = y) =
Z ∞

−∞
x2 fX|Y (x|y) dx =

Z ∞

−∞
x2 (fX,Y (x, y)/fY (y)) dx

=

Z 4

0

x2 (9(xy + x5y5)/16000900)/((18y + 1536y5)/4000225) dx

= (24 + 3072y4)/(3 + 256y4).

Hence, E(X2 |Y ) = (24 + 3072Y 4)/(3 + 256Y 4), for 0 ≤ Y ≤ 5. Then
Var(X |Y ) = E(X2 |Y )−E(X |Y )2

= [(24 + 3072Y 4)/(3 + 256Y 4)]− [(8(7 + 768Y 4))/(7(3 + 256Y 4))]2
= (8/49)(49 + 8064Y 4 + 98304Y 8)/(3 + 256Y 4)2.

(d) From part (c) we have that

E(Var(X |Y ))
=

Z ∞

−∞
[(8/49)(49 + 8064y4 + 98304y8)/(3 + 256y4)2] fY (y) dy

=

Z 5

0

[(8/49)(49 + 8064y4 + 98304y8)/(3 + 256y4)2] [(18y + 1536y5)/4000225] dy

= 0.244967.

Then Var(E(X |Y )) +E(Var(X |Y )) = 0.0000002196 + 0.244967 = 0.244967 =
Var(X), as it should.

3.5.21 We have that E (g(X)h(Y ) |Z) =Px,y g(x)h(y)pX,Y |Z (x, y | z)
=
P
x,y g(x)h(y)pX|Z (x | z) pY |Z (y | z) =

P
x g(x)pX|Z (x | z)

P
y h(y)pY |Z (y | z)

= E (g(X) |Z)E (h(Y ) |Z) .

3.6 Inequalities

Exercises
3.6.1 Since Z ≥ 0, P (Z ≥ 7) ≤ E(Z)/7 = 3/7.
3.6.2 Since X ≥ 0, P (X ≥ 3) ≤ E(X)/3 = (1/5)/3 = 1/15.
3.6.3
(a) Since X ≥ 0, P (X ≥ 9) ≤ E(X)/9 = (1− 1/2)/(1/2)/9 = 1/9.



80 CHAPTER 3. EXPECTATION

(b) Since X ≥ 0, P (X ≥ 2) ≤ E(X)/2 = (1− 1/2)/(1/2)/2 = 1/2.
(c) Since E(X) = (1 − 1/2)/(1/2) = 1, P (|X − 1| ≥ 1) ≤ Var(X)/12 = (1 −
1/2)/(1/2)2/12 = 2.
(d) The upper bound in (b) is smaller and more useful than that in (c).

3.6.4 Since E(Z) = 5, P (|Z − 5| ≥ 30) ≤ Var(Z)/302 = 9/302 = 1/100.
3.6.5 Since E(W ) = 50, P (|W−50| ≥ 10) ≤Var(W )/102 = 100(1/2)(1/2)/102 =
1/4.

3.6.6 We have Cov(Y,Z) =Corr(Y,Z)
p
Var(Y )Var(Z) =

Corr(Y,Z)
p
(100)(80 · 1/4 · 3/4) = Corr(Y,Z)√1500. This is largest when

Corr(Y,Z) = +1, where Cov(Y,Z) =
√
1500 = 38.73. This is smallest when

Corr(Y,Z) = −1, where Cov(Y,Z) = −√1500 = −38.73.
3.6.7
(a) By Jensen�s inequality, E(X4) ≥ E(X)4 = [(1 − 1/11)/(1/11)]4 = 104 =
10, 000.
(b) By Jensen�s inequality, E(X4) ≥ E(X2)2 = [(1 − 1/11)/(1/11)2]2 = (10 ·
11)2 = 12, 100, which is larger and hence a better lower bound.

3.6.8 It is known that E(X) = 7/2 and Var(X) = 35/12. Hence, P (X ≥
5 or X ≤ 2) = P (|X −E(X)| ≥ 3/2) ≤ Var(X)/(3/2)2 = 35/27. Since 35/27 >
1, the Chebyshev�s inequality bound is meaningless for this problem.

3.6.9 Note that E(Y ) = 4(1/2) = 2 and Var(Y ) = 4(1/2)(1/2) = 1.
(a) P (Y ≥ 3 or Y ≤ 1) = P (|Y − E(Y )| ≥ 1) ≤ Var(Y )/12 = 1. Hence,
Chebyshev�s inequality bound gives no improvement.
(b) P (Y ≥ 4 or Y ≤ 0) = P (|Y − E(Y )| ≥ 2) ≤ Var(Y )/22 = 1/4. Hence,
Chebyshev�s inequality bound is 1/4.

3.6.10
(a) E(W ) =

R
R1 wf(w)dw =

R 1
0 w(3w

2)dw = 3w4/4
¯̄w=1
w=0

= 3/4.

(b) E(W 2) =
R 1
0 w

2(3w2) = 3w5/5
¯̄w=1
w=0

= 3/5. Thus, Var(W ) = 3/5− (3/4)2 =
3/80. Hence, the Chebyshev�s inequality bound is 3/5 because P (|W−E(W )| ≥
1/4) ≤ Var(W )/(1/4)2 = (3/80)/(1/16) = 3/5.
3.6.11
(a) E(Z) =

R
R1 zf(z)dz =

R 2
0 z · z3/4dz = (z5/20)

¯̄z=2
z=0

= 8/5.

(b) For Chebyshev�s inequality, we need the variance of Z. E(Z2) =
R 2
0
z2 ·

z3/4dz = (z6/24)
¯̄z=2
z=0

= 8/3. Thus, Var(Z) = E(Z2) − (E(Z))2 = 8/3 −
(8/5)2 = 8/75. By Chebychev�s inequality,

P (|Z −E(Z)| ≥ 1/2) ≤ Var(Z)
(1/2)2

=
32

75
.

Hence, the Chebyshev�s inequality bound is 32/75.
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3.6.12
(a) By Cauchy-Schwarz inequality, |Cov(X,Y )| ≤pVar(X)Var(Y ) = 6. Hence,
the largest possible value of Cov(X,Y ) is 6.
(b) By Cauchy-Schwarz inequality, |Cov(X,Y )| ≤pVar(X)Var(Y ) = 6. Hence,
the smallest possible value of Cov(X,Y ) is −6.
(c) The variance of Z is Var(Z) = (3/2)2Var(X) = 9. Cov(X,Z) =Cov(X, 3X/2) =
(3/2)Var(X) = 6. Hence, the maximum covariance of X and Y is attained when
Y = 3X/2 in part (a).
(d) The variance of W is Var(W ) = (−3/2)2Var(X) = 9. Cov(X,W) =
Cov(X,−3X/2) = (−3/2)Var(X) = −6. Hence, the smallest covariance of
X and Y is attained when Y = −3X/2 in part (b).
3.6.13 Let X be the length of a randomly-chosen beetle. We know X > 0 and
E(X) = 35. By Markov�s inequality,

P (X ≥ 80) ≤ E(X)

80
=
35

80
=
7

16
= 0.4375.

Hence, 0.4375 is an upper bound of the probability P (X ≥ 80).
Problems
3.6.14 HereX ∼ Binomial(M, 1/2), soE(X) =M/2 and Var(X) =M(1/2)(1−
1/2) =M/. Hence, by Chebyshev�s inequality, sinceE(X/M) = 1/2, P (|(X/M)−
(1/2)| ≥ δ) ≤ Var(X/M)/δ2 = Var(X)/M2δ2 = (M/4)/M2δ2 = 1/4Mδ2. This
is ≤ c provided M ≥ 1/4δ2c.
3.6.15 Let a = σ and let P (X = µ−a) = P (X = µ+a) = 1/2. Then E(X) = µ,
Var(X) = σ2, and P (|X − µ| ≥ a) = 1 = σ2/a2.
3.6.16
(a) and (b)

E(X) =
nX
i=1

xiP (X = xi) =
nX
i=1

xi
1

n
= x̄,

Var (X) =
nX
i=1

(xi − x̄)2 P (X = xi) =
nX
i=1

(xi − x̄)2 1
n
= �s2X ,

Cov (X,Y ) =
nX
i=1

(xi − x̄) (yi − ȳ)P (X = xi, Y = yi)

=
nX
i=1

(xi − x̄) (yi − ȳ) 1
n
= �sXY

Therefore rXY is as stated.
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(c) Let x∗1, . . . , x∗n∗ be the distinct values in x1, . . . , xn and let fi denote the
frequency of x∗i in x1, . . . , xn. Then

E(X) =
n∗X
i=1

x∗iP (X = xi) =
n∗X
i=1

x∗i
fi
n
=
1

n

nX
i=1

xi = x̄,

Var (X) =
n∗X
i=1

(x∗i − x̄)2 P (X = xi) =
n∗X
i=1

(x∗i − x̄)2
fi
n
=
1

n

nX
i=1

(xi − x̄)2 = �s2X

and, similarly, all the other expectations remain the same.
(d) Since rXY is a correlation coefficient we immediately have, from the corre-
lation inequality, that −1 ≤ rXY ≤ 1 and rXY = ±1 if and only if xi − x̄ =
�sXY (yi − ȳ) /�s2X for i = 1, . . . , n.

3.6.17 From Chebyshev�s inequality we have that

P (X /∈ (x̄− 2�s, x̄+ 2�s)) = P (|X − x̄| ≥ 2�sX) ≤ �s2X
(2�sX)

2 =
1

4
,

so the largest possible proportion is 1/4.

3.6.18
(a) We have that

R∞
1

¡
2/x3

¢
dx = −x−2¯̄∞

1
= 1, so fX is a density.

(b) E(X) =
R∞
1
x
¡
2/x3

¢
dx =

R∞
1

¡
2/x2

¢
dx = −2x−1 ¯̄∞

1
= 2.

(c) Markov�s inequality says that P (X ≥ k) ≤ E(X)/k = 2/k, while the precise
value is P (X ≥ k) =

R∞
k

¡
2/x3

¢
dx = −x−2¯̄∞

k
= 1/k2, and we see that the

tail probability declines quadratically, while Markov�s inequality only declines
linearly.
(d) We have that E(X2) =

R∞
1
x2
¡
2/x3

¢
dx =

R∞
1
(2/x) dx = −2 lnx|∞1 =∞.

Therefore, Var(X) = ∞ and Chebyshev�s inequality does not provide a useful
bound in this case.

3.6.19
(a) For 0 < λ < 1 and x < y, g(λx+ (1 − λ)y) = max(−λx− (1− λ)y, −10).
If x, y ≥ 10, then g(x) = g(y) = g(λx + (1 − λ)y) = −10. If x, y ≤ 10,
then g(x) = −x, g(y) = −y, and g(λx + (1 − λ)y) = −(λx + (1 − λ)y) =
λg(x)− (1− λ)g(y). Finally, if x < 10 < y, then g(x) = x and g(y) = −10, so
λg(x)+(1−λ)g(y) = λ(−x)−(1−λ)(−10) = λ(−x)+(1−λ)(−y)+(1−λ)(y−10),
while g(λx+(1−λ)y) ≤ λ(−x)+ (1−λ)(−y)+ (λx+(1−λ)y− 10) ≤ λ(−x)+
(1− λ)(−y) + (1− λ)(y − 10).
(b) E(g(Z)) = E(max(−Z,−10)) ≥ g(E(Z)) = g(1/5) = max(−1/5,−10) =
−1/5.
3.6.20
(a) f 0 (x) = pxp−1, f 00 (x) = p (p− 1)xp−2 ≥ 0 for all x ≥ 0 since p ≥ 1.
Therefore, f is convex on (0,∞) .
(b) By Jensen�s inequality we have that E (f (X)) ≥ f (E (X)), so E (|X|p) ≥
(|E (X)|)p and (E (|X|p))1/p ≥ |E (X)| .
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(c) We have that Var(X) = E
¡
X2
¢ − (E (X))2 and E ¡X2

¢ − (E (X))2 = 0

if and only if E
¡
X2
¢
= (E (X))2 and this true (by Jensen�s inequality) if and

only if X2 = a+ bX for some constants a and b. The only way this can happen
is if X is degenerate at a point, say c, a = 0 and b = c.

Challenges
3.6.21 If f and −f are convex, then for all x < y and 0 < λ < 1, f(λx+ (1−
λ)y) ≥ λf(x) + (1− λ)f(y) and −f(λx+ (1− λ)y) ≥ −λf(x)− (1− λ)f(y), so
f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) and f(λx+(1−λ)y) = λf(x)+(1−λ)f(y).
Hence, the graph of f from x to y is a straight line, so f must be a linear function,
i.e., f(x) = ax+ b for some a and b.

3.7 General Expectations

Exercises
3.7.1 E(X1) = 3, E(X2) = 0, and E(Y ) = (1/5)E(X1) + (4/5)E(X2) = 3/5.

3.7.2 E(X) = (1/6)(7/2) + (5/6)(9/2) = 13/3.

3.7.3 Here P (X < t) = 0 for t < 0, while P (X > t) = 1 for 0 < t < C and
P (X > t) = 0 for t > C. Hence, E(X) =

R∞
0
P (X > t) dt− R 0−∞ P (X < t) dt =R C

0
1dt+

R∞
C
0dt− R 0−∞ 0 dt = C + 0− 0 = C.

3.7.4 Here P (Z > t) = 0 for t > 100. Hence, E(Z) =
R∞
0
P (Z > t) dt −R 0

−∞ P (Z < t) dt ≤
R∞
0
P (Z > t) dt =

R 100
0

P (Z > t) dt ≤ R 100
0

1dt = 100.

3.7.5 For x ≤ 0, P (X < x) ≤ P (X ≤ x) = 1 − P (X > x) = 1 − 1 = 0. From
DeÞnition 3.7.1,

E(X) =

Z ∞

0

P (X > t)dt−
Z 0

−∞
P (X < t)dt =

Z 1

0

P (X > t)dt+

Z ∞

1

P (X > t)dt

= 1 +

Z 1

0

1

t2
dt = 1 +

h
− 1
t

it=∞
t=1

= 1 + 1 = 2.

3.7.6 For z ≤ 0, P (Z < z) ≤ P (Z ≤ z) = 1 − P (Z > z) = 1 − 1 = 0. From
DeÞnition 3.7.1,

E(Z) =

Z ∞

0

P (Z > t)dt−
Z 0

−∞
P (Z < t)dt

=

Z 5

0

P (Z > t)dt+

Z 8

5

P (Z > t)dt+

Z ∞

8

P (Z > t)dt− 0

=

Z 5

0

1dt+

Z 8

5

8− t
3
dt+

Z ∞

8

0dt = 5 +
h8t− t2/2

3

it=8
t=5

+ 0

= 5 + 3/2 = 13/2.
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3.7.7 For w ≤ 0, P (W < w) ≤ P (W ≤ w) = 1 − P (W > w) = 1 − 1 = 0. By
DeÞnition 3.7.1, E(W ) =

R∞
0
P (W > t)dt − R 0−∞ P (W < t)dt =

R∞
0
e−5tdt −R 0

−∞ 0dt = −e−5t
5

¯̄̄t=∞
t=0

= 1
5 . The density of W at w is fW (w) = d

dwP (W ≤ w) =
d
dw (1− P (W > w)) = d

dw (1− e−5w) = 5e−5w for w > 0, otherwise fW (w) = 0.
Hence, W ∼ Exponential(5). We know the expectation of Exponential(λ) is
1/λ. That coincides with the computation result.

3.7.8 For y ≤ 0, P (Y < y) ≤ P (Y ≤ y) = 1 − P (Y > y) = 1 − 1 = 0. By
DeÞnition 3.7.1,

E(Y ) =

Z ∞

0

P (Y > t)dt−
Z 0

−∞
P (Y < t)dt =

Z ∞

0

e−t
2/2dt−

Z 0

−∞
0dt

= (2π)1/2
Z ∞

0

(2π)−1/2e−t
2/2dt = (2π)1/2(1/2) = (π/2)1/2 = 1.2533.

3.7.9 For w ≤ 0, P (W < w) ≤ P (W ≤ w) = FW (w) = 0. For 0 < w < 10,
P (W > w) = 1 − P (W ≤ w) = 1 − FW (w) = 1 − 0 = 1. For 10 ≤ w ≤ 11,
P (W > w) = 1−P (W ≤ w) = 1−FW (w) = 1−(w−10) = 11−w. For w > 11,
P (W > w) = 1− P (W ≤ w) = 1− FW (w) = 1− 1 = 0. By DeÞnition 3.7.1,

E(W ) =

Z ∞

0

P (W > t)dt−
Z 0

−∞
P (W < t)dt

=

Z 10

0

1dt+

Z 11

10

11− tdt+
Z ∞

11

0dt−
Z 0

−∞
0dt

= 10 +
£
11t− t2/2¤t=11

t=10
= 10 + 1/2 = 21/2.

Challenges
3.7.10 If X > t, then since Y ≥ X, we also have Y ≥ X > t. Hence, {X > t} ⊆
{Y > t}, so, by monotonicity, P (X > t) ≤ P (Y > t). Similarly, P (X < t) ≥
P (Y < t). Then E(X) =

R∞
0 P (X > t) dx − R 0−∞ P (X < t) dx ≤ R∞

0 P (Y >

t) dx− R 0−∞ P (Y < t) dx = E(Y ), as claimed.



Chapter 4

Sampling Distributions and
Limits

4.1 Sampling Distributions

Exercises
4.1.1
P (Y3 = 1) = (1/2)(1/2)(1/2) = 1/8
P (Y3 = 2) = (1/4)(1/4)(1/4) = 1/64
P (Y3 = 3) = (1/4)(1/4)(1/4) = 1/64
P (Y3 = 2

1/3) = (1/2)(1/2)(1/4) + (1/2)(1/4)(1/2) + (1/4)(1/2)(1/2) = 3/16
P (Y3 = 31/3) = (1/2)(1/2)(1/4) + (1/2)(1/4)(1/2) + (1/4)(1/2)(1/2) = 3/16
P (Y3 = 4

1/3) = (1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/32
P (Y3 = 9

1/3) = (1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/32
P (Y3 = 121/3) = (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) = 3/64
P (Y3 = 18

1/3) = (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) = 3/64
P (Y3 = 61/3) = (1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2)+
(1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/16

4.1.2 If Z is the sample mean, then P (Z = 1) = 1/36, P (Z = 1.5) = 2/36,
P (Z = 2) = 3/36, P (Z = 2.5) = 4/36, P (Z = 3) = 5/36, P (Z = 3.5) = 6/36,
P (Z = 4) = 5/36, P (Z = 4.5) = 4/36, P (Z = 5) = 3/36, P (Z = 5.5) = 2/36,
and P (Z = 6) = 1/36.

4.1.3 If Z is the sample mean, then P (Z = 0) = p2, P (Z = 0.5) = 2p(1 − p),
and P (Z = 1) = (1− p)2.
4.1.4 If Z is the sample mean, then

P (Z = 0) =
N

N +M

N − 1
N +M − 1 , P (Z = 0.5) = 2

N

N +M

M

N +M − 1 ,

P (Z = 1) =
M

N +M

M − 1
N +M − 1 .
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4.1.5 For 1 ≤ j ≤ 6, P (max = j) = (j/6)20 − ((j − 1)/6)20.
4.1.6 Let X1,X2,X3 be the numbers showing on the three dice. Then, Y =
I{6}(X1)+I{6}(X2)+I{6}(X3). Since Xi�s are independent, I{6}(Xi)�s are i.i.d.
Bernoulli(1/6). It gives Y ∼ Binomial(3, 1/6).
4.1.7 Let X,Y be the two numbers showing on the two dice. Then, W = XY
and P (W = w) = |{(x, y) : w = xy for 1 ≤ x, y ≤ 6} becauseX and Y are a uni-
form distribution on {1, . . . , 6}. Since, 1 ≤ X,Y ≤ 6, the range of W = XY is
[1, 36]. However, not all values between 1 and 36 can be a value of w with positive
probability. For example, any number having prime factor greater than 6 can�t
be a possible value of W . Hence, the random variable W has a positive proba-
bility only at the values 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, and 36.

P (W = w) =


1/36 if w = 1, 9, 16, 25, 36,
1/18 if w = 2, 3, 5, 8, 10, 15, 18, 20, 24, 30,
1/12 if w = 4,
1/9 if w = 6, 12,
0 otherwise.

4.1.8 Let X,Y be the numbers showing on the two dice. Then, Z = X − Y .
The range of Z is [−5, 5]. Since X and Y are independent and have the same
distribution, X − Y and Y − X have the same distribution. Hence, P (Z =
−z) = P (X − Y = −z) = P (Y −X = z) = P (Z = z). For z = 0, . . . , 5, P (Z =
z) = |{(x, y) : z = x − y}|/36 = |{(1, 1 + z), . . . , (6 − z, 6)}|/36 = (6 − z)/36.
Thus, pZ(z) = P (Z = z) = (6− |z|)/36 for |z| ≤ 5 and otherwise pZ(z) = 0.
4.1.9 Let X be the number of heads. If X = 0 (or X = 4), then all four coins
show tails (or heads). Hence, Y = 2. If X = 1 (or X = 3), then there is only
one pair of tails (or heads). Hence Y = 1. If X = 2, there are one pair of heads
and one pair of tails. Hence Y = 2. The other values can�t be a value of Y .
Hence, P (Y = 1) = P (X = 1 or X = 3) =

¡
4
1

¢
(1/2)4 +

¡
4
3

¢
(1/2)4 = 1/2 and

P (Y = 2) = P (X ∈ {0, 2, 4}) = ¡
4
0

¢
(1/2)4 +

¡
4
2

¢
(1/2)4 +

¡
4
4

¢
(1/2)4 = 1/2. In

sum, pY (y) = P (Y = y) = 1/2 for y = 1, 2 otherwise pY (y) = 0.

Computer Exercises
4.1.10 Using Minitab we place the values 1, 2, 3 in C1 and .5, .25, .25 in C2.
Then we replace the entries in C1 by their logs and generate 1000 samples of
size 50 (stored in C3-C52), calculate the mean of each of these samples, and
exponentiate this (stored in C54). The mean and standard deviation of the
values in C54 is what we want. We get the following results.
MTB > let c1=log(c1)
MTB > Random 1000 c3-c52;
SUBC> Discrete c1 c2.
MTB > RMean c3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 C19 &
CONT> C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32

C33 C34 C35 &



4.1. SAMPLING DISTRIBUTIONS 87

CONT> C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48
C49 C50 C51 &

CONT> C52 c53.
MTB > let c54=exp(c53)
MTB > let k1=mean(c54)
MTB > let k2=stdev(c54)
MTB > print k1 k2
Data Display
K1 1.57531
K2 0.103538

4.1.11 Using Minitab we get the following results.
MTB > Random 1000 c1-c10;
SUBC> Normal 0.0 1.0.
MTB > let c11=rmax(c1-c10)
MTB > let c11=rmax(c1 c2 c3 c4 c5 c6 c7 c8 c9 c10)
MTB > RMaximum C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 c11.
MTB > let k1=mean(c11)
MTB > let k2=stdev(c11)
MTB > print k1 k2
Data Display
K1 1.54637
K2 0.617012

Problems

4.1.12 We know that mY (s) =
¡
mX1(s)

¢n
=
¡
eλ(e

s−1)¢n = enλ(e
s−1). We

recognize this as the moment generating function of Poisson(nλ). Hence, Y ∼
Poisson(nλ).

4.1.13 The density of Y , for 0 ≤ y ≤ 2, is given by fY (y) =
R∞
−∞ fX1

(t) fX2
(y−

t) dt =
Rmin(y,1)
max(y−1,0)(1)(1) dt = min(y, 1)−max(y − 1, 0), which is equal to y for

0 ≤ y ≤ 1, and to 2− y for 1 ≤ y ≤ 2. Otherwise, fY (y) = 0.
4.1.14 lnY = (lnX1 + lnX2)/2. Since X1 ∼ Uniform(0, 1), then − lnX1 ∼
Exponential(1) = Gamma(1, 1). Hence, W ≡ − lnX1 − lnX2 ∼ Gamma(2, 1),
so fW (w) = we−w for w > 0 (otherwise 0). Then Y = e−W/2 ≡ h(W ) and
W = −2 lnY ≡ h−1(Y ), so the density of Y satisÞes

fY (y) = fW (−2 ln y)/|h0(h−1(y)| = (−2 ln y)e2 ln y/|− 1
2
e−(−2 ln y)/2|

= (−2 ln y)y2 / |− y/2| = −4y ln y

for 0 ≤ y ≤ 1 (otherwise 0).
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4.2 Convergence in Probability

Exercises
4.2.1 Note that Zn = Z unless 7 ≤ U < 7 + 1/n2. Hence, for any c > 0,
P (|Zn − Z| ≥ c) ≤ P (7 ≤ U < 7 + 1/n2) = 1/5n2 → 0 as n →∞, so Zn → Z
in probability.

4.2.2 For any c > 0, P (|Xn−0| ≥ c) = P (Y n ≥ c) = P (Y ≥ c1/n) = 1−c1/n →
0 as n→∞, so Xn → 0 in probability.

4.2.3 By the weak law of large numbers, since E(Wi) = 1/3,
limn→∞ P (| 1n(W1 + · · · +Wn) − 1

3 | ≥ 1/6) = 0, so there is n with P (| 1n(W1 +
· · ·+Wn)− 1

3 | ≥ 1/6) < 0.001. But then P (W1+ · · ·+Wn < n/2) = 1−P (W1+
· · ·+Wn ≥ n/2) ≥ 1− P (| 1n(W1 + · · ·+Wn)− 1

3 | ≥ 1/6) ≥ 1− 0.001 = 0.999.
4.2.4 By the weak law of large numbers, since E(Yi) = 2, limn→∞ P (| 1n(Y1 +
. . .+Yn)−2| ≥ 1) = 0, so there is n with P (| 1n(Y1+ · · ·+Yn)−2| ≥ 1) < 0.001.
But then P (Y1 + · · · + Yn > n) = 1 − P (Y1 + · · · + Yn ≤ n) ≥ 1 − P (| 1n(Y1 +· · ·+ Yn)− 2| ≥ 1) ≥ 1− 0.001 = 0.999.
4.2.5 By the weak law of large numbers, since E(Xi) = 8,
limn→∞ P (| 1n(X1 + · · ·+Xn)− 8| ≥ 1) = 0, so there is n with P (|(X1 + · · · +
Xn)/n− 8| ≥ 1) < 0.001. But then P (X1 + · · · +Xn > 9n) ≤ P (|(X1 + · · · +
Xn)/n− 8| ≥ 1) ≤ 0.001.
4.2.6 Fix c > 0. Then P (|Yn −X| ≥ c) = P (|n−1n X −X| ≥ c) = P (|X|/n ≥
c) = P (X ≥ nc) = max(0, 1− nc). Hence, P (|Yn −X| ≥ c) → 0 as n →∞ for
all c > 0, so the sequence {Yn} converges in probability to X.
4.2.7 For all c > 0 and n > −2 ln c, using Chebyshev�s inequality, we have
P (|Xn − Y | ≥ c) = P (e−Hn ≥ c) = P (Hn ≤ − ln c) ≤ P (|Hn − n/2| ≥ |n/2 + ln c|)

≤ Var(Hn)
|n/2 + ln c|2 =

n

(n+ 2 ln c)2
→ 0

as n→∞. So, {Xn} converges in probability to Y .
4.2.8 Fix c > 0.

P (|Wn −W | ≥ c) = P (5− 5Zn/(Zn + 1) ≥ c) = P (5/(Zn + 1) ≥ c)
= P (Zn ≤ −1 + 5/c) = max(0,−1 + 5/c)/n.

So, P (|Wn −W | ≥ c)→ 0 as n→∞ for all c > 0. Hence, Wn
P→W .

4.2.9 By deÞnition, Hn − 1 ≤ Fn ≤ Hn. For c > 0 and n ≥ 2/c, using
Chebyshev�s inequality,

P (|Xn − Yn − Z| ≥ c) = P (|Hn − Fn|/(Hn + 1) ≥ c) ≤ P (1/(H1 + 1) ≥ c)
= P (Hn ≤ (1/c)− 1) = P (Hn − n/2 ≤ (1/c)− 1− n/2)
≤ P (|Hn − n/2| ≥ |1 + n/2− 1/c|) ≤ Var(Hn)/|1 + n/2− 1/c|2
= n/(n+ 2− 2/c)2 → 0
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as n→∞. Hence, Xn − Yn P→ Z.

4.2.10 Let Xi be the numbers showing on ith rolling. Then, Z = X2
1 +

· · ·+X2
n. Since Xi�s are independent and identically distributed and E(X

2
i ) =P6

j=1 j
2 1
6 = 91/6, by the weak law of large numbers,

1

n
Zn =

1

n
(X2

1 + · · ·+X2
n)

P→ E(X2
1 ) =

91

6
.

Hence, m = 91/6.
4.2.11 Let Yn and Zn be the numbers of heads in nickel and dime ßippings.
Then, Xn = 4Yn + 5Zn. By the weak law of large numbers, Yn/n

P→ 1/2 and

Zn/n
P→ 1/2. It is easy to guess Xn/n

P→ 4(1/2) + 5(1/2) = 9/2. We will
show this using Chebyshev�s inequality. Note that E(Xn/n) = 4E(Yn)/n +
5E(Zn)/n = 4(n/2)/n + 5(n/2)/n = 9/2 and Var(Xn/n) = Var(5Yn/n +
4Zn/n) = 25Var(Yn)/n2+16Var(Zn)/n = 25(n/4)/n2+16(n/4)/n2 = 41/(4n).

P (|Xn/n− 9/2| ≥ c) ≤ Var(Xn/n)
c2

=
41

4c2n
→ 0

as n→∞. Hence, Xn/n P→ 9/2. Therefore r = 9/2.

Computer Exercises
4.2.12 The following results were generated using Minitab (k1 holds the pro-
portions).
MTB > Random 100000 c1-c20;
SUBC> Exponential .2.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 c21.
MTB > let c22=c21 ge .19 and c21 le .21
MTB > let k1=mean(c22)
MTB > print k1
Data Display
K1 0.176500
Random 100000 c1-c50;
SUBC> Exponential .2.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32

C33 C34 &
CONT> C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48

C49 C50 &
CONT> c51.
MTB > let c52=c51 ge .19 and c51 le .21
MTB > let k1=mean(c52)
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MTB > print k1
Data Display
K1 0.276850
We see that about 18% of the M20 values are between the limits, while about
28% of the M50 values are between the limits. This reßects the increasing
concentration of the distributions of Mn as n increases.

4.2.13 The following results were generated using Minitab (k1 holds the pro-
portions).
MTB > Random 100000 c1-c20;
SUBC> Poisson 7.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 c21.
MTB > let c22=c21 ge 6.99 and c21 le 7.01
MTB > let k1=mean(c22)
MTB > print k1
Data Display
K1 0.0328400
MTB > Random 100000 C1-c100;
SUBC> Poisson 7.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32

C33 C34 &
CONT> C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48

C49 C50 &
CONT> C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64

C65 C66 &
CONT> C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80

C81 C82 &
CONT> C83 C84 C85 C86 C87 C88 C89 C90 C91 C92 C93 C94 C95 C96

C97 C98 &
CONT> C99 C100 c101.
MTB > let c102=c101 ge 6.99 and c101 le 7.01
MTB > let k1=mean(c102)
MTB > print k1
Data Display
K1 0.0463600
We see that about 3.2% of the M20 values are between the limits, while about
4.6% of the M50 values are between the limits. This reßects the increasing
concentration of the distributions ofMn as n increases, although it is not highly
concentrated yet.
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Problems
4.2.14 Let P (Xn = n) = 1/n and P (Xn = 0) = 1 − 1/n. Then E(Xn) =
n(1/n) + 0(1− 1/n) = 1. But for any c > 0, P (|Xn − 0| ≥ c) ≤ P (Xn = n) =
1/n→ 0 as n→∞, so Xn → 0 in probability.

4.2.15 |Xn| P→ 0 if and only if, for any c > 0, P (||Xn|− 0| ≥ c)→ 0 as n→∞.
But P (||Xn|− 0| ≥ c) = P (||Xn|| ≥ c) = P (|Xn| ≥ c) = P (|Xn − 0| ≥ c), so

this holds if and only if Xn
P→ 0.

4.2.16 This is false. For example, suppose Xn = −5 for all n. Then for
0 < c < 10, P (|Xn − 5| ≥ c) = 1 6→ 0 as n→∞, so Xn 6→ 5 in probability. On
the other hand, |Xn| = 5 for all n, so of course |Xn|→ 5 in probability.

4.2.17 If |Xn −X| < c/2 and |Yn − Y | < c/2, then |(Xn −X) + (Yn − Y )| ≤
|Xn − X| + |Yn − Y | < c. Hence, the event |(Xn − X) + (Yn − Y )| ≥ c is
contained in the union of two events |Xn−X| ≥ c/2 and |Yn− Y | ≥ c/2. From
the assumption, limn→∞ P (|Xn −X| ≥ c) = limn→∞ P (|Yn − Y | ≥ c) = 0 for
all c > 0.

lim
n→∞P (|Zn − Z| ≥ c) ≤ lim

n→∞P (|Xn −X| ≥ c/2 or |Yn − Y | ≥ c/2)
≤ lim
n→∞[P (|Xn −X| ≥ c/2) + P (|Yn − Y | ≥ c/2)]

= lim
n→∞P (|Xn −X| ≥ c/2) + lim

n→∞P (|Yn − Y | ≥ c/2) = 0.

Hence, Zn
P→ Z.

Challenges
4.2.18 Fix c. For an arbitrary η > 0, there is a number M0 > 0 such that
P (|X| > M0) < η. Since f is uniformly continuous on [−2M0, 2M0], there is
a number δ ∈ (0,M0) such that |f(x) − f(y)| < c for all x, y ∈ [−2M0, 2M0]
satisfying |x − y| < δ. Then, the event An = (|f(Xn) − f(X)| ≥ c) can be
separated into three parts A ∩ B, A ∩ Bc ∩ Cn and A ∩ Bc ∩ Ccn where B =
(|X| > M0) and Cn = (|Xn −X| < δ). It is easy to check A ∩ Bc ∩ Cn = ∅.
Note that P (Ccn)→ 0 as n→∞. Hence, we get

P (|f(Xn)− f(X)| ≥ c) = P (An ∩B) + P (An ∩Bc ∩Cn) + P (An ∩Bc ∩Ccn)
≤ P (B) + 0 + P (Ccn) ≤ η + P (Ccn).

Thus, limn→∞ P (A) ≤ η+limn→∞ P (Ccn) = η. Since we can take η > 0 arbitrar-
ily small, we get limn→∞ P (|f(Xn)−f(X)| ≥ c) = 0. Therefore, f(Xn) P→ f(X).
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4.3 Convergence with Probability 1

Exercises
4.3.1 Note that Zn = Z unless 7 ≤ U < 7 + 1/n2. Hence, if U < 7 then
Zn = Z for all n, so of course Zn → Z. Also, if U > 7, then Zn = Z whenever
1/n2 < 7 − U , i.e., n > 1/

√
7− U , so again Zn → Z. Hence, P (Zn → Z) ≥

P (U 6= 7) = 1− P (U = 7) = 1− 0 = 1, i.e., Zn → Z with probability 1.

4.3.2 If 0 ≤ y < 1 then limn→∞ yn = 0. Hence, P (Xn → 0) = P (Y n → 0) ≥
P (0 ≤ Y < 1) = 1, i.e., Yn → 0 with probability 1.

4.3.3 Since E(Wi) = 1/3, by the strong law of large numbers, P ((W1 + . . . +
Wn)/n → 1/3) = 1. But {(W1 + · · · +Wn)/n → 1/3} ⊆ {∃n; (W1 + · · · +
Wn)/n < 1/2} = {∃n; W1 + · · ·+Wn < n/2}, so also P (∃n; W1 + · · ·+Wn <
n/2) = 1.

4.3.4 Since E(Yi) = 2, by the strong law of large numbers, P ( 1n(Y1+. . .+Yn)→
2) = 1. But {(Y1 + · · · + Yn)/n → 2} ⊆ {∃n; (Y1 + · · · + Yn)/n > 1} =
{∃n; Y1 + · · ·+ Yn > n}, so also P (∃n; Y1 + · · ·+ Yn > n) = 1.
4.3.5 By subadditivity, P (Xn → X and Yn → Y ) = 1− P (Xn 6→ X or Yn 6→
Y ) ≥ 1− P (Xn 6→ X)− P (Yn 6→ Y ) = 1− 0− 0 = 1.
4.3.6
(a) False, e.g., if Zi are continuous, then P (Mn = a) = 0 for any a.
(b) True, by the strong law of large numbers.
(c) True, by the strong law of large numbers (the given property is implied by
the fact that limn→∞An =m).
(d) False, e.g., if x < m− 0.02 and Mn =m for all n, then this will not occur.

4.3.7 The expectation of Xi is E(Xi) =
R
R1
x · I[3,7](x)/4dx = 5. By the strong

law of large numbers,

Yn =
1

n
(X1 + · · ·+Xn) a.s.→ E(X1) = 5.

Hence, m = 5.

4.3.8 Let Xi be the number showing on the ith dice. Then Zn = X2
1 + · · ·+X2

n.
Note that E(X2

i ) =
P6
j=1 j

2 ·(1/6) = 91/6. By the strong law of large numbers,
1

n
Zn =

1

n
(X2

1 + · · ·+X2
n)

a.s.→ E(X2
1 ) =

91

6
.

Hence, m = 91/6.

4.3.9 Let Yn and Zn be the number of nickels and dimes showing heads, respec-
tively. Then, Xn = 4Yn+5Zn. By the strong law of large numbers, Yn/n

a.s.→ 1/2

and Zn/n
a.s.→ 1/2. Let A be the event such that Yn/n → 1/2 on A and B be

the event such that Zn/n→ 1/2 on B. Then, P (A) = P (B) = 1. It is easy to
check that Xn/n = (4Yn + 5Zn)/n → 4(1/2) + 5(1/2) = 9/2 on A ∩ B. The
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probability of A ∩B is P (A ∩B) = P (A) + P (B)− P (A ∪B) = 1 + 1− 1 = 1.
Hence, Xn/n

a.s.→ 9/2. Therefore r = 9/2.

4.3.10 Suppose Y = Y1 = Y2 = Y3 = 0 = Y5 = Y6 = · · · and Y5 = 1. Then,
limn→∞ Yn = 0 = Y . Hence, Yn

a.s.→ Y . However, P (|Y5 − Y | > |Y4 − Y |) =
P (|Y5| > 0) = 1. Hence, P (|Y5 − Y | > |Y4 − Y |) = 0 doesn�t hold. Any
convergence deals with very large n�s. Hence, we can ignore a Þnite number of
Y1, . . . , Yk in convergence for Þxed k.

4.3.11
(a) Suppose there is no such m. Then, there is a sequence nk such that |Znk −
1/2| ≥ 0.001 and Znk → c. Then, |c − 1/2| ≥ 0.001. That means Znk 6→ 1/2.
It contradicts to the strong law of large numbers. Hence, there must exist a
number m such that |Zn − 1/2| < 0.001 for all n ≥ m.
(b) Suppose the ßipping sequence starts with HT . Then Z2 = 1/2. So, r = 2.
However, Z3 = 1/3 or Z3 = 2/3. Thus, the statement that |Zn − 1/2| < 0.001
for all n ≥ r is false. Usual limit theorems deal with large n. That means we
can ignore the Þrst Þnite observations.

4.3.12
(a) Since Xn = X for all n ≥ 1, Yn = (X1 + · · ·+Xn)/n = (X + · · ·+X)/n =
nX/n = X. Thus limn→∞ Yn = X. The probability P (limn→∞ Yn = y) =
P (X = y) is P (X = y) = 1/2 for y = 0, 1 and otherwise P (X = y) = 0.
(b) Suppose there is a numberm such that P (limn→∞ Yn = m) = 1, i.e., P (X =
m) = 1. From part (a), m cannot be 1 because P (X = 1) = 1/2 < 1. Now m is
not 1. P (limn→∞ Yn = m) = P (X = m) ≤ P (X 6= 1) = 1− P (X = 1) = 1/2.
Hence, there is no m satisfying P (limn→∞ Yn = m) = 1.
(c) In the law of large numbers, the independence of random variablesX1, . . . ,Xn
is assumed. If the independence condition is dropped, then the law of large num-
bers may not hold even though each variable is identically distributed.

Computer Exercises

4.3.13 The sample means are converging to 1/5 = .2.
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4.3.14 The sample means are converging (slowly) to 7.
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4.3.15 The sample means are converging (slowly) to −4.
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Problems
4.3.16 By countable subadditivity, P (limn→∞Xn,k = Wk for all k) = 1 −
P (∃k; limn→∞Xn,k 6=Wk) ≥ 1−

P
k P (limn→∞Xn,k 6=Wk) = 1−

P
k 0 = 1.

4.3.17 Note that xn → 0 if and only if for all c > 0, |xn − 0| < c for all but
Þnitely many n. But �|xn − 0| < c� is the same as �|xn| < c� is the same as
�||xn|− 0| < c.� Hence, xn → 0 if and only if |xn| → 0. Thus, P (Xn → 0) =
P (|Xn| → 0). Therefore, Xn → 0 with probability 1 if and only if |Xn| → 0
with probability 1.

4.3.18 This is false. For example, if Xn = −5 for all n, then P (Xn → 5) = 0
but P (|Xn|→ 5) = 1.

4.3.19 Let A be the eventXn → X and B be the event Yn → Y . Then, X a.s.→ X
and Yn

a.s.→ Y imply P (A) = P (B) = 1. Let C be the event Zn → Z. On A∩B,
Xn → X and Yn → Y . Hence, Zn = Xn+Yn → X+Y = Z. Thus, A∩B ⊂ C.
The probability of A∩B is P (A∩B) = P (A)+P (B)−P (A∪B) = 1+1−1 = 1.
Therefore, Zn

a.s.→ Z.

Challenges
4.3.20 This is false. For example, let U ∼ Uniform[0, 1]. Let Wr = 0 for all r
and letXr = 0 if U 6 r, withXr = 1 if U = r. Then P (Xr → 0) = P (U 6= r) = 1,
but P (Xr → 0 for all r) = P (U 6∈ [0, 1]) = 0.
4.3.21 Let S = {1, 2, 3, . . .}, with P (s) = 2−s. Let Xn(s) = 2n for s = n,
otherwise Xn(s) = 0. Then E(Xn) = (2n)(2−n) = 1. However, Xn(s) = 0
whenever n > s, so P (Xn → 0) = 1.

4.3.22 The continuity of the function f implies f(xn)→ f(x) whenever xn → x.
Let A be the event f(Xn)→ f(X) and B be the event Xn → X, i.e., Xn → X
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on B. Hence, on B, Xn → X implies f(Xn) → f(X). Thus, B ⊂ A. Then,
P (limn→∞ f(Xn) = f(X)) = P (A) ≥ P (B) = 1. Therefore, f(Xn) a.s.→ f(X).

4.4 Convergence in Distribution

Exercises
4.4.1 Here limn→∞ P (Xn = i) = 1/3 = P (X = i) for i = 1, 2, 3, so limn→∞ P (Xn ≤
x) = P (X ≤ x) for all x, so Xn → X in distribution.

4.4.2We have that limn→∞ P (Yn = k) = 1/2k+1 for k = 0, 1, . . . so limn→∞ P (Yn ≤
y) = P (Y ≤ y).
4.4.3 Here P (Zn ≤ 1) = 1, and for 0 ≤ z < 1, P (Zn ≤ z) =

R z
0
(n+ 1)xndx =

zn+1 → 0 as n → ∞. Also, P (Z ≤ z) = 1 for z ≥ 1, and 0 for z < 1. Hence,
limn→∞ P (Zn ≤ z) = P (Z ≤ z) for all z, so Zn → Z in distribution.

4.4.4 For 0 < w < 1, P (Wn ≤ w) =
R w
0
(1 + x/n)/(1 + 1/2n)dx = (w +

w2/2n)/(1+1/2n)→ w as n→∞. Also. P (W ≤ w) = w. Hence, limn→∞ P (Wn ≤
w) = P (W ≤ w) for all w, so Wn →W in distribution.

4.4.5 Let S = Y1 + Y2 + . . . + Y1600. Then S has mean 1600/3 and variance
1600/9. Hence,

P (S ≤ 540) = P ((S − 1600/3)/
p
1600/9 ≤ (540− 1600/3)/

p
1600/9)

≈ Φ((540− 1600/3)/(40/3)) = Φ(1/2) = 1−Φ(−1/2) = 1−Φ(−0.5)
≈ 1− 0.3085 = 0.6915.

4.4.6 Let S = Z1 + Z2 + . . . + Z900. Then S has mean 900(−5) = −4500 and
variance 900(302/12). Hence,

P (S ≥ −4470) = P ((S − (−4500))/
p
900(302/12)

≥ (−4470− (−4500))/
p
900(302/12))

≈ 1−Φ(−4470− (−4500))/
p
900(302/12))

≈ 1−Φ(0.11547) = Φ(−0.11547) ≈ Φ(−0.12) = 0.4522.
4.4.7 Let S = X1+X2+. . .+X800. Then S has mean 800(1−1/4)/(1/4) = 2400
and variance 800(1− 1/4)/(1/4)2 = 9600. Hence,

P (S ≥ 2450) = P ((S − 2400)/√9600 ≥ (2450− 2400)/√9600)
≈ 1−Φ(2450− 2400)/

√
9600) ≈ 1−Φ(0.51) = Φ(−0.51) = 0.3050.

4.4.8 Yes, {Xn} converges in distribution to 0, since for x < 0, P (Xn ≤ x) =
Φ(
√
nx)→ 0, while for x > 0, P (Xn ≤ x) = Φ(√nx)→ 1.

4.4.9
(a) For 0 < y < 1, P (Z ≤ y) = R y

0
2xdx = x2

¯̄x=y
x=0

= y2.
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(b) For 1 ≤ m ≤ n, P (Xn ≤ m/n) =
Pm
i=1 P (Xn = i/n) =

Pm
i=1 2i/n(n+ 1) =

m(m+ 1)/[n(n+ 1)].
(c) For 0 < y < 1, let m = bnyc, the biggest integer not greater than ny.
Since there is no integer in (m,ny), P (m/n < Xn < y) ≤ P (m/n < Xn <
(m + 1)/n) = 0. Thus, P (Xn ≤ y) = P (Xn ≤ m/n) + P (m/n < Xn < y) =
P (Xn ≤ bnyc/n) =m(m+ 1)/[n(n+ 1)] where m = bnyc.
(d) Let mn = bnyc. Then, mn/n ≤ ny/n = y and mn/n ≥ (ny − 1)/n =
y − 1/n→ y. Hence, mn/n→ y as n→∞. In part (c), P (Xn ≤ y) = P (Xn ≤
mn/n) =mn(mn+1)/[n(n+1)] = (mn/n)((mn/n)+ (1/n))/(1+1/n)→ y2 as

n→∞. Therefore, Xn D→ Z.

4.4.10 Note that the cdf of Exponential(λ) is F (x) = 1 − e−λx for x > 0
otherwise F (x) = 0. For y > 0, the cdf of Yn converges to FYn(y) = P (Yn ≤
y) = 1 − e−ny/(n+1) → 1 − e−y as n → ∞. Hence, Yn D→ Exponential(1).
Therefore, λ = 1.

4.4.11 Note that the cdf of Exponential(λ) is F (x) = 1 − e−λx for x > 0
otherwise F (x) = 0. For z > 0, the cdf of Zn converges to FZn(z) = P (Zn ≤
z) = 1 − ¡1 − 3z

n

¢n → 1 − e−3z as n → ∞. Hence, Zn D→ Exponential(3).
Therefore, λ = 3.

4.4.12 The Exponential distribution has mean = 1/λ = 2 and variance =
1/λ2 = 4. So, ifM is the sample mean of n customers, thenM ≈ N(2, 4/n), so
Z ≡ (M − 2)/p4/n = √n(M − 2)/2 ≈ N(0, 1), so P (M < 2.5) = P (

√
n(M −

2)/2 <
√
n(2.5−2)/2) = P (Z < √n/4). Using Table D.2, we see that if n = 16,

this equals P (Z < 4/4) = P (Z < 1) = 1−P (Z < −1) = 1−0.1587 = 0.8413. If
n = 36, this equals P (Z < 6/4) = P (Z < 1.5) = 0.9332. If n = 100, this equals
P (Z < 10/4) = P (Z < 2.5) = 0.9938. (It becomes more and more certain, as n
increases.)

4.4.13 The weekly output has mean (20 + 30)/2 = 25, and variance (30 −
20)2/12 = 8.33. So, the yearly output, Y , is approximately normally distributed
with mean 52×25 = 1300, and variance 52×8.33 = 433, and standard deviation√
433 = 20.8. So, P (Y < 1280) = P ((Y − 1300)/20.8 < (1280− 1300)/20.8) =

P ((Y − 1300)/20.8 < −0.96) = 0.1685 (using Table D.2), i.e. the probability is
about 17%.

4.4.14 The Gamma distribution has mean α/θ = 50, and variance α/θ2 = 500.
So, the duration of 40 components, X, is approximately normally distributed
with mean 40 × 50 = 2000, and variance 40 × 500 = 20, 000, and standard
deviation

√
20, 000 = 141. So, the probability that 40 components will not last

for 6 years is P (X < 6 × 365.25) = P (X < 2191.5) = P ((X − 2000)/141 <
(2191.5− 2000)/141) = P ((X − 2000)/141 < 1.36) = 0.9131 (using Table D.2).
So, the probability that they will last for 6 years is 1 − 0.9131 = 0.0869, or
about 8.7%.

Computer Exercises
4.4.15 Using Minitab we obtain the following.
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MTB > Random 10000 c1-c20;
SUBC> Exponential .333333333.
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 c21.
MTB > let k2=1/6
MTB > let k3=1/2
MTB > let c22 = c21 ge k2 and c21 le k3
MTB > let k1=mean(c22)
MTB > print k1
Data Display
K1 0.974600
And so we record 97.4% of the averages between 1/6 and 1/2. The central limit
theorem gives the approximation

P (1/6 ≤M20 ≤ 1/2)

= P

µ√
20
(1/6− 1/3)

1/3
≤
√
20
(M20 − 1/3)

1/3
≤
√
20
(1/2− 1/3)

1/3

¶
= P (−2.236 1 ≤ √20(M20 − 1/3)

1/3
≤ 2.236 1) ≈ P (−2.236 1 ≤ Z ≤ 2.236 1)

= Φ (2.2361)−Φ (−2.2361) = 0.9873− 0.01270 = 0.9746

and this is close to the observed proportion.

4.4.16 Using Minitab we obtain the following.
MTB > Random 10000 c1-c30;
SUBC> Uniform -20 10.
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 &
CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 c31.
MTB > let c32=c31 le -5
MTB > let k1=mean(c32)
MTB > print k1
Data Display
K1 0.500500
And so we record 50.0% of the averages less than −5. The central limit theorem
gives the approximation

P (M30 ≤ −5) = P (
√
30
(M20 + 5)

30
p
1/12

≤
√
30
(−5 + 5)
30
p
1/12

)

= P (
√
30
(M20 + 5)

30
p
1/12

≤ 0) ≈ P (Z ≤ 0) = Φ (0) = .5

and this is close to the observed proportion.

4.4.17 Using Minitab we obtain the following.
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MTB > Random 10000 c1-c20;
SUBC> Uniform 0 1.
MTB > Let c1 = CEIL(loge(c1)/loge(.75))
MTB > Let c2 = CEIL(loge(c2)/loge(.75))
MTB > Let c3 = CEIL(loge(c3)/loge(.75))
MTB > Let c4 = CEIL(loge(c4)/loge(.75))
MTB > Let c5 = CEIL(loge(c5)/loge(.75))
MTB > Let c6 = CEIL(loge(c6)/loge(.75))
MTB > Let c7 = CEIL(loge(c7)/loge(.75))
MTB > Let c8 = CEIL(loge(c8)/loge(.75))
MTB > Let c9 = CEIL(loge(c9)/loge(.75))
MTB > Let c10 = CEIL(loge(c10)/loge(.75))
MTB > Let c11 = CEIL(loge(c11)/loge(.75))
MTB > Let c12 = CEIL(loge(c12)/loge(.75))
MTB > Let c13 = CEIL(loge(c13)/loge(.75))
MTB > Let c14 = CEIL(loge(c14)/loge(.75))
MTB > Let c15 = CEIL(loge(c15)/loge(.75))
MTB > Let c16 = CEIL(loge(c16)/loge(.75))
MTB > Let c17 = CEIL(loge(c17)/loge(.75))
MTB > Let c18 = CEIL(loge(c18)/loge(.75))
MTB > Let c19 = CEIL(loge(c19)/loge(.75))
MTB > Let c20 = CEIL(loge(c20)/loge(.75))
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C17 C18 &
CONT> C19 C20 c21.
MTB > let c22= c21 ge 2.5 and c21 le 3.3
MTB > let k1=mean(c22)
MTB > print k1
Data Display
K1 0.183700
And so we record 18.4% of the averages between 2.5 and 3.3. The central limit
theorem gives the approximation (mean of Geometric(1/4) is (1− .25)/.25 = 3
and variance is (1− .25)/ (.25)2 = 12.0

P (2.5 ≤M20 ≤ 3.3) = P (
√
20
(2.5− 3)√

12
≤ √20(M20 − 3)√

12
≤ √20(3.3− 3)√

12
)

= P (−0.64550 ≤ √20(M20 − 1/3)
1/3

≤ 0.38730) ≈ P (−0.64550 ≤ Z ≤ 0.38730)
= Φ (0.38730)−Φ (−0.64550) = .6507− .2593 = 0.3914

and this is not close to the observed proportion because the Geometric(1/4) is
a skewed distribution.

4.4.18 Using Minitab we obtain the following. Note that the histogram looks
a lot like a normal density.
MTB > Random 10000 c1-c20;
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SUBC> Gamma 4 1.
MTB > Let c1 = loge(c1)
MTB > Let c2 = loge(c2)
MTB > Let c3 = loge(c3)
MTB > Let c4 = loge(c4)
MTB > Let c5 = loge(c5)
MTB > Let c6 = loge(c6)
MTB > Let c7 = loge(c7)
MTB > Let c8 = loge(c8)
MTB > Let c9 = loge(c9)
MTB > Let c10 = loge(c10)
MTB > Let c11 = loge(c11)
MTB > Let c12 = loge(c12)
MTB > Let c13 = loge(c13)
MTB > Let c14 = loge(c14)
MTB > Let c15 = loge(c15)
MTB > Let c16 = loge(c16)
MTB > Let c17 = loge(c17)
MTB > Let c18 = loge(c18)
MTB > Let c19 = loge(c19)
MTB > Let c20 = loge(c20)
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C17 C18 &
CONT> C19 C20 c21.
MTB > Histogram C21;
SUBC> Density;
SUBC> CutPoint;
SUBC> Bar;
SUBC> ScFrame;
SUBC> ScAnnotation.
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4.4.19 Using Minitab we obtain the following. Note that the histogram does
not look a lot like a normal density. So a larger sample size is required for the
CLT approximation to apply.
MTB > Random 10000 c1-c20;
SUBC> Binomial 10 .01.
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C17 C18 &
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CONT> C19 C20 c21.
MTB > Histogram C21;
SUBC> Density;
SUBC> CutPoint;
SUBC> Bar;
SUBC> ScFrame;
SUBC> ScAnnotation.

0.50.40.30.20.10.0
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Problems

4.4.20 For example, let Zj,n ∼ Normal(j, 1/n), and let P (Y = i) = ai for
positive integers i, with Y independent of the {Zj}. Then let Xn = ZY,n, i.e.,
Xn = Zj,n whenever Y = j. Then Xn is absolutely continuous since each Zj,n
is. Also, if P (X = x) = 0, then P (Xn ≤ x) =

P
i ai P (Zi,n ≤ x)→

P
i<x ai as

n→∞, so Xn → X in distribution.

4.4.21 Here P (Xn ≤ x) =
©P

i<nx f(i/n)
ª
/ {Pn

i=1 f(i/n)}. We recognize this
as a Riemann sum (from Calculus) for the integral

R x
0
f(x) dx. Hence, since f is

continuous, P (Xn ≤ x)→
R x
0
f(x) dx = P (X ≤ x), so Xn → X in distribution.

4.4.22 We have that E
¡
X3
¢
= 0, so (putting y = x2/2, x =

√
2y, dx =

dy/
√
2y )

Var
¡
X3
¢
= E

¡
X6
¢
=

Z ∞

−∞
x6

1√
2π
e−x

2/2 dx = 2

Z ∞

0

x6
1√
2π
e−x

2/2 dx

=
2√
2π

Z ∞

0

³p
2y
´5
e−y dy =

23√
π

Z ∞

0

y5/2e−y dy =
23√
π
Γ (7/2)

=
23√
π

5

2

3

2

1

2
Γ (1/2) = 15.

Therefore,

P (Mn ≤ m) = P (
√
n (Mn − 0)√

15
≤
√
n (m− 0)√

15
) ≈ P (Z ≤

√
n (m− 0)√

15
)

where Z ∼ N(0, 1).
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4.4.23 We have that

E (Y ) =

Z 1

0

cos (2πu) du =
sin (2πu)

2π

¯̄̄̄1
0

= 0

Var(Y ) = E
¡
Y 2
¢
=

Z 1

0

cos2 (2πu) du

=

Z 1

0

1 + cos (4πu)

2
du =

1

4
+
1

2

sin (4πu)

4π

¯̄̄̄1
0

=
1

4
.

Therefore,

P (Mn ≤ m) = P (
√
n (Mn − 0)p

1/4
≤
√
n (m− 0)p
1/4

) ≈ P (Z ≤
√
n (m− 0)p
1/4

)

where Z ∼ N(0, 1).
Computer Problems
4.4.24 Using Minitab we obtain the following results.
MTB > Random 10000 c1;
SUBC> Normal 0.0 1.0.
MTB > let c2=c1**3
MTB > let c3=c2 le 1
MTB > let k1=mean(c3)
MTB > let k2=3*sqrt(k1*(1-k1)/10000)
MTB > let k3=k1-k2
MTB > let k4=k1+k2
MTB > print k1 k3 k4
Data Display
K1 0.837500
K3 0.826433
K4 0.848567
So our estimate of P (Y ≤ 1) is 0.837500, and the true value of this quantity
lies in the interval (0.826433, 0.848567) with virtual certainty. So we know the
value of P (Y ≤ 1) with considerable accuracy. This probability can be evaluated
exactly as P (Y ≤ 1) = P (X3 ≤ 1) = P (X ≤ 1) = Φ (1) = 0.8413.
4.4.25 Using Minitab we obtain the following results.
MTB > Random 10000 c1;
SUBC> Normal 0.0 1.0.
MTB > let c2=cos(c1**3)
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
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K1 0.588037
K3 0.569203
K4 0.606872
So our estimate of E(Y ) is 0.588037 and the true value of this quantity lies in
the interval (0.569203, 0.606872) with virtual certainty.

Challenges
4.4.26 If Xn → C in distribution, then P (Xn ≤ x) → 0 for x < C, and
P (Xn ≤ x) → 1 for x > C. Then for all c > 0, P (|Xn − C| ≥ c) = P (Xn ≥
C+ c)+P (Xn ≤ C− c) = 1−P (Xn < C+ c)+P (Xn ≤ C− c)→ 1−1+0 = 0
as n→∞. Hence, Xn → C in probability.

4.5 Monte Carlo Approximations

Exercises
4.5.1 This integral equals

√
2πE(cos2(Z)), where Z ∼ N(0, 1). Hence, let {Ui}

be i.i.d. ∼ Uniform[0, 1] for 1 ≤ i ≤ 2n. Let Zi = 2 ln(1/U2i−1) cos(2πU2i), so
that Zi ∼ N(0, 1). Then let I = (

√
2π/n)

Pn
i=1 cos

2(Zi). For large n, I is a
good approximation to the integral.

4.5.2 Note that this sum equals E(Z6), where Z ∼ Bernoulli(2/3). Hence, let
{Uij} be i.i.d. Uniform[0, 1] for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let Bij = 1 if
Uij < 2/3, otherwise Bij = 0, so that Bij ∼ Bernoulli(2/3). Let Zi = Bi1 +
Bi2+ . . .+Bim, so that Zi ∼ Binomial(m, 2/3). Then let S = (1/n)

Pn
i=1(Zi)

6.
For large n, S is a good approximation to the sum.

4.5.3 This integral equals (1/5)E(e−14Z
2

), where Z ∼ Exponential(5). Hence,
let {Ui} be i.i.d. ∼ Uniform[0, 1] for 1 ≤ i ≤ n. Let Zi = ln(1/Ui) / 5, so that
Zi ∼ Exponential(5). Then let I = (1/5n)

Pn
i=1 e

−14Z2i . For large n, I is a good
approximation to the integral.

4.5.4 Mn has mean λ and variance λ/n. So the intervalMn±3
p
λ/nwill contain

the true value of λ with virtual certainty. But this implies that Mn ± 3
p
10/n

will contain the true value of λ with virtual certainty. Therefore, the error
criterion will be satisÞed whenever 3

p
10/n ≤ .1 or n ≥ 9 (10) /(.1)2 = 9000.0.

4.5.5 This sum is approximately equal to e5E(sin(Z2)), where Z ∼ Poisson(5).
Hence, let Z1, Z2, . . . , Zn be i.i.d. with distribution Poisson(5) (perhaps gener-
ated using computer software). Then let S = (e5/n)

Pn
i=1 sin(Z

2
i ). For large n,

S is a good approximation to the sum.

4.5.6 This integral is equal to 10E(e−Z
4

), where Z ∼ Uniform[0, 10]. Hence,
let {Ui} be i.i.d. ∼ Uniform[0, 1] for 1 ≤ i ≤ n. Let Zi = 10Ui, so that
Zi ∼ Uniform[0, 10]. Then let I = (10/n)

Pn
i=1 e

−Z4i . For large n, I is a good
approximation to the integral.
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4.5.7 We treat (Mn − 3Sn/
√
n,Mn + 3Sn/

√
n) as a virtually certain interval.

Hence, (−5−3·17/√2000,−5+3·17/√2000) = (−6.1404,−3.8596) is a virtually
certain interval to contain the true mean µ.

4.5.8
(a) The standard error is σn =

³
1

n−1 (
Pn
i=1(Xi − X)2)

´1/2
= ((15400 − 62 ×

400)/399)1/2 = 1.5831.
(b) Since Mn = 6 and Sn = 1.5831, a virtually certain interval to contain the
true mean µ is given by (Mn − 3Sn/

√
n,Mn + 3Sn/

√
n) = (5.7625, 6.2375).

4.5.9 The computation is similar to Example 4.5.7. SinceMn = 400/1000 = 0.4,
the interval

(Mn − 3
p
Mn(1−Mn)/n, Mn + 3

p
Mn(1−Mn)/n) = (0.3535, 0.4465)

is a virtually certain interval to contain θ.

4.5.10
(a) Since each experiment follows Bernoulli(θ) distribution, the total number of
successes among the n experiments has a Binomial(n, θ) distribution. Thus, T =
nY ∼ Binomial(n, θ). By noting that Var(T ) = nθ(1 − θ), we have Var(Y ) =
Var(T/n) = Var(T )/n2 = θ(1− θ)/n.
(b) Since Var(Y ) = n−1(θ− θ2) = n−1(1/4− (θ− 1/2)2), the variance of Y has
the maximum 1/(4n) at θ = 1/2.
(c) In part (b), 1/(4n) is the largest possible value of Var(Y ) when θ = 1/2.
(d) We Þnd the smallest n such that max0<θ<1Var(Y ) < 0.01. Since
max0<θ<1Var(Y ) = 1/(4n), the inequality becomes 1/(4n) < 0.01. It solves
n > 1/(0.04) = 25. Hence, n = 26 is the smallest integer satisfying Var(Y ) <
0.01 for all 0 < θ < 1.

4.5.11
(a) The constant C must satisfy

R
R1

R
R1 f(x, y)dxdy = 1 to make f a density.

This equation gives

1 =

Z 1

0

Z 1

0

Cg(x, y)dxdy = C

Z 1

0

Z 1

0

g(x, y)dxdy.

Thus, C =
£ R 1
0

R 1
0 g(x, y)dxdy

¤−1
. Hence, the expectation of X is

E(X) =

Z 1

0

Z 1

0

xfX,Y (x, y)dxdy = C

Z 1

0

Z 1

0

g(x, y)dxdy =

R 1
0

R 1
0 xg(x, y)dxdyR 1

0

R 1
0
g(x, y)dxdy

.

(b) We approximate denominator and numerator at the same time. We generate
Xi�s from a density proportional to x2 and Yi�s from a density proportional to
y3. Since

R x
0 u

p−1du = xp/p for 0 < x < 1 and p > 1, the densities are
fX(x) = 3x

2 for 0 < x < 1, otherwise fX(x) = 0, and fY (y) = 4y3 for 0 < y < 1
and otherwise fY (y) = 0. Using the inverse cdf functions F−1X (u) = u1/3 and
F−1Y (v) = v1/4, random variables Xi�s and Yi�s are generated. A Monte Carlo
algorithm to approximate E(X) is described below.
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1. Select a large positive integer n.

2. Obtain Ui, Vi ∼ Uniform[0, 1], independently for i = 1, . . . , n.

3. Set Xi = (Ui)
1/3 and Yi = (Vi)

1/4 for i = 1, . . . , n.

4. Set Di = sin(XiYi) cos(
√
XiYi) exp(X

2
i + Yi)/12 and Ni = Xi ·Di for

i = 1, . . . , n.

5. Estimate E(X) by Mn = N/D = (N1 + · · ·+Nn)/(D1 + · · ·+Dn).

4.5.12
(a) The density function of X and Y are I[0,5](x)/5 and I[0,4](y)/4. Hence,

I =

Z 5

0

Z 4

0

g(x, y) dy dx =

Z 5

0

Z 4

0

20g(x, y)
I[0,4](y)

4
dy
I[0,5](x)

5
dx

= E[20g(X,Y )].

(b) A Monte Carlo algorithm to approximate I = 20E[20g(X,Y )] is described
below.

1. Select a large positive integer n.

2. Obtain Ui, Vi ∼ Uniform[0, 1], independently for i = 1, . . . , n.

3. Set Xi = 5Ui and Yi = 4Vi for i = 1, . . . , n.

4. Set Ti = g(Xi, Yi) for i = 1, . . . , n.

5. Estimate I by Mn = 20T = 20(T1 + · · ·+ Tn)/n.

4.5.13
(a) The density of X and Y are I[0,1](x) and I[0,∞)(y)e−y. The integration J
becomes

J =

Z 1

0

Z ∞

0

h(x, y) dy dx =

Z 1

0

Z ∞

0

ey h(x, y) I[0,∞)(y)e−y dy I[0,1](x) dx

= E[eY h(X,Y )].

(b) A Monte Carlo algorithm to approximate J is given below.

1. Select a large positive integer n.

2. Obtain Ui, Vi ∼ Uniform[0, 1], independently for i = 1, . . . , n.

3. Set Xi = Ui and Yi = − lnVi for i = 1, . . . , n.

4. Set Ti = e
Yi h(Xi, Yi) for i = 1, . . . , n.

5. Estimate J by Mn = T = (T1 + · · ·+ Tn)/n.
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(c) The density of Exponential(5) is I[0,∞)(y)5e−5y. The integration J becomes

J =

Z 1

0

Z ∞

0

e5y h(x, y) I[0,∞)(y)5e−5y dy I[0,1](x) dx

= E[e5Y h(X,Y )].

(d) A Monte Carlo algorithm to approximate J is given below.

1. Select a large positive integer n.

2. Obtain Ui, Vi ∼ Uniform[0, 1], independently for i = 1, . . . , n.

3. Set Xi = Ui and Yi = −5−1 lnVi for i = 1, . . . , n.

4. Set Wi = e
5Yi h(Xi, Yi) for i = 1, . . . , n.

5. Estimate J by Mn =W = (W1 + · · ·+Wn)/n.

(e) Both Monte Carlo algorithms in parts (b) and (d) converge to J . Between
them, we would prefer the algorithm that converges faster than the other.
Hence, the algorithm having smaller variance is better. Thus, compute the
sample variances �σ2T and �σ

2
W of T1, . . . , Tn and W1, . . . ,Wn. Then, compare �σ2T

and �σ2W .

Computer Exercises
4.5.14 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=cos(c1**3)*sin(c1**4)
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.147770
K3 0.146163
K4 0.149378
So the estimate is 0.147770, and the true value of the integral lies in
(0.146163, 0.149378) with virtual certainty.

4.5.15 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Exponential .25.
MTB > let c2=cos(c1**4)
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > let k3=k1-3*k2
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MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.973201
K3 0.971596
K4 0.974806
So the estimate is 0.973201, and the true value of the integral lies in
(0.971596, 0.974806) with virtual certainty.

4.5.16 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=floor(loge(c1)/loge(4/5))
MTB > let c2=(5/4)*(c2**2 +3)**(-5)
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.00124565
K3 0.00122658
K4 0.00126473
So the estimate is 0.00124565, and the true value of the integral lies in
(0.00122658, 0.00126473) with virtual certainty.

4.5.17 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Normal 0.0 1.0.
MTB > let c2=c1**2-3*c1+2
MTB > let c3= c2 ge 0
MTB > let k1=mean(c3)
MTB > let k2=sqrt(k1*(1-k1))/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.863930
K3 0.860677
K4 0.867183
So the estimate is 0.863930, and the true value of the integral lies in
(0.860677, 0.867183) with virtual certainty.

Problems
4.5.18 This requires that we determine n so that 3

p
Mn (1−Mn) /n ≤ δ.

We have that 3
p
Mn (1−Mn) /n ≤ 3

p
(1/2) (1− 1/2) /n ≤ δ if and only if

n ≥ 9/ ¡4δ2¢ .
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4.5.19 This requires that we determine n so that 3σ0/
√
n ≤ δ or n ≥ 9σ20/δ2.

4.5.20
(a) Here for 0 ≤ z ≤ θ, P (Zn ≤ z) = (z/θ)n. Hence, X(n) has density function
f(z) = nzn−1θ−n. Then

E(X(n)) =

Z θ

0

znzn−1θ−n dz = nθ−n
Z θ

0

zn dz =
nθ−nθn+1

n+ 1
=

nθ

n+ 1

and so E(Zn) = θ. Then

Var(Zn) = E(Z2n)− θ2 =
µ
n+ 1

n

¶2 Z θ

0

z2nzn−1θ−n dz − θ2

= nθ−n
µ
n+ 1

n

¶2 Z θ

0

zn+1 dz − θ2 = n

n+ 2

µ
n+ 1

n

¶2
θ−nθn+2 − θ2

=

Ã
(n+ 1)2

n (n+ 2)
− 1
!
θ2 =

θ2

n (n+ 2)
.

(b) By Chebyshev�s inequality we have that P (|Zn − θ| ≥ c) ≤ θ2/
¡
c2n (n+ 2)

¢
→ 0 as n→∞.
(c) We have that E(2Mn) = θ and Var(2Mn) = 4θ2/(12n) = θ2/(3n). Now
n (n+ 2) ≥ 3n for every n, so Var(2Mn) ≥ Var(Zn). This implies that the
estimator Zn will be more accurate as the intervals given by the estimator
plus/minus three standard deviations will be shorter.

4.5.21
(a) When X ∼ f we have that E

³
g(X)
f(X)

´
=
R b
a
g(x)
f(x)f(x) dx =

R b
a g(x) dx, so

E(Mn (f)) =
R b
a g(x) dx.

(b) When X ∼ f then E
µ³

g(X)
f(X)

´2¶
=
R b
a
g2(x)
f2(x)f(x) dx =

R b
a
g2(x)
f(x) dx, so

Var (Mn (f)) =
1

n

(
E

Ãµ
g(X)

f(X)

¶2!
−
µ
E

µ
g(X)

f(X)

¶¶2)

=
1

n


Z b

a

g2(x)

f(x)
dx−

ÃZ b

a

g(x) dx

!2
(d) Put q(x) = |g(x)| / R b

a
|g(x)| dx. We have that

Var (Mn (f)) =
1

n


Z b

a

g2(x)

f(x)
dx−

ÃZ b

a

g(x) dx

!2
=
1

n

ÃZ b

a

|g(x)| dx
!2

Z b

a

q2(x)

f(x)
dx−

³R b
a g(x) dx

´2
³R b

a |g(x)| dx
´2

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and
R b
a
q2(x)
f(x) dx =

R b
a
(q(x)−f(x))2

f(x) dx + 1, and this is minimized by taking f =

q and the minimum variance is
³R b

a
|g(x)| dx

´2
−
³R b

a
g(x) dx

´2
. This is 0 when

g is nonnegative.
The optimum importance sampler is not feasible because it requires that we

be able to compute
R b
a
|g(x)| dx, which is typically at least as hard to evaluate

as the original integral.
(e) We have that

R b
a

¡
g2(x)/f(x)

¢
dx ≤ R b

a
(|g(x)| cf(x)/f(x)) dx =

c
R b
a |g(x)| dx <∞.

(f) The standard error of Mn (f) is given by

S =

 1

n− 1

 nX
i=1

g2 (Xi)

f2 (Xi)
− n

Ã
1

n

nX
i=1

g (Xi)

f (Xi)

!2
1/2

divided by
√
n. The CLT then implies that the true value of the integral is in

the interval Mn (f)± 3S/√n with virtual certainty when n is large.
Computer Problems
4.5.22 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Normal 1 2.
MTB > Random 100000 c2;
SUBC> Gamma 1 1.
MTB > let c1=c1**3
MTB > let c2=c2**3
MTB > let c3=c1+c2
MTB > let c4=c3 le 3
MTB > let k1=mean(c4)
MTB > let k2=sqrt(k1*(1-k1))/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.451620
K3 0.446899
K4 0.456341
So the estimate is 0.451620, and the true value of the probability lies in
(0.446899, 0.456341) with virtual certainty.

By Problem 4.5.18 we must have n ≥ 9/
³
4 (.01)2

´
= 22500.0.

4.5.23 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Normal 1 2.
MTB > Random 100000 c2;
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SUBC> Gamma 1 1.
MTB > let c1=c1**3
MTB > let c2=c2**3
MTB > let c3=c1+c2
MTB > let k1=mean(c3)
MTB > let k2=stdev(c3)/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 18.9665
K3 18.5143
K4 19.4186
So the estimate is 18.9665, and the true value of the expectation lies in
(18.5143, 19.4186) with virtual certainty.

4.5.24 Using Minitab we obtain the following results for the algorithm based
on generating from the Exponential(5) distribution.
MTB > Random 100000 c1;
SUBC> Exponential .2.
MTB > let c2=(exp(-14*c1*c1))/4
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > print k1 k2
Data Display
K1 0.159487
K2 0.000274517
Using Minitab we obtain the following results for the algorithm based on

generating from the N(0, 1/7) distribution.
MTB > let k1=sqrt(1/7)
MTB > print k1
Data Display
K1 0.377964
MTB > let k2=k1*sqrt(2*3.1415926)
MTB > Random 100000 c1;
SUBC> Normal 0 .377964.
MTB > let c2=k2*exp(-5*c1)
MTB > let c3=c1>0
MTB > let c2=c2*c3
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > print k1 k2
Data Display
K1 0.165965
K2 0.000788127
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Notice that while the estimates 0.159487 and 0.165965 are similar, the stan-
dard error for the Exponential(5) algorithm is 0.000274517 and the standard
error for the N(0, 1/7) algorithm is 0.000788127. So the Exponential(5) algo-
rithm is substantially more accurate.

Challenges
4.5.25
(a) Let D and A be as in the hint, and let L be the distance between the lines.
Then D ∼ Uniform[0, L], and A ∼ Uniform[0, π]. Also, the needle will touch
the line just below it if and only if L sin(A) ≥ D. This happens with probability

(1/L)

Z L

0

(1/π)

Z π

0

IL sin(A)≥D dAdD = (1/π)
Z π

0

(1/L)

Z L

0

ID≤L sin(A) dD dA

= (1/π)

Z π

0

(1/L)(L sin(A)) dA = (1/π)

Z π

0

sin(A) dA

= (1/π)[− cos(π) + cos(0)] = 2/π.
(b) Repeat the experiment a large number N of times. Let M be the number
of times the needle is touching a line. Then by the strong law of large numbers,
for large N , we should have M/N ≈ 2/π, so that π ≈ 2N/M . Hence, for large
N , the quantity 2N/M is a good Monte Carlo estimate of π.

4.5.26 Let I =
R b
a g(x)dx and J =

R b
a |g(x)|dx.

(a) In Problem 4.5.21, we have shown that Var(Mn(f)) = n
−1£ R b

a
g2(x)/f(x)dx−

I2
¤
. Hence, the minimizer of the variance Var(Mn(f)) also minimizes

R b
a g

2(x)/f(x)
dx. DeÞne a density h by h(x) = |g(x)|/J . Then, g2(x) = J2 h2(x) andZ b

a

g2(x)

f(x)
dx =

Z b

a

J2 · h2(x)
f(x)

dx = J2
Z b

a

³h(x)
f(x)

− 1
´2
f(x) dx+ J2.

Hence, the variance ofMn(f) is minimized when f(x) = h(x) = |g(x)|/
R b
a
|g(y)|dy.

If g(x) ≥ 0 on (a, b) or g(x) ≤ 0 on (a, b), then |I| = | R ba g(x)dx| = R ba |g(x)dx =
J . Hence, the minimum variance of Mn(f) becomes Var(Mn(h)) = n−1(J2 −
I2) = 0.
(b) Suppose g(x) ≥ 0 on (a, b). Since it contains the target value, the optimal
importance sampler given by f(x) = g(x)/I is unrealistic where I =

R b
a
g(x)dx

is the target value.

4.6 Normal Distribution Theory

Exercises
4.6.1
(a) U ∼ N(1(3) − 5(−8), 12(22) + 52(52)) = N(44, 629). V ∼ N(−6(3) +
C(−8), 62(22) +C2(52)) = N(−18− 8C, 144 + 25C2).
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(b) Cov(U,V ) = (1)(−6)(22) + (−5)(C)(52) = −24 − 125C. Hence, U and V
are independent if and only if Cov(U, V ) = 0 if and only if C = −24/125.
4.6.2
(a) Z ∼ Normal(4(3)− (1/3)(−7), 42(5) + (1/3)2(2)) = Normal(43/3, 722/9).
(a) Cov(X,Z) = 4Var(X) = 20.

4.6.3 C1 = 1/
√
5. C2 = −3. C3 = 1/

√
2. C4 = 7. C5 = 2.

4.6.4 Since X ∼ χ2(n), we can Þnd Z1, . . . , Zn ∼ N(0, 1), which are i.i.d., with
X = (Z1)

2+ . . .+(Zn)
2. Then X +Y 2 = (Z1)2+ . . .+(Zn)2+ Y 2 ∼ χ2(n+1)

since it is the sum of squares of n + 1 independent standard normal random
variables.

4.6.5 Since X ∼ χ2(n) and Y ∼ χ2(m), we can Þnd Z1, . . . , Zn,W1, . . . ,Wm ∼
N(0, 1), which are i.i.d., with X = (Z1)2 + . . . + (Zn)2 and Y = (W1)2 + . . .+
(Wn)

2. Then X + Y = (Z1)2+ . . .+(Zn)2+(W1)
2+ . . .+ (Wm)

2 ∼ χ2(n+m)
since it is the sum of squares of n +m independent standard normal random
variables.

4.6.6 C = (1/n) / (1/3n) = 3.

4.6.7 C = 1 / (1/
√
n) =

√
n.

4.6.8 C1 =
p
2/5. C2 = −3. C3 = 1. C4 = 7. C5 = 1. C6 = 1.

4.6.9 C1 = 2/5. C2 = −3. C3 = 2. C4 = 7. C5 = 2. C6 = 1. C7 = 1.
4.6.10
(a) Since X1 has a standard normal distribution, (X1)2 has a chi-squared dis-
tribution with 1 degree of freedom.
(b) Here (X3)2 and (X5)2 each have a chi-squared distribution with 1 degree of
freedom, and they are independent, so their sum has a chi-squared distribution
with 2 degrees of freedom.
(c) Here (X20)2 + (X30)2 + (X40)2 has a chi-squared distribution with 3 de-
grees of freedom, and X10 is standard normal, and they are independent, so
X10/

p
[(X20)2 + (X30)2 + (X40)2]/3 has a t distribution with 3 degrees of free-

dom.
(d) Here (X10)2 has a chi-squared distribution with 1 degree of freedom, and
(X20)2 + (X30)2 + (X40)2 has a chi-squared distribution with 3 degrees of free-
dom, and they are independent, so (X10)2 / [((X20)2 + (X30)2 + (X40)2)/3] =
3 (X10)2 / [(X20)2+(X30)2+(X40)2] has an F distribution with 1 and 3 degrees
of freedom. (e) Here (X1)2+(X2)2+ · · ·+(X70)2 has a chi-squared distribution
with 70 degrees of freedom, and (X71)2 + (X72)2 + · · · + (X100)2 has a chi-
squared distribution with 30 degrees of freedom, and they are independent, so
[(X1)

2+(X2)
2+···+(X70)

2]/70
[(X71)2+(X72)2+···+(X100)2]/30

= 30
70

(X1)
2+(X2)

2+···+(X70)
2

(X71)2+(X72)2+···+(X100)2
has an F distribution

with 70 and 30 degrees of freedom.

4.6.11
(a) We know that (n − 1)S2/σ2 has a chi-squared distribution with n − 1 de-
grees of freedom. Also, X − µ has a normal distribution with mean 0 and
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variance σ2/n, so
p
n/σ2(X − µ) has a standard normal distribution. Hence,

[
p
n/σ2(X − µ)]

.p
(n− 1)S2/σ2(n− 1) = [

√
n(X − µ)] /√S2 has a t dis-

tribution with n − 1 degrees of freedom. Hence, m = n − 1 = 60, and
K =

√
n =

√
61 = 7.81.

(b) According to text Table D.4, since Y has a t distribution with 60 degrees of
freedom, P (Y ≤ 1.671) = 0.95, so P (Y ≥ 1.671) = 0.05, so y = 1.671.
(c) Here

p
n/σ2(X − µ) has a standard normal distribution, and (n− 1)S2/σ2

has a chi-squared distribution with n − 1 degrees of freedom, and they are
independent. Hence, the quantity W =

[
√
n/σ2(X−µ)]2/1

(n−1)S2/σ2/(n−1) = n(X − µ)2/S2 has
an F distribution with 1 and n− 1 degrees of freedom. Hence, a = n = 61, and
b = 1, and c = n− 1 = 60.
(d) According to text Table D.5, P (W ≤ 4.00) = 0.95, so P (W ≥ 4.00) = 0.05,
so w = 4.00.

4.6.12
(a) Since Di ∼ N(40, 52), D ∼ N(40, 52/20) = N(40, 1.25), a normal distribu-
tion with mean 40 and variance 1.25.
(b) Since Ci ∼ N(45, 82), C ∼ N(45, 82/30) = N(45, 2.13), a normal distribu-
tion with mean 45 and variance 2.13.
(c) Since C ∼ N(45, 2.13) and D ∼ N(40, 1.25), independent, it follows that
Z ≡ C −D ∼ N(45− 40, 2.13 + 1.25) = N(5, 3.38). (d) P (C < D) = P (Z <
0) = P ((Z− 5)/√3.38 < (0− 5)/√3.38) = P ((Z− 5)/√3.38 < −2.72) = 0.0033
(using text Table D.2). (e) Here Di ∼ N(40, 52), so (n− 1)S2/σ2 = U/52 has
a chi-squared distribution with n− 1 = 19 degrees of freedom. Hence, P (U >
633.25) = P ((U/52) > (633.25/52)) = P ((U/52) > 25.33) = 1 − P ((U/52) ≤
25.33) = 1− 0.85 = 0.15, using text Table D.3.

Problems

4.6.13
(a) Note that P (X ≤ z) = P (X ≥ −z) = P (−X ≤ z) = Φ(z). Hence,
P (Z ≤ z) = P (XY ≤ z) = P (XY ≤ z, Y = 1) + P (XY ≤ z, Y = −1) =
P (X ≤ z, Y = 1) + P (−X ≤ z, Y = −1) = P (X ≤ z)P (Y = 1) + P (−X ≤
z)P (Y = −1) = Φ(z)P (Y = 1) +Φ(z)P (Y = −1) = Φ(z), so Z ∼ N(0, 1).
(b) Cov(X,Z) = E(XZ) = E(X(XY )) = E(X2)E(Y ) = (1)(0) = 0.
(c) For example, P (X < −10, Z < −10) = P (X < −10, Y = 1) = Φ(−10)/2,
while P (X < −10)P (Z < −10) = Φ(−10)2 6= Φ(−10)/2, so X and Z and not
independent.
(d) Here X and Z do not arise as linear combinations of the same collection of
independent normal random variables.

4.6.14 We see that fZ(−z) = Γ((n+1)/2)(1+(−z)2/n)−(n+1)/2/Γ(n/2)√πn =
Γ((n + 1)/2)(1 + z2/n)−(n+1)/2/Γ(n/2)

√
πn = fZ(z). Then using the substi-

tution s = −t, we have P (Z < −x) = R−x
−∞ fZ(t) dt = − R∞

x
fZ(−s) (−ds) =R∞

x
fZ(s) ds = P (Z > x).
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4.6.15 If Xn ∼ F (n, 2n), then we can Þnd X1, . . . ,X3n i.i.d. ∼ N(0, 1), with
Xn = (((X1)

2 + . . . + (Xn)
2)/n)/(((Xn+1)

2 + . . . + (X3n)
2)/2n). But as n →

∞, by the strong law of large numbers, since E((Xi)2) = 1, ((X1)2 + . . . +
(Xn)

2)/n → 1 ((Xn+1)
2 + . . . + (X3n)

2)/2n → 1 with probability 1. Hence,
Xn → 1/1 = 1 with probability 1, and hence also in probability.

4.6.16 The Gamma(α/2, 1/2) distribution has density function
g(x) = (1/2)α/2xα/2−1e−x/2/Γ(α/2). By inspection, g(z) = f(z), i.e., the χ2(α)
distribution corresponds to the Gamma(α/2, 1/2) distribution and is thus a
well-deÞned probability distribution on (0,∞).
4.6.17 Just replace n by α throughout in the proof of Theorem 4.6.7.

4.6.18 Just replace n by α throughout in the proof of Theorem 4.6.9.

4.6.19 When α > 1, we have that

E(X) =

Z ∞

−∞
x

µ
1 +

x2

α

¶−α+1
2

dx = − 2α

2 (α− 1)
µ
1 +

x2

α

¶−α−1
2

¯̄̄̄
¯
∞

−∞
= 0.

When α > 2 we can write (using X ∼ t (α) implies that Y = X2 ∼ F (1, α))

E
¡
X2
¢
=

Γ
¡
1+α
2

¢
Γ
¡
1
2

¢
Γ
¡
α
2

¢αZ ∞

0

u
1
2 (1 + u)−

α+1
2 du
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Γ
¡
1+α
2

¢
Γ
¡
1
2

¢
Γ
¡
α
2

¢αZ ∞

0

u
3
2−1 (1 + u)−

3+α−2
2 du

=
Γ
¡
1+α
2

¢
Γ
¡
1
2

¢
Γ
¡
α
2

¢αZ ∞

0

µ
3

α− 2v
¶ 3

2−1µ
1 +

3

α− 2v
¶− 3+α−2

2 3

α− 2dv

=
Γ
¡
1+α
2

¢
Γ
¡
1
2

¢
Γ
¡
α
2

¢ Γ ¡32¢Γ ¡α−22 ¢
Γ
¡
1+α
2

¢ α =
1

2

1

α/2− 1α =
α

α− 2 .

4.6.20 Making the transformation v = (α (β − 2) /β (α+ 2))u, we have that

E(X) =
Γ
³
α+β
2

´
Γ
¡
α
2

¢
Γ
³
β
2

´ β
α

Z ∞

0

µ
α

β
u

¶α+2
2 −1µ

1 +
α

β
u

¶−α+β
2 α

β
du

=
Γ
³
α+β
2

´
Γ
¡
α
2

¢
Γ
³
β
2

´ β
α

Z ∞

0

µ
α+ 2

β − 2u
¶α+2

2 −1µ
1 +

α+ 2

β − 2u
¶−α+β

2 α+ 2

β − 2du

=
Γ
³
α+β
2

´
Γ
¡
α
2

¢
Γ
³
β
2

´ β
α

Γ
¡
α+2
2

¢
Γ
³
β−2
2

´
Γ
³
α+β
2

´ =
β

α

α/2

(β − 2) /2 =
β

β − 2 ,
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E(X2) =
Γ
³
α+β
2

´
Γ
¡
α
2

¢
Γ
³
β
2

´ µβ
α

¶2 Z ∞

0

µ
α

β
u

¶α+4
2 −1µ

1 +
α

β
u

¶−α+β
2 α

β
du

=
Γ
³
α+β
2

´
Γ
¡
α
2

¢
Γ
³
β
2

´ µβ
α

¶2 Γ ¡α+42 ¢
Γ
³
β−4
2

´
Γ
³
α+β
2

´ =

µ
β

α

¶2
(α/2) ((α/2) + 1)

((β − 2) /2) ((β − 4) /2) .

Therefore,

Var (X) =
µ
β

α

¶2
(α) (α+ 2)

(β − 2) (β − 4) −
β2

(β − 2)2

=
β2

α (β − 2)2 (β − 4) {(α+ 2) (β − 2)− α (β − 4)} =
2β2 (α+ β − 2)
α (β − 2)2 (β − 4) .

Challenges
4.6.21 Suppose that 0 < α ≤ 1. We have thatZ ∞

0

x

µ
1 +

x2

α

¶−α+1
2

dx ≥
Z ∞

0

x

µ
1 +

x2

α

¶−1
dx =

α

2
ln

µ
1 +

x2

α

¶¯̄̄̄∞
0

=∞

and, similarly,
R 0
−∞ x

³
1 + x2

α

´−α+1
2

dx = −∞, which implies that the mean
does not exist.
Consider now the second moment. Since X ∼ t (α) implies that Y = X2 ∼

F (1, α) , we have that

E
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¢
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¢
Γ
¡
1
2

¢
Γ
¡
α
2

¢ Z ∞
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1
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1
2 (1 + u)

− 3
2 du.

Since limu→∞ u
1
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1
2 = 1, we have that u

1
2 (1 + u)−

1
2 ≥ 1− c for a speci-

Þed c > 0 whenever u > cW. Therefore,Z ∞
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1
2 (1 + u)−
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2 du ≥

Z ∞
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1
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Z ∞

c/

(1 + u)
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Obviously, the variance is undeÞned when the mean does not exist, as when
0 < α ≤ 1, and the above shows that it is inÞnite when 1 < α ≤ 2.
4.6.22 We use induction on n. For n = 1 both sides are 0, so the equation
holds. Assume now that it holds for some value of n. We shall prove that
it holds for n + 1. Multiplying through by σ2, it suffices to take σ = 1. Let
X̄m = (1/m)(X1+. . .+Xm) for anym. Then X̄n+1 = (nX̄n+Xn+1)/(n+1), so
that X̄n+1− X̄n = (Xn+1− X̄n)/(n+1). Hence, for 1 ≤ i ≤ n, (Xi− X̄n+1)2 =
(Xi−X̄n+(X̄n−X̄n+1))2 = (Xi−X̄n)2+(X̄n−X̄n+1)2+2(Xi−X̄n)(X̄n−X̄n+1).
Now,

Pn
i=1(Xi − X̄n)2 equals the right-hand side of (4.7.1) by the induction

assumption. Also,
Pn
i=1(X̄n − X̄n+1)2 = n(X̄n − X̄n+1)2 = (n/(n+ 1)2)(X̄n −

Xn+1)
2. Also,

Pn
i=1(Xi− X̄n)(X̄n− X̄n+1) = (X̄n− X̄n+1)

Pn
i=1(Xi− X̄n) = 0

by deÞnition of X̄n. Hence,
Pn+1
i=1 (Xi−X̄n)2 equals the right-hand side of (4.7.1)

plus n(X̄n −Xn+1)2 plus (Xn+1 − X̄n+1)2. But (n/(n + 1)2)(X̄n −Xn+1)2 +
(Xn+1 − X̄n+1)2 = (n/(n + 1)2)((1/n)(X1 + . . . + Xn) − Xn+1)2 + (Xn+1 −
(1/(n+ 1))(X1 + . . . +Xn+1)2 = (1/n(n+ 1)2)((X1 + . . . +Xn)− nXn+1)2 +
(1/(n+1))2(X1+ . . .+Xn+1−(n+1)Xn+1)2 = (1/n(n+1)2)((X1+ . . .+Xn)−
nXn+1)2 + (1/(n+ 1))2(X1 + . . .+Xn − nXn+1)2 = ((1/n(n+ 1)2) + (1/(n+
1))2)(X1 + . . . + Xn − nXn+1)2 = (1/n(n + 1))(X1 + . . . + Xn − nXn+1)2 =
((X1 + . . . + Xn − nXn+1)/

p
n(n+ 1)2. Hence,

Pn+1
i=1 (Xi − X̄n)2 equals the

right-hand side of (4.7.1) plus ((X1+. . .+Xn−nXn+1)/
p
n(n+ 1)2. The result

follows by induction.





Chapter 5

Statistical Inference

5.1 Why Do We Need Statistics?

Exercises
5.1.1 The mean survival times for the control group and the treatment group
are 93.2 days and 356.2 days respectively. As we can see, there is a big difference
between the two means, which might suggest that the treatment is indeed effec-
tive, but we cannot base our conclusions about the effectiveness of the treatment
based only on these numbers. We have to consider sampling variability as well.

5.1.2 In the control group there are two unusual observations, namely, obser-
vations 11 and 30, and these tend to make the mean for this group much larger.
In the treatment group there would not appear to be any unusual observations.

5.1.3 For those who are still alive, their survival times will be longer than the
recorded values, so these data values are incomplete.

5.1.4 We could construct a probability distribution based on the database
of marks. For example, recording the proportion of students receiving marks
greater than 80, etc. Then for a student randomly selected from the database,
this proportion is the probability that the student will have a mark greater than
80.

5.1.5 We use the sample average x̄ = −0.1375. We base this on the weak law
of large numbers because we know that x̄ will be close to µ when n is large.

5.1.6 We could get ages of all male students at the college from the database.
Since we can then compute the average age exactly, there are no uncertainties.
This means we don�t need any statistical methodology.

5.1.7 We use the difference x̄ − ȳ of the sample averages x̄ and ȳ. We know
that x̄ and ȳ will be close to µ1 and µ2 as m and n are large based on the weak
law of large numbers. But if m or n is small, the values of x̄ or ȳ may not be
close to µ1 or µ2 respectively.
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5.1.8 We estimate λ by 1/x̄. The weak law of large numbers guarantees x̄ is
close to the expected value of X, E(X) = 1/λ. Hence, the reciprocal of x̄ is
also close to λ. If λ is very large, or 1/λ is very small, then x̄ is also very small
value. So a small change of x̄ could make large difference in the result. That
means if λ is very large, then a huge number of observations are required to
determine λ.

Problems
5.1.9 We note that patients who didn�t receive transplants could have been
much unhealthier than those that did. It is not clear what factors inßuenced
which group a patient wound up in and these factors could have a profound
impact on the survival times.

5.1.10 We get an approximate value of P (C) by dividing the number of sample
values lying in the set C by the sample size, i.e., P (C) is determined by ĪC =
n−1

Pn
i=1 IC(Xi) for a sample X1, . . . ,Xn. The weak law of large numbers (see

Theorem 4.2.1) guarantees that ĪC is close to P (C) when the sample size is big.
However, the accuracy depends on the size of P (C). Consider the central limit

theorem (see Theorem 4.4.3), (ĪC − P (C))/(P (C)(1− P (C))/n)1/2 D→ N(0, 1).
When P (C) is very close to 0 or 1, a small change of ĪC could lead to a large
difference from the value P (C).

Computer Problems
5.1.11 A good method would be to generate a large sample (say n = 1000) from
the N(0, 1) distribution, calculate the values of Y, and then record the empirical
distribution function of Y. This allows us to estimate the probability P (Y ∈ A)
for any interval A. For example, the following Minitab commands do this and
record the estimate .021 for P (Y ∈ (1, 2)). As we know from the weak law of
large numbers, the proportion of Y values in this interval will converge to this
probability as n→∞.

MTB > random 1000 c1;
SUBC> normal 0 1.
MTB > let c2=c1**4+2*c1**3-3
MTB > let c3=c2>1 and c2<2
MTB > let k1=mean(c3)
MTB > print k1
Data Display
K1 0.0210000

Statistical methodology is relevant to determine if n is large enough to ac-
curately estimate the probability and how accurate this estimate is.



5.2 Inference Using a Probability Model

Exercises
5.2.1 In Example 5.2.1 the lifelength in years of a machine was known to be
X ∼ Exponential(1), so the mode is given by 0. In Example 5.2.2 the conditional
density is given by e−(x−1) for x > 1. The mode of this density is 1.
In both cases the mode is at the extreme left end of the distribution and so

does not seem like a very good predictor.

5.2.2 Using the mean of a distribution to predict a future response, the mean
squared error of this predictor is E (X − 1)2 = V ar (X) = 1, where X is the
future response and 1 is the mean of the distribution.

5.2.3 The density of the distribution obtained as a mixture of a N(−4, 1) and a
N(4, 1) with mixture probability .5 has density given by .5√

2π
exp

n
− (x+4)2

2

o
+

.5√
2π
exp

n
− (x−4)2

2

o
for −∞ < x <∞. This is plotted below.

5.2.4 First, if X ∼Uniform(0,1), then the density of Y = 10X is given by
fY (y) = 1/10 for 0 ≤ y ≤ 10, i.e., Y ∼ Uniform(0, 10), so E(Y ) = 5 years.
The smallest interval containing 95% of the probability for Y is an interval

(a, b), where a and b satisfy 0 ≤ a ≤ b ≤ 10 and 0.95 = R ba 1
10dy =

1
10 (b− a) or

b− a = 9.5. We thus see that any subinterval of (0, 10) of length 9.5 will work,
e.g., (.5, 10).
Next, if we want to assess whether or not x0 = 5 is a plausible lifelength for a

new machine, we need to compute the tail probability P (Y ≥ 5) = R 10
5

1
10dy =

5
10 = 0.5, which in this case is quite high and therefore indicates that x0 = 5 is
a plausible lifelength for that new machine.
Now, the density of the conditional distribution of Y, given Y > 1, is given

by fY (y |Y > 1) = 1
9 for 1 ≤ y ≤ 10. So the predicted lifelength is now

E (Y |Y > 1) = R 101 y
9 dy =

1
9

¡
100
2 − 1

2

¢
= 5.5.

The tail probability measuring the plausibility of the value x0 = 5 is given
by P (Y > 5 |Y > 1) = R 10

5
1
9dy =

5
9 = 0.555555, which indicates that x0 = 5 is

slightly more plausible now.
Finally, the shortest interval containing 0.95 of the conditional probability

is of the form (c, d), where c and d satisfy 1 ≤ c ≤ d ≤ 10 and 0.95 = R dc 1
9dy =

1
9 (d− c) or d − c = (.95)9 = 8.55. We thus see that any subinterval of (1, 10)
of length 8.5 will work, e.g., (1.45, 10).



5.2.5 We consider the mode of a density as a predictor for a future value. The
density (1/

√
4π) exp(−(x − 10)2/4) is maximized at x = 10. Thus, x = 10 is

recorded as a prediction value of a future value of X.

5.2.6 To get the smallest interval containing 0.95 of the probability for a future
response, the density at any point in the interval must be higher than the density
at points outside of the interval. As we can see in the density plot, the density
is unimodal and symmetric at x = 10. Hence, the shortest interval must be
I = (10− c, 10 + c). From the requirement the probability of I is 0.95, we have
P (I) = P (10−c < X < 10+c) = Φ(c/

√
2)−Φ(−c/√2) = 2Φ(c/√2)−1 = 0.95.

The solution of c is c =
√
2Φ−1((0.95 + 1)/2) =

√
2 · 1.96 = 2.7719.

5.2.7 The mode of a density is a possibility. The density of Gamma(3, 6) is
(63/Γ(3))x2 exp(−6x). The Þrst and second derivative of the logarithm of the
density are −6 + 2/x and −2/x2. Hence, the density has the maximum value
at x = 1/3. In other words, x = 1/3 is the most probable value. So x = 1/3 is
recorded as a future response.

5.2.8 The value having highest probability is considered. Since P (X = x +
1)/P (X = x) = [e−55x+1/(x+ 1)!]/[e−55x/x!] = 5/(x+ 1), p(x) = P (X = x) is
increasing when x ≤ 4 and is decreasing when x ≥ 5. Also p(4) = p(5) is the
maximum value. Both 4 and 5 can be a prediction of a future value.

5.2.9 The probability function p(x) = (1/3)(2/3)x is decreasing. Hence, x = 0
is the most probable.

5.2.10
(a) Answer I: The value x = 1 has the highest probability. So x = 1 is the most
probable future value.
Answer II: Since E(X) = (1/2) · 1 + (1/4) · 2 + (1/8) · 3 + (1/8) · 4 = 15/8, the
value x = 2 has the smallest MSE.
(b) The conditional probability P (X = x|X ≥ 2) is given by

x 2 3 4
P (X = x|X ≥ 2) 1/2 1/2 1/2

Answer I: Among X ≥ 2, the value X = 2 has the highest probability. So x = 2
is the most probable future value.
Answer II: The conditional expectation is E(X|X ≥ 2) = (1/2) · 2 + (1/4) ·
3 + (1/4) · 4 = 11/4. Hence, the value x = 3 has the smallest conditional
mean-squared error.

Problems
5.2.11 Let X be the number of heads in 10 tosses of a fair coin. Then
s ∼Binomial(10, 0.5)
(a) The expected value of the response is E(X) = 10 · 0.5 = 5.
(b) The probability function of X looks like the graph below.
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From this we can see that the shortest interval containing 0.95 of the probabil-
ity is symmetric about 5. So c satisfying 2 (P (X = 0) + · · ·+ P (X = c)) ≤ .05
and 2 (P (X = 0) + · · ·+ P (X = c+ 1)) > .05 gives the shortest interval as
(c, n− c). In this case c = 2 since 2 (P (X = 0) + · · ·+ P (X = 2)) = 0.02148
and 2 (P (X = 0) + · · ·+ P (X = 3)) = 0.10937.

(c) As we can see, the probability function of X is symmetric, so to assess
whether or not a value x is a possible future value we would use the probability
of obtaining a value whose probability of occurrence was as small or smaller
than that of x. In this case it is the probability

2 (P (X = 0) + · · ·+ P (X = min (x, n− x))) .

When x = 8 this probability is given by 2 (P (X = 0) + · · ·+ P (X = 2)) =
0.02148. It seems small, so we have evidence against the coin being fair. Note
that it is also plausible to use the left or right tail alone, but the two-tailed
approach seems more sensible.

5.2.12 We have that the probability of an interval (a, b) is given by e−a − e−b,
and we want a and b such that e−a− e−b = .95 and b− a is smallest. From the
graph of the density e−x, we see that for two intervals of the same length the
one closest to 0 has the most probability. So taking a = 0 means that choosing
b appropriately will give the shortest interval.

5.2.13
(a) The condition implies thatX ∈ C = {0, 2, 4, 6, 8, 10} and this has probability

P (C) =

½µ
10

0

¶
+

µ
10

2

¶
+

µ
10

4

¶
+

µ
10

6

¶
+

µ
10

8

¶
+

µ
10

0

¶¾µ
1

2

¶10
=
1

2

The conditional distribution of X, given C, is

P (X = 0 |C) = 2
µ
10

0

¶µ
1

2

¶10
= 1.9531× 10−3

P (X = 2 |C) = 2
µ
10

2

¶µ
1

2

¶10
= 8.7891× 10−2



P (X = 4 |C) = 2
µ
10

4

¶µ
1

2

¶10
= 0.41016

P (X = 6 |C) = 2
µ
10

6

¶µ
1

2

¶10
= 0.41016

P (X = 8 |C) = 2
µ
10

8

¶µ
1

2

¶10
= 8.7891× 10−2

P (X = 10 |C) = 2
µ
10

10

¶µ
1

2

¶10
= 1.9531× 10−3

so the conditional expectation of X is µ = 0
¡
1.9531× 10−3¢+

2
¡
8.7891× 10−2¢+ 4 (0.41016) + 6 (0.41016) + 8 ¡8.7891× 10−2¢+

10
¡
1.9531× 10−3¢ = 5.0.

(b) The shortest interval containing at least 0.95 of the probability for X is
(2, 8).
(c) We assess x = 8 by computing 2 (P (X = 0) + P (X = 2)) = 2(1.9531×10−3+
8.7891 × 10−2) = 0.17969, and we see that we now do not have any evidence
against 8 as a plausible value.

5.2.14 Suppose that X ∼ Beta(a, b). We have that

E (X) =

Z 1

0

x
Γ (a+ b)

Γ (a)Γ (b)
xa−1 (1− x)b−1 dx = Γ (a+ b)

Γ (a)Γ (b)

Z 1

0

xa (1− x)b−1 dx

=
Γ (a+ b)

Γ (a)Γ (b)

Γ (a+ 1)Γ (b)

Γ (a+ b+ 1)
=

a

a+ b
.

and the mean-squared error of this predictor is just

E

Ãµ
X − a

a+ b

¶2!
= V ar(X) =

ab

(a+ b+ 1) (a+ b)2
.

We have that

E
¡
X2
¢
=

Z 1

0

x2
Γ (a+ b)

Γ (a)Γ (b)
xa−1 (1− x)b−1 dx

=
Γ (a+ b)

Γ (a)Γ (b)

Z 1

0

xa+1 (1− x)b−1 dx = Γ (a+ b)

Γ (a)Γ (b)

Γ (a+ 2)Γ (b)

Γ (a+ b+ 2)

=
a (a+ 1)

(a+ b) (a+ b+ 1)

so V ar(X) = ab/ (a+ b+ 1) (a+ b)2 .
To obtain the mode, we need to maximize xa−1 (1− x)b−1 or equivalently

(a−1) lnx+(b−1) ln(1−x), which has derivative (a−1)/x−(b−1)/(1−x), and
setting this equal to 0 yields the solution �x = (a− 1) /(a+ b − 2). The second



derivative is given by −(a− 1)/x2 − (b− 1)/(1− x)2, which is always less than
or equal to 0 so �x is the mode. Then

E

Ãµ
X − a− 1

a+ b− 2
¶2!

= E

Ãµ
X − a

a+ b
+

a

a+ b
− a− 1
a+ b− 2

¶2!

= V ar(X) +

µ
a

a+ b
− a− 1
a+ b− 2

¶2
=

ab

(a+ b+ 1) (a+ b)
2 +

µ
a

a+ b
− a− 1
a+ b− 2

¶2
≥ E

Ãµ
X − a

a+ b

¶2!
.

Therefore, the mean is a better predictor.

5.2.15 Suppose X ∼ N(0, 1) and that we use the mean of the distribution to
predict a future value. Then:
(a) E (X) = 0 is a prediction for a future X.
(b) If Y = X2, then Y ∼ χ2(1) and E (Y ) = 1.
(c) We notice that we predict X by 0 but do not predict X2 by 02.

5.2.16 As in the graph, the probability function is decreasing as x increases.
Hence, the shortest interval containing 95% probability of a future value X is
[0, c] for some c such that P (X ≤ c) ≥ 0.95. Since P (X ≤ x) = θ + θ(1 −
θ) + · · · + θ(1 − θ)x = 1 − (1 − θ)x+1 for θ = 1/3, the solution c must satisfy
1−(2/3)c+1 ≥ 0.95. The solution is c ≥ −1+ln(0.05)/ ln(2/3) = 6.3884. Hence,
the interval [0, 7] is the solution.

5.2.17 The conditional probability P (X = x|X > 5) = θ(1−θ)x−6 where x ≥ 6
and θ = 1/3. The conditional probability function is decreasing and the value
x = 6 is the most probable.
Again the shortest interval containing 95% probability of a future X is [6, c]
satisfying P (6 ≤ X ≤ c|X > 5) ≥ 0.95. Since P (X ≤ x|X > 5) = 1−(1−θ)x−5,
the solution is c ≥ 5 + ln(0.05)/ ln(2/3) = 12.3884. Finally, the interval [6, 13]
is the solution.

5.3 Statistical Models

Exercises
5.3.1 Let θ denote the type of coin being selected, then θ ∈ Ω = {1, 2, 3},
where coin 1 is the fair one, coin 2 has probability 1/3 of yielding a head, and
coin 3 has probability 2/3 of yielding a head. So the statistical model for a
single response consists of three probability functions {f1, f2, f3} , where f1 is
the probability function for the Bernoulli(1/2) distribution, f1 is the probability
function for the Bernoulli(1/3) distribution, and f3 is the probability function
for the Bernoulli(2/3) distribution. Then (x1,x2,...,x5) is a sample from one of
these Bernoulli(θ) distributions.



5.3.2 There are 6 possible distributions in the model as given in the following
table. Here pi denotes the distribution relevant when the face with i pips is
duplicated.

1 2 3 4 5 6
p1 1/3 0 1/6 1/6 1/6 1/6
p2 0 1/3 1/6 1/6 1/6 1/6
p3 0 1/6 1/3 1/6 1/6 1/6
p4 0 1/6 1/6 1/3 1/6 1/6
p5 0 1/6 1/6 1/6 1/3 1/6
p6 0 1/6 1/6 1/6 1/6 1/3

5.3.3 The sample (X1,...,Xn) is a sample from N(µ, σ2) distribution, where
θ = (µ, σ2) ∈ Ω = {(10, 2), (8, 3)}. We could parameterize this model by
the population mean or by the population variance as both of these quanti-
ties uniquely identify the two populations. For example, if we know the mean
of the distribution is 10, then we know that we are sampling from population I
(and similarly if we know the variance is 2).

5.3.4 We cannot parameterize the model by the population mean since the two
populations have the same mean, but we can parameterize by the population
variance, as this is unique.

5.3.5 A single observation is from an Exponential(θ) distribution, where θ ∈
Ω = [0,∞). We can parameterize this model by the mean 1/θ since the mean
is a 1-1 function of θ. We can also parameterize this model by the variance,
since it is a 1-1 transformation of θ ≥ 0. The coefficient of variation is given by
θ−1/

√
θ−2 = 1. This quantity is free of θ, and so we cannot use this quantity to

parameterize the model.

5.3.6 The Þrst quartile c of the Uniform[0, β] distribution satisÞes 0.25 =R c
0
1
βdx =

c
β , so c = 0.25β. Since c is a 1-1 transformation of β, we can pa-

rameterize this model by the Þrst quartile.

5.3.7
(a) The parameter space is comprised of the possible values of θ. Hence, the
parameter space is Ω = {A,B}.
(b) The value X = 1 is observable only when θ = A. Hence, θ = A is the true
parameter. The distribution of X is

P (X = x) =

½
1/2 if x = 1 or x = 2,
0 otherwise.

(c) Both θ = A and θ = B are possible because PA(X = 2), PB(X = 2) > 0.

5.3.8 Assume the observed value x is contained in C, that is, x ∈ C. Since
x ∈ C and x 6∈ Cc, the value x could come from P1 but not come from P2. That
means the true probability measure is P1. If x 6∈ C, then the value x could
come from P2 but not from P1. Hence, the true probability measure is P2. In



sum, if the probability measures are constructed on disjoint sets, then the true
probability measure is easily determined by the observed value.

5.3.9 The probabilities of the event X = 1 with respect to the probability
measures P1 and P2 are P1(X = 1) = 0.75 and P2(X = 1) = 0.001. If the
true probability measure were P1, the event (X = 1) would be very probable to
have happened. But the event X = 1 would be very rare if the true probability
measure were P2.

5.3.10
(a) The model is the set of all possible distributions, class 1 and class 2. That
is Ω = {P1, P2}. The probability measure P1 corresponds to class 1 and P2
corresponds to class 2. The parameter space is {1, 2}. The random variable
considered in this problem is the number of female students when a sample of
size 1 is taken. Hence, the observed data is X = 1. The distribution of X is
Hypergeometric(100, 65, 1) from P1 and Hypergeometric(100, 55, 1) from P2.
(b) The probabilities of the event (X = 1) is P1(X = 1) =

¡
65
1

¢¡
35
0

¢
/
¡
100
1

¢
=

13/20 and P2(X = 1) =
¡
55
1

¢¡
45
0

¢
/
¡
100
1

¢
= 11/20. Since both classes give similar

probabilities for the observed data, it is hard to determine from which class the
female student came.
(c) Since P1(X = 1) = 0.65 > 0.55 = P2(X = 1), the probability measure P1
would appear to be more likely.

Problems
5.3.11We have that exp (ψ) = θ/(1−θ), so 1+exp (ψ) = 1+θ/(1−θ) = 1/(1−θ),
giving that θ = exp (ψ) / (1 + exp (ψ)) . Then the probability function for Xi is
given by µ

exp (ψ)

1 + exp (ψ)

¶xi µ 1

1 + exp (ψ)

¶1−xi
for xi ∈ {0, 1} with ψ ∈ [0,∞] (note ψ = ∞ when θ = 1). The probability
function for the sample (X1, . . . ,Xn) is given by the product of these individ-
ual probability functions, and the parameter is ψ, which takes values in the
parameter space [0,∞] .
5.3.12 We have that ψ = lnσ, so σ = exp (ψ) . The density function for Xi is
then given by

exp
³
−ψ
2

´
√
2π

exp

½
exp (−2ψ)

2
(xi − µ)2

¾
and (µ,ψ) ∈ R2 so that the parameter space is now R2. The density function for
the sample (X1, . . . ,Xn) is given by the product of these individual probability
functions and the parameter is (µ,ψ) , which takes values in the parameter space
R2.

5.3.13
Pn
i=1(xi−µ)2 =

Pn
i=1(xi− x̄+ x̄−µ)2 =

Pn
i=1((xi− x̄)2+2(xi− x̄)(x̄−

µ) + (µ − x̄)2) = Pn
i=1(xi − x̄)2 − 2(µ − x̄)

Pn
i=1(xi − x̄) +

Pn
i=1(µ − x̄)2 =Pn

i=1(xi − x̄)2 + n(µ− x̄)2 since
Pn
i=1(xi − x̄) =

Pn
i=1 xi − nx̄ = 0.



5.3.14 We know that T ∼ Binomial(n, θ) , where θ ∈ [0, 1] is unknown. There-
fore, the probability function for T is given by fθ(t) =

¡
n
t

¢
θt(1 − θ)n−t for

t ∈ {0, . . . , n} . The parameter is θ and the parameter space is [0, 1] .
5.3.15 The Þrst quartile c, of a N(µ, σ2) distribution satisÞes

0.25 =

cZ
−∞

1√
2πσ

exp

½
−(x− µ)

2

2σ2

¾
dx = Φ

µ
c− µ
σ

¶
.

Therefore, c = µ + σz.25, where z.25 is the Þrst quartile of the N(0, 1) distri-
bution, i.e., Φ (z.25) = .25. But we see from this that several different values
of (µ, σ2) can give the same Þrst quartile, e.g., (µ, σ2) = (0, 1) and (µ, σ2) =
(z.25/2, 1/4) both give rise to normal distributions whose Þrst quartile equals
z.25. Therefore, we cannot parameterize this model by the Þrst quartile.

5.3.16 The statistical model for (X,Y ) is given by the densities

f(x, y |σ2, δ2) = f(x |σ2, y)f(y | δ2)

=
1√
2πσ

exp

½
−(x− y)

2

2σ2

¾
1√
2πδ

exp

½
− 1

2δ2
y2
¾

=
1

2πσδ
exp

½
−1
2

µ
x2

σ2
+
2xy

σ2
−
µ
1

σ2
+
1

δ2

¶
y2
¶¾

=
1

2πσδ
exp

½
−1
2

µ
x2

σ2
+
2xy

σ2
− δ

2 + σ2

σ2δ2
y2
¶¾

=
1

2πσδ
exp

½
−δ

2 + σ2

2σ2

µ
x2

δ2 + σ2
+

2xy

δ2 + σ2
− 1

δ2
y2
¶¾

where the parameter
¡
σ2, δ2

¢
ranges in the parameter space

¡
σ2, δ2

¢× ¡σ2, δ2¢ .
From Example 2.7.8 we see that this is the density of a Bivariate Normal(0, 0, δ2+

σ2, δ2, ρ) distribution, where ρ =
q

δ2

δ2+σ2 . Using Problem 2.7.13 we have im-

mediately that X ∼ N(0, σ2 + δ2). Therefore, the statistical model for X alone
is given by the collection of all N(0, τ2) distributions, where the parameter
τ2 is any value greater than 0. Alternatively, this result can be obtained by
integrating out y in the joint density to obtain

f(x |σ2, δ2) =
∞Z

−∞

1

2πσδ
exp

½
− x2

2σ2
+
2xy

2σ2
− ( 1
2σ2

+
1

2δ2
)y2
¾
dy

=
1p

2π(σ2 + δ2)
exp

½
− x2

2(δ2 + σ2)

¾
.

5.3.17
(a) It is possible to distinguish P1 and P2 with small error. Note that P1(X >
5) = 1−Φ(−5) = 1− 2.8665× 10−7 and P2(X > 5) = Φ(−5) = 2.8665× 10−7.
Hence, we conclude the observed value x came from P1 if x ≥ 5 and came from



P2 if x < 5. The probability of making any error is 2.8665 × 10−7. Therefore,
this inference is very reliable.
(b) A similar inference could make even when P1 is a N(1, 1). We conclude the
observed value x came from P1 if x ≥ 1/2 and came from P2 if x < 1/2. But
the probability of making any error given by P1(X < 1/2) = Φ(−1/2) = 0.3085
is very big. Hence, this inference is not reliable.

5.3.18 If P1 is the true probability measure, the sample mean X̄ = (X1+ · · ·+
Xn)/n has a N(1, 1/100) distribution. And X̄ has a N(0, 1/100) distribution if
P2 is true. Hence, we conclude the true probability measure is P1 if X̄ ≥ 1/2
and is P2 if X̄ < 1/2. The probability of making an error is P1(X̄ < 1/2) =
P1((X̄ − 1)/p1/100 < (1/2 − 1)/p1/100) = Φ(−5) = 2.8665 × 10−7. Thus,
this inference is very reliable.

5.4 Data Collection
Exercises
5.4.1 We have that

FX(x) =


0 x < 1
4
10 1 ≤ x < 2
7
10 2 ≤ x < 3
9
10 3 ≤ x < 4
1 4 ≤ x

, fX(x) =


4
10 x = 1
3
10 x = 2
2
10 x = 3
1
10 x = 4

and µX =
P4
x=1 xfX(x) = 2, σ

2
X =

³P4
x=1 x

2fX(x)
´
− 22 = 1.

5.4.2
(a) We cannot consider this as an approximate i.i.d. sample from the population
distribution since the size of the population is small and the sample size is large
relative to the population size.
(b) Place ten chips in a bowl. Each chip should have a unique number on it from
1 to 10. Thoroughly mix the chips and draw three of them without replacement.
The numbers on the selected chips correspond to the individuals to be selected
from the population. Alternatively, we can use Table D.1 by selecting a row
and reading off the Þrst three single numbers (treat 0 in the table as a 10).
(c) Using row 108 of Table D.1 (treating 0 as 10)we get:
First sample � we obtain random numbers 6, 0, 9 and so compute (X (π6) +
X (π10) +X (π9))/3 = (3 + 4 + 2) /3 = 3.0
Second sample � we obtain random numbers 4, 0, 7 and so compute (1 + 4 +
3)/3 = 2.666 7
Third sample � we obtain random numbers 2, 0, 4 (note we had to skip the
second 2) and so compute (1 + 4 + 1) /3 = 2.0.



5.4.3
(a) We can consider this as an exact i.i.d. sample from the population distri-
bution since it is a sample with replacement, so each individual has the same
chance to be chosen on each draw.
(b) Place ten chips in a bowl. Each chip should have a unique number on it from
1 to 10. Thoroughly mix the chips and draw three of them with replacement.
The numbers on the selected chips correspond to the individuals to be selected
from the population. Alternatively, we can use Table D.1 by selecting a row
and reading off the Þrst three single numbers (treat 0 in the table as a 10).
(c) Using row 108 of Table D.1 (treating 0 as 10) we get:
First sample � we obtain random numbers 6, 0, 9 and so compute (X (π6) +
X (π10) +X (π9))/3 = (3 + 4 + 2) /3 = 3.0
Second sample � we obtain random numbers 4, 0, 7 and so compute (1 + 4 +
3)/3 = 2.666 7
Third sample � we obtain random numbers 2, 0, 2 (note we do not skip the
second 2) and so compute (1 + 4 + 1) /3 = 2.0.

5.4.4
(a) fX(0) = a/N, fX(1) = (N − a) /N. This is a Bernoulli((N − a) /N) distrib-
ution.
(b) P

³
�fX(0) = fX(0)

´
= P

³
n �fX(0) = nfX(0)

´
= P (number of 0�s in the sam-

ple equals nfX(0)) =
¡

a
n−nfX(0)

¢¡
N−a
nfX(0)

¢
/
¡
N
n

¢
since n �fX(0) ∼Hypergeometric(N,

a, n).

(c) We have that n �fX(0) ∼Binomial(n, a/N) , so P ( �fX(0) = fX(0)) = P (n �fX(0)
= nfX(0)) = P (number of 0�s in the sample equals nfX(0)) =

¡
n

nfX(0)

¢ ¡
a
N

¢nfX(0)
× ¡1− a

N

¢n−nfX(0) .
5.4.5
(a)
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(b)
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(c) The shape of a histogram depends on the intervals being used.

5.4.6
(a) Through a census of the population.
(b) We cannot represent the population distribution of X by FX since X is a
categorical variable.
(c)

fX(x) =

 0.35 x = A
0.55 x = B
0.1 x = C

(d) We can select a simple random sample from the population, record the
political opinion of each student, and compute the sample proportions for each
party.
(e) It does not allow for those who do not have a preference.

5.4.7 The Þle extension of a Þle indicates the type of the Þle. That means
the Þle extension is a base distinguishing the type of the Þle. Hence, it is a
categorical variable.

5.4.8
(a) The population Π is the set of all 15, 000 students. The variable X(π) is 1
if the student π intended to work during the summer and is 0 otherwise. So X
is a categorical variable. The function fX is the distribution of X, i.e., fX(1) is
the proportion of students who intend to work during summer and fX(0) is the
proportion of students who do not intend to work during summer.
(b) After asking all students whether they intend to work during summer or
not, count the number of students who intend to work, say M . Then, fX(1) =
M/15, 000 and fX(0) = (15, 000−M)/15, 000 = 1− fX(1).
(c) Sometimes it is impossible to collect data from some students. If the budget
for this research is limited, some of the data cannot be collected. If it is impos-
sible to collect all data, then we need to collect data as much as possible. Say n



data values are collected. Let m be the number of students who intend to work
during summer among these n students. Then, the estimator is �fX(1) = m/n,
�fX(0) = (n−m)/n, and �fX(x) = 0 if x 6= 0 and x 6= 1.
(d) Now the population Π1 is reduced to the students who intend to work during
summer. Hence, the size of new population is M . The variable Y indicates 1 if
the student π who could not Þnd a job and is 0 otherwise. Still Y is a categorical
variable. After taking a census, let L be the number of students who intended
to work during summer but could not Þnd a job. Then, the exact distribution is
fY (1) = L/M and fY (0) = (M −L)/M = 1−fY (1). To estimate fY , sample m
students who intended to work during summer and count the number of students
who could not Þnd a job, say l students. Then, the estimate �fY (1) = l/m and
�fY (0) = (m− l)/m = 1− l/m = 1− �fY (1).

5.4.9
(a) Students are more likely to lie if they have illegally downloaded music, so
the results of the study will be ßawed.
(b) Under anonymity, students are more likely to tell the truth so there will be
less error.
(c) The probability of obtaining two heads among three tosses is

¡
3
2

¢
(1/2)2(1/2)1

= 3/8 = 0.375. The probability that a student tells the truth is 1 − 0.375 =
0.625. This can be modelled in statistically as follows. Let Yi be the answer of
the question from student i, Xi be the true answer of student i and Ti be the
truth of the answer Xi. Then, Xi ∼ Bernoulli(θ) and Ti ∼ Bernoulli(p) where
θ ∈ [0, 1] is unknown and p = 0.625 is known. The answer Yi = Xi if Ti = 1
and Yi = 1−Xi if Ti = 0. Only Yi�s are observed. In other words, Xi�s and Ti�s
are not observed. The expectation of Yi is

Eθ[Yi] = Eθ[Xi]P (Ti = 1) +Eθ[1−Xi]P (Ti = 0) = θ · p+ (1− θ) · (1− p)
= θ(2p− 1) + 1− p.

Hence, �θ = (Ȳ − (1− p))/(2p− 1) is recorded as an estimated proportion of the
students who have ever downloaded music illegally.

5.4.10
(a) The populationΠ is the set of all purchasers of a new car in the last 6 months.
The random variableX is the satisfaction level indicating one of {1, . . . , 7}. Each
fX(x) for x = 1, . . . , 7 is the proportion of buyers at the satisfaction level x.
Hence, fX(x) ≥ 0 and fX(1) + · · ·+ fX(7) = 1.
(b) A categorical variable has no relationship among categories. The value x
indicates the level of a person�s satisfaction. The bigger value of x means the
more satisfaction. Thus, x might be treated as a quantitative variable but this
is not completely correct either as there is no clear meaning to the size of the
steps between categories. So this variable possesses features of both categorical
and quantitative variables.
(c) The difficulty arises from the subjectivity of the answer. This deÞnitely adds
some ambiguity to any interpretation of the results.



Computer Exercises
5.4.11
(a) After generating the sample (x1, . . . , x1000) , you need to sort it to obtain the
order statistics

¡
x(1), . . . , x(n)

¢
and then record the proportion of data values

less than or equal to each value. Then FX(x) equals the largest value i/n, such
that x(i) ≤ x.
(b)
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(c)

1050-5

0.3

0.2

0.1

0.0

x

D
en

si
ty

(d) The histogram in (c) is much more erratic than that in (b). Some of this is
due to sampling error.
(e) If we make the lengths of the intervals too short, then there will inevitably
only be one or a few data points per interval, and the histogram will not have
any kind of recognizable shape. This is sometimes called over-Þtting, as the
erratic shape is caused by making the intervals too small.

5.4.12 Using Minitab this can be carried out by placing the numbers 1 through
10,000 in a column and then using the Sample from columns command, with
the subcommand to carry out sampling with replacement.

Problems
5.4.13
(a) fX(0) = a/N, fX(1) = b/N, fX(2) = (N − a− b) /N.
(b) Assuming f1, f2, and f3 are nonnegative integers summing to n (otherwise
probability is 0), the probability is

¡
a
f0

¢¡
b
f1

¢¡
N−a−b
f2

¢
/
¡
N
n

¢
.



(c) The probability that �fX(0) = f0, �fX(1) = f1and �fX(2) = f2 isµ
a

f0 f1 f2

¶³ a
N

´f0 µ b
N

¶f1 µN − a− b
N

¶f2
since each sequence of f0 zeros, f1 ones, and f2 twos has probability

³ a
N

´f0 µ b
N

¶f1 µN − a− b
N

¶f2
of occurring, and there are

¡
a

f0 f1 f2

¢
such sequences.

5.4.14
(a) The population mean is given by µX = 1

N

PN
i=1X (πi) =

P
x xfX (x) since

fX(x) = (the number of population elements with X (πi) = x)/N .
(b) The population variance is given by

σ2X =
1

N

NX
i=1

(X (πi)− µX)2 = 1

N

NX
i=1

X2 (πi)− 2

N

NX
i=1

X (πi)µX + µ
2
X

=
X
x

x2fX (x)− 2µ2X + µ2X =
X
x

x2fX (x)− µ2X =
X
x

(x− µX)2 fX (x) .

5.4.15

(a) First, note that �fX(0) = 1
n

nP
i=1
I{0}(X(πi)), so

E
³
�fX(0)

´
=
1

n
E

Ã
nX
i=1

I{0} (X(πi))

!
=
1

n

nX
i=1

E
¡
I{0} (X(πi))

¢
=
1

n

nX
i=1

P (X(πi) = 0) =
1

n

nX
i=1

fX(0) = fX(0).

(b) We have that

Var
³
�fX(0)

´
=
1

n2
V ar

Ã
nX
i=1

I{0} (X(πi))

!

=
1

n2

nX
i=1

Var(I{0}(X(πi))) +
2

n2

X
i<j

Cov
¡
I{0}(X(πi), I{0}(X(πj)

¢
=
1

n
Var(I{0}(X(πi))) +

2

n2
n(n− 1)

2
Cov

¡
I{0}(X(π1), I{0}(X(π2)

¢
=
fX(0) (1− fX(0))

n
+
n− 1
n

Cov
¡
I{0}(X(π1), I{0}(X(π2)

¢



and

Cov(I{0}(X(π1)), I{0}(X(π2))) = E
¡
I{0}(X(π1))I{0}(X(π2)

¢
)− (fX(0))2

= P
¡
X(π1)) = 0,X(π2) = 0

¢− (fX(0))2 = fX(0)µNfX(0)− 1
N − 1

¶
− (fX(0))2

= fX(0)

½
NfX(0)− 1−NfX(0) + fX(0)

N − 1
¾
= −fX(0) (1− fX(0))

N − 1
Therefore,

V ar
³
�fX(0)

´
=
fX(0) (1− fX(0))

n
− n− 1

n

fX(0) (1− fX(0))
N − 1

=
fX(0) (1− fX(0))

n

N − n
N − 1 .

(c) If we take a sample with replacement, then we can assume this is an i.i.d.
sample, so n �fX(0) ∼ Binomial(n, fX(0)) . Therefore,

E
³
�fX(0)

´
=
1

n
E
³
n �fX(0)

´
=
1

n
nfX(0) = fX(0),

Var
³
�fX(0)

´
=
1

n2
Var

³
n �fX(0)

´
=
nfX(0) (1− fX(0))

n2
=
fX(0) (1− fX(0))

n
.

(d) The reason is that this factor is the only difference with the variance for
sampling with and without replacement. Note that when n is small relative to
N, then this factor is approximately 1.

5.4.16 When fX(0) = a/N is unknown, then we estimate it by �fX(0). Now
N = a/fX(0), so we can estimate N by setting �N = a/ �fX(0), provided �fX(0) 6=
0.

5.4.17 If we knew N but not T, then, based on a sample X (π1) , . . . ,X (πn) ,
we would estimate T/N by X̄ = 1

n

P
i=1X (πi) . Therefore, when we know T

and do not know N, we can estimate N by T/X̄ provided X̄ 6= 0.
5.4.18 We have that X̄ = 1

n

Pn
i=1X (πi), so E

¡
X̄
¢
= 1

n

Pn
i=1E (X (πi)) . Since

each X (πi) ∼ fX , we have that E (X (πi)) =
P
x xfX (x) = µX , so E

¡
X̄
¢
=

µX .
Under the assumption of i.i.d. sampling, each X (πi) has the same variance

σ2X =
P
x (x− µX)2 fX (x) . So we get Var

¡
X̄
¢
] = σ2X/n.

5.4.19 Note that �fX(x) = 1
n

Pn
i=1 I{x}(X (πi)), so it is an average of i.i.d.

terms and E(I{x}(X (πi))) = fX (x) . Then by the weak law of large numbers
�fX(x)

P→ fX (x) as n→∞.



Challenges
5.4.20
(a)

fX(x)

=
|{π ∈ Π : X (π) = x}|

|Π| =
|{π ∈ Π1 : X (π) = x}|+ |{π ∈ Π2 : X (π) = x}|

|Π|
=
|Π1|
|Π|

|{π ∈ Π1 : X (π) = x}|
|Π1| +

|Π2|
|Π|

|{π ∈ Π2 : X (π) = x}|
|Π2|

= pf1X(x) + (1− p)f2X(x)

(b)

µX =
X
x

xfX (x) =
1

|Π|
X
π∈Π

X (π) =
|Π1|
|Π|

1

|Π1|
X
π∈Π1

X (π)

+
|Π2|
|Π|

1

|Π2|
X
π∈Π2

X (π)

= pµ1X + (1− p)µ2X
(c) Using X

π∈Π1
(X (π)− µ1X) =

X
π∈Π2

(X (π)− µ2X) = 0

we have that

σ2X =
1

|Π|
NX
π∈Π

(X (π)− µX)2

=
|Π1|
|Π|

1

|Π1|
X
π∈Π1

(X (π)− µX)2 + |Π2||Π|
1

|Π2|
X
π∈Π2

(X (π)− µX)2

= p
1

|Π1|
X
π∈Π1

(X (π)− pµ1X − (1− p)µ2X)2+

(1− p) 1|Π2|
X
π∈Π2

(X (π)− pµ1X + (1− p)µ2X)2

= p
1

|Π1|
X
π∈Π1

((X (π)− µ1X) + (1− p) (µ1X − µ2X))2+

(1− p) 1|Π2|
X
π∈Π2

((X (π)− µ2X)− p (µ1X − µ2X))2

= pσ21X + p(1− p)2 (µ1X − µ2X)2 + (1− p)σ22X + (1− p) p2 (µ1X − µ2X)2

= pσ21X + (1− p)σ22X + p(1− p) (µ1X − µ2X)2 .



(d) Under the assumption of i.i.d. sampling and using Problem 5.4.15

E
¡
pX̄1 + (1− p)X̄2

¢
= pE

¡
X̄1
¢
+ (1− p)E ¡X̄2¢ = pµ1X + (1− p)µ2X = µX

and

V ar
¡
pX̄1 + (1− p)X̄2

¢
= p2V ar

¡
X̄1
¢
+(1−p)2V ar ¡X̄2¢ = p2σ21X

n1
+(1−p)2σ

2
2X

n2

(e) Again, under the assumption of i.i.d. sampling and by Problem 5.4.15, part
(c), and using n1 = pn, n2 = (1− p)n we have

V ar
¡
X̄
¢
=
σ2X
n
= p

σ21X
n
+ (1− p)σ

2
2X

n
+
p(1− p)(µ1X − µ2X)2

n

= p2
σ21X
n1

+ (1− p)2σ
2
2X

n2
+
p(1− p)(µ1X − µ2X)2

n

so V ar
¡
pX̄1 + (1− p)X̄2

¢ ≤ V ar ¡X̄¢ .
(f) If µ1X = µ2X , then there are no beneÞts as the two estimators have the same
variances. When the means µ1X and µ2X are quite different, then there will be
a big improvement through the use of stratiÞed sampling. This indicates that
the populations Π1 and Π2 are quite different with respect to the measurement
X.

5.5 Some Basic Inferences

Exercises
5.5.1
(a) �fX(0) = .2667, �fX(1) = .2, �fX(2) = .2667, �fX(3) = �fX(4) = .1333.
(b) �FX(0) = .2667, �FX(1) = .4667, �FX(2) = .7333, �FX(3) = .8667, �FX(4) =
1.000
(c) A plot of �fX is given below.
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(d) The mean x̄ = 15 and the variance s2 = 1.952.
(e) The median is 2 and the IQR = 3. The boxplot is plotted below. According
to the 1.5 IQR rule, there are no outliers.
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5.5.2
(a) The empirical distribution function is given by

�FX(x) =



0 x < 0
1
16 0 ≤ x < 1
3
16 1 ≤ x < 2
5
16 2 ≤ x < 3
8
16 3 ≤ x < 4
11
16 4 ≤ x < 5
14
16 5 ≤ x < 10
15
16 10 ≤ x < 15
1 15 ≤ x.

(b) A plot of �fX is given below.
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(c) The mean is x̄ = 4.188, the variance is s2 = 13.63.

(d) The median is 3.5 and the IQR = 3. A boxplot is provided as follows.



151050

Waiting time

Boxplot of Waiting time

According to the 1.5 IQR rule, there are two outliers, namely 10 and 15.

5.5.3
(a) �fX(1) = 25/82, �fX(2) = 35/82, �fX(3) = 22/82.
(b) It does not make sense to estimate FX(i) since this is a categorical variable.
(c) A bar chart is given below.
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5.5.4 It means that 90% of all students got a score equal to his or lower and
only 10% got a higher score.

5.5.5 A plot of the empirical distribution function is given below (we have joined
consecutive points by line segments).
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The sample median is 0, Þrst quartile is −1.150, third quartile is 0.975, and the
IQR = 2.125. We estimate FX(1) by �FX(1) = 17/20 = 0.85.



5.5.6 Since the shape of the distribution is asymmetric, we should choose the
median as a measure of location and the IQR as a measure of spread. This is
because the distribution is skewed to the right.

5.5.7 We have that ψ(µ) = x0.25 = µ+ σ0z0.25, where z0.25 satisÞes Φ (z0.25) =
.25.

5.5.8 First, recall that the third moment of the distribution is Eµ(X3). So ψ(µ)
is given by

ψ(µ) = Eµ(X
3) = Eµ((X − µ+ µ)3)

= Eµ((X − µ)3) + 3µEµ((X − µ)2) + 3µ2Eµ((X − µ)) + µ3
= 0 + 3µσ20 + 0+ µ

3 = 3µσ20 + µ
3.

5.5.9 We have that ψ(µ) = Fµ(3) = Pµ(X ≤ (3− µ) /σ0) = Φ((3− µ) /σ0).
5.5.10 We have that ψ(µ, σ2) = x0.25 = µ+ σz0.25, where Φ (z0.25) = .25.

5.5.11 We have that ψ(µ,σ2) = F(µ,σ2)(3) = P(µ,σ2)(X ≤ 3) = P (Z ≤
(3− µ) /σ) = Φ((3− µ) /σ).
5.5.12 We have that ψ(θ) = (1− θ)2 + θ2.
5.5.13 We have that ψ(θ) = 2θ(1− θ).
5.5.14 First, recall that the coefficient of variation is given by σX/µX . So
ψ(θ) =

p
θ2/12/ (θ/2) = 1/

√
3. So we know ψ(θ) exactly and do not require

data to make inference about this quantity.

5.5.15 We have that ψ(θ) = α0/β2.

Computer Exercises
5.5.16
(a) The order statistics are given by x(1) = 1.2, x(2) = 1.8, x(3) = 2.3, x(4) = 2.5,
x(5) = 3.1, x(6) = 3.4, x(7) = 3.7, x(8) = 3.9, x(9) = 4.3, x(10) = 4.4, x(11) = 4.5,
x(12) = 4.8, x(13) = 5.6, x(14) = 5.8, x(15) = 6.9, x(16) = 7.2, and x(17) = 8.5.
(b) �FX

¡
x(i)

¢
= i/n (there are no ties).

(c) The sample mean x̄ = 4.345 and the sample variance s2 = 3.345.
(d) The sample median is 4.350 and the IQR = 2.225.
(e) Since the distribution looks somewhat skewed, the descriptive statistics in
part (c) are appropriate for measuring location and spread.
(f) The sample mean x̄ = 4.845 and the sample variance s2 = 7.874, while the
sample median is 4.450 and the IQR = 2.575. As we can see, the sample mean
and sample variance changed quite a lot, while the sample median and the IQR
have hardly changed. This suggests that the median and the IQR are more
resistant to extreme observations.

5.5.17
(a) The order statistics are given by x(1) = 59.8, x(2) = 60.9, x(3) = 61.4,
x(4) = 61.5, x(5) = 61.6, x(6) = 61.9, x(7) = 62.5, x(8) = 63.1, x(9) = 63.4,



x(10) = 63.6, x(11) = 64.0, x(12) = 64.2, x(13) = 64.3, x(14) = 64.3, x(15) = 64.4,
x(16) = 64.9, x(17) = 64.9, x(18) = 65.0, x(19) = 65.0, x(20) = 65.1, x(21) = 65.8,
x(22) = 65.8, x(23) = 66.3, x(24) = 66.3, x(25) = 66.4, x(26) = 66.5, x(27) = 66.6,
x(28) = 66.8, x(29) = 67.8, and x(30) = 71.4.
(b) The graph empirical distribution function is plotted as follows. Note that
there are two values at 64.3, two values at 64.9, two values at 65.0, two values
at 65.8, and two values at 66.3, so the empirical cdf jumps by 2/30 at these
points. Otherwise, the jump is 1/30 at a data point.
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(c) The sample median is 64.650 and the sample IQR = 66.300−62.950 = 3.35.
The boxplot is given below and there is one outlier, namely 71.4.
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(d) Since the shape of the distribution is somewhat skewed to the left, the
median and the IQR are the appropriate descriptive statistics for the location
and spread.
(e) The sample median is still 64.650 and the sample IQR = 66.325− 62.950 =
3.375, so these values barely change. The boxplot is given below and identiÞes
two outliers, 71.4 and 84.9.
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5.5.18
(a)

MTB > let k1=sqrt(2)
MTB > random 30 c1;
SUBC> normal 10 k1.
MTB > random 1 c2;
SUBC> normal 30 k1.
MTB > let c1(31)=c2(1)
MTB > Boxplot C1;
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(b) There is an outlier above the whisker.
(c) The median is an appropriate measure of location and the interquartile range
is an appropriate measure of the spread of the data distribution. These measures
are somewhat unaffected by outliers

5.5.19
(a)

MTB > random 50 c1;
SUBC> chisquare 1.
MTB > boxplot c1
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(b) There is an outlier in this plot and it is clear that it is skewed to the right.
(c) The median is an appropriate measure of location and the interquartile range
is an appropriate measure of the spread of the data distribution. These measures
are somewhat unaffected by outliers and the skewness.

5.5.20
(a) The estimate of the 90-th percentile is obtained as follows.

MTB > random 50 c1;
SUBC> normal 4 1.
MTB > sort c1 c2
MTB > set c3
DATA> 1:50
DATA> end
MTB > let c3=c3/50

Then reading off the cell in c2 corresponding to the cell with the entry .9 in c3
we get the estimate x.9 = 5.20725.
(b) We estimate the mean µ by x̄ and the standard deviation σ by s so the
estimate of the 90-th percentile is obtained as follows.

MTB > invcdf .9 k1
MTB > let k2=mean(c1)
MTB > let k3=stdev(c1)
MTB > let k4=k2+k3*k1
MTB > print k4
Data Display
K4 5.37781

(c) Under the normal distribution assumption, (b) is more appropriate because
all given information should be used. Note that the true 90th percentile of
N(4, 1) distribution is 5.28155.

Problems
5.5.21 Using (5.5.3), we have that �x.5 = x(i−1) + n

¡
x(i) − x(i−1)

¢ ¡
.5− i−1

n

¢
,

where (i− 1) /n < 1/2 ≤ i/n. Now i− 1 < n/2 ≤ i implies that i = n/2 when
n is even and i = dn/2e when n is odd. So we have that

�x.5 =

½
x(n/2) n even

x(dn/2e−1) + n
¡
x(dn/2e) − x(dn/2e−1)

¢ ¡
.5− i−1

n

¢
n odd.

5.5.22
(a) We have that �F (x(i)) = �F (x(i)) = i/n, �F (x(i+1)) = �F (x(i+1)) = (i+ 1) /n,
and

�F (x(i+1))− �F (x(i))

x(i+1) − x(i) ≥ 0

shows that �F (x) is an increasing function from 0 to 1.
(b) Since �F is linear on each interval (x(i), x(i+1)] it is continuous there. There-
fore, �F is continuous on (x(1),∞). It is also continuous on

¡−∞, x(1)¢ and right-
continuous at x(1). Therefore, �F is right-continuous everywhere.



(c) From (a) there is an i such that (i− 1) /n < p ≤ i/n and then

p = �F (x(i−1)) +
�F (x(i))− �F (x(i−1))
x(i) − x(i−1)

¡
�xp − x(i−1)

¢
=
i− 1
n

+
1

n

1

x(i) − x(i−1)
¡
�xp − x(i−1)

¢
so

�xp = x(i−1) + n
¡
x(i) − x(i−1)

¢µ
p− i− 1

n

¶
.



Chapter 6

Likelihood Inference

6.1 The Likelihood Function

Exercises
6.1.1 The appropriate statistical model is the Binomial(n, θ), where θ ∈ Ω =
[0, 1] is the probability of having this antibody in the blood. (We can also think
of θ as the unknown proportion of the population who have this antibody in their
blood.) The likelihood function is given by L(θ | s) = ¡ns¢θs(1− θ)n−s, where s
is the number of people whose result was positive. The likelihood function for
n = 10 people and s = 3 is given by L(θ | 3) = ¡103 ¢θ3(1− θ)7, and the graph of
this function is given below.

6.1.2 The likelihood function for p when we observe 22 suicides withN = 30, 345
is given by L(p | 22) = (30345p)22 exp (−30345p) .
6.1.3 The likelihood function is given by L(θ |x1, ...., x20) = θ20 exp(− (20x̄) θ).
By the factorization theorem (Theorem 6.1.1) x̄ is a sufficient statistic, so we
only need to observe its value to obtain a representative likelihood. The likeli-
hood function when x̄ = 5.2 is given by L(θ |x1, ...., x20) = θ20 exp(−20 (5.2) θ).
6.1.4 Since the sample size of 100 is small relative to the total population
size, we can think of the counts as a sample from the Multinomial(1, θ1, θ2, θ3)

143
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distribution. The likelihood function is then given by L(θ1, θ2, θ3 | 34, 44, 22)
= θ341 θ

44
2 θ

22
3 .

6.1.5 If we denote the likelihood in Example 6.1.2 by L1(θ | 4) and the likelihood
in Example 6.1.3 by L2(θ | 4), then L1(θ | 4) = cL2(θ | 4), where c =

¡
10
4

¢
/
¡
9
3

¢
.

6.1.6 The likelihood function is given by

L(θ |x1, ..., xn) =
nY
i=1

θxi(1− θ)1−xi = θ
!
xi(1− θ)n−

!
xi = θnx̄(1− θ)n(1−x̄).

By the factorization theorem x̄ is a sufficient statistic. If we differentiate
lnL(θ |x1, ..., xn) = nx̄ ln θ + n(1− x̄) ln(1− θ), we get

(lnL(θ |x1, ..., xn))0 = nx̄

θ
− n(1− x̄)

1− θ
and setting this equal to 0 gives the solution θ = x̄. Therefore, we can obtain x̄
from the likelihood and we conclude that it is a minimal sufficient statistic.

6.1.7 The likelihood function is given by

L(θ |x1, ..., xn) =
nY
i=1

θxie−θ

xi!
=
θnx̄e−nθQ

xi!

By the factorization theorem x̄ is a sufficient statistic. If we differentiate
lnL(θ |x1, ..., xn) = − ln

Q
xi! + nx̄ ln θ − nθ, we get

(lnL(θ |x1, ..., xn))0 = nx̄

θ
− n

and setting this equal to 0 gives the solution θ = x̄. Therefore, we can obtain x̄
from the likelihood and we conclude that it is a minimal sufficient statistic.

6.1.8
(a) The three likelihood functions are as follows.
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(b) Since L(1|1)/L(2|1) = 0.3/0.1 = 3 = L(1|3)/L(2|3) and L(1|2)/L(2|2) =
0.1/0.7 = 1/7 6= 3, a statistic T : S → {1, 2} given by T (1) = T (3) = 1 and
T (2) = 2 is a sufficient statistic.

6.1.9 Since the density function fi(s) = (2π)−1/2 exp(−(s− i)2/2) for i = 1, 2,
the likelihood ratio is

L(1|0)
L(2|0) =

exp(−(0− 1)2/2)
exp(−(0− 2)2/2) = e

3/2 = 4.4817.

When s = 0 is observed, the distribution f1 is 4.4817 times more likely than f2.

6.1.10 A likelihood function L is deÞned by L(θ|s) = fθ(s). A probability
density function or a probability function cannot take negative values. Thus any
likelihood function cannot take negative values. However, a likelihood function
may be equal to 0 in some cases. Consider X ∼ Uniform[0, θ] and θ ∈ R.
Suppose that X = 1 is observed. The density function is fθ(x) = 1/θ if x ∈ [0, θ]
and 0 otherwise. This implies L(θ|1) = 1/θ if θ ≥ 1 and 0 if θ < 1. Hence L
can be 0 at some parameter values.

6.1.11 The integral
R 1
0 L(θ|x0)dθ cannot be 1 in general because a likelihood

function is not a density function with respect to θ. Consider X ∼ Uniform[0, θ]
and θ ∈ [0, 1]. The likelihood function at X = x0 is L(θ|x0) = fθ(x0) =
(1/θ)I[0,θ](x0) = (1/θ)I[x0,1](θ). The integral of the likelihood function isZ 1

0

L(θ|x0)dθ =
Z 1

x0

1

θ
dθ = − ln(x0).

This is not 1 unless x0 = 1/e.

6.1.12 The joint density function is given by fθ(s) = fθ(x1) · · · fθ(xn) = θn(1−
θ)x1+···+xn . Hence the likelihood function is L(θ|s) = fθ(s) = θn(1−θ)x1+···+xn .
Let h(s) = 1, gθ(t) = θn(1−θ)t and T (s) = x1+· · ·+xn. Then, the joint density
function can be factorized as fθ(s) = h(s) · gθ(T (s)). Hence, T = X1+ · · ·+Xn
is a sufficient statistic. Then, Þnd a maximizer of the logarithm of the likelihood
function. The likelihood function is given by

∂L(θ|s)
∂θ

=
∂

∂θ

¡
n ln(θ) + T (s) ln(1− θ)¢ = n

θ
− T (s)

1− θ .

Setting this equal to 0 yields the solution �θ = n/(n+T (s)) which is 1−1 function
of T (s). Hence, the sufficient statistic T is a minimal sufficient statistic.

6.1.13 The likelihood at a parameter value does not have any particular mean-
ing. Suppose L(θ1|s) = 109 and L(θk|s) = 109k for k ≥ 1. Even though 109 is
a very big number, the ratio of 109 to 109

2

= 1081 is almost zero (10−72). In
other words, a big likelihood value does not have any meaning. However, a very
big value of the likelihood ratio of two parameter points, say θ2 to θ1, indicates
θ2 is more likely than θ1.
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6.1.14 As we have seen in Exercise 6.1.13, a ratio of likelihood values has to be
considered to have a meaningful interpretation. Let L1(θ) = θ2, L2(θ) = 100θ2,
θ1 and θ2 be two parameter values. The likelihood ratios at two points θ1 and
θ2 are

L1(θ1)

L1(θ2)
=
³θ1
θ2

´2
=
100θ21
100θ22

=
L2(θ1)

L2(θ2)
.

Thus, the ratios of likelihood functions at any two points are the same. There-
fore, any inferences based on two likelihood functions L1, L2 are effectively the
same.

Problems
6.1.15 Example 6.1.6 showed that T : S → {0, 1} given by T (1) = 0 and
T (2) = T (3) = T (4) = 1 is a sufficient statistic. Now given the likelihood
L(· | s), we know whether or not the likelihood ratio of a to b is 2 or 4/6, and so
can identify whether or not T (s) takes the value 0 or 1. Therefore, T is minimal
sufficient.

6.1.16 We see that L(· | 2) = L(· | 3), so the data values in {2, 3} all give the same
likelihood ratios. Therefore, T : S → {0, 1} given by T (1) = 0, T (2) = T (3) = 1,
and T (4) = 3 is a sufficient statistic. We also see that once we know the
likelihood function L(· | s), we can determine all the likelihood ratios and so
determine if s = 1, s ∈ {2, 3} or s = 4 has occurred.
The minimal sufficient statistic in Example 6.1.6 is not sufficient for this

model since the data value s = 4 does not give the same likelihood ratios when
s = 2 or s = 3.

6.1.17 The likelihood function is given by L(µ |x1, ..., xn) =
exp

¡−n(x̄− µ)2/2σ20¢. A likelihood interval has the form
©
µ : exp

¡−n(x̄− µ)2/2σ20¢ > cª = ©µ : −n(x̄− µ)2/2σ20 > ln cª
=

½
µ : x̄− σ0√

2n
ln c < µ < x̄+

σ0√
2n
ln c

¾
=

µ
x̄− σ0√

2n
ln c, x̄+

σ0√
2n
ln c

¶
.

So for any constant a, the interval (x̄− a, x̄+ a) is a likelihood interval for this
model.

6.1.18 We have that the likelihood function is given by L(θ |x1, ..., xn) =
nY
i=1

fθ (xi) =
nY
i=1

fθ
¡
x(i)

¢
, so once we know the order statistics, we know the

likelihood function and so they are sufficient.

6.1.19 The likelihood function is given by

L(θ |x1, ..., xn) =
nY
i=1

1

Γ(α0)
(θxi)

α0−1 exp {−θxi} θ

= Γ−n(α0) (
Q
xi)

α−1 θnα0 exp (−θnx̄) .
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By the factorization theorem x̄ is a sufficient statistic. The logarithm of the
likelihood is given by lnL(θ |x1, ..., xn) = ln{Γ−n(α0) (

Q
xi)

α0−1} + nα ln θ −
θnx̄. Differentiating this and setting it equal to 0, we obtain θ = α/x̄. So given
a likelihood function, we can determine x̄ and this proves that x̄ is minimal
sufficient.

6.1.20 The likelihood function is given by L(θ |x1, ..., xn) = θ−nI[x(n),∞) (θ)
when θ > 0. By the factorization theorem x(n) is a sufficient statistic. Now
notice that the likelihood function is 0 to the left of x(n) and positive to the
right. So given the likelihood, we can determine x(n) and it is minimal sufficient.

6.1.21 The likelihood function is given by

L(θ1, θ2 |x1, ..., xn) =
µ

1

θ2 − θ1

¶n
I[−∞,x(1)) (θ1) I[x(n),∞) (θ2)

By the factorization theorem
¡
x(1), x(n)

¢
is a sufficient statistic. Now given the

likelihood function, we see that the likelihood becomes 0 at x(1) on the left and
at x(n) on the right. So given the likelihood, we can determine these points.
This implies that

¡
x(1), x(n)

¢
is a minimal sufficient statistic.

6.1.22 From the argument in Example 6.1.8 we have that L(x̄, σ2 |x1, ..., xn) ≥
L(µ, σ2 |x1, ..., xn) for every µ. Further, the argument there shows that, as a
function of σ2, the function lnL(x̄, σ2 |x1, ..., xn) has a critical point at �σ2. The
second derivative of this function at �σ2 is given by

∂2 lnL
¡¡
x̄, σ2

¢ |x¢
∂ (σ2)2

¯̄̄̄
¯
σ2=�σ2

=
∂

∂σ2

µ
− n

2σ2
+
n− 1
2σ4

s2
¶¯̄̄̄
σ2=�σ2

=
1

σ4

µ
n

2
− n− 1

σ2
s2
¶¯̄̄̄

σ2=�σ2
=
1

�σ4

³n
2
− n

´
< 0

\so L(x̄, �σ2 |x1, ..., xn) ≥ L(µ, σ2 |x1, ..., xn) for every µ and σ2.
6.1.23 The likelihood function is given by L(θ |x1, ..., xn) = θnx̄(1 − θ)n(1−x̄)
for θ ∈ [0, .5] . The factorization theorem establishes that x̄ is sufficient. Just
as with the full Bernoulli(θ) model, we can determine x̄ as the point where this
function is maximized � provided that x̄ ∈ [0, .5] � otherwise we do not know
the form of this function outside of [0, .5]. In general, the maximum value of
this likelihood function is attained at min {.5, x̄} . When the maximum occurs
at .5, we only know that .5 ≤ x̄ ≤ 1. But the second derivative of the log of the
likelihood is given by

−nx̄
θ2
− n− nx̄
(1− θ)2 = x̄

Ã
n

(1− θ)2 +
n

θ2

!
− n

(1− θ)2

so we can determine x̄ from this value at any speciÞed θ ∈ (0, .5) (since specifying
θ allows us to compute n/ (1− θ)2 , n/θ2 and then knowing the value of the
right-hand side allows us to compute x̄). Therefore, x̄ is minimal sufficient.
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6.1.24 The likelihood function is given by

L(θ|x1, x2, x3) = θx1(2θ)x2(1− 3θ)x3 = 2x2θx1+x2(1− 3θ)n−(x1+x2)

for θ ∈ [0, 1/3]. By the factorization theorem x1 + x2 is sufficient. To show
x1 + x2 is minimal, suppose

L(θ|x1, x2, x3)
L(θ|y1, y2, y3) =

2x2θx1+x2(1− θ)n−(x1+x2)
2y2θy1+y2(1− θ)n−(y1+y2) = 2

x2−y2
³ θ

1− θ
´x1+x2−(y1+y2)

is a constant when x1, x2, x3, y1, y2 and y3 are Þxed. The likelihood ratio is
constant if and only if x1+ x2 = y1+ y2. Hence, x1+ x2 is a minimal sufficient
statistic.

6.1.25 The likelihood is given by L(i | s) = fi (s) for i ∈ {1, 2} . Now note that
when T (s1) = f1 (s1) /f2 (s1) = f1 (s2) /f2 (s2) = T (s2)

L(1 | s1) = f1 (s1) = f2 (s1)

f2 (s2)
f1 (s2) =

f2 (s1)

f2 (s2)
L(1 | s2)

L(2 | s1) = f2 (s1) = f1 (s1)

f1 (s2)
f2 (s2) =

f2 (s1)

f2 (s2)
L(2 | s2)

and to T is sufficient. Once we know L(i | s), we can certainly compute T (s)
and so T is minimal sufficient.

Challenges
6.1.26 The likelihood function is given by

L(µ, σ |x1, ..., xn) =
Ã

nY
i=1

(xi − µ)
!α0−1

exp

½
−nx̄− µ

σ

¾µ
1

σ

¶nα0
for µ > x(1), σ > 0 and is 0 otherwise.
Now observe that the logarithm of the likelihood function is given by

lnL(µ, σ |x1, ..., xn) = (α0 − 1)
nX
i=1

ln
¡
x(i) − µ

¢− nx̄− µ
σ

− nα0 lnσ

and
∂

∂µ
lnL(µ, σ |x1, ..., xn) = − (α0 − 1)

nX
i=1

1

x(i) − µ +
n

σ
µ.

(a) When α0 = 1 the likelihood function is determined by
¡
x(1), x̄

¢
, so

¡
x(1), x̄

¢
is sufficient. Given the likelihood, we can determine x(1) (this is the point
where the likelihood becomes 0), and x̄ is the point where the derivative of the
log of the likelihood becomes 0. Therefore, we can determine

¡
x(1), x̄

¢
from the

likelihood and it is minimal sufficient.
(b) When α0 6= 1 this derivative is inÞnite at each order statistic and nowhere
else. So when α0 6= 1 we can calculate the order statistic from the likelihood by
determining every point where the log of the likelihood has an inÞnite derivative.
Also, by Problem 6.1.18 the order statistic is sufficient. Therefore, the order
statistic is minimal sufficient in this case.
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6.2 Maximum Likelihood Estimation

Exercises
6.2.1 The MLEs are �θ(1) = a, �θ(2) = b, �θ(3) = b, �θ(4) = a.

6.2.2 The likelihood function is given by L(θ |x1, ..., xn) = θnx̄(1−θ)n(1−x̄). The
log-likelihood function is given by l(θ |x1, ..., xn) = nx̄ ln θ+n(1− x̄) ln(1− θ).
The score function is given by

S(θ |x1, ..., xn) = nx̄

θ
− n(1− x̄)

1− θ
Solving the score equation gives �θ(x1, ..., xn) = x̄. Note that since 0 ≤ x̄ ≤ 1 we
have that

∂S(θ |x1, ..., xn)
∂θ

¯̄̄̄
θ=x̄

= −nx̄
θ2
− n(1− x̄)
(1− θ)2

¯̄̄̄
θ=x̄

= −n
x̄
− n

1− x̄ < 0

So x̄ is indeed the MLE.

6.2.3 Since ψ(θ) = θ2 is a 1-1 transformation of θ when θ is restricted to [0, 1] ,
we can apply Theorem 6.2.1, so the MLE is ψ(�θ(x1, ..., xn)) = x̄2.

6.2.4 The likelihood function is given by L(θ |x1, ..., xn) = e−nθθnx̄, the log-
likelihood function is given by l(θ |x1, ..., xn) = −nθ + nx̄ ln θ, and the score
function is given by

S(θ |x1, ..., xn) = −n+ nx̄
θ
.

Solving the score equation gives �θ(x1, ..., xn) = x̄ . Note that since x̄ ≥ 0, we
have

∂S(θ |x1, ..., xn)
∂θ

¯̄̄̄
θ=x̄

= −nx̄
θ2

¯̄̄
θ=x̄

= −n
x̄
< 0

so x̄ is the MLE.

6.2.5 The likelihood function is given by L(θ |x1, ..., xn) = θnα0 exp (−nx̄θ) , the
log-likelihood function is given by l(θ |x1, ..., xn) = nα0 ln θ−nx̄θ, and the score
function is given by S(θ |x1, ..., xn) = nα0/θ − nx̄. Solving the score equation
gives �θ(x1, ..., xn) = α0/x̄. Note that since x̄ > 0 we have that

∂S(θ |x1, ..., xn)
∂θ

¯̄̄̄
θ=

α0
x̄

= −nα0
θ2

¯̄̄
θ=

α0
x̄

= −nx̄
2

α0
< 0,

so �θ = α0/x̄ is the MLE.

6.2.6 First, note that each xi comes from a Geometric(θ) distribution. The
likelihood function is then given by L(θ |x1, ..., xn) = θn (1− θ)nx̄, the log-
likelihood function is given by l(θ |x1, ..., xn) = n ln θ + nx̄ ln (1− θ) , and the
score function is given by

S(θ |x1, ..., xn) = n

θ
− nx̄

1− θ .
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Solving the score equation gives �θ(x1, ..., xn) = 1/ (1 + x̄). Note that since
0 ≤ x̄ ≤ 1, we have that

∂S(θ |x1, ..., xn)
∂θ

¯̄̄̄
�θ= 1

1+x̄

= − n
θ2
− nx̄

(1− θ)2
¯̄̄̄
¯
�θ= 1

1+x̄

= −n
Ã
(1 + x̄)2 +

(1 + x̄)2

x̄

!
< 0.

So �θ = 1/ (1 + x̄) is the MLE.

6.2.7 The likelihood function is given by

L(α |x1, ..., xn) =
µ
Γ (α+ 1)

Γ (α)

¶n nY
i=1

xα−1i =

Ã
nY
i=1

xi

!α−1
The log-likelihood function is given by

l(α |x1, ..., xn) = n ln (Γ (α+ 1))− n ln (Γ (α)) + (α− 1)
nX
i=1

lnxi

The score function is given by

S(α |x1, ..., xn) = n (Γ (α+ 1))
0

Γ (α+ 1)
− nΓ

0 (α)
Γ (α)

+
nX
i=1

lnxi

=
n (Γ (α) + αΓ0 (α))

αΓ (α)
− nΓ

0 (α)
Γ (α)

+
nX
i=1

lnxi =
n

α
+

nX
i=1

lnxi.

Then the solution to the score equation is given by

�α = − nPn
i=1 lnxi

.

The second derivative of the score at �α is given by

− n

α2

¯̄̄
α=�α

= − n

�α2
< 0

so �α is the MLE.

6.2.8 The likelihood function is given by

L(β |x1, ..., xn) = βn
Ã

nY
i=1

xi

!β−1
exp

Ã
−

nX
i=1

xβi

!
,

the log-likelihood function is given by

l(β |x1, ..., xn) = n lnβ + (β − 1)
Ã

nX
i−1

lnxi

!
−

nX
i=1

xβi ,
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and the score equation is given by

S(β |x1, ..., xn) = n

β
+

nX
i=1

lnxi −
nX
i=1

xβi lnxi = 0.

6.2.9 The likelihood function is given by

L(α |x1, ..., xn) =
nY
i=1

α (1 + xi)
−(α+1)

= αn

Ã
nY
i=1

(1 + xi)

!−(α+1)
,

the log-likelihood function is given by

l(α |x1, ..., xn) = n lnα− (α+ 1)
nX
i=1

ln (1 + xi) ,

and the score function is given by

S(α |x1, ..., xn) = n

α
−

nX
i=1

ln (1 + xi) .

Solving the score equation gives

�α(x1, ..., xn) =
nPn

i=1 ln (1 + xi)
.

Note also that ∂
∂αS(α | x1, ..., xn) = − n

α2 < 0 for every α, so �α is the MLE.

6.2.10 The likelihood function is given by

L(τ |x1, ..., xn) =
µ

1√
2πτ

¶n
exp

Ã
−

nX
i=1

(lnxi)
2

2τ2

!
nY
i=1

1

xi
,

the log-likelihood function is given by

l(τ |x1, ..., xn) = −n
2
ln (2π)− n ln τ − 1

2τ2

nX
i=1

(lnxi)
2 +

nX
i=1

ln
1

xi
,

and the score function is given by

S(τ |x1, ..., xn) = −n
τ
+
1

τ3

nX
i=1

(lnxi)
2 .

Solving the score equation gives

�τ(x1, ..., xn) = ±
sPn

i=1 (lnxi)
2

n
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and since τ > 0, we take the positive root. Now

∂S(τ |x1, ..., xn)
∂τ

¯̄̄̄
τ=�τ

=
n

τ2
− 3

τ4

nX
i=1

(lnxi)

¯̄̄̄
¯
τ=�τ

= − 2n2Pn
i=1 (lnxi)

2 < 0.

So �τ is the MLE.

6.2.11 The parameter of the interest is changed to the volume η = µ3 from the
length of a side µ. Then the likelihood function is also changed to

Lv(η|s) = Lv(µ3|s) = Ll(µ|s)
where Lv is the likelihood function when the volume parameter η = µ3 is of the
interest and Ll is the likelihood function of the length of a side parameter µ.
The maximizer η of Lv(η|s) is also a maximizer of Ll(η1/3|s). In other words,
the MLE is invariant under 1-1 smooth parameter transformations. Hence, the
MLE of η is equal to �µ3 = (3.2cm)3 = 32.768cm3.

6.2.12 The likelihood function is given by

L(σ2|x1, . . . , xn) = (σ2)−n/2 exp(−
nX
i=1

(xi − µ0)2/(2σ2)).

The derivative of the log-likelihood function with respect to σ2 is

− n

2σ2
+

1

2σ4

nX
i=1

(xi − µ0)2.

Hence, the maximum likelihood estimator is �σ2 = n−1
Pn
i=1(xi − µ0)2. If the

location parameter µ0 is also unknown, then the estimator for σ2 is �σ2 = (n−
1)2
Pn
i=1(xi − x̄)2 as in Example 6.2.6. The difference of two estimators is

�σ2 − �σ2 = 1

n

nX
i=1

(xi − µ0)2 − 1

n− 1
nX
i=1

(xi − x̄)2

= − 1

n(n− 1)
nX
i=1

(xi − x̄)2 + (x̄− µ0)2

= −s2/n+ (x̄− µ0)2.
In the second equality, the expansion (xi − µ0)2 = (xi − x̄)2 + (x̄ − µ0)2 +
2(x̄ − µ0)(xi − x̄) is used. Thus, the summation becomes

Pn
i=1(xi − µ0)2 =Pn

i=1(xi − x̄)2 + n(x̄ − µ0)2 + 2(x̄ − µ0)
Pn
i=1(xi − x̄). The last term is zero

because the summation in the last term is zero. By the law of large numbers,
x̄
P→ µ0 and s2

P→ σ2. Hence, the difference �σ2 − �σ2 P→ 0 as n→∞.
6.2.13 A likelihood function must have non-negative values but θ3 exp(−(θ −
5.3)2) < 0 for all θ < 0. Hence, θ3 exp(−(θ − 5.3)2) for θ ∈ R1 cannot be a
likelihood function.
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6.2.14 Suppose the likelihood function has only three local maxima. The MLE
is the point having the maximum likelihood. Hence, the point among −2.2, 4.6
and 9.2 having the biggest likelihood is the MLE.

6.2.15We have that L1(θ|s) = cL2(θ|s) for some c > 0, if and only if lnL1(θ|s) =
ln c+lnL2(θ|s). So, two equivalent log-likelihood functions differ by an additive
constant.

6.2.16 A function that is proportional to the density as a function of parameter
is a likelihood function. So any likelihood function L can be written as L(θ|s) =
c(s)fθ(s) for some function c. Hence, L(θ|s) = 1/4 does not imply fθ(s) = 1/4.
Computer Exercises
6.2.17 The approximate MLE is �θ = 1.80000 (obtained from the values in C1
and C2) and the maximum likelihood is 3.66675. The following code was used.

MTB > set c1;
DATA > 1:1000
DATA > end.
MTB > let c1=c1/1000*20-10
MTB > let c2=exp(-(c1-1)**2/2) +3*exp(-(c1-2)**2/2)
MTB > plot c2*c1;
SUBC >connect.

6.2.18 The approximate MLE is �θ = 5.00000 and the maximum likelihood is
3.00034. The following code was used.

MTB > set c1;
DATA > 1:1000
DATA > end.
MTB > let c1=c1/1000*20-10
MTB > let c2=exp(-(c1-1)**2/2) +3*exp(-(c1-5)**2/2)
MTB > plot c2*c1;
SUBC >connect.
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Note that the likelihood graph is bimodal. If γ is big enough, then the likelihood
region will be just one interval. However, if γ is small, then the likelihood region
will be the union of two disjoint intervals.

Problems
6.2.19
(a) The counts are distributed Multinomial

³
θ2, 2θ (1− θ) , (1− θ)2

´
.

(b) The likelihood function is given by

L(θ | s1, ..., sn) = θ2x1 (2θ (1− θ))x2 (1− θ)2x3 = 2x2θ2x1+x2 (1− θ)x2+2x3 ,

the log-likelihood function is given by

l(θ | s1, ..., sn) = x2 ln 2 + (2x1 + x2) ln θ+ (x2 + 2x3) ln (1− θ) ,

and the score function is given by

S(θ | s1, ..., sn) = 2x1 + x2
θ

− x2 + 2x3
1− θ .

(c) Solving the score equation gives

�θ(s1, ..., sn) =
2x1 + x2

2 (x1 + x2 + x3)
.

Since

∂S(θ | s1, ..., sn)
∂θ

= −2x1 + x2
θ2

− x2 + 2x3
(1− θ)2 < 0

for every θ ∈ [0, 1] this is the MLE for θ.
6.2.20 First, recall that the MLE for µ is x̄ (Example 6.2.2). The parameter of
interest now is ψ (µ) = Pµ (X < 1) = Φ (1− µ) , where Φ is the cdf of a N(0, 1).
Since Φ (1− µ) is a strictly decreasing function µ, then ψ is a 1-1 function of
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µ. Hence, we can apply Theorem 6.2.1 and conclude that �ψ = Φ (1− x̄) is the
MLE.

6.2.21 The log-likelihood function is l(µ |x1, ..., xn) = −n (x̄− µ)2 /2, and, as
a function of µ, its graph is a concave parabola and its maximum value occurs
at x̄. So if x̄ ≥ 0, this is the MLE. If x̄ < 0, however, the maximum occurs at 0
and this is the MLE.

6.2.22 By the factorization theorem L (θ | s) = fθ (s) = h (s) gθ (T (s)) . The
probability function for T is given by

fθT (t) =
X

{s:T (s)=t}
fθ (s) =

X
{s:T (s)=t}

h (s) gθ (T (s)) = gθ (t)
X

{s:T (s)=t}
h (s) .

So the likelihood based on the observed value T (s) = t is given byL (θ | t) =
gθ (t) , and this is positive multiple times the likelihood based on the observed
s. Therefore, the MLE based on s is the same as the MLE based on T.

6.2.23
(a) First, note that θ3 = 1−θ1−θ2, so the likelihood function is only a function
of θ1 and θ2 and is given by L(θ1, θ2 |x1, x2, x3) = θx11 θx22 (1− θ1 − θ2)x3 . The
log-likelihood function is then given by l(θ1, θ2 |x1, x2, x3) = x1 ln θ1+x2 ln θ2+
x3 ln (1− θ1 − θ2) . Using the methods discussed in Section 6.2.1 we obtain the
score function as

S(θ1, θ2 |x1, x2, x3) =
µ x1

θ1
− x3

1−θ1−θ2
x2
θ2
− x3

1−θ1−θ2

¶
The score equation is given by

x1
θ1
− x3
1− θ1 − θ2 = 0,

x2
θ2
− x3
1− θ1 − θ2 = 0

so x1 = (x1 + x3) θ1 + x1θ2, and x2 = x2θ1 + (x2 + x3) θ2. The solution to this
system of linear equations is given by

�θ1 =
x1

x1 + x2 + x3
=
x1
n
, �θ2 =

x2
x1 + x2 + x3

=
x2
n
.

Also note that the matrix of second partial derivatives is given by

∂S(θ1, θ2 |x1, x2, x3)
∂θ

=

Ã −x1
θ21
− x3

(1−θ1−θ2)2 − x3
(1−θ1−θ2)2

− x3
(1−θ1−θ2)2 −x2

θ22
− x3

(1−θ1−θ2)2

!

and evaluated at
³
�θ1, �θ2

´
this equals

−n2
µ 1

x1
+ 1

x3
1
x3

1
x3

1
x2
+ 1

x3

¶
.
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Now the negative of this matrix has (1, 1) entry greater than 0 and its determi-
nant equals µ

1

x1
+
1

x3

¶µ
1

x1
+
1

f3

¶
−
µ
1

x3

¶2
> 0

so the matrix is positive deÞnite. This implies that the matrix of second par-
tial derivatives of the log-likelihood evaluated at

³
�θ1, �θ2

´
is negative deÞnite.

Therefore, ³
�θ1, �θ2, �θ3

´
=
³x1
n
,
x2
n
, 1− x1

n
− x2
n

´
=
³x1
n
,
x2
n
,
x3
n

´
is the MLE for (θ1, θ2, θ3).
(b) The plug-in MLE of θ1 + θ22 − θ23 is x1/n+ (x2/n)2 − (x3/n)2 .
6.2.24 The likelihood function is given by

L(θ1, θ2 |x1, ..., xn) =
µ

1

θ2 − θ1

¶n
I[−∞,x(1)) (θ1) I[x(n),∞) (θ2) .

Fixing θ2, we see that L(·, θ2 |x1, ..., xn) is largest when θ2− θ1 is smallest, and
this occurs when θ1 = x(1). Now L(x(1), · |x1, ..., xn) is largest when θ2 − x(1)
is smallest, and this occurs when θ2 = x(n). Therefore, L(θ1, θ2 |x1, ..., xn) ≤
L(x(1), θ2 |x1, ..., xn) ≤ L(x(1), x(n) |x1, ..., xn) and

¡
x(1), x(n)

¢
is the MLE.

Computer Problems
6.2.25
(a) Assuming that the individuals are independent (sample size small relative to
the population size), the log-likelihood function is given by 4 ln θ+16 ln (1− θ) .
The plot of this function is provided here (note that it goes to −∞ at 0 and 1).
We can determine the MLE exactly in this case as �θ = 4/16 = 0.25.

(b) The sample size is not small relative to the population size, so the number of
left-handed individuals in the sample is distributed Hypergeometric(50, 50θ, 20) .
Note that θ is no longer a continuous variable but must take a value in 0, 1/50, 2/50,
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. . . , 49/50, 1}. The log-likelihood is then given by (ignoring the denominator in
the hypergeometric)

ln

µ
50θ

4

¶
+ ln

µ
50 (1− θ)

16

¶
= lnΓ (50θ + 1)− lnΓ (50θ − 4 + 1)− lnΓ (4 + 1)+
lnΓ (50 (1− θ) + 1)− lnΓ (50 (1− θ)− 16 + 1)− lnΓ (16 + 1)

for 200θ = 4, 5, . . . , 34. Ignoring the lnΓ (4 + 1) and lnΓ (16 + 1) (as they do
not involve θ), we plot the log-likelihood below. From the tabulation required
for this plot we obtain the MLE as �θ = .22.

0.70.60.50.40.30.20.10.0

65

55

45

theta

lo
g

-l
ik

el
ih

oo
d

Challenges
6.2.26 First we write the density as

fθ (x) =

½
1
2 exp (θ − x) θ ≤ x
1
2 exp (x− θ) θ ≥ x.

The log-likelihood function is then given by

l (θ |x1, ..., xn) =
X
θ≤x(j)

¡
θ − x(j)

¢
+
X
θ≥x(j)

¡
x(j) − θ

¢
.

When θ < x(1), l (θ |x1, ..., xn) = nθ −
Pn
i=1 x(i), and this is maximized by

taking θ = x(1), giving the value nx(1) −
Pn
i=1 x(i) ≤ 0.

When θ ≥ x(n), l (θ |x1, ..., xn) =
Pn
i=1 x(i) − nθ, and this is maximized by

taking θ = x(n), giving the value
Pn
i=1 x(i) − nx(n) ≤ 0.

When x(i) ≤ θ < x(i+1),

l (θ |x1, ..., xn) =
iX

j=1

¡
x(j) − θ

¢
+

nX
j=i+1

¡
θ− x(j)

¢
= (n− 2i)θ +

iX
j=1

x(j) −
nX

j=i+1

x(j) = (n− 2i)θ + 2
iX

j=1

x(j) −
nX
j=1

x(j)
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and this is maximized (provided n 6= 2i) by taking θ = x(i+1) when i ≤ n/2
and by θ = x(i) when i > n/2. When n = 2i all values in x(i) ≤ θ < x(i+1) are
maximizers.
When n = 1, then �θ = x(1). Now suppose n > 1. We have that i = 1 ≤ n/2

and

(n− 2)x(2) + 2
1X
j=1

x(j) −
nX
j=1

x(j) = nx(2) −
nX
j=1

x(j) ≥ nx(1) −
nX
j=1

x(j).

Now suppose i < i+ 1 ≤ n/2. Then

(n− 2i)x(i+1) + 2
iX

j=1

x(j) −
nX
j=1

x(j)

= (n− 2 (i+ 1))x(i+2) + 2
i+1X
j=1

x(j) −
nX
j=1

x(j) + (n− 2i)
¡
x(i+1) − x(i+2)

¢
≤ (n− 2 (i+ 1))x(i+2) + 2

i+1X
j=1

x(j) −
nX
j=1

x(j).

If n/2 ≤ i < i+ 1, then

(n− 2i)x(i) + 2
iX

j=1

x(j) −
nX
j=1

x(j)

= (n− 2 (i+ 1))x(i+1) + 2
i+1X
j=1

x(j) −
nX
j=1

x(j) + (n− 2i)
¡
x(i) − x(i+1)

¢
≥ (n− 2 (i+ 1))x(i+2) + 2

i+1X
j=1

x(j) −
nX
j=1

x(j)

and Þnally when i = n, then (n−2n)x(n)+2
Pn
j=1 x(j)−

Pn
j=1 x(j) =

Pn
j=1 x(j)−

nx(n).
When n is odd this argument shows that l (θ |x1, ..., xn) increases in¡−∞, x(bn/2c)¢ and decreases in [x(bn/2c),∞), so �θ = x(bn/2c) (the middle value).

When n is even this argument shows that l (θ |x1, ..., xn) increases in¡−∞, x(n/2)¢ , is constant in [x(bn/2c), x(bn/2c+1)), and decreases in [x(bn/2c),∞),
so any value �θ ∈ [x(bn/2c), x(bn/2c+1)) is a maximizer.

6.3 Inferences Based on the MLE

Exercises
6.3.1 This is a two-sided z-test with the z statistic equal to −0.54 and the
P-value equal to 0.592, which is very high. So we conclude that we do not
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have any evidence against H0. A .95-conÞdence interval for the unknown µ is
(4.442, 5.318). Note that the conÞdence interval contains the value 5, which
conÞrms our conclusion using the above test.

6.3.2 This is a two-sided t-test with the t statistic equal to −0.55 and the P-
value equal to 0.599, which is very high. We conclude that we do not have
enough evidence against H0. A .95-conÞdence interval for the unknown µ is
(4.382, 5.378). Note that the conÞdence interval contains the value 5, which
conÞrms our conclusion using the above test.

6.3.3 This is a two-sided z-test with the z statistic equal to 5.14 and the P-
value equal to 0.000. So we conclude that we have enough evidence against H0
being true. A .95-conÞdence interval for the unknown µ is (63.56, 67.94). Note
that the conÞdence interval does not contain the value 60, which conÞrms our
conclusion using the above test.

6.3.4 This is a two-sided t-test with the t statistic equal to 9.12 and (using the
Student(3) distribution) the P-value equals 0.452, which is not small and so we
do not reject the null hypothesis. A .95-conÞdence interval for the unknown µ
is (44.55, 86.95). Note that the conÞdence interval contains the value 60.

6.3.5 If we assume that the population variance is known then under H0 we
have Z = X−µ0

σ0
�N(0, 1) and the P-value then is given by

P

µ
Z ≥

¯̄̄̄
x0 − µ0
σ0

¯̄̄̄¶
= P

µ
Z ≥

¯̄̄̄
52− 60√

5

¯̄̄̄¶
= 2

µ
1−Φ

¯̄̄̄
52− 60√

5

¯̄̄̄¶
= 2 (1− .99983) = .00034

and a .95 conÞdence interval for µ is given by

[x0 − z0.975σ0, x0 + z0.975σ0] =
h
52− 1.96

√
5, 52 + 1.96

√
5
i
= [47. 617, 56.383]

Note that both the P-value and the .95 conÞdence interval indicate that there
is evidence against H0 being true.
If we don�t assume that the population variance is known, then, since we

only have a single observation the sample variance is 0, and we do not have a
sensible estimate of the population variance. So we cannot use the t procedures
to compute the P-value and construct a conÞdence interval. The minimum
sample size n for which inference is possible, without the assumption that the
population variance is known, is 2.

6.3.6 A .99 conÞdence interval for µ is given by (22.70, 29.72). The P-value for
testing H0 : µ = 24 is 0.099, so we conclude that there is not much evidence
against H0 being true. Note also that the .99 conÞdence interval for µ contains
the value 24.

6.3.7 To detect if these results are statistically signiÞcant or not we need to
perform a z-test for testing H0 : µ = 1. The P-value is given by

P

Ã
|Z| ≥

¯̄̄̄
¯ 1.05− 1p
0.1/100

¯̄̄̄
¯
!
= 2 [1− Φ (1.581 1)] = 2 (1− 0.9431) = 0.1138.
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So these results are not statistically signiÞcant at the 5% level, and so we have
no evidence against H0 : µ = 1. Also, the observed difference of 1.05−1 = .05 is
well within the range that the manufacturer thinks is of practical signiÞcance.
So the test has detected a small difference that is not practically signiÞcant.

6.3.8 Based on a two-sided z-test, the z-statistic (using standard errorp
.65(.32)/250) equals −0.994490 and the P-value equals 0.32. So we conclude

that there is no evidence against H0 being true. A .90-conÞdence interval for
θ is given by (0.559832, 0.680168), which includes the value 0.65, and so agrees
with the result of the above test.

6.3.9 Based on a two-sided z-test to assess H0 : θ = 0.5, the z-statistic is
equal to 0.63 and the P-value is equal to 0.527. So we conclude that there is no
evidence against H0 being true; in other words, there is not enough evidence to
conclude that the coin is unfair.

6.3.10 Let θ be the probability of head on a single toss. The sample sizes
required so that the margin of error (half of the length) of a γ = 0.95 conÞdence
interval for θ is less than 0.05, 0.025, 0.005 are given by

n ≥ 1

4

µz 1+γ
2

δ

¶2
So for δ = 0.1 n > 384. 15, δ = 0.05 n ≥ 1536. 6 and δ = 0.01 n ≥ 38415.
6.3.11 Based on a two-sided z-test to assess H0 : θ = 1

6 , the z-statistic is equal
to 2.45 and the P-value is equal to 0.014. So we can conclude that at the 5%
signiÞcance level, there is evidence to conclude that the die is biased.

6.3.12 The sample size that will guarantee that a 0.95-conÞdence interval for µ
is no longer than 1 is given by

n ≥ σ20
µz 1+γ

2

δ

¶2
= 2

µ
1.96

0.5

¶2
= 30.732

So the minimum sample size is 31.

6.3.13
(a) Simple expansion is given by

nX
i=1

(xi − x̄)2 =
nX
i=1

(x2i − 2x̄xi + x̄2) =
nX
i=1

x2i − 2x̄
nX
i=1

xi + nx̄
2

=
nX
i=1

xi − 2x̄
nX
i=1

xi + nx̄
2 = nx̄− 2x̄nx̄+ nx̄2 = nx̄(1− x̄).

(b) The MLE of θ is �θ = x̄ as in Example 6.3.2. The plug-in estimator for
σ2 is �σ2 = �θ(1 − �θ) = x̄(1 − x̄). Using (a), s2 = (n − 1)−1Pn

i=1(xi − x̄)2 =
(n− 1)−1nx̄(1− x̄). Thus, �σ2 = s2(n− 1)/n or

�σ2 − s2 = − 1
n
x̄(1− x̄) = −s2/n.
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(c) The bias of the plug-in estimator �σ2 for σ2 = θ(1− θ) is
bias(�σ2) = Eθ(�σ2)− σ2 = Eθ(�σ2 − s2) +Eθ(s2)− σ2

= Eθ(−s2/n) = −σ2/n→ 0 as n→∞.
6.3.14 Since the value ψ(θ) = 2 is in the 0.95-conÞdence interval (1.23, 2.45),
we Þnd no evidence against H0 : ψ(θ) = 2 at signiÞcance level 0.05 = 1− 0.95.
6.3.15
(a) To check unbiasedness, the expectation must be computed. Eθ(x1) = 1 · θ+
0 · (1− θ) = θ. Hence, x1 is an unbiased estimator of θ.
(b) Since the value of x1 is only 0 or 1, the equation x21 = x1 always holds.
Thus, Eθ(x21) = Eθ(x1) = θ. Hence, x

2
1 is not an unbiased estimator of θ

2. In
this exercise, we showed an unbiased estimator is not transformation invariant.

6.3.16 The P-value indicates that the true value of ψ(θ) is not equal to 5. The
estimate dψ(θ) = 5.3 suggests that the true difference from 5 is less than .5. This
suggests that the statistically signiÞcant result is not practically signiÞcant. If
instead we adopt the cutoff of .25 for a practical difference then the statistically
signiÞcant result from the P-value suggests that a meaningful difference from 5
exists.

6.3.17 Statistically, the P-value 0.22 shows no evidence against the null hypoth-
esis. However, it does not imply that the null hypothesis is correct. It may be
that we have just not taken a large enough sample size to detect a difference.

6.3.18 We need to compute the power at 0.5 = 1 − 0.5 and 1.5 = 1 + 0.5. If
these values are high, then we have a large probability of detecting a difference
of magnitude .5 but not otherwise. If the power is low then more data needs to
be collected to get a reliable result.

Computer Exercises
6.3.19 The sample size that will guarantee that a 0.95-conÞdence interval for
µ is no longer than 1 is given by

n ≥ 25
µ
t0.975 (n− 1)

δ

¶2
.

When n is large, then t0.975 (n− 1) ≈ z0.975 = 1.96, and in that case

n ≥ 25

.52
(1.96)2 = 384.16

So the minimum sample size is 385. Now when n = 400we have that t0.975 (400) =
1.9659 and

400 ≥ 25

.52
(1.9659)2 = 386.48

so n = 400 suffices.

6.3.20 The power function is given by (z.975 = 1.96)
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1−Φ
µ

.5√
2/
√
n
+ 1.96

¶
+Φ

µ
.5√
2/
√
n
− 1.96

¶
.

A partial tabulation of the power function (as a function of n) is given below.
We see that n = 63 is the appropriate sample size.
60 0.78190
61 0.78853
62 0.79500
63 0.80129
64 0.80742
65 0.81339
66 0.81919
67 0.82484

6.3.21 We expect to observe approximately 950 conÞdence intervals containing
the true value of θ. In practice, we do not observe exactly this number. The
number covering will be less for sample size n = 5 than for sample size n = 20.

6.3.22 As n increases, you should observe that the proportion of intervals that
actually contains 0 increases as s becomes a better estimate of σ = 1.

Problems
6.3.23
(a) First of all, (n− 1)s2 =Pn

i=1(xi− x̄)2 =
Pn
i=1[x

2
i −2x̄xi+ x̄2] =

Pn
i=1 x

2
i −

nx̄2. The expectation of the Þrst summation term is

E
h nX
i=1

x2i

i
= nE[X1/2] = n(µ2 + σ2).

Since nx̄2 = n−1
Pn
i=1 xi

Pn
j=1 xj ,

E[nx̄2] =
1

n
E
h nX
i=1

nX
j=1

xixj
i
=
1

n

nX
i=1

nX
j=1
j 6=i

E[xixj ] +
1

n

nX
i=1

E[xi]

=
1

n
· n(n− 1) · µ2 + 1

n
· n · (µ2 + σ2) = nµ2 + σ2.

Hence, E[(n−1)s2] = n(µ2+σ2)−(nµ2+σ2) = (n−1)σ2. Therefore E[s2] = σ2
and s2 is an unbiased estimator of the variance σ2.
(b) Let �σ2 = (n− 1)s2/n. The bias of �σ2 is

bias(�σ2) = E[�σ2]− σ2 = ((n− 1)/n)E[s2]− σ2 = [(n− 1)/n]σ2 − σ2
= −σ2/n.

Hence, the bias −σ2/n converges to 0 as n→∞.
6.3.24
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(a) Since T1 and T2 are unbiased estimators of ψ(θ), E[T1] = E[T2] = ψ(θ).
Hence, E[αT1+(1−α)T2] = αE[T1]+(1−α)E[T2] = αψ(θ)+(1−α)ψ(θ) = ψ(θ).
Therefore, αT1 + (1− α)T2 is also an unbiased estimator of ψ(θ).
(b) From Theorem 3.3.4, 3.3.1 (b) and 3.3.2, Varθ(αT1+(1−α)T2) =Varθ(αT1)+
V arθ((1−α)T2)+2Covθ(αT1, (1−α)T2) = α2θVar(T1)+(1−α)2θVarθ(T2)+2α(1−
α)Covθ(T1, T2). The independence between T1 and T2 implies Covθ(T1, T2) = 0
and Varθ(αT1+(1−α)T2) = α2θVar(T1) + (1−α)2θVar(T2). (c) The variance of
αT1 + (1− α)T2 can be written as

α2(Varθ(T1) +Varθ(T2))− 2αVarθ(T2) +Varθ(T2)
= (Varθ(T1) +Varθ(T2))

³
α− Varθ(T2)

Varθ(T1) +Varθ(T2)

´2
+

Varθ(T1)Varθ(T2)
Varθ(T1) +Varθ(T2)

.

Hence, it is minimized when α =Varθ(T2)/(Varθ(T1)+Varθ(T2)). If Varθ(T1) is
very large relative to Varθ(T2), then α will be very small. Hence, the estimator
αT1 + (1− α)T2 is almost similar to T2. (d) In part (b), the variance of αT1 +
(1−α)T2 is given by α2θVar(T1)+ (1−α)2θVar(T2)+ 2α(1−α)Covθ(T1, T2). By
rearranging terms, we get

α2(Varθ(T1) +Varθ(T2)− 2Covθ(T1, T2))
− 2α(Varθ(T2) +Covθ(T1, T2)) +Varθ(T2).

If T1 = T2, then αT1 + (1 − α)T2 = T1 = T2 and there is nothing to do.
So P (T1 = T2) < 1 is assumed. Thus, Varθ(T1)+Varθ(T2) − 2Covθ(T1, T2) =
Varθ(T1 − T2) > 0. Therefore, the variance of αT1 + (1 − α)T2 is maximized
when α = (Varθ(T2)+Covθ(T1, T2))/Varθ(T1 − T2). If Varθ(T1) is very large
relative to Varθ(T2), then α is very small again. Hence, the linear combination
estimator αT1 + (1− α)T2 highly depends on T2.
6.3.25 Using c (x1, ...., xn) = x̄+ k (σ0/

√
n), we have that k satisÞes

P
¡
µ ≤ x̄+ k ¡σ0/√n¢¢ = P µ x̄− µ

σ0/
√
n
≥ −k

¶
= P (Z ≥ −k) ≥ γ

So k = −z1−γ = zγ , i.e., the γ-percentile of a N(0, 1) distribution.
6.3.26 The P-value for testing H0 : µ ≤ µ0 is given by

max
µ∈H0

Pµ

µ
X̄ − µ
σ0/

√
n
>
x̄o − µ
σ0/

√
n

¶
= max
µ∈H0

P

µ
Z >

x̄o − µ
σ0/

√
n

¶
= max
µ∈H0

µ
1−Φ

µ
x̄o − µ
σ0/

√
n

¶¶
Since (1−Φ ((x̄o − µ) / (σ0/√n))) is an increasing function of µ, its maximum
is at µ = µ0.
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6.3.27 The form of the power function associated with the above hypothesis
assessment procedure is given by

β (µ) = Pµ

µ
1−Φ

µ
X̄ − µ0
σ0/

√
n

¶
< α

¶
= Pµ

µ
Φ

µ
X̄ − µ0
σ0/

√
n

¶
> 1− α

¶
= Pµ

µ
X̄ − µ0
σ0/
√
n
> z1−α

¶
= Pµ

µ
X̄ − µ
σ0/

√
n
>
µ0 − µ
σ0/
√
n
+ z1−α

¶
= 1−Φ

µ
µ0 − µ
σ0/

√
n
+ z1−α

¶
.

6.3.28 Using c (x1, ...., xn) = x̄+ k (σ0/
√
n) we have that k satisÞes

P
¡
µ ≥ x̄+ k ¡σ0/√n¢¢ = P µ X̄ − µ

σ0/
√
n
≤ −k

¶
= P (Z ≤ −k) ≥ γ

So k = −zγ = z1−γ, i.e., the 1− γ percentile of a N(0, 1) distribution.
The P-value for testing H0 : µ ≥ µ0 is given by

max
µ∈H0

Pµ

µ
X̄ − µ
σ0/
√
n
<
x̄o − µ
σ0/

√
n

¶
= max
µ∈H0

P

µ
Z <

x̄o − µ
σ0/

√
n

¶
= max
µ∈H0

Φ

µ
x̄o − µ
σ0/

√
n

¶
.

Since Φ ((x̄o − µ) / (σ0/√n)) is a decreasing function of µ, its maximum is at
µ = µ0.

6.3.29 Using c (x1, ...., xn) = x̄+ ks/
√
n, we have that k satisÞes

P
¡
µ ≤ X̄ + ks/√n¢ = P µX̄ − µ

s/
√
n
≥ −k

¶
≥ γ.

So k = −t1−γ (n− 1) = tγ (n− 1), i.e., the γ percentile of a t(n−1) distribution.
The P-value for testing H0 : µ ≤ µ0 is given by

max
µ∈H0

Pµ

µ
X̄ − µ
σ0/
√
n
>
x̄o − µ
σ0/

√
n

¶
= max
µ∈H0

µ
1−G

µ
x̄o − µ
σ0/
√
n
;n− 1

¶¶
.

Since (1−G ((x̄o − µ) / (σ0/√n) ;n− 1)) is an increasing function of µ, its max-
imum is at µ = µ0.

6.3.30 Using c (x1, ...., xn) = Ks2 we have that k satisÞes P
¡
σ2 ≤ kS2¢ =

P
³
(n−1)S2

σ2 ≥ n−1
k

´
≥ γ. So k = (n− 1) /χ21−γ (n− 1).

6.3.31 The P-value for testing H0 : σ2 ≤ σ20 is given by

max
(µ,σ2)∈H0

Pµ
¡
S2 > s2

¢
= max
(µ,σ2)∈H0

Pµ

µ
(n− 1)S2

σ2
>
(n− 1)s2
σ2

¶
= max
(µ,σ2)∈H0

µ
1−H

µ
(n− 1)s2
σ2

;n− 1
¶¶

=

µ
1−H

µ
(n− 1)s2
σ20

;n− 1
¶¶
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since
¡
1−H ¡(n− 1)s20/σ2;n− 1¢¢ is an increasing function of σ2.

6.3.32 We have that

β
¡
µ, σ2

¢
= P(µ,σ2)

µ
1−H

µ
(n− 1)S2

σ20
;n− 1

¶
< α

¶
= P(µ,σ2)

µ
H

µ
(n− 1)S2

σ20
;n− 1

¶
> 1− α

¶
= P(µ,σ2)

µ
(n− 1)S2

σ20
> χ21−α (n− 1)

¶
= P(µ,σ2)

µ
(n− 1)S2

σ2
>
σ20
σ2
χ21−α (n− 1)

¶
= 1−H

µ
σ20
σ2
χ21−α (n− 1) ;n− 1

¶
.

6.3.33 To detect if these results are statistically signiÞcant or not we need to
perform a t-test for testing H0 : µ = 1. The P-value is given by

P

Ã
|T | ≥

¯̄̄̄
¯ 1.05− 1p
0.083/100

¯̄̄̄
¯
!
= 2 [1−G (1.7355; 99)] = 2 (1− .95712) = 0.08576.

Since the P-value is greater then 5%, these result are not statistically signiÞcant
at the 5% level, so we have no evidence against H0 : µ = 1.
The P-value for testingH0 : σ2 ≤ σ20 is given by

¡
1−H ¡(n− 1)s2/σ20;n− 1¢¢ .

Using σ20 = 0.01, s
2 = 0.083, n = 100 we obtain P-value equal to 0. So we have

enough evidence against H0, i.e., the result is statistically signiÞcant and we
have evidence that the process is not under control.

Challenges
6.3.34 Equation (6.3.11) is given by·

ϕ

µ
µ0 − µ
σ0/

√
n
− z1−α

2

¶
− ϕ

µ
µ0 − µ
σ0/

√
n
+ z1−α

2

¶¸
µ0 − µ
σ0

.

Put x =
√
n (µ0 − µ) /σ0. If x < 0, then x− z1−α

2
< x+ z1−α

2
< −x+ z1−α

2
=

− ¡x− z1−α
2

¢
. Since ϕ

¡
x− z1−α

2

¢
= ϕ

¡− ¡x− z1−α
2

¢¢
and ϕ (z) increases to

the left of 0 and decreases to the right, this implies that (6.3.11) is nonnegative.
If x > 0, then − ¡x+ z1−α

2

¢
< x − z1−α

2
< x + z1−α

2
and again (6.3.11) is

nonnegative.

6.3.35 Equation (6.3.12) is given by·
ϕ

µ
µ0 − µ
σ0/
√
n
+ z1−α

2

¶
− ϕ

µ
µ0 − µ
σ0/

√
n
− z1−α

2

¶¸ √
n

σ0
.

Put x =
√
n (µ0 − µ) /σ0. Then if x < 0, we have that x− z1−α

2
< x+ z1−α

2
<

−x+ z1−α
2
= − ¡x− z1−α

2

¢
. Since ϕ

¡
x− z1−α

2

¢
= ϕ

¡− ¡x− z1−α
2

¢¢
and ϕ (z)

increases to the left of 0 and decreases to the right, this implies that (6.3.12) is
positive when µ > µ0. When x = 0, clearly (6.3.12) equals 0. When x > 0 then
− ¡x+ z1−α

2

¢
< x−z1−α

2
< x+z1−α

2
, and this implies that (6.3.12) is less than

0 when µ < µ0.



166 CHAPTER 6. LIKELIHOOD INFERENCE

6.4 Distribution-free Methods

Exercises
6.4.1 An approximate .95-conÞdence interval for µ3 is given by

m3 ± z 1+γ
2

s3√
n
= (26. 027, 151. 373)

since m3 = 88.7, z.975 = 1.96, and s3 = 143.0.

6.4.2 Recall that, the variance of a random variable can be expressed in terms
of the moments as σ2X = µ2 − µ21. Hence, the method of moments estimator of
the population variance is given by �σ2X = m2 −m2

1. To check if this estimator
is unbiased we compute

E
¡
m2 −m2

1

¢
= µ2 −

¡
Var (m1) +E

2 (m1)
¢
= µ2 −

µ
1

n

¡
µ2 − µ21

¢
+ µ21

¶
=

µ
1− 1

n

¶
σ2X

Hence, this estimator is not unbiased.

6.4.3 The method of moments estimator of the coefficient of variation of a
random variable X is

p
m2 −m2

1/m1. Now let Y = cX. The E(Y ) = cE(X)
and Var(Y ) = c2Var(X) . Therefore, the coefficient of variation of Y is

cSd (X) /cE(X) = Sd (X) /E(X)

which is the coefficient of variation of X.

6.4.4 Let ψ (µ) = exp (µ) then ψ
0
(µ) = exp (µ) . By the delta theorem (6.4.1),

an approximate γ-conÞdence interval for ψ (µ) is given by

exp x̄± s exp (x̄)√
n

z 1+γ
2
= exp (2.9)− 2.997 exp (2.9)√

20
1.96 = (−5.697 5, 42.046) .

6.4.5 Recall from Problem 3.4.15 that the moment generating function of a
X ∼ N(µ, σ2) is given by mX(s) = exp(µs+ σ

2s2/2). Then, by Theorem 3.4.3
the third moment in given by

m
000
X(0) = 3σ2

¡
µ+ σ2s

¢
eµs+

1
2σ

2s2 +
¡
µ+ σ2s

¢3
eµs+

1
2σ

2s2
¯̄̄
s=0

= 3σ2µ+ µ3

The plug-in estimator of µ3 is given by �µ3 = 3
¡
m2 −m2

1

¢
m1 +m

3
1, while the

method of moments estimator of µ3 is m3 =
1
n

P
x3i . So these estimators are

different.

6.4.6 The t-statistic for testing H0 : µ = 3 is 0.47 and the P-value (based on 9
df) is 0.650. Hence, we do not have evidence against H0 .
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To test the hypothesis H0 : x.5(θ) = 3 using the sign test statistic, we have
S =

Pn
i=1 I(−∞,3] (xi) = 5. The P-value is given by P ({i : |i− 5| ≥ 0}) = 1.

Therefore, we do not have evidence against H0 .
The following boxplot of the data indicates that the normal assumption is

a problem, as it is strongly skewed to the right. Under these circumstances we
prefer the sign test.
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6.4.7 The empirical cdf is given by the following table. The sample median is
estimated by −.03 and the Þrst quartile is −1.28, while the third quartile is .98.
The value F (2) is estimated by �F (2) = �F (1.36) = .90.

i x(i) �F
¡
x(i)

¢
1 −1.42 0.06
2 −1.35 0.10
3 −1.34 0.15
4 −1.29 0.20
5 −1.28 0.25
6 −1.02 0.30
7 −0.58 0.35
8 −0.35 0.40
9 −0.24 0.45
10 −0.03 0.50

i x(i) �F
¡
x(i)

¢
11 0.00 0.55
12 0.38 0.60
13 0.40 0.65
14 0.44 0.70
15 0.98 0.75
16 1.06 0.80
17 1.06 0.85
18 1.36 0.90
19 2.05 0.95
20 2.13 1.00

6.4.8
(a) Bootstrap samples are resamples from {1, 2, 3} with replacement. Hence,
{1, 2, 3}3 is all the possible bootstrap samples.
(b) Since the sample size n = 3 is an odd number, the sample median is a
number in the resample. Hence, all the possible sample medians are 1, 2, and
3.
(c) Let T be the sum of the resampled numbers. The smallest T is 3 when (1, 1, 1)
is sampled and the maximum is obtained if (3, 3, 3) is resampled. Besides, all
integer values between 3 and 9 are obtainable (consider (1, 1, 2), (1, 1, 3), (1, 2, 3),
(1, 3, 3) and (2, 3, 3)). Hence, the possible resample means are the values of T/3,
i.e., t/3 for t = 3, . . . , 9.
(d) The sample median has only 3 possible values and the sample mean has
7 possible values. Neither of them is large enough to have an asymptotic nor-
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mality. Any estimate or conÞdence interval based on asymptotic normality of
bootstrap samples is not acceptable for this problem.

6.4.9When n is large then the distribution of the sample mean is approximately
normal. When n andm are both large then the bootstrap procedure is sampling
from a discrete distribution and by the CLT the distribution of the bootstrap
mean is approximately normal.

The delta theorem justiÞes the approximate normality of functions of the
sample or bootstrap mean.

6.4.10 If the distribution is symmetric, then the median is exactly the same
as the mean, i.e., ψ(θ) = median(Fθ) = Eθ(X). By the central limit theorem,√
n(x̄ − ψ(θ)) D→ N(0, σ2θ) as n → ∞. Thus, an approximate γ-conÞdence

interval is given by (x̄ − z(1+γ)/2s/
√
n, x̄ + z(1+γ)/2s/

√
n) where s2 = (n −

1)−1
Pn
i=1(xi − x̄)2. From the data in Exercise 6.4.1, x̄ = 2.9 and s2 = 8.9839.

From the table D.2, z0.975 = 1.96. Hence, the approximate 0.95-conÞdence
interval is (1.5864, 4.2136).

6.4.11 Let y1, . . . , yn be a random sample from Uniform({x1, . . . , xn}). The
number of values that can arise from bootstrap samples is equal to the number
of values |xi − xj | for 1 ≤ i, j ≤ n. Hence, the maximum number of possible
values is 1+

¡
n
2

¢
= 1+ n(n− 1)/2. Here, 0 is obtained when i = j. The sample

range y(n) − y(1) has the largest value x(n) − x(1) when x(1), x(n) are sampled,
in other words, yi = x(1) and yj = x(n) for some i and j. The smallest sample
range value of 0 is obtained when yi = x(k) and yj = x(k) for some i, j and k.

If there are many repeated xi values in the bootstrap sample, then the value
0 will occur with high probability for y(n)−y(1) and so the bootstrap distribution
of the sample range will not be approximately normal.

6.4.12 Every bootstrap sample is a subset of {x1, . . . , xn}n. Hence, the number
of distinct bootstrap samples is |{x1, . . . , xn}|n in general. Thus,

|{1.1,−1.0, 1.1, 3.1, 2.2, 3.1}|6 = 46 = 4096

samples are possible.

Computer Exercises

6.4.13 To test the hypothesis H0 : x.5(θ) = 0 the sign test statistic is given by
S =

Pn
i=1 I(−∞,0] (xi) = 10. The P-value is given by P ({i : |i− 10| ≥ 0}) = 1.

Hence, we do not have any evidence against H0.
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We have that

P ({i : |i− 10| ≥ 10}) =
µ
20

0

¶µ
1

2

¶20
= 1.9073× 10−6

P ({i : |i− 10| ≥ 9}) = 2
µ
20

0

¶µ
1

2

¶20
+ 2

µ
20

1

¶µ
1

2

¶20
= 4.0054× 10−5

P ({i : |i− 10| ≥ 8}) = 2
µ
20

0

¶µ
1

2

¶20
+ 2

µ
20

1

¶µ
1

2

¶20
+ 2

µ
20

2

¶µ
1

2

¶20
= 4.024 5× 10−4

P ({i : |i− 10| ≥ 7}) =
3X
j=0

2

µ
20

j

¶µ
1

2

¶20
= 2.5768× 10−3

P ({i : |i− 10| ≥ 6}) =
4X
j=0

2

µ
20

j

¶µ
1

2

¶20
= 1.1818× 10−2

P ({i : |i− 10| ≥ 5}) =
5X
j=0

2

µ
20

j

¶µ
1

2

¶20
= 4.138 9× 10−2

P ({i : |i− 10| ≥ 4}) =
6X
j=0

2

µ
20

j

¶µ
1

2

¶20
= 0.115 32.

Therefore, j = 15 and a .95-conÞdence interval is given by [x(6), x(15)) =
[−1.02, 0.98). The exact coverage probability of this interval is 1 − 4.138 9 ×
10−2 = 0.95861.

6.4.14 To test the hypothesis H0 : x.25(θ) = −1.0 the sign test statistic is
given by S0 =

Pn
i=1 I(−∞,−1.0] (xi) = 6. The P-value, using (6.4.6), is given

by P ({i : ¡20i ¢ (0.25)i (0.75)20−i ≤ ¡
20
6

¢
(0.25)6 (0.75)14}), and a tabulation of

the Binomial(20, .25) probability function reveals that this set is given by all
the points except {5, 4}, so the P-value is given by 1 − ¡205 ¢ (0.25)5 (0.75)15 −¡
20
4

¢
(0.25)4 (0.75)16 = 0.60798 and we have no evidence against H0.

6.4.15 The characteristic of the distribution we are interested in is ψ(θ) =
T (Fθ) = µ3, which we estimate by T ( �F ) = m3 = 88.7442. We want to estimate
the MSE of the plug-in MLE of µ3, which is given by �ψ = m3

1 + 3m1s
2 =

(2.9)3 + 3(2.9) (2.997)2 = 102.53. First, the squared bias in this estimator is
given by ( �ψ − T ( �F ))2 = ¡m3

1 + 3m1�σ
2 −m3

¢2
= (102.53− 88.7442)2 = 190.05.

Next, based on 103 samples, we obtaineddVar �F ( �ψ) = 956.598. Hence,
[MSEθ( �ψ) = 102.53 + 956.598 = 1059.1. Note that, based on 104 samples, we
obtaineddVar �F ( �ψ) = 981.057 and, based on 105 samples, we obtaineddVar �F ( �ψ) =
973.434. Hence, m = 1000 is a large enough sample for accurate results.
The Minitab code for carrying out these simulations is given below.
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gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - third moments of bootstrap samples are stored in c4 for more
analysis
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:1000
sample 20 c1 c2;
replace.
let c3=c2**3
let c4(k2)=mean(c3)
enddo
note - k3 equals (6.4.5)
let k3=(stdev(c4))**2
print k3
endmacro

6.4.16 The characteristic of the N(µ, σ2) distribution that we are interested
in is ψ(θ) = T (Fθ) = x(0.25)(θ) = µ + σz0.25, which we estimate by T ( �F ) =
�x0.25 = 0.15, i.e., the sample Þrst quartile. We want to estimate the MSE
of the plug-in MLE of x(0.25)(θ), which is given by �ψ = m1 + sz0.25 = 2.9 +
(2.997) (−0.6745) = 0.87852. The squared bias in this estimator is given by
( �ψ − t( �F ))2 = (0.87852− 0.15)2 = 0.53074.
Based on a 103 samples, the variance of this estimator is estimated asdVar �F ( �ψ) = 1.85568. Hence, [MSEθ( �ψ) = 0.53074 + 1.85568 = 2.386 4. Based on

a 104 samples, the variance of this estimator is estimated asdVar �F ( �ψ) = 1.89582.
Hence, [MSEθ( �ψ) = 0.53074 + 1.89582 = 2.4266.
The Minitab code for this simulation is given below.

gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - first quartiles of bootstrap samples are stored in

c4 for more analysis
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:20000
sample 20 c1 c2;
replace.
sort c2 c3
let c4(k2)=c3(5)
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enddo
note - k3 equals (6.4.5)
let k3=(stdev(c4))**2
print k3
endmacro

6.4.17 The characteristic of the N(µ, σ2)distribution that we are interested
in is ψ(µ, σ2) = t(F(µ,σ2)) = F(µ,σ2)(3) = Φ

¡
3−µ
σ

¢
,where Φis the cdf of the

N(0, 1)distribution. The plug-in estimator of ψ(θ)is

�ψ(x1, ...xn) = Φ

µ
3− 2.9
2.997

¶
= Φ

¡
3.3367× 10−2¢ = 0.5133.

The bias squared in this estimator is given by ( �ψ − t( �F ))2 = (0.5133− 0.4)2 =
0.01284.Based on 103samples the variance of this estimator is estimated asdVar �F ( �ψ) = 0.0117605.Hence, [MSEθ( �ψ) = 0.01284 + 0.0117605 = 2.4601 ×
10−2.Based on 104samples, the variance of this estimator is estimated asdVar �F ( �ψ)
= 0.0118861.Hence, [MSEθ( �ψ) = 0.01284 + 0.0118861 = 2.472 6× 10−2.
The Minitab code for these simulations is given below.

gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - value of the ecdf at 3 of bootstrap samples are stored in

c5 for more analysis
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:10000
sample 20 c1 c2;
replace.
sort c2 c3
let c4= c3 le 3
let c5(k2)=mean(c4)
enddo
note - k3 equals (6.4.5)
let k3=(stdev(c5))**2
print k3
endmacro

6.4.18 The sampling model Xi ∼ N(µ, σ2)is assumed. The characteristic
ψ(θ) = µis of interest. It is known that

√
n(x̄ − µ)/s ∼ t(n − 1). Thus, an

exact γ-conÞdence interval is (x̄− t(1+γ)/2(n− 1)s, x̄+ t(1+γ)/2(n− 1)). For the
conÞdence interval based on the sign statistic, the median of F(µ,σ2)is exactly
the same as the mean of F(µ,σ2),because a normal distribution is symmetric, so
a sign conÞdence interval for the mean is also a conÞdence interval for the mean.
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The other intervals are described in the text very clearly. The four conÞdence
intervals are given in the following table.

method lower bound upper bound
t ConÞdence interval 1.49721 4.30279

Bootstrap t 1.58097 4.21903
Sign statistic 1.42000 4.55000

Bootstrap quantile 1.68400 4.07550

The Minitab code for this simulation is given below.

set c1
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end
%bootstraping c1 0.95 1000
# the macro file
macro
bootstraping X G M
mcolumn X c1 c2 c3
mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.18.
# X is the data.
# G is the confidence level gamma.
# M is the bootstrap length.
# k1 is the length of the data (X).
let k1=count(X)
# resampling
do k2=1:M
sample k1 X c1;
replace.

let c2(k2) = mean(c1)
enddo
sort c2 c3
name k2 "Summary" k3 "Lower bound" k4 "Upper bound" k5 "Estimate"

k6 "Estimated MSE"
# Confidence interval
let k2=(1+G)/2
let k8=k1-1
invcdf k2 k7;
t k8.

let k5=mean(X)
let k6=stdev(X)/sqrt(X)
let k3=k5-k7*k6
let k4=k5+k7*k6
let k2="Confidence interval"
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print k2 k3 k4 k5
#bootstrap t confidence interval.
let k2=(1+G)/2
let k8=k1-1
invcdf k2 k7;
t k8.

let k3=k5-k7*stdev(c2)
let k4=k5+k7*stdev(c2)
let k2="Bootstrap t confidence interval"
print k2 k3 k4 k5 k6
#sign statistic confidence interval
sort X c1
let k7=0
while k7 <= k1/2
cdf k7 k8;
binomial k1 .5.

if k8 >= (1-G)/2
break

endif
let k7=k7+1

endwhile
if k7 = 0
let k3=c1(1)
let k4=c1(k1)

else
let k3=c1(k7)
let k4=c1(k1+1-k7)

endif
let k2="Sign statistic confidence interval"
print k2 k3 k4
# bootstrap percentile confidence interval
let k7=floor((1-G)/2*M)
if k7 < 1
let k3=c3(1)

else
let k3=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1-G)/2-k7)

endif
let k7=floor((1+G)/2*M)
if k7 >= M
let k4=c3(M)

else
let k4=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1+G)/2-k7)

endif
let k5=mean(X)
let k6=(mean(c2)-mean(X))**2 + stdev(c2)**2
#note bootstrap confidence interval.
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let k2="Bootstrap confidence interval"
print k2 k3 k4 k5 k6
endmacro

6.4.19 The characteristic ψ(θ)of interest, i.e., the Þrst quintile of N(µ, σ2) is
given by ψ(θ) = µ + σz0.2where z0.2is 0.2-quantile of a standard normal. The
maximum likelihood estimator is given by �µ = x̄and �σ2 = n−1

Pn
i=1(xi− x̄)2 =

(n−1)s2/n. The plug-in estimate of the quantile is �x0.2 = x̄+((n−1)s2/n)1/2 ·
z0.2 = 2.9+(19 ·8.9839/20)1/2 ·(−0.894162) = 0.44127. According to the graph,
it seems there exist a few clusters. Thus, the bootstrap t conÞdence interval is
not applicable for this problem. The Minitab code for this simulation is given
below.

set c1
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end
let k3=mean(c1)
let k1=count(c1)
let k4=stdev(c1)*sqrt(1-1/k1)
invcdf .2 k2;
normal 0 1.
let k2=k3+k2*k4
name k2 "Plug-in the first quintile estimate"
print k2
%boostraping c1 .2 1000
# corresponding macro file
macro
bootstraping X G M
#bootstraping
mcolumn X c1 c2 c3 c4
mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.19.
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# X is the data.
# G is the confidence level gamma.
# M is the bootstrap length.
# k1 is the length of the data (X).
let k1=count(X)
# resampling
let k3=floor(.2*k1)
do k2=1:M
sample k1 X c3;
replace.

sort c3 c4
if k3 < k1
let c2(k2) = c4(k3) + (c4(k3+1)-c4(k3))*(.2*k1-k3)

else
let c2(k2) = c4(k1)

endif
enddo
name c2 "quintile x_0.2"
# drawing a histogram
histogram c2;
density;
bar;
color 23;
nodtitle;
graph;
color 23.

endmacro

6.4.20 The characteristic of interest is ψ(θ) = µ3 = Eθ(X3) = µ3 + 3µσ2. The
maximum likelihood estimator is given by �µ = x̄and �σ2 = n−1

Pn
i=1(xi− x̄)2 =

(n− 1)s2/n. The plug-in estimate of µ3is �µ3 = x̄3 + 3x̄(n− 1)s2/n = 2.93 + 3 ·
2.9 · (19 · 8.9839/20) = 98.6410.
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The graph indicates that bootstrap inference is applicable for this problem. The
bootstrap percentile 0.95-conÞdence interval is given by (34.539, 158.801). The
Minitab code for this simulation is given below.

set c1
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end
let k1=count(c1)
let k3=mean(c1)
let k4=stdev(c1)**2*(1-1/k1)
let k2=k3**3+3*k3*k4
name k2 "Plug-in estimator of mu_3"
print k2
%bootstraping c1 .95 1000
# corresponding macro file ’bootstraping.mac’
macro
bootstraping X G M
mcolumn X c1 c2 c3 c4
mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.19.
# X is the data.
# G is the confidence level gamma.
# M is the bootstrap length.
# k1 is the length of the data (X).
let k1=count(X)
# resampling
do k2=1:M
sample k1 X c3;
replace.

let c2(k2) = mean(c3**3)
enddo
name c2 "mu_3"
# drawing a histogram
histogram c2;
density;
bar;
color 23;
nodtitle;
graph;
color 23.

sort c2 c3
name k2 "Summary" k3 "Lower bound" k4 "Upper bound"
# bootstrap percentile confidence interval
let k7=floor((1-G)/2*M)
if k7 < 1
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let k3=c3(1)
else
let k3=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1-G)/2-k7)

endif
let k7=floor((1+G)/2*M)
if k7 >= M
let k4=c3(M)

else
let k4=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1+G)/2-k7)

endif
let k2="Bootstrap percentile CI"
print k2 k3 k4
endmacro

Problems
6.4.21 For a random variable with this distribution, we have that E �F

¡
Xi
¢
=Pn

j=1 x
i
(j)

³
�F
¡
x(j)

¢− �F
¡
x(j−1)

¢´
,where we take x(0) = −∞. Now �F

¡
x(j)

¢−
�F
¡
x(j−1)

¢
= 1/nsince all the x(j)are distinct. This implies the result.

6.4.22 We have that E �F

¡
Xi
¢
=
Pn∗

j=1(x
∗
(j))

i( �F (x∗(j)) − �F (x∗(j))),where n
∗is

the number of distinct values, x∗1, . . . , x∗n∗are the distinct values in the sam-
ple, x∗(1), . . . , x

∗
(n∗)are the ordered distinct values in the sample, and �F (x∗(j))−

�F (x∗(j))equals the relative frequency of x
∗
(j)in the original sample.

6.4.23
(a) First, note that for the Poisson distribution we have µ1 = λ = σ2,i.e., the
mean and the variance are the same. Now using ψ(x) =

√
xas a transformation,

by the delta theorem, we have ψ(M1) =
√
M1is asymptotically normal with

mean ψ(µ1) =
√
µ1and variance given by (ψ

0
(µ1))2

σ2

n = 1
4λ

λ
n =

1
4n ,which is free

of µ1,and hence this transformation is variance stabilizing.
(b) Using ψ(x) = arcsin

√
xas a transformation, by the delta theorem, we have

ψ(M1) = arcsin
√
M1is asymptotically normal with mean ψ(µ1) = arcsin

√
µ1and

variance given by

³
ψ
0
(µ1)

´2 σ2
n
=

Ã
1

2
p
(1− θ)√θ

!2
θ (1− θ)

n
=
1

4n
,

which is free of θ,and hence this transformation is variance stabilizing.
(c) First, we have σ2 = aµ21. Next, the mean of ψ(M1) = ln (M1)is approxi-
mately ψ(µ1) = ln (µ1)and the variance is approximately³

ψ
0
(µ1)

´2 σ2
n
=
1

µ21

aµ21
n
=
a

n
,

which is free of µ1,and hence this transformation is variance stabilizing.
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Challenges
6.4.24 Let Y = |X|, then Y has a distribution on R+ = (0,∞)given by

FY (y) = P (Y ≤ y) = P (|X| ≤ y) = P (−y ≤ X ≤ y) = FX (y)− FX (−y)
= 2FX (y)− 1

where the last equality follows by symmetry of the distribution of X. Therefore,
the density of Y is 2f, where f is the density of x.
Next, let Z = sgn(X), then P (Z = −1) = P (X < 0) = 0.5, P (Z = 1) =

P (X > 0) = 0.5, and P (Z = 0) = P (X = 0) = 0. Therefore, Z is uniform on
{−1, 1}.
To show that Y and Z are independent we proceed as follows.

P (Y ≤ y,Z = 1) = P (−y ≤ X ≤ y,X > 0) = P (0 ≤ X ≤ y) = FX (y)− 1
2

which is the same as P (Y ≤ y)P (Z = 1) = (2FX (y)− 1) /2 = FX (y) − 1/2.
Hence, we have established that Y and Z are independent.

6.4.25
(a) We have that |xi − x0| sgn(xi − x0) = xi − x0, so S+o = n (x̄− x0) .
(b) Note that, under H0, Y = X − x0 is distributed from an absolutely con-
tinuous distribution that is symmetric about 0. Therefore, by Challenge 6.4.24
we have that |Y | and sgn(Y ) = sgn(X − x0) are independent and sgn(Y ) is
uniform on {−1, 1} . The conditional distribution of S+, given the values |Y1| =
|x1 − x0| , . . . , |Yn| = |xn − x0| , is therefore determined by (sgn(Y1), . . . , sgn(Yn))
and, because of independence, this is uniform on {−1, 1}n . This implies that
the conditional distribution of S+ is the same no matter which absolutely con-
tinuous distribution, symmetric about its median, that we are sampling from.
The conditional mean of S+ is then

E
¡
S+ | |x1 − x0| , . . . , |xn − x0|

¢
=

nX
i=1

|xi − x0|E (sgn (Xi − x0)) = 0

since E (sgn (Xi − x0)) = 0 for each i. Further, it is clear that this conditional
distribution is symmetric about 0 since the distribution of each sgn (Xi − x0)
is symmetric about 0.
(c) We have that

S+o =
nX
i=1

|xi − x0| sgn (xi − x0) = .2− .5 + 1.4− 1.6 + 3.3 + 2.3 + .1 = 5.2.

Now each possible value of (sgn(X1 − x0), . . . , sgn(Xn − x0)) occurs with prob-
ability (1/2)6 = 1.562 5× 10−2 and 4 ¡1.562 5× 10−2¢ = 0.0625, while
2
¡
1.562 5× 10−2¢ = 0.03125. So to determine if 5.2 yields a P-value less than

.05, we need to evaluate the 4 extreme points (2 on each tail) of the conditional
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distribution of S+. Starting from the most extreme values and moving towards
the center 0 we have that S+ takes the values

.2 + .5 + 1.4 + 1.6 + 3.3 + 2.3 + .1 = 9.4

.2 + .5 + 1.4 + 1.6 + 3.3 + 2.3− .1 = 9.2
...

−.2− .5− 1.4− 1.6− 3.3− 2.3 + .1 = −9.2
−.2− .5− 1.4− 1.6− 3.3− 2.3− .1 = −9.4

so the P-value is greater than .05 and we have no evidence against H0.
(d) We have that t = n(x̄− x0)/s and

(n− 1) s2 =
nX
i=1

(xi − x̄)2 =
nX
i=1

(xi − x0 + x0 − x̄)2

=
nX
i=1

|xi − x̄|2 + 2
nX
i=1

(xi − x0) (x0 − x̄) + n (x̄− x̄)2

=
nX
i=1

|xi − x̄|2 − 2n (x̄− x0)2 + n (x̄− x̄)2

=
nX
i=1

|xi − x̄|2 − n (x̄− x̄)2

and note that
Pn
i=1 |xi − x̄|2 is Þxed under the conditional distribution. There-

fore,

t =
n(x̄− x0)

s
=

n(x̄− x0)
√
n− 1

qPn
i=1 |xi − x̄|2 − n (x̄− x̄)2

.

Then we see that t is an increasing function of n(x̄−x0) for −
Pn
i=1 |xi − x̄|2 ≤

n(x̄−x0) ≤
Pn
i=1 |xi − x̄|2 so that t is large whenever S+o is large and conversely.

6.5 Large Sample Behavior of the MLE

Exercises
6.5.1 The score function for theN(µ0, σ2) family is given by S

¡
σ2 |x1, ..., xn

¢
=

− n
2σ2 +

1
2σ4

Pn
i=1 (xi − µ0)2. The Fisher information is then given by

nI(σ2) = −Eσ2
µ
∂

∂σ2
S
¡
σ2 |X1, ...,Xn

¢¶
= −Eσ2

Ã
n

2σ4
− 1

σ6

nX
i=1

(Xi − µ0)2
!

= − n

2σ4
+
1

σ6
Eσ2

Ã
nX
i=1

(Xi − µ0)2
!
= − n

2σ4
+
nσ2

σ6
=

n

2σ4
.
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6.5.2 The score function for Gamma(α0, θ), where α0 is known, is given by
S (θ |x1, ..., xn) = nα0/θ−nx̄. The Fisher information is then given by nI(θ) =
−Eθ

¡
∂
∂θS (θ |X1, ...,Xn)

¢
= −Eθ

¡−nα0
θ2

¢
= nα0

θ2 .

6.5.3 The score function for Pareto(α) is given by S(α |x1, ..., xn) = n/α −Pn
i=1 ln (1 + xi) . The Fisher information is then given by nI(α) =

−Eα
¡
∂
∂αS (α |X1, ...,Xn)

¢
= −Eα

¡− n
α2

¢
= n

α2 .

6.5.4 An approximate .95-conÞdence for λ in a Poisson model is given by (Exam-
ple 6.5.5) x̄±(x̄/n)1/2 z(1+γ)/2. The average number of calls per day is x̄ = 9.650.
Therefore, the conÞdence interval is given by (8.2885, 11.011) . This contains the
value λ0 = 11, and therefore we don�t have enough evidence againstH0 : λ0 = 11
at the 5% level.
An approximate power for this procedure when λ = 10 is given by

P10

µ
2

½
1−Φ

µr
n

λ0

¯̄
X̄ − λ0

¯̄¶¾
< 0.05

¶
= P10

Ã
Φ

Ãr
20

11

¯̄
X̄ − 11¯̄! > 0.975! = P10Ã¯̄X̄ − 11¯̄ >r11

20
z0.975

!

= P10

Ã¡
X̄ − 11¢ < −r11

20
z0.975 or

¡
X̄ − 11¢ >r11

20
z0.975

!

= P10

Ã¡
X̄ − 10¢r20

10
<

r
20

10
−
r
11

10
z0.975

!

+ P

Ã¡
X̄ − 10¢r20

10
>

r
20

10
+

r
11

10
z0.975

!
≈ P (Z < −.64145) + P (Z > 3.4699) = .26062 + .000 26 = .26088.

6.5.5 The score function for Gamma(2, θ) is given by S (θ |x1, ..., xn) = 2n/θ−
nx̄, so the MLE is �θ = 2/x̄ = 2/1627 = 1.2293× 10−3. The Fisher information
is then given by,

nI(θ) = −Eθ
µ
∂

∂θ
S (θ |X1, ...,Xn)

¶
= −Eθ

µ
−2n
θ2

¶
=
2n

θ2
.

By corollary 6.5.2 we have thatr
2n
�θ2

³
�θ − θ

´
D→ N(0, 1).

Hence, an approximate .90-conÞdence interval is given by

2

x̄
± 1√

2n

µ
2

x̄

¶
z.95 =

¡
1.2293× 10−3¢± 1√

54

¡
1.2293× 10−3¢ (1.6449)

=
¡
9.5413× 10−4, 1.5045× 10−3¢ .
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6.5.6 The score function for Gamma(1, θ) is given by S (θ |x1, ..., xn) = n/θ−nx̄,
so the MLE is �θ = 1/x̄ = 1/1627 = 6.1463 × 10−4. The Fisher information is
then given by

nI(θ) = −Eθ
µ
∂

∂θ
S (θ |X1, ...,Xn)

¶
= −Eθ

³
− n
θ2

´
=
n

θ2
.

By Corollary 6.5.2 we have thatr
n
�θ2

³
�θ − θ

´
D→ N(0, 1).

Hence, an approximate .90-conÞdence interval is given by

1

x̄
± 1√

n

µ
1

x̄

¶
z.95 =

¡
6.1463× 10−4¢± 1√

27

¡
6.1463× 10−4¢ (1.6449)

=
¡
4.2006× 10−4, 8.0920× 10−4¢ .

Note that this interval is shorter than the one in Exercise 6.5.5 and is shifted to
the left.

6.5.7 The score function for Pareto(α) is given by S(α |x1, ..., xn) = n/α −Pn
i=1 ln (1 + xi), so the MLE for α is

�α =
nPn

i=1 ln (1 + xi)
.

Using the result of Exercise 6.5.3 the Fisher information is n/α2. Note this is a
continuous function of α ∈ (0,∞) . Hence, by Corollary 6.5.2 an approximate
.95-conÞdence interval is given by �α± (�α/√n)z 1+γ

2
. Substituting �α = 0.322631,

z.975 = 1. 96, we obtain (0.18123, 0. 46403) as a .95-conÞdence interval.
The mean of the Pareto(α) distribution is 1/ (α− 1) . Hence, assessing that

the mean income in this population is $25K is equivalent to assessing α =
1 + 1

25 = 1.04. Since the .95-conÞdence interval does not contain this value, we
have enough evidence against H0 at the 5% level to conclude that the mean
income of this population is not $25K.

6.5.8 The score function for a sample from Exponential(θ) is given by
S(θ |x1, ..., xn) = n/θ − nx̄, so the MLE is �θ = 1/x̄. The Fisher information is
given by nI(θ) = −Eθ

¡− n
θ2

¢
= n

θ2 . By Corollary 6.5.2 we have thatr
n

θ2

³
�θ − θ

´
D→ N(0, 1).

A left-sided γ-conÞdence interval for θ should satisfy Pθ (θ ≤ c (x1, ...xn)) ≥ γ
for every θ > 0. Using the same method as Problem 6.3.25 we obtain the intervalµ

−∞, �θ +
³
nI
³
�θ
´´−1/2

zγ

¶
=

µ
−∞, 1

x̄
+
1

x̄

zγ√
n

¶
.
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6.5.9 The likelihood function for the Geometric(θ) is L (θ |x) = θ(1− θ)x. The
score function is then given by S(θ |x) = 1

θ − x
1−θ . The Fisher information is

then

I(θ) = −Eθ
µ
∂

∂θ
S (θ |X)

¶
= −Eθ

Ã
− 1
θ2
− X

(1− θ)2
!
=

1

θ2 (1− θ)
since Eθ (X) = (1− θ) /θ.
The score function for a sample is then

S(θ |x1, ..., xn) = n

θ
−

nX
i=1

xi
1− θ =

n

θ
− nx̄

1− θ ,

so the MLE for θ in this model is �θ = 1/1 + x̄ and the Fisher information is
given by n/

¡
θ2 (1− θ)¢ . A left-sided γ-conÞdence interval for θ should satisfy

the Pθ (θ < c (X1, ...,Xn)) ≥ γ for every θ ∈ [0, 1] . Using the same method as
in Exercise 6.3.17 we obtain the interval·
0,min(�θ +

³
nI(�θ)

´−1/2
zγ , 1)

¸
=

·
0,min

µ
1

1 + x̄
+

1√
n

1

1 + x̄

r
x̄

1 + x̄
zγ , 1

¶¸
.

6.5.10 The likelihood function for the Negative-Binomial(r,θ) family is given
by (from example 2.3.5) L (θ |x) = ¡

r−1+x
x

¢
θr (1− θ)x . The score function is

given by S(θ |x) = r
θ − x

1−θ and the Fisher information is given by

I(θ) = −Eθ
µ
∂

∂θ
S (θ |X)

¶
= −Eθ

Ã
− r
θ2
− X

(1− θ)2
!
=

r

θ2 (1− θ)
since Eθ (X) = r (1− θ) /θ. The score function for a sample is given by

S(θ |x1, ..., xn) = rn

θ
− nx̄

1− θ ,

so the MLE for θ in this model is �θ = r/(r + x̄).
A left-sided γ-conÞdence interval for θ should satisfy Pθ (θ < c (X1, ...Xn)) ≥

γ for every θ. Using the same method as in Problem 6.3.25 we obtain the
following intervalµ

−∞, �θ +
³
nI
³
�θ
´´−1/2

zγ

¶
=

µ
−∞, r

r + x̄
+

1√
nr

r

r + x̄

r
x̄

r + x̄
zγ

¶
.

Problems
6.5.11 (6.5.2) ,(6.5.3), (6.5.4), and (6.5.5) require that

∂2 ln fθ (x)

∂θ2
exists for each x,Eθ (S(θ | s)) = 0,

Eθ

µ
∂2 ln fθ (X)

∂θ2
+ S2(θ |X)

¶
= 0, Eθ

µ¯̄̄̄
∂2 ln fθ (X)

∂θ2

¯̄̄̄¶
<∞.
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We have
∂2 ln fσ2 (x)

∂σ2
=

1

2σ4
− (x− µ0)

2

σ6

and this exists for each x. Also,

Eσ2 (S(θ |X)) = Eσ2
Ã
− 1

2σ2
+
(X − µ0)2
2σ4

!
= − 1

2σ2
+
σ2

2σ4
= 0

and

Eσ2

µ
∂2 ln fσ2 (X)

∂σ2
+ S2(σ2 |X)

¶

= Eσ2

Ã
1

2σ4
− (X − µ0)

2

σ6

!
+Eσ2

Ã− 1

2σ2
+
(X − µ0)2
2σ4

!2
=

1

2σ4
− 1

σ4
+

1

4σ4
− 2

2σ2
Eσ2

Ã
(X − µ0)2
2σ4

!
+

1

4σ4
Eσ2

Ãµ
X − µ0
σ

¶4!
= − 3

4σ4
+

1

4σ4
E
¡
Z4
¢
= − 3

4σ4
+

3

4σ4
= 0

since E
¡
Z4
¢
= 3 for Z ∼ N(0, 1). Finally, by the triangular inequality and

monotonicity of expected values we have

Eσ2

µ¯̄̄̄
∂2 ln fσ2 (X)

∂σ2

¯̄̄̄¶
= Eθ

Ã¯̄̄̄
¯ 12σ4 − (X − µ0)2σ6

¯̄̄̄
¯
!

≤ Eθ
Ã¯̄̄̄

1

2σ4

¯̄̄̄
+

¯̄̄̄
¯ (X − µ0)2σ6

¯̄̄̄
¯
!
=

1

2 (σ2)2
+

σ2

(σ2)3
=

3

2σ4
<∞.

6.5.12 In Exercise 6.5.2 we have ∂2 ln fθ(x)
∂θ2 = −α0

θ2 and this exists for each x.
Also, Eθ (S(θ |X)) = Eθ

¡
α0
θ −X

¢
= α

θ − α
θ = 0 and

Eθ

µ
∂2 ln fθ (X)

∂θ2
+ S2(θ |X)

¶
= Eθ

³
−α0
θ2

´
+Eθ

µ³α0
θ
−X

´2¶
= −α0

θ2
− α

2
0

θ2
+Eθ

¡
X2
¢
= −α0

θ2
− α

2
0

θ2
+
α0 (α0 + 1)

θ2
= 0.

Finally we have that

Eθ

µ¯̄̄̄
∂2 ln fθ (s)

∂θ2

¯̄̄̄¶
= Eθ

³¯̄̄
−α0
θ2

¯̄̄´
=
α0
θ2
.

6.5.13 In Exercise 6.5.3 we have ∂2 ln fα(x)
∂α2 = − 1

α2 and this exists for each x.
Also, since ln (1 +X) ∼ Exponential(α) we have

Eα (S(θ |X)) = Eθ
µ
1

α
− ln (1 +X)

¶
=
1

α
− 1

α
= 0,



184 CHAPTER 6. LIKELIHOOD INFERENCE

and

Eα

µ
∂2 ln fα (X)

∂α2
+ S2(α |X)

¶
= Eα

Ã
− 1

α2
+

µ
1

α
− ln (1 +X)

¶2!
= − 2

α2
+Eα

³
(ln (1 +X))2

´
= − 2

α2
+
2

α2
= 0.

Finally, we have

Eα

µ¯̄̄̄
∂2 ln fθ (s)

∂θ2

¯̄̄̄¶
= Eα

µ¯̄̄̄
− 1

α2

¯̄̄̄¶
=
1

α2
<∞.

6.5.14 Under i.i.d. sampling from fθ, where the model {fθ : θ ∈ Ω} satisÞes the
appropriate conditions, we have

�I (x1, ..., xn) =θ=�θ= − ∂2

∂θ2

nX
i=1

ln fθ (xi)

¯̄̄̄
¯
θ=�θ

=
nX
i=1

µ
−∂

2 ln fθ (xi)

∂θ2

¶¯̄̄̄
¯
θ=�θ

.

By the strong law of large numbers (Theorem 4.3.2) we have

�I (x1, ..., xn)

n
a.s→ Eθ

µ
−∂

2 lnfθ (xi)

∂θ2

¶
= I (θ) .

6.5.15 Recall that the likelihood function is given by L(θ1, θ2 |x1, x2, x3) =
θx11 θ

x2
2 (1− θ1 − θ2)x3 . The log-likelihood function is then given by

l(θ1, θ2 |x1, x2, x3) = x1 ln θ1 + x2 ln θ2 + x3 ln (1− θ1 − θ2) .

Using the methods discussed in Section 6.2.1 we obtain the score function as

S(θ1, θ2 |x) =
µ x1

θ1
− x3

1−θ1−θ2
x2
θ2
− x3

1−θ1−θ2

¶
.

The Fisher information is then given by

I (θ) = −Eθ
Ã −X1

θ21
− X3

(1−θ1−θ2)2
− X3

(1−θ1−θ2)2

− X3

(1−θ1−θ2)2
−X2

θ22
− X3

(1−θ1−θ2)2

!

Now Xi ∼ Binomial(n, θi) and so E(θ1,θ2) (Xi) = nθi. Therefore,

I (θ) = n

Ã
θ1
θ21
+ θ3

(1−θ1−θ2)2
θ3

(1−θ1−θ2)2

θ3
(1−θ1−θ2)2

θ2
θ22
+ θ3

(1−θ1−θ2)2

!
= n

µ 1
θ1
+ 1

θ3
1
θ3

1
θ3

1
θ2
+ 1

θ3

¶
.

6.5.16 The likelihood function is given by L(θ1, . . . , θk−1 |x1, . . . , xk) =
θx11 θ

x2
2 · · · (1− θ1 − · · ·− θk−1)xk . The log-likelihood function is then given by



6.5. LARGE SAMPLE BEHAVIOR OF THE MLE 185

l(θ1, . . . , θk−1 |x1, . . . , xk) = x1 ln θ1+x2 ln θ2+ · · ·+xk ln (1− θ1 − · · ·− θk−1) .
Using the methods discussed in Section 6.2.1 we obtain the score function as

S(θ1, . . . , θk−1 |x1, . . . , xk) =


x1
θ1
− xk

1−θ1−···−θk−1
...

xk−1
θk−1

− xk
1−θ1−···−θk−1

 .
The Fisher information is then given by

Iij (θ) =
E(θ1,...,θk−1) (Xk)

(1− θ1 − · · ·− θk−1)2
when i 6= j,

Iii (θ) =
E(θ1,...,θk−1) (Xi)

θ21
+

E(θ1,...,θk−1) (Xk)

(1− θ1 − · · ·− θk−1)2
.

Now Xi ∼ Binomial(n, θi) and so E(θ1,...,θk−1) (Xi) = nθi. Therefore
Iij (θ) =

n

θk
when i 6= j, Iii (θ) =

n

θi
+
n

θk
.

6.5.17 The likelihood function is given by (see Example 2.7.8) L(µ1, µ2 |x1, x2) =
1
2π exp

n
−1
2

³
(x1 − µ1)2 + (x2 − µ2)2

´o
. The log-likelihood function is then given

by l(µ1, µ2 |x1, x2) = − ln (2π)− 1
2

n
(x1 − µ1)2 + (x2 − µ2)2

o
. Using the meth-

ods discussed in section 6.2.1 we obtain the score function as

S(µ1, µ2 |x1, x2) =
Ã

∂l(µ1,µ2 |x1,x2)
∂µ1

∂l(µ1,µ2 |x1,x2)
∂µ2

!
=

µ
x1 − µ1
x2 − µ2

¶
.

The Fisher information matrix is then given by

I (θ) =

 E(µ1,µ2)

³
−∂2l(µ1,µ2 |x1,x2)

∂µ21

´
E(µ1,µ2)

³
−∂2l(µ1,µ2 |x1,x2)

∂µ1∂µ2

´
E(µ1,µ2)

³
−∂2l(µ1,µ2 |x1,x2)

∂µ1∂µ2

´
E(µ1,µ2)

³
−∂2l(µ1,µ2 |x1,x2)

∂µ22

´ 
=

µ
1 0
0 1

¶
= I.

6.5.18The likelihood function is given by (see Example 2.7.8) L(µ1, µ2, σ2 |x1, x2)
= 1

2πσ2 exp
n
− 1
2σ2

³
(x1 − µ1)2 + (x2 − µ2)2

´o
. The log-likelihood function is

then given by l(µ1, µ2, σ2 |x1, x2) = − ln (2π)−ln
¡
σ2
¢− 1

2σ2

n
(x1 − µ1)2 + (x2 − µ2)2

o
.

Using the methods discussed in Section 6.2.1 we obtain the score function as

S(µ1, µ2, σ
2 |x1, x2) =


∂l(µ1,µ2,σ

2 |x1,x2)
∂µ1

∂l(µ1,µ2,σ
2 |x1,x2)

∂µ2
∂l(µ1,µ2,σ

2 |x1,x2)
∂σ2



=


x1−µ1
σ2

x2−µ2
σ2

− 1
σ2 +

1
2σ4

n
(x1 − µ1)2 + (x2 − µ2)2

o

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The Fisher information matrix is then given by

(I (θ))11 = E(µ1,µ2,σ2)

µ
−∂

2l(µ1, µ2, σ
2 |x1, x2)

∂µ21

¶
= E(µ1,µ2,σ2)

µ
1

σ2

¶
=
1

σ2

(I (θ))12 = E(µ1,µ2,σ2)

µ
−∂

2l(µ1, µ2, σ
2 |x1, x2)

∂µ1∂µ2

¶
= 0

(I (θ))13 = E(µ1,µ2,σ2)

µ
−∂

2l(µ1, µ2, σ2 |x1, x2)
∂µ1∂σ2

¶
= E(µ1,µ2,σ2)

µ
X1 − µ1
σ4

¶
= 0

(I (θ))22 = E(µ1,µ2,σ2)

µ
−∂

2l(µ1, µ2, σ
2 |x1, x2)

∂µ22

¶
= E(µ1,µ2,σ2)

µ
1

σ2

¶
=
1

σ2

(I (θ))23 = E(µ1,µ2,σ2)

µ
−∂

2l(µ1, µ2, σ2 |x1, x2)
∂µ2∂σ2

¶
= E(µ1,µ2,σ2)

µ
X2 − µ2
σ4

¶
= 0

(I (θ))33 = E(µ1,µ2,σ2)

Ã
−∂

2l(µ1, µ2, σ
2 |x1, x2)

∂ (σ2)2

!

= E(µ1,µ2,σ2)

µ
− 1

σ4
+
1

σ6

n
(X1 − µ1)2 + (X2 − µ2)2

o¶
=
1

σ4

and the remaining elements follow by symmetry.

6.5.19 Since Ψ is a 1-1 function of θ, for each ψ ∈ Ψ there is a unique θ ∈ Ω
such that Ψ (θ) = ψ. Therefore, we can write the model as {gψ : ψ ∈ Ψ} , where
gψ = fΨ−1(ψ).
Now, using the chain rule, we have that

∂ ln gψ (X)

∂ψ
=
∂ ln fΨ−1(ψ) (X)

∂ψ
=
∂ ln fΨ−1(ψ) (X)

∂θ

∂Ψ−1 (ψ)
∂ψ

∂2 ln gψ (X)

∂ψ2
=
∂2 ln fΨ−1(ψ) (X)

∂θ2

µ
∂Ψ−1 (ψ)
∂ψ

¶2
+
∂ ln fΨ−1(ψ) (X)

∂θ

∂2Ψ−1 (ψ)
∂ψ2

.

Therefore, the Fisher information in the new parameterization is given by

I∗ (ψ) = Eψ

µ
−∂

2 ln gψ (X)

∂ψ2

¶
= EΨ−1(ψ)

 −∂2 ln fΨ−1(ψ)(X)
∂θ2

³
∂Ψ−1(ψ)

∂ψ

´2
−∂ ln fΨ−1(ψ)(X)

∂θ
∂2Ψ−1(ψ)

∂ψ2


= EΨ−1(ψ)

µ
−∂

2 ln fΨ−1(ψ) (X)

∂θ2

¶µ
∂Ψ−1 (ψ)
∂ψ

¶2
−EΨ−1(ψ)

µ
∂ ln fΨ−1(ψ) (X)

∂θ

¶
∂2Ψ−1 (ψ)
∂ψ2

= Eθ

µ
−∂

2 ln fθ (X)

∂θ2

¶µ
∂Ψ−1 (ψ)
∂ψ

¶2
−Eθ

µ
∂ ln fθ (X)

∂θ

¶
∂2Ψ−1 (ψ)
∂ψ2

= I (θ)

µ
∂Ψ−1 (ψ)
∂ψ

¶2
= I

¡
Ψ−1 (ψ)

¢µ∂Ψ−1 (ψ)
∂ψ

¶2
since Eθ

³
∂ ln fθ(X)

∂θ

´
= 0.



Chapter 7

Bayesian Inference

7.1 The Prior and Posterior Distributions

Exercises

7.1.1 First, we compute m(s) as follows.

m (s) =
3X
θ=1

π(θ)fθ(s) =

½
1
5
1
2 +

2
5
1
3 +

2
5
3
4 =

8
15 s = 1

1
5
1
2 +

2
5
2
3 +

2
5
1
4 =

7
15 s = 2

The posterior distribution of θ is then given by

θ 1 2 3
π(θ | s = 1) 3/16 1/4 9/16
π(θ | s = 2) 3/14 4/7 3/14

7.1.2 Since the posterior distribution of θ is Beta(nx̄+ α,n(1− x̄) + β) we have
that

E (θ |x1, . . . , xn)

=

Z 1

0

θ
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)θ
nx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)
Z 1

0

θnx̄+α (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)
Γ (nx̄+ α+ 1)Γ (n(1− x̄) + β)

Γ (n+ α+ β + 1)
=

nx̄+ α

n+ α+ β
.

187
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and

E
¡
θ2 |x1, . . . , xn

¢
=

Z 1

0

θ2
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)θ
nx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)
Z 1

0

θnx̄+α+1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)
Γ (nx̄+ α+ 2)Γ (n(1− x̄) + β)

Γ (n+ α+ β + 2)

=
(nx̄+ α) (nx̄+ α+ 1)

(n+ α+ β) (n+ α+ β + 1)
,

so

Var (θ |x1, . . . , xn) = (nx̄+ α) (nx̄+ α+ 1)

(n+ α+ β) (n+ α+ β + 1)
−
µ
nx̄+ α

n+ α+ β

¶2
=

(nx̄+ α) (n(1− x̄) + β)
(n+ α+ β)2 (n+ α+ β + 1)

.

7.1.3 First, the prior distribution of θ is N (0, 10), therefore, the prior proba-
bility that θ is positive is 0.5. Next, the posterior distribution of θ is

N

Ãµ
1

10
+
10

1

¶−1µ
10

1

¶
,

µ
1

10
+
10

1

¶−1!
= N

¡
0.99010, 9.9010× 10−2¢ .

Therefore, the posterior probability that θ > 0 is
1−Φ ¡(0− 0.99010) /√9.9010× 10−2¢ = 1−Φ (−3.1466) = 1−0.0008 = 0.9992.
7.1.4 The likelihood function is given by L (λ |x1, ...xn) = e−nλλnx̄/

Q
(xi!) .

The prior distribution has density given by βαλα−1e−βλ/Γ (α) . The posterior
density of λ is then proportional to βαλnx̄+a−1e−λ(n+β)/Γ (α)

Q
(xi!) , and we

recognize this as being proportional to the density of a Gamma(nx̄+ a, n+ β)
distribution.

7.1.5 The likelihood function is given by L (θ |x1, ...xn) = 1
θn I[x(n),∞) (θ). The

prior distribution is the same as in the previous exercise. The posterior distri-
bution of θ is then given by

π (θ |x1, ...xn) ∝ θα−n−1e−βθI[x(n),∞) (θ) /
Z ∞

x(n)

θα−n−1e−βθ dθ.

7.1.6 From Problem 3.2.23 the posterior mean of θi is

fi + αi
f1 + α1 + f2 + α2 + f3 + α3

=
fi + αi

n+ α1 + α2 + α3

and the posterior variance of θi is given by

(fi + αi) (f1 + α1 + f2 + α2 + f3 + α3 − fi − αi)
(n+ α1 + α2 + α3)

2 (n+ α1 + α2 + α3 + 1)
.
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7.1.7 From the sample, we have x̄ = 5.567. Also, µ0 = 3, τ20 = 4 and
α0 = β0 = 1. Hence, the posterior distributions are given by µ |σ2, x1, ...xn ∼
N(5. 5353, 481σ

2) and 1/σ2 |x1, ..., xn ∼Gamma(11, 41.737).
7.1.8
(a) The belief of θ being in A was 0.25 before observing data, and is increased
to 0.80 after observing data. Hence, the belief ratio of θ being A after observing
data to before observing data is 0.80/0.25 = 3.2. In other words, the posterior
belief of A to the prior belief is increased 3.2 times.
(b) A prior distribution is determined based on the background knowledge.
Thus, a prior probability is not based on the data observed. Given the joint
probability model for the parameter and data, the principle of conditional prob-
ability requires that any probabilities that we quote after observing the data
must be posterior probabilities.

7.1.9
(a) The prior predictive density is m(n) =

R 1
0

¡
n
n

¢
θn(1−θ)n−n · 5I[0.4,0.6](θ)dθ =

5
R 0.6
0.4 θ

ndθ = 5(0.6n+1 − 0.4n+1)/(n + 1). The posterior density is π(θ|n) =
θn · 5I(0.4 ≤ θ ≤ 0.6)/m(n) = (n+ 1)θnI[0.4,0.6](θ)/(0.6n+1 − 0.4n+1).
(b) For any c ∈ (0, 0.01),

Π([0.99− c, 0.99+ c]|n) =
Z 0.99+W

0.99−W
(n+1)θnI[0.4,0.6](θ)/(0.6

n+1− 0.4n+1)dθ = 0.

Hence, the posterior will not put any probability mass around θ = 0.99.
(c) If you exclude a parameter value by forcing the prior to be 0 at that value,
the posterior can never be positive no matter what data is obtained. To avoid
this the prior must be greater than 0 on any parameter values that we believe
are possible.

7.1.10
(a) Let Ψ0(θ) = dΨ(θ)

dθ be the differential of Ψ at θ. Since Ψ is increasing, Ψ0 is
always positive. By Theorem 2.6.2,

πΨ(ψ) = π(Ψ
−1(ψ))/|Ψ0−1(ψ))| = π(Ψ−1(ψ))/Ψ0−1(ψ)).

(b) Let mΨ(x) be the prior predictive density with respect to the ψ parame-
trization.

mΨ(x) =

Z
R1
fΨ−1(ψ)(x)π(Ψ

−1(ψ))/Ψ0−1(ψ)dψ

=

Z
R1
fθ(x)(π(θ)/Ψ

0(θ))
¯̄̄dψ
dθ
(θ)
¯̄̄
dθ

=

Z
R1
fθ(x)(π(θ)/Ψ

0(θ))|Ψ0(θ)|dθ

=

Z
R1
fθ(x)π(θ)dθ

= m(x).
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Hence, the prior predictive distribution is independent of any reparameteriza-
tion.

7.1.11
(a) Since θ is uniformly distributed on Ω = {−2,−1, 0, 1, 2, 3}, Π(|θ| = 0) =
Π(θ = 0) = 1/6, Π(|θ| = 1) = Π(θ = 1 or θ = −1) = 1/3, Π(|θ| = 2) = Π(θ =
2 or θ = −2) = 1/3 and Π(|θ| = 3) = Π(θ = 3) = 1/6. Hence, |θ| is not
uniformly distributed on {0, 1, 2, 3}.
(b) If Ψ is not 1-1 then logically we may have greater prior belief in some values
of ψ = Ψ(θ) than others. For example, in part (a) it makes sense that we have
less prior belief in Ψ(θ) = 0 because only one value of θ is mapped to 0 while
two values are mapped to each of the other possible values for Ψ.

7.1.12
(a) Let Ψ(θ) = θ2. Then, Ψ0(θ) = 2θ and Ψ−1(ψ) = ψ1/2. By Theorem 2.6.2,
πΨ(ψ) = π(Ψ

−1(ψ))/Ψ0−1(ψ) = 0.5ψ−1/2. Thus, πΨ is not uniform on [0, 1].
(b) As we can see in part (a), complete ignorance is not achieved for an ar-
bitrary function of a parameter, at least when we demand that a distribution
be uniform to reßect ignorance. Notice, however, that Ψ is 1-1 and the change
from a uniform distribution for θ to a nonuniform distribution for ψ is caused
by the change of variable factor ψ−1/2 which reßects how the transformation Ψ
is changing lengths (Ψ shortens lengths more severely for intervals near 0.)

Computer Exercises
7.1.13 The posterior distribution is

N

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
,

µ
1

τ20
+
n

σ20

¶−1!

= N

Ãµ
1

1
+
20

1

¶−1µ
2

1
+
20

1
8.2

¶
,

µ
1

1
+
20

1

¶−1!
= N(7.9048, 4.7619× 10−2).

Then using Minitab the simulation proceeds as follows.
MTB > Random 10000 c1;
SUBC> Normal 7.90480 .218218.
MTB > let c2=1/c1
MTB > let c3=c2>.125
MTB > let k1=mean(c3)
MTB > let k2=sqrt(k1*(1-k1))/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.683900
K3 0.669951
K4 0.697849
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So the estimate of the posterior probability that the coefficient of variation is
greater than .125 is 0.683900, and the true value is in the interval (0.669951,
0.697849) with virtual certainty.

7.1.14 The posterior distribution is

N

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
,

µ
1

τ20
+
n

σ20

¶−1!

= N

Ãµ
1

1
+
20

1

¶−1µ
2

1
+
20

1
8.2

¶
,

µ
1

1
+
20

1

¶−1!
= N(7.9048, 4.7619× 10−2).

Then using Minitab the simulation proceeds as follows.
MTB > Random 10000 c1;
SUBC> Normal 7.90480 .218218.
MTB > let c2=1/c1
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.126677
K3 0.126572
K4 0.126783
So the estimate of the posterior expectation of the coefficient of variation is
0.126677, and the true value is in the interval (0.126572, 0.126783) with virtual
certainty.

7.1.15 The prior density is given by

Γ (α+ β)

Γ (α)Γ (β)
θα−1 (1− θ)β−1 = Γ (6)

Γ (3)Γ (3)
θ2 (1− θ)2 = 5!

22
θ2 (1− θ)2

and is plotted below (thick line). The posterior density is given by

Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n(1− x̄) + β)θ
nx̄+α−1 (1− θ)n(1−x̄)+β−1

=
Γ (30 + 3 + 3)

Γ (30 (.73) + 3)Γ (30(1− .73) + 3)θ
30(.73)+3−1 (1− θ)30(1−.73)+3−1

=
Γ (36)

Γ (24.9)Γ (11.1)
θ23.9 (1− θ)10.1

and is plotted below (thin line). The posterior density has shifted to the right
and is more concentrated.



192 CHAPTER 7. BAYESIAN INFERENCE

1.00.50.0

5

4

3

2

1

0

theta
d

en
si

ty

Problems
7.1.16 Suppose that Xτ ∼ N

¡
µ0, τ

2
¢
. Then P (Xτ < x) = Φ ((x− µ0) /τ) →

Φ (0) = 1/2 for every x and this is not a distribution function.

7.1.17 First, observe that the posterior density of θ given x1, ...xn is
π (θ | x1, ...xn) ∝ π (θ)

Qn
i=1 fθ (xi) . Using this as the prior density to obtain the

posterior density of θ given xn+1, ...xn+m, we get π (θ, x1, ...xn |xn+1, ...xn+m) ∝
π (θ)

Qn
i=1 fθ (xi)

Qm+n
i=n+1 fθ (xi) , and this is the same as the posterior density

of θ given x1, ...xn, xn+1, ...xn+m.

7.1.18 The joint density of (θ, x1, ...xn) is given by

Γ (α+ β)

Γ (α)Γ (β)
θnx̄+α−1 (1− θ)n(1−x̄)+β−1

and integrating out θ gives the marginal probability function for (x1, ...xn) as
m (x1, ...xn) =

Γ(α+β)
Γ(α)Γ(β)

Γ(nx̄+α)Γ(n(1−x̄)+β)
Γ(α+β+n) for (x1, ...xn) ∈ {0, 1}n .

To generate from this distribution we can Þrst generate θ ∼ Beta(α, β) and
then generate x1, ...xn i.i.d. from the Bernoulli(θ) distribution.

7.1.19 First, note that if T is a sufficient statistic, then, by the factorization
theorem (Theorem 6.1.1), the density (or probability function) for the model
factors as fθ (s) = h (s) gθ (T (s)) . The posterior density of θ is then given by

π (θ | s) = π (θ)h (s) gθ (T (s))R
Ω π (θ)h (s) gθ (T (s)) dθ

=
π (θ) gθ (T (s))R

Ω π (θ) gθ (T (s)) dθ

and this depends on the data only through the value of T (s).

Computer Problems
7.1.20 The prior Gamma(1, 1) density of x = 1/σ2 is 1

Γ(1)x
1−1e−x = e−x for

x > 0. Making the transformation x → y = 1/x, the prior density of σ2 is
x−2e−1/x for x > 0.
The posterior density of 1/σ2 is

41. 737

Γ (11)
(41.737x)11−1 e−41.737x =

41. 737

10!
(41.737x)10 e−41.737x
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for x > 0. Making the transformation x→ y = 1/x, the posterior density of σ2

is (41. 737)11

10! x−12e−41.737/x. Plotting these we see that the posterior of σ2 (thin
line) is much more diffuse than the prior (thick line).

10.510.09.59.08.58.07.57.06.56.05.55.04.54.03.53.02.52.01.51.0

0.4

0.3

0.2

0.1

0.0

x

de
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ity

7.1.21 We have that µ |σ2, x1, . . . , xn ∼ N
¡
7.8095,

¡
4.7619× 10−2¢σ2¢ and

1/σ2 |x1, . . . , xn ∼Gamma(12, 52.969) sinceµ
n+

1

τ20

¶−1
=

µ
20 +

1

1

¶−1
= 4.7619× 10−2

µx =

µ
n+

1

τ20

¶−1µ
µ0
τ20
+ nx̄

¶
=
¡
4.7619× 10−2¢µ0

1
+ 20 (8.2)

¶
= 7.8095

and

βx = β0 +
n

2
x̄2 +

µ20
2τ20

+
n− 1
2

s2 − 1
2

µ
n+

1

τ20

¶−1µ
µ0
τ20
+ nx̄

¶2
= 1 +

20

2
(8.2)2 +

0

2
+
20− 1
2

(2.1)− 1
2

µ
20 +

1

1

¶−1µ
0

1
+ 20 (8.2)

¶2
= 52.969.

Using Minitab we obtained the following results.
MTB > let k1=1/52.969
MTB > print k1
Data Display
K1 0.0188790
MTB > Random 10000 c1;
SUBC> Gamma 12 0.0188790.
MTB > let c2=1/sqrt(c1)
MTB > let c3=c2>2
MTB > let k1=mean(c3)
MTB > let k2=sqrt(k1*(1-k1))/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.671800
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K3 0.657713
K4 0.685887
So the estimate of the posterior probability that σ > 2 is 0.671800, and the true
value is in the interval (0.657713, 0.685887) with virtual certainty.

7.1.22 We use the distribution determined in 7.1.16. Using Minitab we obtained
the following results.
MTB > let k1=1/52.969
MTB > print k1
Data Display
K1 0.0188790
MTB > Random 10000 c1;
SUBC> Gamma 12 0.0188790.
MTB > let c2=1/sqrt(c1)
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 2.17083
K3 2.16107
K4 2.18059
So the estimate of the posterior expectation of σ is 2.17083 and the true value
is in the interval (2.16107, 2.18059) with virtual certainty.

7.2 Inferences Based on the Posterior

Exercises
7.2.1 Recall that for the model discussed in Example 7.1.1, the posterior distri-
bution of θ was Beta(nx̄+ α, n (1− x̄) + β). The posterior density is then given
by

πθ|x1,..,xn =
Γ (α+ β + n)

Γ (nx̄+ α)Γ (n (1− x̄) + β)θ
nx̄+α−1 (1− θ)n(1−x̄)+β−1

The posterior mean is given by

E (θm |x1, ..., xn)

=

Z 1

0

Γ (α+ β + n)

Γ (nx̄+ α)Γ (n (1− x̄) + β)θ
nx̄+α+m−1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (α+ β + n)Γ (nx̄+ α+m)

Γ (nx̄+ α)Γ (α+ β + n+m)
.
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7.2.2 Recall that for the model discussed in Example 7.1.2 the posterior distri-
bution of µ is

N

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
,

µ
1

τ20
+
n

σ20

¶−1!

By exercise 2.6.3, the posterior distribution of the third quartile Ψ = µ+σ0z0.75
is

N

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
+ σ0z0.75,

µ
1

τ20
+
n

σ20

¶−1!
Since the normal distribution is symmetric about its mode and the mean exists,
the posterior mode and mean agree and given by

�ψ =

µ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
+ σ0z0.75.

7.2.3 Recall that the posterior distribution of σ2 in Example 7.2.1 is inverse
Gamma(α0 + n/2, βx) , where βx is given by (7.1.8). The posterior mean is
then given by E

¡
1/σ2 |x1, ..., xn

¢
= (α0 + n/2) /βx. To Þnd the posterior mode

we need only maximize ln
¡
yα0+n/2−1 exp (−βxy)

¢
= (α0 + n/2− 1) ln y − βxy.

This has Þrst derivative given by (α0 + n/2− 1) /y − βx and second derivative
− (α0 + n/2− 1) /y2. Setting the Þrst derivative equal to 0 and solving gives
the solution 1/�σ2 = (α0 + n/2− 1) /βx. The second derivative at this value is
negative so this is the unique mode.

7.2.4 Recall that the posterior distribution of σ2 in Example 7.2.1 is
inverse Gamma(α0 + n/2, βx) , where βx is given by (7.1.8). The posterior mean
is then given by

E
¡
σ2 |x1, ..., xn

¢
=

Z ∞

0

1

y

β
α0+n/2
x

Γ (α0 + n/2)
yα0+n/2−1e−βxy dy

=
β
α0+n/2
x

Γ (α0 + n/2)

Z ∞

0

yα0+n/2−2e−βxy dy

=
β
α0+n/2
x

Γ (α0 + n/2)

Γ (α0 + n/2− 1)
β
α0+n/2−1
x

Z ∞

0

1

Γ (α0 + n/2− 1)y
α0+n/2−2e−y dy

=
βx

α0 + n/2− 1 .

By Theorem 2.6.2 the posterior density of σ2 is given by π
¡
σ2 |x1, .., xn

¢
=

(Γ (α0 + n/2))
−1
(βx)

α0+n/2
¡
σ2
¢−(α0+n/2+1)

exp
¡−βx/σ2¢ . Then to Þnd the

posterior mode we need only maximize ln
¡
y−(α0+n/2+1) exp (−βx/y)

¢
=

− (α0 + n/2 + 1) ln y − βx/y. This has Þrst derivative given by
− (α0 + n/2 + 1) /y+βx/y2 and second derivative (α0 + n/2 + 1) /y2−2βx/y3.
Setting the Þrst derivative equal to 0 and solving gives the solution �σ2 =
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βx/ (α0 + n/2 + 1) . The second derivative at this value is (α0 + n/2 + 1)
2 /β2x−

2 (α0 + n/2 + 1)
3 /β2x = (α0 + n/2 + 1)

2 (−1− 2α0 − n) /β2x < 0, so this is the
unique mode.

7.2.5 Recall that in Example 7.2.4 the marginal posterior distribution of θ1
is Beta(f1 + α1, f2 + ...+ fk + α2 + ...+ αk) . The posterior mean is then given
by

E (θ1 |x1, ..., xn)

=

Z 1

0

θ1
Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1)Γ

³Pk
i=2 (fi + αi)

´ (θ1)f1+α1−1 (1− θ1)!k
i=2(fi+αi)−1 dθ1

=
Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1)Γ

³Pk
i=2 (fi + αi)

´ Z 1

0

(θ1)
f1+α1 (1− θ1)

!k
i=2(fi+αi)−1 dθ1

=
Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1 + 1)

Γ (f1 + α1)Γ
³
n+

Pk
i=1 αi + 1

´ = f1 + α1

n+
Pk
i=1 αi

.

To Þnd the posterior mode we need to maximize

ln((θ1)
f1+α1−1 (1− θ1)

!k
i=2(fi+αi)−1)

= (f1 + α1 − 1) ln (θ1) +
Ã

kX
i=2

(fi + αi)− 1
!
ln (1− θ1) .

This has Þrst derivative given by (f1 + α1 − 1) /θ1−(
Pk
i=2 (fi + αi))−1/(1−θ1)

and second derivative − (f1 + α1 − 1) /θ21−(
Pk
i=2 (fi + αi)−1)/ (1− θ1)2. Note

that this is always negative when αi ≥ 1. Setting the Þrst derivative equal to 0
and solving gives the solution �θ1 = (f1 + α1 − 1) /(n+

Pk
i=1 αi − 2). Since the

second derivative at this value is negative, �θ1 is the unique posterior mode.

7.2.6 Recall that the posterior distribution of θ in Example 7.2.2 is
Beta(nx̄+ α, n (1− x̄) + β). To Þnd the posterior variance we need only to Þnd
the second moment as follows.

E
¡
θ2 |x1, ..., xn

¢
=

Z 1

0

θ2
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)θ
nx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)
Z 1

0

θnx̄+α+1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)
Γ (nx̄+ α+ 2)Γ (n (1− x̄) + β)

Γ (n+ α+ β + 2)

=
(nx̄+ α+ 1) (nx̄+ α)

(n+ α+ β + 1) (n+ α+ β)
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The posterior variance is then given by

Var (θ |x1, ..., xn) = E
¡
θ2 |x1, ..., xn

¢− (E (θ |x1, ..., xn))2
=

(nx̄+ α+ 1) (nx̄+ α)

(n+ α+ β + 1) (n+ α+ β)
−
µ
nx̄+ α

n+ α+ β

¶2
=

(nx̄+ α) (n (1− x̄) + β)
(n+ α+ β + 1) (n+ α+ β)2

.

Now 0 ≤ x̄ ≤ 1, so

Var (θ |x1, ..., xn) = (nx̄+ α) (n (1− x̄) + β)
(n+ α+ β + 1) (n+ α+ β)2

≤ (1 + α/n) (1 + β/n)

n (1 + α/n+ β/n+ 1/n) (1 + α/n+ β/n)2
→ 0

as n→∞.
7.2.7 Recall that the posterior distribution of θ1 in Example 7.2.2 is
Beta(f1 + α1, f2 + ...+ fk + α2 + ...+ αk). To Þnd the posterior variance we
need only Þnd the second moment as follows.

E
¡
θ21 |x1, ..., xn

¢
=

Z 1

0

θ21

Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1)Γ

³Pk
i=2 (fi + αi)

´ (θ1)f1+α1−1 (1− θ1)!k
i=2(fi+αi)−1 dθ1

=
Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1)Γ

³Pk
i=2 (fi + αi)

´ Z 1

0

(θ1)
f1+α1+1 (1− θ1)

!k
i=2(fi+αi)−1 dθ1

=
Γ
³
n+

Pk
i=1 αi

´
Γ (f1 + α1)Γ

³Pk
i=2 (fi + αi)

´ Γ (f1 + α1 + 2)Γ
³Pk

i=2 (fi + αi)
´

Γ
³
n+

Pk
i=1 αi + 2

´
=

(f1 + α1 + 1) (f1 + α1)³
n+

Pk
i=1 αi + 1

´³
n+

Pk
i=1 αi

´ .
The posterior variance is then given by

Var (θ1 |x1, ..., xn) = E
¡
θ21 |x1, ..., xn

¢− (E (θ1 |x1, ..., xn))2
=

(f1 + α1 + 1) (f1 + α1)³
n+

Pk
i=1 αi + 1

´³
n+

Pk
i=1 αi

´ −Ã f1 + α1

n+
Pk
i=1 αi

!2

=
(f1 + α1)

³Pk
i=2 (fi + αi)

´
³
n+

Pk
i=1 αi + 1

´³
n+

Pk
i=1 αi

´2 .
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Now 0 ≤ f1/n ≤ 1, so

Var (θ1 |x1, ..., xn) =
(f1/n+ α1)

³Pk
i=2 (fi/n+ αi)

´
n
³
1 +

Pk
i=1 αi/n+ 1/n

´³
1 +

Pk
i=1 αi/n

´2 → 0

as n→∞.
7.2.8 The posterior mode always takes a value in the set {0, 1} , and the value
we are predicting also is in this set. On the other hand, the posterior expectation
can take a value anywhere in the interval (0, 1). Accordingly, the mode seems
like a more sensible predictor.

7.2.9 We have xn+1 |µ,x1, . . . , xn ∼ N
¡
x̄, (1/τ20 + n/σ

2
0)
−1σ20

¢
and this is in-

dependent of µ. Therefore, since the posterior predictive density of xn+1 is ob-
tained by averaging the N

¡
x̄, (1/τ20 + n/σ

2
0)
−1σ20

¢
density with respect to the

posterior density of µ, we must have that this is also the posterior predictive
distribution.

7.2.10 The likelihood function is given by L (λ |x1, ...xn) = λne−nx̄λ. The
prior distribution has density given by βα00 λ

α0−1e−β0λ/Γ (α0) . The posterior
density of λ is then given by π (λ |x1, ...xn) ∝ λn+α0−1e−λ(nx̄+β0), and we
recognize this as being the density of a Gamma(n+ α0, nx̄+ β0) distribution.
The posterior mean and variance of λ are then given by E (λ |x1, ...xn) =
(n+ α0) / (nx̄+ β0) , V ar (λ |x1, ...xn) = (n+ α0) / (nx̄+ β0)2 .
To Þnd the posterior mode we need to maximize ln

¡
λn+α0−1e−λ(nx̄+β0)

¢
=

(α0 + n− 1) lnλ−λ (nx̄+ β0) . This has Þrst derivative given by (α0 + n− 1) /λ
− (nx̄+ β0) and second derivative − (α0 + n− 1) /λ2. Setting the Þrst deriva-
tive equal to 0 and solving gives the solution �λ = (α0 + n− 1) / (nx̄+ β0) . The
second derivative at this value is − (nx̄+ β0)2 / (α0 + n− 1) , which is clearly
negative, so �λ is the unique posterior mode.

7.2.11 First we Þnd the posterior predictive density of t = xn+1 as follows.

q (t |x1, .., xn) =
Z ∞

0

λe−λt
(β0 + nx̄)

n+α0

Γ (α0 + n)
λn+α0−1e−λ(nx̄+β0)dλ

=
(β0 + nx̄)

n+α0

Γ (α0 + n)

Z ∞

0

λn+α0e−λ(nx̄+β0+t)dλ

=
(β0 + nx̄)

n+α0

Γ (α0 + n)

Γ (n+ α0 + 1)

(nx̄+ β0 + t)
n+α0+1

=
(n+ α0) (β0 + nx̄)

n+α0

(nx̄+ β0 + t)
n+α0+1

=
(n+ α0) (β0 + nx̄)

−1

(1 + t/ (nx̄+ β0))
n+α0+1

which is a rescaled Pareto(n+ α0) distribution where the rescaling equals (nx̄+ β0).

To Þnd the posterior mode we need to maximize ln
³
(nx̄+ β0 + t)

−(n+α0+1)
´

= − (α0 + n+ 1) ln (nx̄+ β0 + t) . This has Þrst derivative (with respect to t)
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given by − (α0 + n+ 1) / (nx̄+ β0 + t) . Since the Þrst derivative is negative for
all t and t ≥ 0, the posterior mode is �t = 0.
Now the posterior distribution of t/ (nx̄+ β0) is Pareto(n+ α0) . By Problem

3.2.19 the posterior expectation of t is therefore (nx̄+ β0) / (n+ α0 − 1) and,
by Problem 3.3.22, the posterior variance of t is
(nx̄+ β0)

2 (n+ α0) / (n+ α0 − 1)2 (n+ α0 − 2).
7.2.12
(a) As in Example 7.2.1, we have that the posterior distribution of µ is given
by the

N

Ãµ
1 +

10

9

¶−1µ
65 +

µ
10

9

¶
63.20

¶
,

µ
1 +

10

9

¶−1!
= N

µ
64.053,

9

19

¶
.

The posterior mode is then �µ = 64.053. A .95-credible interval for µ is given by
64. 053 ±p9/19z0.975 = (62. 704, 65. 402) . Since this interval has length equal
to 2.698 and the margin of error is less then 1.5 marks (which is quite small) we
conclude that the estimate is quite accurate.
(b) Based on the .95-credible interval, we cannot reject H0 : µ = 65, at the 5%
level since 65 falls inside the interval.
(c) The posterior probability of the null hypothesis above is given by

Π (µ = 65 |x1, .., xn) = 0.5m1 (s)

0.5m1 (s) + 0.5m2 (s)
Π1 (µ = 65 |x1, .., xn)+

0.5m1 (s)

0.5m1 (s) + 0.5m21 (s)
Π2 (µ = 65 |x1, .., xn)

where Π2 (· |x1, .., xn) is as given in part (a) and Π1 (· |x1, .., xn) is degenerate
at µ = 65.
The prior predictive under Π1 is given by

m1 (x1, .., xn) = (18π)
−5 exp

µ
−(10− 1) 252.622

(2) 9

¶
exp

µ
−10
18
(63.20− 65)2

¶
= 3. 981× 10−65

while the prior predictive under Π2 is given by

m2 (x1, .., xn) = (18π)
−5
exp

µ
−(10− 1) 252.622

(2) 9

¶
×

exp

µ
1

2

9

19
(135. 22)2

¶
exp

µ
−1
2
8663.0

¶
(. 68825)

= 6.2662× 10−65

The posterior probability of the null is then equal to

0.5m1 (s)

0.5m1 (s) + 0.5m2 (s)
=

3. 981× 10−65
3. 981× 10−65 + 6. 2662× 10−65 = .3885.
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(d) The Bayes factor in favor of H0 : µ = 65 is given by

BFH0 =
exp

³
−10
18 (63.20− 65)2

´
exp

³
1
2
9
19 (135. 22)

2
´
exp

¡−1
28663.0

¢× . 68825 = . 6353.
7.2.13
(a) The likelihood function is given by L

¡
σ2 |x1, ...xn

¢
=¡

σ2
¢−n/2

exp
¡−n−1

2σ2 s
2
¢
exp

³
− n
2σ2 (x̄− µ0)2

´
. The prior distribution has den-

sity given by βα00
¡
σ2
¢−(α0−1) e−β0/σ2/Γ (α0) . The posterior density of 1/σ2 is

then proportional to¡
σ2
¢−n/2

exp

µ
− 1

2σ2

³
(n− 1) s2 + n (x̄− µ0)2

´¶¡
σ2
¢−(α0−1)

exp

µ
−β0
σ2

¶
=
¡
σ2
¢−(n/2+α0−1)

exp

µ
− 1

2σ2

³
(n− 1) s2 + n (x̄− µ0)2 + 2β0

´¶
which we recognize as being proportional to the Gamma(n/2 + α0, βx) density,
where βx = (n− 1) s2/2 + n (x̄− µ0)2 /2 + β0. Therefore, the posterior distrib-
ution of σ2 is inverse Gamma(n/2 + α0, βx) .
(b) The posterior mean of σ2 is given by E

¡
σ2 |x1, ...xn

¢
= βx/ (n/2 + α0 − 1) .

(c) To assess the hypothesis H0 : σ2 ≤ σ20, which is equivalent to assessing
H0 : 1/σ2 ≥ 1/σ20 , we compute

Π
¡
1/σ2 ≥ 1/σ20 |x1, .., xn

¢
= Π

¡
2βx/σ

2 ≥ 2βx/σ20 |x1, .., xn
¢

= 1−G ¡2βx/σ20; 2α0 + n¢
where G (· ; 2α0 + n) is the χ2 (2α0 + n) distribution function.
7.2.14
(a) In Exercise 7.1.1, the posterior distribution is given by

θ = 1 θ = 2 θ = 3
π(θ|s = 1) 3/16 1/4 9/16

Hence, the posterior mode is θ = 3 and the posterior mean is 1 · 3/16+2 · 1/4+
3 · 9/16 = 2.375. The mode is an actual parameter value while the mean is not
so we would prefer to use the mode.
(b) First of all, Π(θ = 3|s = 1) = 9/16 = 0.5625 < 0.8. The second highest
posterior probability is obtained at θ = 2. Π({2, 3}|s = 1) = 13/16 = 0.8125 >
0.8. Thus, 0.8-HPD region is {2, 3}.
(c) Since ψ(1) = ψ(2) = 1 and ψ(3) = 0, the prior probability of ψ is Π(ψ =
0) = Π(θ = 3) = 2/5 and Π(ψ = 1) = Π({1, 2}) = 3/5. The posterior prob-
ability is Π(ψ = 0|s = 1) = Π(θ = 3|s = 1) = 9/16 and Π(ψ = 1|s = 1) =
Π({1, 2}|s = 1) = 7/16.

prior ψ = 0 ψ = 1
π(ψ) 2/5 3/5

posterior ψ = 0 ψ = 1
π(ψ|s = 1) 9/16 7/16
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Thus, the posterior mode is ψ = 0. Besides, Π(ψ = 0|s = 1) = 9/16 = 0.5625 >
0.5 implies 0.5-HPD region is {0}.
7.2.15
(a) The odds in favor of A is deÞned by P (A)/P (Ac). Hence,

P (A)

P (Ac)
=

P (A)

1− P (A) =
1− P (Ac)
P (Ac)

= 1
. P (Ac)

1− P (Ac) = 1/odds in favor of A
c.

(b) The Bayes factor in favor of A is given by BF (A) = posterior odds of A /
prior odds of A.

BF (A) =
Π(A|s)
Π(Ac|s)

. Π(A)

Π(Ac)
= 1

Á·
Π(Ac|s)

1−Π(Ac|s)
. Π(A)

1−Π(Ac)
¸
= 1/BF (Ac).

7.2.16 The fact that the odds of A is 3 implies P (A)/(1−P (A)) = 3. This im-
plies that P (A) = 3/4. If Π(A) = 1/2, then the prior odds of A is Π(A)/Π(Ac) =
(1/2)/(1/2) = 1. The Bayes factor in favor ofA isBF (A) = posterior odds of A/
prior odds of A = (Π(A|s)/(1 − Π(A|s)))/1 = 10. This implies that Π(A|s) =
10/11.

7.2.17 From the equation BF (A) = [Π(A|s)/(1−Π(A|s))]/[Π(A)/(1−Π(A))],
we get Π(A|s) = 1/[1 + BF (A)/[Π(A)/(1 − Π(A))]]. Both statisticians� Bayes
factor equals BF (A) = 100. The prior odds of Statistician I is Π(H0)/(1 −
Π(H0)) = (1/2)/(1/2) = 1. Thus Statistician I�s posterior probability isΠ(H0|s)
= 1/[1 + (1)100] = 1/101 = 0.0099. The prior odds of Statistician II is
Π(H0)/(1 − Π(H0)) = (1/4)/(3/4) = 1/3 and the posterior probability is
Π(H0|s) = 1/[1 + (1/3)100] = 3/103 = 0.0292. Hence, Statistician II has
the bigger posterior belief in H0.

7.2.18 Note that a credible set is an acceptance region and the compliment of
γ-credible set is a (1 − γ) rejection region. Since ψ(θ) = 0 ∈ (−3.3, 2.6), the
P-value must be greater than 1− 0.95 = 0.05.
7.2.19 Since the posterior probability Π(A|s) is in [0, 1], the posterior odds
ranges in [0,∞) as does the prior odds. Hence, the range of a Bayes factor in
favor of A also ranges in [0,∞). The smallest Bayes factor is obtained when the
posterior probability Π(A|s) is the smallest. If A has posterior probability equal
to 0, then the Bayes factor will be 0.

Problems
7.2.20 The likelihood function is given by L (θ |x1, ...xn) = θ−nI[x(n),∞) (θ) .
The posterior distribution of θ is then given by π (θ |x1, ...xn) ∝
θα−n−1e−βθI[x(n),∞) (θ) . Note that this is not differentiable at x(n). The maxi-

mum of θα−n−1e−βθ occurs at the same point as the maximum of ln
¡
θα−n−1e−βθ

¢
= (α− n− 1) ln θ−βθ, which has Þrst derivative (α− n− 1) /θ−β and second
derivative − (α− n− 1) /θ2. Setting the Þrst derivative equal to 0 and solving
we have that the maximum occurs at �θ = (α− n− 1) /β whenever α−n−1 > 0.
Therefore, the posterior mode is given by max

©
(α− n− 1) /β, x(n)

ª
.
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7.2.21 The likelihood function is given by L (θ |x1, .., xn) = θ−nI(x(n),∞) (θ)
and the prior is I(0,1) (θ) , so the posterior is

θ−nI(x(n),1) (θ)R 1
x(n)

θ−n dθ
=

θ−nI(x(n),1) (θ)

(n− 1)
³
x1−n(n) − 1

´ .
Since this density strictly increases in

¡
x(n), 1

¢
and HPD interval is of the form

(c, 1), c is determined by

γ =

Z 1

c

θ−nI(x(n),1) (θ)

(n− 1)
³
x1−n(n) − 1

´ dθ = c1−n − 1
x1−n(n) − 1

,

so c =
n
1 + γ

³
x1−n(n) − 1

´o1/(1−n)
.

7.2.22 The posterior distribution of µ given σ2 is the N(µx,
¡
n+ 1/τ20

¢−1
σ2)

distribution where µx is given by (7.1.7). The posterior distribution of σ2 is the
Gamma(α0 + n/2, βx) distribution, where βx is given by (7.1.8). Therefore, the
integral (7.2.2) is given by

ψ−20

Z ∞

0

1√
2π

µ
n+

1

τ20

¶1/2
exp

µ
−λ
2

µ
n+

1

τ20

¶³
ψ−10 λ−

1
2 − µx

´2¶
×

(βx)
α0+n/2

Γ (α0 + n/2)
λα0+n/2−1 exp (−βxλ) dλ.

7.2.23 Let ψ
¡
µ, σ2

¢
= µ+ σz0.75 = µ+

¡
1/σ2

¢−1/2
z0.75 and λ = λ

¡
µ, σ2

¢
=

1/σ2, so

J (θ (ψ, λ)) =

¯̄̄̄
¯̄̄det


∂ψ
∂µ

∂ψ

∂( 1
σ2
)

∂λ
∂µ

∂λ
∂( 1

σ2
)


¯̄̄̄
¯̄̄ =

¯̄̄̄
¯̄det

 1 −1
2z0.75

¡
1
σ2

¢− 3
2

0 1

¯̄̄̄¯̄ = 1.
Therefore, the posterior density of ψ is given byZ ∞

0

1√
2π

µ
n+

1

τ20

¶1/2
λ1/2 exp

µ
−λ
2

µ
n+

1

τ20

¶³³
ψ0 − λ−1/2z0.75

´
− µx

´2¶
× (βx)

α0+n/2

Γ (α0 + n/2)
λα0+n/2−1 exp (−βxλ) dλ.

which is a difficult integral to evaluate.

7.2.24
(a) We can write

ψ = σ0/µ = σ0

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
+

µ
1

τ20
+
n

σ20

¶−1/2
Z

!−1
= σ0 (a+ bZ)

−1
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where Z ∼ N(0, 1),

a =

µ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
, b =

µ
1

τ20
+
n

σ20

¶−1/2
.

The posterior mean of ψ is E (ψ |x1, ..., xn) =
R∞
−∞

σ0
a+bz

1√
2π
e−z

2/2 dz, and this
integral does not exist because, noting that the integrand becomes inÞnite at
z = −a/b, for c > 0Z ∞

−a/b

1

a+ bz
e−z

2/2 dz ≥
Z −a/b+W

−a/b

1

a+ bz
e−z

2/2 dz

≥ min
n
e−z

2/2 : −a/b ≤ z ≤ −a/b+ c
oZ −a/b+W

−a/b

1

a+ bz
dz

= min
n
e−z

2/2 : −a/b ≤ z ≤ −a/b+ c
o ln (a+ bz)

b

¯̄̄̄−a/b+W
−a/b

=∞

while Z −a/b

−∞

1

a+ bz
e−z

2/2dz ≤
Z −a/b

−a/b−W

1

a+ bz
e−z

2/2dz

≤ min
n
e−z

2/2 : −a/b ≤ z ≤ −a/b+ c
oZ −a/b

−a/b−W

1

a+ bz
dz

= min
n
e−z

2/2 : −a/b ≤ z ≤ −a/b+ c
o − ln (a+ bz)

b

¯̄̄̄−a/b+W
−a/b

= −∞.

Therefore, E (ψ |x1, ..., xn) =∞−∞, which is not deÞned.
(b) The posterior density of µ is given by

π (µ |x1, .., xn) = 1√
2πb1/2

exp

µ
− 1
2b
(µ− a)2

¶
.

Using Theorem 2.6.2 we can Þnd the posterior density of ψ = σ0/µ (since this
is a differentiable and strictly decreasing function of µ and excluding the 0 line
from the parameter space) as

π
¡
ψ−1 (ϕ) |x1, .., xn

¢
/
¯̄̄
ψ
0 ¡
ψ−1 (ϕ)

¢¯̄̄
=

1√
2πb

exp

Ã
− 1

2b2

µ
σ0
ϕ
− a

¶2!
σ0
ϕ2
.

(c) To Þnd the posterior mode we need to maximize

ln

Ã
exp

Ã
− 1

2b2

µ
σ0
ϕ
− a

¶2!
1

ϕ2

!
= − 1

2b2

µ
σ0
ϕ
− a

¶2
− 2 lnϕ.

This has Þrst derivative given by

1

b2

µ
σ0
ϕ
− a

¶
σ0
ϕ2
− 2

ϕ
=

σ0
b2ϕ3

− aσ0
b2ϕ2

− 2

ϕ
.
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Setting the Þrst derivative equal to 0 gives the quadratic equation

ϕ2 +
aσ0
2b2

ϕ− σ0
2b2

= 0.

Solving this gives the solutions

�ϕ = −aσ0
4b2

± 1
2

r
a2σ20
4b4

+
4aσ0
2b2

=− aσ0
4b2

± 1

2b

r
a2σ20
4b2

+ 2aσ0

and these are real numbers since b > 0. Since the posterior density is Þnite
everywhere, goes to 0 at ±∞, and is 0 at ϕ = 0, we know that these must both
correspond to peaks. Therefore, we can determine the mode by evaluating the
posterior density at these values, and the mode is the one that gives the largest
value.

7.2.25
(a) The marginal density of (θ1, ..., θk−2) is given by

f(θ1,...,θk−2) (z1, ..., zk−2)

=

Z 1−z1−···−zk−2

0

Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk) z

α1−1
1 zα2−12 · · · zαk−2−1k−2 z

αk−1−1
k−1

× (1− z1 − · · ·− zk−1)αk−1 dzk−1
=
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk) z

α1−1
1 zα2−12 · · · zαk−2−1k−2

Z 1−z1−···−zk−2

0

z
αk−1−1
k−1

× (1− z1 − · · ·− zk−1)αk−1 dzk−1
=
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk) z

α1−1
1 zα2−12 · · · zαk−2−1k−2 (1− z1 − · · ·− zk−2)αk−1+αk−2

×
Z 1−z1−···−zk−2

0

µ
zk−1

1− z1 − · · ·− zk−2

¶αk−1−1
×
µ
1− zk−1

1− z1 − · · ·− zk−2

¶αk−1
dzk−1

=
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk) z

α1−1
1 zα2−12 · · · zαk−2−1k−2 (1− z1 − · · ·− zk−2)αk−1+αk−1

×
Z 1

0

uαk−1−1 (1− u)αk−1 dzk−1

=
Γ (α1 + · · ·+ αk)
Γ (α1) · · · Γ (αk)

Γ (αk−1)Γ (αk)
Γ (αk−1 + αk)

zα1−11 zα2−12 · · · zαk−2−1k−2

× (1− z1 − · · ·− zk−2)αk−1+αk−1

=
Γ (α1 + · · ·+ αk)

Γ (α1) · · · Γ (αk−2)Γ (αk−1 + αk)z
α1−1
1 zα2−12 · · · zαk−2−1k−2

× (1− z1 − · · ·− zk−2)αk−1+αk−1

and this establishes the result.
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(b) Iterating the part (a) gives the result.
(c) The Jacobian matrix of this transformation has a 1 in the i1-th position of the
Þrst row, a 1 in the i2-th position of the second row, etc. The absolute value of
the determinant of this transformation is therefore equal to 1. By the change of
variable theorem this implies that

¡
θi1 , . . . , θik−1

¢ ∼ Dirichlet(αi1 , αi2 , . . . , αik) .
(d) This is immediate from parts (c) and (b) as we just choose a permutation
that puts θi as the Þrst coordinate.

7.2.26 The likelihood function is given by θf11 θ
f2
2 · · · (1− θ1 − · · ·− θk−1)fk , so

the log-likelihood is given by f1 ln θ1+ f2 ln θ2+ · · ·+ fk ln(1− θ1− · · ·− θk−1).
Then vector of partial derivatives has ith element equal to fi/θi − fk/(1− θ1−
· · ·− θk−1). Setting these equal to 0 we get the system of equations

fkθ1 = f1(1− θ1 − · · ·− θk−1)
...

fkθk−1 = fk−1(1− θ1 − · · ·− θk−1)
and summing both sides we obtain fk (θ1 + · · ·+ θk−1) =
(n − fk) (1− θ1 − · · ·− θk−1) or n (θ1 + · · ·+ θk−1) = (n − fk), which implies
that (1− θ1 − · · ·− θk−1) = fk/n. From this we deduce that the unique so-

lution is
³
�θ1, . . . , �θk−1

´
= (f1/n, . . . , fk−1/n) . Now since the log-likelihood is

bounded above, continuously differentiable, and goes to −∞ whenever θi → 0,
this establishes that (f1/n, . . . , fk−1/n) is the MLE, so f1/n is the plug-in MLE.

7.2.27 In Exercise 7.2.3 we showed that E
¡
1/σ2 |x1, ..., xn

¢
= (α0 + n/2) /βx,

while in Exercise 7.2.4 we showed that E
¡
σ2 |x1, ..., xn

¢
= βx/ (α0 + n/2− 1) .

So the estimate of σ2 is not equal to one over the estimate of 1/σ2.
In Exercise 7.2.3 we showed that the posterior mode of 1/σ2 is 1/�σ2 =

(α0 + n/2− 1) /βx, while in Exercise 7.2.4 we showed that the posterior mode
of σ2 is �σ2 = βx/ (α0 + n/2 + 1) . So the estimate of σ2 is not equal to one over
the estimate of 1/σ2.
These differences indicate that these estimation procedures do not have the

invariance property possessed by the MLE.

7.2.28 Since the variance of a t(λ) distribution is λ/ (λ− 2), the posterior vari-
ance of µ is given by

V ar

Ã
µx +

r
1

n+ 2α0

s
2βx

n+ 1/τ20
t(n+ 2α0)

!

=

Ãr
1

n+ 2α0

s
2βx

n+ 1/τ20

!2
n+ 2α0

n+ 2α0 − 2 =
µ

2βx
n+ 1/τ20

¶µ
1

n+ 2α0 − 2
¶
.

7.2.29 The joint density of (θ, s, t) is given by qθ (t | s) fθ (s)π (θ) . The prior
predictive density for t is then the marginal density of t and is given by q (t) =R
Ω

R∞
−∞ qθ (t | s) fθ (s)π (θ) ds dθ.
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7.2.30 The posterior predictive distribution for t = (xn+1, xn+2) is given by

q (t |x1, ..., xn)

=

Z 1

0

θt1+t2 (1− θ)2−t1−t2 Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)θ
nx̄+α−1

× (1− θ)n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)
Z 1

0

θt1+t2+nx̄+α−1 (1− θ)2−t1−t2+n(1−x̄)+β−1 dθ

=
Γ (n+ α+ β)

Γ (nx̄+ α)Γ (n (1− x̄) + β)
× Γ (t1 + t2 + nx̄+ α)Γ (2− t1 − t2 + n (1− x̄) + β)

Γ (n+ α+ β + 2)

=



(n(1−x̄)+β+1)(n(1−x̄)+β)
(n+α+β+1)(n+α+β) t1 = t2 = 0

(nx̄+α)(n(1−x̄)+β)
(n+α+β+1)(n+α+β) t1 = 0, t2 = 1

(nx̄+α)(n(1−x̄)+β)
(n+α+β+1)(n+α+β) t1 = 1, t2 = 0

(nx̄+α+1)(nx̄+α)
(n+α+β+1)(n+α+β) t1 = t2 = 0.

7.2.31 Put

a =

µ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
, b =

µ
1

τ20
+
n

σ20

¶−1/2
.

We can write Xn+1 = µ + σ0Z, where µ ∼ N(a, b2) is independent of Z ∼
N(0, 1). Therefore, the posterior predictive ofXn+1 is given byXn+1 ∼ N(a, b2+
σ20).

7.2.32 We can write Xn+1 = µ + σU, where U ∼ N(0, 1) independent of

X1, . . . ,Xn, µ, σ. We also have that µ = µx +
¡
n+ 1/τ20

¢−1/2
σZ, where Z ∼

N(0, 1) is independent of X1, . . . ,Xn, σ. Therefore, we can write

Xn+1 = µx +
¡
n+ 1/τ20

¢−1/2
σZ + σU

= µx + σ
n¡
n+ 1/τ20

¢−1/2
Z + U

o
= µx +

n¡
n+ 1/τ20

¢−1
+ 1
o1/2

σW

where

W =
n¡
n+ 1/τ20

¢−1
+ 1
o−1/2 n¡

n+ 1/τ20
¢−1/2

Z + U
o

=
Xn+1 − µxn

(n+ 1/τ20 )
−1
+ 1
o1/2

σ

∼ N(0, 1)
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is independent of X1, . . . ,Xn, σ. Therefore, just as in Example 7.2.1,

T =
Wr³

2βxσ2
´
/ (2α0 + n)

=
Xn+1 − µxn

(n+ 1/τ20 )
−1
+ 1
o1/2

((2βx) / (2α0 + n))
1/2

∼ t (2α0 + n) .

7.2.33 Using the result in Problem 7.2.32 and the fact that the t (2α0 + n)
distribution is unimodal with mode at 0 and is symmetric about this mode, we
have that a γ-prediction interval for Xn+1 is given by (following Example 7.2.8)

µx ±

vuut2βx
n
(n+ 1/τ20 )

−1
+ 1
o

(2α0 + n)
t 1+γ

2
(2α0 + n) .

7.2.34 The prior predictive probability measure for the data s with a mixture
of Π1 and Π2 prior distributions is given by

m (s) = EΠ (fθ (s)) =
X
θ

fθ (s)Π ({θ})

=
X
θ

fθ (s) (pΠ1({θ}) + (1− p)Π2({θ}))

= p
X
θ

fθ (s)Π1 ({θ}) (1− p)
X
θ

fθ (s)Π2 ({θ})

= pfθ0 (s) + (1− p)
X
θ

fθ (s)Π2 ({θ}) = pm1 (s) + (1− p)m2 (s) .

The posterior probability measure is given by

Π (A | s) =
X
θ∈A

fθ (s)Π ({θ})
m (s)

=
X
θ∈A

fθ (s) (pΠ1 ({θ}) + (1− p)Π2 ({θ}))
pm1 (s) + (1− p)m2 (s)

=
pm1 (s)

pm1 (s) + (1− p)m2 (s)

X
θ∈A

fθ (s)Π1 ({θ})
m1 (s)

+
(1− p)m2 (s)

pm1 (s) + (1− p)m2 (s)

X
θ∈A

fθ (s)Π2 ({θ})
m2 (s)

=
pm1 (s)

pm1 (s) + (1− p)m2 (s)
Π1 (A | s) + (1− p)m2 (s)

pm1 (s) + (1− p)m2 (s)
Π2 (A | s) .

7.2.35 The posterior density of θ is π (θ | s). Now make the transformation
θ→ h(θ) = (ψ (θ) , λ (θ)). Then following Section 2.9.2, we have that putting

J (θ1, θ2) =

Ã
∂ψ(θ1,θ2)

∂θ1

∂ψ(θ1,θ2)
∂θ2

∂λ(θ1,θ2)
∂θ1

∂λ(θ1,θ2)
∂θ2

!
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and an application of Theorem 2.9.2 establishes that the joint density of (ψ,λ)
is given by π

¡
h−1 (ψ, λ) | s¢ ¯̄J ¡h−1 (ψ, λ)¢¯̄−1 . Then the marginal density of ψ

is given by ω (ψ | s) = R∞−∞ π ¡h−1 (ψ, λ) | s¢ |J (ψ, λ)|−1 dλ.
Challenges
7.2.36 First, let t = h (ψ) be a 1-1 continuously differentiable transformation ψ.
The null hypothesis that we want to test isH0 : h (ψ) = h (ψ0) = t0. By Theorem
2.6.2 the prior density of t is given by q (t) = w

¡
h−1 (t)

¢
/|h0 ¡h−1 (t)¢ |. Simi-

larly, the posterior density of t is given by q (t |x) = w ¡h−1 (t) |x¢ /|h0 ¡h−1 (t)¢ |.
Hence, since h−1 (t) = ψ, the ratio of the two is given by w (t |x) /w (t) =
w
¡
h−1 (t) |x¢ /w ¡h−1 (t)¢ = w (ψ |x) /w (ψ) , which is the ratio given in (7.2.9).

The observed ratio is given by q (t0 |x) /q (t0) = w
¡
h−1 (t0) |x

¢
/w
¡
h−1 (t0)

¢
=

w (ψ0 |x) /w (ψ0) . Therefore, the P-value computed by (7.2.9) would give the
same result, and therefore it is invariant.

7.3 Bayesian Computations

Exercises
7.3.1 The likelihood function is given by

L (µ |x1, ..., xn) = (4π)−10 exp
³
−5 (x̄− µ)2

´
exp

µ
−19
4
s2
¶
.

The prior distribution has density given by π (µ) = 1
4I[2,6] (µ) . The posterior

density is then proportional to (4π)−10 exp
³
−5 (x̄− µ)2

´
exp

¡−19
4 s

2
¢
1
4I[2,6] (µ) .

To Þnd the posterior mode we need only maximize exp
³
−5 (x̄− µ)2

´
I[2,6] (µ) ,

which is clearly maximized at �µ = x̄ when x̄ ∈ [2, 6], at �µ = 2 when x̄ < 2, and
at �µ = 6 when x̄ > 6. In this case the posterior mode is then �µ = x̄ = 3.825. It
has variance, estimated by

�σ2 (x1, ..., xn) =

−
∂2 ln

Ã
(4π)−10 exp

³
−5 (x̄− µ)2

´
× exp ¡−19

4 s
2
¢
1
4I[2,6] (µ)

!
∂µ2

¯̄̄̄
¯̄̄̄
¯̄
µ=3.825


−1

=
1

10

A .95 credible interval for µ base on the large sample result is then given by

x̄± �σ (x1, ..., xn) z0.975 = 3.825± 1√
10
1.96 = (3.2052, 4.4448) .

7.3.2 Let X1, . . . ,Xn be a random sample from Bernoulli(θ). Then, T =
X1+· · ·+Xn is a minimal sufficient statistic having a distribution Binomial(n, θ).
The likelihood function is L(θ|x1, . . . , xn) = L(θ|t) = θt(1 − θ)n−t. Note
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L(θ|t)π(θ) ∝ θt+α−1(1− θ)n−t+β−1. Hence, the posterior mode is �θ = (t+ α−
1)/(n+α−2). Then, we get ∂

∂θ lnL(θ|t)π(θ) = (t+α−1)/θ−(n−t+β−1)/(1−θ),
∂2

∂θ2 lnL(θ|t)π(θ) = −(t+α− 1)/θ2 − (n− t+ β − 1)/(1− θ)2. The asymptotic
variance of the posterior mode is

�σ2(x1, . . . , xn) =
³
− ∂

2 lnL(θ|t)π(θ)
∂θ2

¯̄̄
θ=�θ

´−1
=
³ t+ α− 1

�θ2
+
n− t+ β − 1
(1− �θ)2

´−1
.

Hence, the asymptotic γ-credible interval is

(�θ − z(1+γ)/2�σ, �θ + z(1+γ)/2�σ).
7.3.3 LetX1, . . . ,Xn be a random sample fromN(µ, v20). Then, T = X̄ = (X1+
· · ·+Xn)/ is a minimal sufficient statistic having a distribution N(µ, v20/n). The
likelihood function is L(µ|x1, . . . , xn) = L(µ|t) = exp(−(µ− t)2/(2v20/n)). Note
L(µ|t)π(µ) ∝ exp(−(µ−µ1)2/(2σ21)) where µ1 = (nt/v20+µ0/σ20)/(n/v20+1/σ20)
and σ21 = (n/v

2
0 + 1/σ

2
0)
−1. Hence, the posterior mode estimator is �µ = µ1 =

(nt/v20 + µ0/σ
2
0)/(n/v

2
0 + 1/σ

2
0). We get

∂
∂µ lnL(µ|t)π(µ) = −(µ− µ1)/σ21 and

∂2

∂µ2 lnL(µ|t)π(µ) = −1/σ21. The variance estimate is

�σ2(x1, . . . , xn) =
³
− ∂ lnL(µ|t)π(µ)

∂µ2

¯̄̄
µ=�µ

´−1
= σ21 .

Hence, the asymptotic γ-credible interval is

(�µ− z(1+γ)/2�σ, �µ+ z(1+γ)/2�σ).
7.3.4 The posterior density is proportional to fθ(x) · π(θ) = θI[0,1/θ](x) · e−θ =
I(0,1/x](θ)θe

−θ. Hence, the posterior distribution is a Gamma(2, 1) distribution
restricted to (0, 1/x]. A simple Monte Carlo algorithm is

1: Generate η from Gamma(2, 1)

2: Accept η if it is in (0, 1/x]. Return to step 1 otherwise.

In general, the posterior density is proportional to fθ(x1, . . . , xn) · π(θ) =
I(0,1/x(n)](θ)θ

ne−θ that is proportional to Gamma(n+1, 1) restricted on (0, 1/x(n)].
Also we have a simple Monte Carlo algorithm is

1: Generate η from Gamma(n+ 1, 1)

2: Accept η if it is in (0, 1/x(n)]. Return to step 1 otherwise.

Note that the mean of a Gamma(n+1, 1) distribution is n+1. That means
the Gamma(n+1, 1) distribution shifts to the right as n→∞. So the rejection
rate will increase to 1 as n→∞. Hence, this algorithm cannot be used for large
n.

7.3.5The posterior density whenX = x is observed is proportional to exp(−(x−
θ)2/2)I[0,1](θ). Hence, the posterior distribution is N(x, 1) restricted to [0, 1].
Hence, a very simple Monte Carlo algorithm is given by
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1: Generate η from N(x, 1)

2: Accept η if it is in [0, 1]. Return to step 1 otherwise.

In general, when a sample (x1, . . . , xn) is observed, the posterior density is
proportional to exp(−Pn

i=1(xi − θ)2/2) · I[0,1](θ) ∝ exp(−n(θ − x̄)2/2)I[0,1](θ).
Thus, the posterior distribution is N(x̄, 1/n) restricted to [0, 1]. A simple Monte
Carlo algorithm for the posterior distribution is

1: Generate η from N(x̄, 1/n)

2: Accept η if it is in [0, 1]. Return to step 1 otherwise.

If the true parameter θ∗ is not in [0, 1], then the acceptance rate is extremely
small. For example, suppose θ∗ > 1 and n is sufficiently large enough to x̄ > 1.
Then the acceptance rate given by

P (η ∈ [0, 1]) = Φ(−√n(x̄− 1))−Φ(−√nx̄) ≤ exp(−n(x̄− 1)2/2)
(x̄− 1)√2πn → 0

converges to 0 exponentially. Hence, the Monte Carlo algorithm is not appro-
priate when n is big.

7.3.6 The posterior density is proportional to (exp(−(θ − x)2/2) + exp(−(θ −
x)2/4)/

√
2)I[0,1](θ). Hence, the posterior distribution given X = x is the mix-

ture of normals 0.5N(x, 1)+0.5N(x, 2) restricted to [0, 1]. A crude Monte Carlo
algorithm is obtained as follows.

1: Generate η from 0.5N(x, 1) + 0.5N(x, 2)

2: Accept η if it is in [0, 1]. Return to step 1 otherwise.

Suppose n = 2. The likelihood function is proportional to

(exp(−(x1 − θ)2/2) + exp(−(x1 − θ)2/4)/
√
2)×

(exp(−(x2 − θ)2/2) + exp(−(x2 − θ)2/4)/
√
2)

= exp(−(x1 − x2)2/4) exp(−(θ − (x1 + x2)/2)2)+
exp(−(x1 − x2)2/6) exp(−(θ − (2x1 + x2)/3)2/(4/3))/

p
(2)

+ exp(−(x1 − x2)2/6) exp(−(θ− (x1 + 2x2)/3)2/(4/3))/
p
(2)

+ exp(−(x1 − x2)2/8) exp(−(θ− (x1 + x2)/2)2/2)/2.
Hence, the posterior distribution given X1 = x1, X2 = x2 is a mixture normal
restricted on [0, 1]. A crude Monte Carlo algorithm can be devised easily.

1: Generate η from p1N((x1+x2)/2, 1/2)+p2N((2x1+x2)/3, 2/3)+p3N((x1+
2x2)/3, 2/3) + p4N((x1 + x2)/2, 1) where pi = qi/(q1 + · · · + q4), q1 =
exp(−(x1 − x2)2/4)/

√
2, q2 = q3 = exp(−(x1 − x2)/6)/

√
3 and q4 =

exp(−(x1 − x2)2/8)/2.
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2: Accept η if it is in [0, 1]. Return to step 1 otherwise.

Computer Exercises

7.3.7 Below is the Minitab program (modifying the one in Appendix B for
Example 7.3.1) used to generate the sample of size N = 104 from the posterior
distribution of ψ = µ+ σz0.25.
gmacro

normalpost

note - the base command sets the seed for the random number
generator (so you can repeat a simulation)

base 34256734

note - the parameters of the posterior

note - k1 = first parameter of the gamma distribution = (alpha_0 +
n/2)

let k1=9.5

note - k2 = 1 / beta

let k2=1/77.578

note - k3 = posterior mean

let k3=5.161

note - k4 = (n + 1/(tau_0 squared) )^(-1)

let k4=1/15.5

note - z_.25 = -0.6745

note - main loop

note - c3 contains generated value of sigma**2

note - c4 contains generated value of mu

note - c5 contains generated value of first quartile

do k5=1:10000

random 1 c1;

gamma k1 k2.

let c3(k5)=1/c1(1)

let k6=sqrt(k4/c1(1))

random 1 c2;

normal k3 k6.
let c4(k5)=c2(1)

let c5(k5)=c4(k5)-(0.6745)*sqrt(c3(k5))

enddo

endmacro

Below are the density histograms based on samples of N = 5 × 103 and
N = 104, respectively.



212 CHAPTER 7. BAYESIAN INFERENCE

76543210-1-2

0.5

0.4

0.3

0.2

0.1

0.0

C5

D
en

si
ty

6543210-1-2-3

0.5

0.4

0.3

0.2

0.1

0.0

C5

D
en

si
ty

For N = 5× 103 we obtained the following estimates.
MTB > let k1=mean(c5)
MTB > let k2=stdev(c5)/sqrt(5000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 3.17641
K3 3.14068
K4 3.21214
So the estimate of the posterior mean of the Þrst quartile is 3.17641, and the
exact value lies in the interval (3.14068, 3.21214) with virtual certainty.
For N = 104 we obtained the following estimates.

MTB > let k1=mean(c5)
MTB > let k2=stdev(c5)/sqrt(10000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 3.15800
K3 3.13253
K4 3.18346
So the estimate of the posterior mean of the Þrst quartile is 3.15800 and the
exact value lies in the interval (3.13253, 3.18346) with virtual certainty.
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7.3.8 Recall that from Example 7.1.1 we have that the posterior distribution of
θ is Beta(5.5, 105) . Below is the Minitab code for doing this problem.
MTB > Random 1000 c1;
SUBC> Beta 5.5 105.
MTB > let c2=c1 < .1
MTB > let k1=mean(c2)
MTB > let k2=sqrt(k1*(1-k1))/sqrt(1000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 0.980000
K3 0.966718
K4 0.993282
The estimate of the posterior probability that θ < 0.1 based on a sample of
1000 from the posterior is 0.980000, and the exact value lies in the interval
(0.966718, 0.993282) with virtual certainty.

7.3.9 Recall that from Exercise 7.2.10 we have that the posterior distribution
of λ, with n = 7, x̄ = 5.9, is Gamma(17, 43.3) .
(a) The estimate of the posterior probability that 1/λ ∈ [3, 6] based on a sample
of N = 1000 from the posterior of 1/λ is obtained via the following Minitab
program.
MTB > let k1=17
MTB > let k2=1/43.3
MTB > Random 1000 c1;
SUBC> Gamma k1 k2.
MTB > let c2=1/c1
MTB > let c3=c2 ge 3 and c2 le 6
MTB > let k3=mean(c3)
MTB > let k4=sqrt(k3*(1-k3)/1000)
MTB > let k5=k3-3*k4
MTB > let k6=k3+3*k4
MTB > print k3 k5 k6
Data Display
K3 0.296000
K5 0.252693
K6 0.339307
The estimate of the posterior probability that 1/λ ∈ [3, 6] is 0.296000, and the
exact value of the posterior probability lies in the interval (0.252693, 0.339307)
with virtual certainty.

(b) The probability function of b1/λc is estimated as follows.
MTB > let c4=floor(c2)
MTB > Tally C4;
SUBC> Counts;
SUBC> Percents.
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Tally for Discrete Variables: C4
C4 Count Percent
1 130 13.00
2 572 57.20
3 247 24.70
4 42 4.20
5 7 0.70
6 1 0.10
7 1 0.10
N= 1000
So, for example, we estimate the posterior probability that b1/λc equals 0 by 0
and the posterior probability that b1/λc equals 1 by .13, etc.
(c) The estimate of the posterior expectation of b1/λc based on a Monte Carlo
sample of size N = 103 is given below.
MTB > let k1=mean(c2)
MTB > let k2=stdev(c2)/sqrt(1000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display
K1 2.72523
K3 2.65789
K4 2.79257
The estimate of the posterior mean of b1/λc is 2.725230 and the true value
of the posterior expectation lies in the interval (2.65789, 2.79257) with virtual
certainty.

7.3.10 The inverse cdf of a Pareto(α) distribution is given by x = F−1(u) =
(1− u)−1/α − 1. Therefore, the following Minitab code generates a sample of
100 from the Pareto(2) distribution.
MTB > Random 10 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=(1-c1)**(-1/2) - 1
MTB > Random 100 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=(1-c1)**(-1/2) - 1
The likelihood function is given by L (α |x1, ..., xn) = αn

Q
(1 + xi)

−α−1
.

The prior distribution has density given by π (α) = αe−α. The posterior density
is proportional to αn+1e−α

Q
(1 + xi)

−α = αn+1e−α exp (−α ln (Q (1 + xi)))
= αn+1 exp [−α (ln (Q (1 + xi)) + 1)] , and we recognize this as being propor-
tional to the Gamma(n+ 1, ln (

Q
(1 + xi)) + 1) density. The following Minitab

code estimates the posterior expectation of 1/ (α+ 1) .
MTB > let c3=loge(1+c2)
MTB > let k1=101
MTB > let k2=1/(sum(c3)+1)
MTB > print k1 k2
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Data Display
K1 101.000
K2 0.0190936
MTB > Random 10000 c4;
SUBC> Gamma k1 k2.
MTB > let c4=1/(c4+1)
MTB > let k5=mean(c4)
MTB > let k6=stdev(c4)/sqrt(10000)
MTB > let k7=k5-3*k6
MTB > let k8=k5+3*k6
MTB > print k5 k7 k8
Data Display
K5 0.343067
K7 0.342392
K8 0.343741
The estimate of the posterior mean of 1/ (α+ 1) is 0.343067, and the exact value
of the posterior expectation lies in the interval (0.342392, 0.343741) with virtual
certainty.
The true value of 1/ (α+ 1) , however, is .33333, so note that it is not con-

tained in the above interval. Note that the above interval is in essence a conÞ-
dence interval for the exact value of the posterior expectation and not the true
value of 1/ (α+ 1) .

Problems
7.3.11
(a) We have that 1

n ln
³
L
³
�θ |x1, . . . , xn

´
π
³
�θ
´´
= 1

n

Pn
i=1 lnL

³
�θ |xi

´
+

1
n lnπ

³
�θ
´
a.s→ Eθ (lnL (θ |X)) = I(θ) by the strong law of large numbers.

(b) Then from the results of part (a) we have that, denoting the true value of θ
by θ0,

θ− �θ (X1, . . . ,Xn)
�σ (X1, . . . ,Xn) /

√
n
a.s→
p
nI(θ0) (θ − θ0)

when θ ∼ Π (· |X1, . . . ,Xn) . This implies that when the sample size is large
then inferences will be independent of the prior.

7.3.12 As we increase the Monte Carlo sample size N, the interval that con-
tains the exact value of the posterior expectation with virtual certainty becomes
shorter and shorter. But for a given sample size n for the data, the posterior
expectation will not be equal to the true value of 1/ (α+ 1), so this interval will
inevitably exclude the true value.

7.3.13 From Problem 2.8.27 we have that Y given X = x is distributed
N(µ2 + ρσ2 (x− µ1) /σ1,

¡
1− ρ2¢σ22) and similarly X given Y = y is distrib-

uted N(µ1 + ρσ1 (y − µ2) /σ2,
¡
1− ρ2¢σ21). Therefore, a Gibbs sampling algo-

rithm for this problem is given by the following. Select x0, then generate
Y1 ∼ N(µ2 + ρσ2 (x0 − µ1) /σ1,

¡
1− ρ2¢σ22) obtaining y1, then generate X1 ∼
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N(µ1 + ρσ1 (y − µ2) /σ2,
¡
1− ρ2¢σ21) obtaining x1, then generate Y2 ∼ N(µ2 +

ρσ2 (x0 − µ1) /σ1,
¡
1− ρ2¢σ22) obtaining y2, etc. The sample is (x1, y1) , (x2, y2) ,

. . . . Since this method is not exact, a better method for generating from the
bivariate normal is to use (2.7.1), which is exact.

7.3.14 The marginal density of X is given by
R 1
x
8xy dy = 4x

¡
1− x2¢ and the

marginal density of Y is given by
R y
0
8xy dx = 4y3. Therefore, fX|Y (x | y) =

8xy/4y3 = 2x/y2 for 0 < x < y and fY |X (y |x) = 8xy/
¡
4x
¡
1− x2¢¢ =

2y/
¡
1− x2¢ for x < y < 1.
The distribution function associated with fY |X is given by

FY |X(y) = y2/
¡
1− x2¢ for x < y < 1. Therefore, the inverse cdf is given by

F−1Y |X(u) =
¡¡
1− x2¢u¢1/2 for 0 < u < 1. Therefore, we can generate Y given

X = x by generating U ∼ Uniform[0, 1] and putting Y = ¡¡1− x2¢U¢1/2 .
The distribution function associated with fX|Y is given by FX|Y (x) = x2/y2

for 0 < x < y. Therefore the inverse cdf is given by F−1X|Y (u) =
¡
y2u

¢1/2
= yu1/2

for 0 < u < 1. Therefore we can generate X given Y = y by generating U ∼
Uniform[0, 1] and putting X = yU1/2.
So we select x0. Then we generate Y ∼ fY |X (· |x0) , using the above al-

gorithm, obtaining y1. Next we generate X ∼ fX|Y (·| y1) , using the above
algorithm, obtaining x1. Then we generate Y ∼ fY |X (· |x1) , using the above
algorithm, obtaining y2, etc.
We can generate exactly from this distribution as follows. The marginal cdf

of Y is FY (y) = y4 for 0 < y < 1. Then the inverse cdf is given by F−1Y (u) = u1/4

for 0 < u < 1. So we can generate Y ∼ FY by generating U ∼ Uniform[0, 1] and
putting y = U1/4. Then we use the above algorithm to generate X ∼ fX|Y (· | y) .
Then we have that (X,Y ) ∼ FX,Y by the theorem of total probability.

7.3.15 Suppose that the posterior expectation of ψ exists. Then by the theorem
of total expectation we have that

E (ψ |x1, . . . , xn) = E
µ
σ

µ
|x1, . . . , xn

¶
= E

µ
σ

µ

¡
I(−∞,0) (µ) + I(0,∞) (µ)

¢ |x1, . . . , xn¶
= E

µ
σ

µ
I(−∞,0) (µ) |x1, . . . , xn

¶
+E

µ
σ

µ
I(0,∞) (µ) |x1, . . . , xn

¶
= E

µ
E

µ
σ

µ
I(−∞,0) (µ) |σ, x1, . . . , xn

¶
|x1, . . . , xn

¶
+E

µ
E

µ
σ

µ
I(0,∞) (µ) |σ, x1, . . . , xn

¶
|x1, . . . , xn

¶
and reasoning as in Problem 7.2.24, we have thatE

³
σ
µI(−∞,0) (µ) |σ, x1, . . . , xn

´
= −∞ and E

³
σ
µI(−∞,0) (µ) |σ, x1, . . . , xn

´
=∞, so E (ψ |x1, . . . , xn) =∞−∞

which is undeÞned.
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7.3.16
(a) Suppose the posterior expectation of g(θ) is

EΠ(·|s)[g(θ)] =
R
g(θ)fθ(s)π(θ)dθR
fθ(s)π(θ)dθ

=
EΠ
h
g(θ)fθ(s)

i
EΠ

h
g(θ)fθ(s)

i .
Hence, generate θ1, . . . , θm from Π and estimate the posterior expectation of
g(θ) by

1
m

Pm
i=1 g(θi)fθi(s)

1
m

Pm
i=1 fθi(s)

.

(b) Whenever the posterior density is quite different then the prior density then
we can expect that this estimator will perform very badly, even though the
estimator in (a) will converge with probability 1 to the correct answer.

Computer Problems
7.3.17 We use the program in Appendix B for Example 7.3.2 to generate a
sample of 104 from the joint posterior distribution of

¡
µ, σ2

¢
.

The values of µ are stored in C21 and the values of σ2 are stored in C20.
The values of µ+ σz.25 are stored in C22.
MTB > invcdf .25;
SUBC> normal 0 1.
Inverse Cumulative Distribution Function
Normal with mean = 0 and standard deviation = 1.00000
P( X <= x ) x
0.2500 -0.6745

MTB > let c22= c21 - (sqrt(c20))*(0.6745)
MTB > let k1=mean(c22)
MTB > print k1
Data Display
K1 3.30113
The estimate of the posterior mean of µ+ σz.25 is then 3.30113.
To estimate the error in this approximation we use the batching method

and for this we used the Minitab code given in Appendix B. For a batch size of
m = 10, we obtained the following standard error.
MTB > let k1=stdev(c2)/sqrt(1000)
MTB > print k1
Data Display
K1 0.0147612
For a batch size of m = 20 we obtained the following standard error.
MTB > let k1=stdev(c2)/sqrt(500)
MTB > print k1
Data Display
K1 0.0150728
For a batch size of m = 40 we obtained the following standard error.
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MTB > let k1=stdev(c2)/sqrt(250)
MTB > print k1
Data Display
K1 0.0151834
This leads to the interval 3.30113 ± 3 (0.0151834) = (3.2556, 3.3467) that con-
tains the true value of the posterior mean with virtual certainty.

7.4 Choosing Priors

Exercises

7.4.1 The likelihood function is given by L (λ |x1, ..., xn) = λn
Q
(1 + xi)

−λ−1.
The prior distribution has density given by π (λ) = βαλα−1e−βλ/Γ (α) . The
posterior density is then proportional to λn+α−1

Q
(1 + xi)

−λ e−βλ =
λn+α−1 exp (−λ ln (Q (1 + xi))) e−βλ = λn+α−1 exp [−λ (ln (Q (1 + xi)) + β)] ,
and so the posterior is a Gamma(n+ α, ln (

Q
(1 + xi)) + β) distribution. Hence,

this is a conjugate family.

7.4.2 The likelihood function is given by L (θ |x1, ..., xn) = θ−nI[x(n),∞) (θ).
The prior distribution has density given by π (θ) = θ−αI[β,∞) (θ) / (α− 1)βα−1,
where α ≥ 1 and β > 0. The posterior density is then proportional to
θ−n−αI[x(n),∞) (θ) I[β,∞) (θ) = θ

−n−αI[max{x(n),β},∞), which is of the same form

as the family of priors and so this is a conjugate family for this problem.

7.4.3
(a) First, we compute the prior predictive for the data as follows.

mτ (1, 1, 3) =
2X
θ=1

π(θ)fθ(1, 1, 3) =

(
1
2

¡
1
3

¢3
+ 1

2

¡
1
2

¢2 1
8 =

59
1728 τ = 1

1
3

¡
1
3

¢3
+ 2

3

¡
1
2

¢2 1
8 =

43
1296 τ = 2

The maximum value of the prior predictive is obtained when τ = 1, therefore
we choose the Þrst prior.
(b) The posterior of θ given τ = 1 is

π1 (θ | 1, 1, 3) =


1
2 (

1
3)

3

59
1728

= 32
59 θ = a

1
2 ( 12)

2 1
8

59
1728

= 27
59 θ = b.

7.4.4 The posterior of θ given τ = 2 is

π2 (θ | 1, 1, 3) =


1
3 (

1
3)

3

43
1296

= 16
43 θ = a

2
3 (

1
2)

2 1
8

43
1296

= 27
43 θ = b.
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Therefore, by the theorem of total probability the unconditional posterior of θ
is given by

π (θ | 1, 1, 3) = 1

2
π1 (θ | 1, 1, 3) + 1

2
π2 (θ | 1, 1, 3)

=

½
1
2
32
59 +

1
2
16
43 =

1160
2537 θ = a

1
2
27
59 +

1
2
27
43 =

1377
2537 θ = b.

7.4.5 The prior predictive for the model described in Example 7.1.1 is given by

mα,β (x1, ..., xn) =

Z 1

0

Γ (α+ β)

Γ (α)Γ (β)
θnx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
Γ (α+ β)

Γ (α)Γ (β)

Γ (α+ nx̄)Γ (β + n (1− x̄))
Γ (α+ β + n)

.

When n = 10, nx̄ = 7, α = 1, β = 1 then

m1,1 (x1, ..., xn) =
Γ (2)

Γ (1)Γ (1)

Γ (8)Γ (4)

Γ (12)
=
7!3!

11!
=

1

1320
.

When α = 5, β = 5 then

m5,5 (x1, ..., xn) =
Γ (10)

Γ (5)Γ (5)

Γ (12)Γ (8)

Γ (22)
=

9!

4!4!

11!7!

21!
=

1

403104
.

Therefore, using the prior predictive we would select the prior given by α =
1, β = 1 for further inferences about θ.

7.4.6 First, for úc > 0,
R
fθ (s)π (θ) dθ < ∞ if and only if

R
fθ (s) cπ (θ) dθ <

∞. Then assuming this, the posterior density under π is given by π (θ | s) =
fθ (s)π (θ) /

R
fθ (s)π (θ) dθ = fθ (s) cπ (θ) /

R
fθ (s) cπ (θ) dθ, and the result is

established.

7.4.7 The likelihood function is given by L (θ |x1, ...xn) = θnx̄ (1− θ)n(1−x̄) .
By Example 6.5.4, the Fisher information function for this model is given by
n/ {θ (1− θ)} . Therefore, Jeffreys� prior for this model is √nθ−1/2 (1− θ)−1/2 .
The posterior density of θ is then proportional to θnx̄−1/2 (1− θ)n(1−x̄)−1/2 so
the posterior is a Beta(nx̄+ 1/2, n (1− x̄) + 1/2) distribution.
7.4.8
(a) The likelihood function is given by θ−nI[x(n),∞) (θ) . The posterior exists

whenever
R∞
−∞ θ

−nI[x(n),∞) (θ) dθ =
R∞
x(n)

θ−n dθ = − θ−n+1
n−1

¯̄̄∞
x(n)

=
x−n+1
(n)

n−1 < ∞,
and this is the case whenever n > 1. Therefore, the posterior exists except when
n = 1.
(b) From Example 6.5.1 we have that the Fisher information does not exist and
so Jeffrey�s prior cannot exist.

7.4.9 Suppose the prior distribution is θ ∼ N(66, σ2). We choose a σ2 for
the prior to satisfy P (θ ∈ (40, 92)) > 0.99. Since P (θ ∈ (40, 92)) = Φ(26/σ)−
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Φ(−26/σ) = 2Φ(26/σ)−1 > 0.99, the standard deviation σ must satisfy 26/σ >
z0.995 = 2.576. Hence we get σ < 26/2.576 = 10.09. Equivalently, σ2 < 101.86.

7.4.10 According to the description, we will Þnd a prior θ ∼ N(µ, σ2) satisfying
P (θ < 5.3) = 0.5 and P (θ < 7.3) = 0.95. From P (θ < x) = Φ((x − µ)/σ),
(5.3 − µ)/σ = z0.5 = 0 and (7.3 − µ)/σ = z0.95 = 1.645. Hence, µ = 5.3 and
σ = z0.95/2 = 1.216 is good if it also satisÞes P (θ > 0) > 0.999. Note that when
µ = 5.3 and σ = 1.216, P (θ > 0) = 1−P (θ ≤ 0) = 1−Φ(−µ/σ) = 0.9999935 so
this prior places little mass on negative values which we know are impossible.

7.4.11 Let the prior be θ ∼ Exponential(λ). The prior also satisÞes P (θ >
50) = 0.01. The probability P (θ > 50) =

R∞
50 λe

−λθdθ = −e−λθ ¯̄θ=∞
θ=50

= e−50λ.
From e−50λ ≈ 0.01, we have λ = 0.092103.
7.4.12 The values µ0 and α0 are Þxed after an elicitation. Then, the prior can
be speciÞed as follows.

µ|σ20 ∼ N(µ0, σ20)
1/σ20 ∼ Gamma(α0, 1).

Hence, the prior density of µ can be obtained by marginalizing the joint density.

π(µ) =

Z ∞

0

1

(2πσ20)
1/2

exp
³
− (µ− µ0)

2

2σ20

´
· 1

Γ(α0)

³ 1
σ20

´α0−1
exp

³
− 1

σ20

´
d
1

σ20

=
1

(2π)1/2Γ(α0)

Z ∞

0

³ 1
σ20

´α0−1/2
exp

³
− 1

σ20

¡
1 +

(µ− µ0)2
2

¢´
d
1

σ20

=
Γ(α0 + 1/2)

(2π)1/2Γ(α0)

³
1 +

(µ− µ0)2
2

´−α0−1/2
.

Hence, (µ − µ0)√α0 has a general t distribution with parameter 2α0 which is
discussed in Problem 4.6.17.

Computer Exercises
7.4.13
(a) The prior predictive, as a function of α is given by mα (x1, ..., xn) =
Γ(2α)

(Γ(α))2
Γ(α+7)Γ(α+3)
Γ(2α+10) . Then lnmα (x1, ..., xn) = lnΓ (2α)−2 lnΓ (α)+lnΓ (α+ 7)+

lnΓ (α+ 3)− lnΓ (2α+ 10) . The plot of this function is given below.
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Note that this graph does not discriminate amongst large values of α. Ac-
tually from the numbers used to compute the plot the maximum occurs around
7.4, but it is difficult to detect this on the graph.
(b) When nx̄ = 9 the log prior predictive is plotted below. This is much more
discriminating.
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7.4.14 Using the equation in Example 7.4.3, a graph of the prior predictive
distribution is drawn below. The maximum is 0.0000035 at λ = 2.32.

The Minitab code for the computation is given below.

# set the constants
let k1=20
let k2=5
name k1 "N" k2 "NXBAR"
# computation
set c1
1:2001

end
let c1=(c1-1)/2000*20
# to prevent the computation of gamma(0)
let c1(1)=c1(2)
# let c2=exponentiate(lngamma(2*c1)-2*lngamma(c1)+lngamma(NXBAR+c1)+

lngamma(N-NXBAR+c1)-lngamma(N+2*c1)
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let c2=lngamma(2*c1)-2*lngamma(c1)+lngamma(NXBAR+c1)
let c2=exponentiate(c2+lngamma(N-NXBAR+c1)-lngamma(N+2*c1))
let c2(1)=0
let c1(1)=0
name c1 "lambda" c2 "prior predictive"
plot c2*c1;
connected;
nodtitle;
graph;
color 23.

%findmax c1 c2
# the related macro "findmax"
macro
findmax X Y
mcolumn X Y c1 c2
mconstant k1 k2 k3 k4
# find maximum in Y and print the maximum Y at X
let k4=count(Y)
sort Y X c1 c2
let k1=c2(k4)
let k2=c1(k4)
name k1 "at" k2 "maximum"
print k2 k1
endmacro

Problems
7.4.15 First, if X ∼ N ¡µ0, τ20 ¢ , then the p quantile of this distribution satisÞes
xp = µ0+ τ0zp , where zp is the pth quantile of the N (0, 1) distribution. There-
fore, once we specify two quantiles of the distribution, say xp1 and xp2 , we can
solve xp1 = µ0+τ0zp1 , xp2 = µ0+τ0zp2 to obtain τ0 = (xp1 − xp2) / (zp1 − zp2)
and µ0 = xp1 − ((xp1 − xp2) / (zp1 − zp2)) zp1 .
7.4.16 From Exercise 6.5.1 the Fisher information is n/2σ4. Therefore, Jeffreys�
prior is given by 1/σ2.

7.4.17 We use the prior 1/σ2. The posterior distribution is proportional toµ
1

σ2

¶n
2

exp
³
− n

2σ2
(x̄− µ)2

´
exp

µ
−(n− 1) s

2

2σ2

¶
1

σ2

=

µ
1

σ2

¶ 1
2

exp
³
− n

2σ2
(x̄− µ)2

´
exp

µ
−(n− 1) s

2

2σ2

¶µ
1

σ2

¶n+1
2

.

So the posterior distribution of
¡
µ, σ2

¢
is given by µ |σ2, x1, ..., xn ∼ N(x̄, σ2/n)

and 1/σ2 |x1, ...xn ∼Gamma
¡
n+3
2 ,

n−1
2 s

2
¢
.
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7.4.18
(a) The joint density of (µ,X1, . . . ,Xn) is given by

¡
2πτ20

¢−1/2
exp

µ
− 1

2τ20
(µ− µ0)2

¶
×

¡
2πσ20

¢−n/2
exp

µ
−n− 1
2σ20

s2
¶
exp

µ
− n

2σ20
(x̄− µ)2

¶
.

To calculate m(x1, . . . , xn) we need to integrate out µ. Using (7.1.2) we see that
this integral equals

¡
2πτ20

¢−1/2 ¡
2πσ20

¢−n/2µ 1
τ20
+
n

σ20

¶−1/2
exp

µ
−n− 1
2σ20

s2
¶
×

exp

Ã
1

2

µ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶2!
exp

µ
−1
2

µ
µ20
τ20
+
nx̄2

σ20

¶¶

(b) We have that (X1, . . . ,Xn) given µ is a sample from the N
¡
µ, σ20

¢
and

µ ∼ N ¡µ, τ20 ¢ . So we can generate a value (X1, . . . ,Xn) from m by generating
µ ∼ N ¡µ0, τ20 ¢ and then generating X1, . . . ,Xn i.i.d. N ¡µ, σ20¢ .
(c) No, they are not mutually independent, for we can write Xi = µ + σ0Zi,
where Z1, . . . , Zn are i.i.d. N(0, 1) and µ = µ0 + τ0Z where Z ∼ N(0, 1)
independent of Z1, . . . , Zn. Therefore, E (Xi) = E (µ0 + τ0Z + σ0Zi) = µ0 +
τ0E (Z) + σ0E (Zi) = µ0, and when i 6= j,

Cov (Xi,Xj) = E ((µ0 + τ0Z + σ0Zi − µ0) (µ0 + τ0Z + σ0Zj − µ0))
= E ((τ0Z + σ0Zi) (τ0Z + σ0Zj)) = E

¡
τ20Z

2 + σ0τ0ZZj + σ0τ0ZZi + σ
2
0ZiZj

¢
= τ20E

¡
Z2
¢
+ σ0τ0E (Z)E (Zj) + σ0τ0E (Z)E (Zi) + σ

2
0E (Zi)E (Zj) = τ

2
0 6= 0

and so they are not independent.

7.4.19 The joint posterior distribution of
¡
X1, . . . ,Xn, µ, 1/σ

2
¢
is proportional

to
¡
1
σ2

¢n/2Qn
i=1

h
1 + 1

λ

¡
xi−µ
σ

¢2i−λ+1
2 1

σ2 . Following Example 7.3.2, we intro-

duce the n latent or hidden variables (V1, . . . , Vn) , which are i.i.d. χ2 (λ) and
suppose Xi | υi ∼ N

¡
µ, σ2λ/υi

¢
. With the same prior structure as before, we

have that the joint density of (X1, V1) , . . . , (Xn, Vn) , µ, 1/σ2 is proportional

to
¡
1
σ2

¢n
2
Qn
i=1 exp

³
− υi
2σ2λ (xi − µ)2

´
υ
λ
2−1

2
i exp

¡−υi
2

¢ ¡
1
σ2

¢
From this we have

that the conditional density of µ is proportional to exp{− 1
2σ2

Pn
i=1

υi
λ (xi − µ)2},

which is proportional to exp
©− 1

2σ2

¡Pn
i=1

υi
λ

¢
µ2 + 2

2σ2

¡Pn
i=1

υi
λ xi

¢
µ
ª
. From

this we immediately deduce that

µ |x1, . . . , xn, υ1, . . . , υn, σ2 ∼ N
Ã nX

i=1

υi
λ

!−1Ã nX
i=1

υi
λ
xi

!
,

Ã
nX
i=1

υi
λ

!−1
σ2

 .
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The conditional density of 1/σ2 is proportional to¡
1
σ2

¢n
2+1 exp{−1

2

³Pn
i=1

υi
λ (xi − µ)2

´
1
σ2 } and we immediately deduce that

1/σ2 |x1, . . . , xn, υ1, . . . , υn, µ ∼ Gamma(n2 +2, 12
Pn
i=1

υi
λ (xi − µ)2). The con-

ditional density of Vi is proportional to υ
λ
2−1

2
i exp{−

h
(xi − µ)2 /2σ2λ+ 1/2

i
υi},

so Vi |x1, . . . , xn, υ1, . . . , υi−1, υi+1, . . . υn, µ, σ2 ∼Gamma(λ2+1
2 ,

1
2((xi − µ)2 /σ2λ

+1)).

Computer Problems
7.4.20 First, note that the posterior distribution of

¡
µ,σ2

¢
is µ | σ2, x1, ..., xn ∼

N
³
3.825, σ

2

20

´
µ | σ2, x1, ..., xn ∼ N

³
3.825, σ

2

20

´
and 1/σ2 | x1, ...xn ∼

Gamma(11.5, 10.75) .We modiÞed the Minitab program in Appendix B for Ex-
ample 7.3.1 as follows.
gmacro
normalpost
note - the base command sets the seed for the random number

generator (so you can repeat a simulation)
base 34256734
note - the parameters of the posterior
note - k1 = first parameter of the gamma distribution = (n+3)/2
let k1=11.5
note - k2 = 2/(n-1)s**2
let k2=1/10.75
note - k3 = posterior mean of mu
let k3=3.825
note - k4 = 1/n
let k4=1/20
note - main loop
note - c3 contains generated value of sigma**2
note - c4 contains generated value of mu
note - c5 contains generated value of coefficient of variation
do k5=1:10000
random 1 c1;
gamma k1 k2.
let c3(k5)=1/c1(1)
let k6=sqrt(k4/c1(1))
random 1 c2;
normal k3 k6.
let c4(k5)=c2(1)
let c5(k5)=sqrt(c3(k5))/c4(k5)
enddo
endmacro
A density histogram of the sample of 104 from the posterior distribution of
ψ = σ/µ is given below.
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Challenges
7.4.21 The likelihood function is given by

L(µ, σ2 |x1, ...xn) =
¡
2πσ2

¢−n/2
exp

³
− n

2σ2
(x̄− µ)2

´
exp

µ
−n− 1
2σ2

s2
¶
.

The log-likelihood function is then given by

l(µ, σ2 |x1, ...xn) = −n
2
ln (2π)− n

2
lnσ2 − n (x̄− µ)

2

2σ2
− n− 1
2σ2

s2.

Using the methods discussed in Section 6.2.1 we obtain the score function as
follows

S(µ, σ2 |x) =
µ n

σ2 (x̄− µ)
− n
2σ2 +

n
2σ4 (x̄− µ)2 + n−1

2σ4 s
2

¶
.

The Fisher information matrix is then given by

I
¡
µ, σ2

¢
= −E(µ,σ2)

µ − n
σ2 − n

σ4 (x̄− µ)
− n
σ4 (x̄− µ) n

2σ4 − n
σ6 (x̄− µ)2 − (n−1)

σ6 s2

¶
=

µ
n
σ2 0
0 − n

2σ4 +
1
σ4 +

n−1
σ4

¶
=

µ
n
σ2 0
0 n

2σ4

¶
.

Jeffreys� prior is then given by

¡
det I(µ, σ2)

¢1/2
=
³ n
σ2

n

2σ4

´1/2
=

n√
2σ3

.

Note that this is different then the prior used in 7.4.12.





Chapter 8

Optimal Inferences

8.1 Optimal Unbiased Estimation

Exercises
8.1.1We have that L(1 | ·) = (3/2)L(2 | ·) and so by Section 6.1.1 T is a sufficient
statistic. Given T = 1, then the conditional distributions of s are given by the
following table.

s = 1 s = 2 s = 3 s = 4

fa (s |T = 1) 1/3
1/3+1/6 =

2
3

1/6
1/3+1/6 =

1
3 0 0

fb (s |T = 1) 1/2
1/2+1/4 =

2
3

1/4
1/2+1/4 =

1
3 0 0

We see that these are the same (i.e., independent of θ). When T = 3 the
conditional distributions of s are given by

s = 1 s = 2 s = 3 s = 4
fa (s |T = 3) 0 0 1 0
fb (s |T = 3) 0 0 1 0

and when T = 4 the conditional distributions are given by

s = 1 s = 2 s = 3 s = 4
fa (s |T = 4) 0 0 0 1
fb (s |T = 4) 0 0 0 1

and these are also independent of θ.

8.1.2 Using Var(x) = E
¡
x2
¢− (E(x))2 ,Var(x̄) =Var(x)/n we have that

E

Ã
nX
i=1

(xi − x̄)2
!
= E

Ã
nX
i=1

x2i − nx̄2
!
=

nX
i=1

E
¡
x2i
¢− nE ¡x̄2¢

= nE
¡
x21
¢− nE ¡x̄2¢ = n ¡σ2 + µ2¢− nµσ2

n
+ µ2

¶
= (n− 1)σ2

227
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and the result follows. This estimator will be UMVU whenever
¡
x̄, s2

¢
is a

complete sufficient statistic for the class of possible distributions that we are
sampling from.

8.1.3 From Example 8.1.3 we know that x̄ is a complete sufficient statistic.
Therefore, any function of x̄ is a UMVU estimator of its mean. We have that
E(x̄2) = µ2 + σ20/n and so x̄

2 − σ20/n + σ20 = x̄2 + (1− 1/n)σ20 is UMVU for
µ2 + σ20.

8.1.4 We have that E (x̄+ σ0z.25) = E (x̄) + σ0z.25 = µ + σ0z.25. Since x̄ is
complete this implies that x̄+ σ0z.25 is UMVU.

8.1.5 This is a UMVU estimator of 5 + 2µ.

8.1.6 We have that E (x̄) = θ and since x̄ is complete it is UMVU for θ.

8.1.7 We have that the mean of a Gamma(α0, β) random variable is given by

E (X) =
R∞
0
x (βx)

α0−1

Γ(α0)
e−βxβ dx = 1

βΓ(α0)

R∞
0
(βx)α0 e−βxβ dx = Γ(α0+1)

βΓ(α0)
= α0

β .

Therefore, x̄/α0 is an unbiased estimator of β−1, and since x̄ is complete, this
implies that x̄/α0 is UMVU.

8.1.8 The likelihood function is given by L
¡
x1, . . . , xn |σ2

¢
=

σ−2n exp
n
− 1
2σ2

Pn
i=1 (xi − µ0)2

o
. By factorization (Theorem 6.1.1),Pn

i=1 (xi − µ0)2 is sufficient. Further, Eσ2
³Pn

i=1 (xi − µ0)2
´
= nσ2, so

n−1
Pn
i=1 (xi − µ0)2 is unbiased for σ2. Since this sufficient statistic is complete,

we have that n−1
Pn
i=1 (xi − µ0)2 is UMVU for σ2.

8.1.9 The parameter of the interest is ψ = P ((−1, 1)). The statistic I(−1,1)(X1)
is unbiased because E[I(−1,1)(X1)] = P (X1 ∈ (−1, 1)) = ψ. Example 8.1.5 says
U = (X(1), . . . ,X(n)) is a complete minimal sufficient for the model. Hence,
T = E[I(−1,1)(X1)|U ] is the UMVU estimator by Theorem 8.1.5. By sym-
metry E[I(−1,1)(X1)|U ] = · · · = E[I(−1,1)(Xn)|U ]. Since

Pn
i=1 I(−1,1)(X(i)) =

E[
Pn
i=1 I(−1,1)(X(i))|U ] = E[

Pn
i=1 I(−1,1)(Xi)|U ] = nE[I(−1,1)(X1)|U ] = nT ,

the UMVU estimator T is n−1
Pn
i=1 I(−1,1)(Xi).

8.1.10 Let X1, . . . ,Xn be a random sample. The parameter of the interest is
ψ = µ2 and E[X1X2] = E[X1]E[X2] = µ2. Hence, X1X2 is an unbiased esti-
mator of ψ = µ2. As in Example 8.1.5, the order statistic U = (X(1), . . . ,X(n))
is complete and sufficient. By the Lehman�Scheffé theorem, T = E[X1X2|U ] is
UMVU. Then via symmetry

T =

µ
n

2

¶−1X
i<j

XiXj =
1

2

µ
n

2

¶−1X
i 6=j

XiXj =
1

2

µ
n

2

¶−1 nX
i=1

Xi(nX̄ −Xi)

=
1

n(n− 1) [(X1 + · · ·+Xn)
2 − (X2

1 + · · ·+X2
n)]

is the UMVU estimator.
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8.1.11 Yes, T will still be UMVU because it is the only unbiased estimator, due
to completeness of the order statistic in the family of all continuous distributions
with Þrst moment.

Problems
8.1.12 The likelihood function is given by L (x1, . . . , xn | θ) = θ−n whenever
θ > x(n) and 0 otherwise. Therefore, when we know x(n) we know the likelihood
function and so x(n) is sufficient. Then x(n) has density given by θ−nnxn−1 for

0 < x < θ and E
¡
x(n)

¢
=
R θ
0 θ

−nnxn dx = θ−nn
n+1 x

n+1
¯̄θ
0
= n

n+1θ. So
n+1
n x(n) is

UMVU for θ.

8.1.13 We have that the joint conditional probability function of (x1, . . . , xn)
given nx̄ is

nY
i=1

θxi (1− θ)1−xi /
½µ

n

nx̄

¶
θnx̄ (1− θ)n−nx̄

¾
= 1/

µ
n

nx̄

¶
.

This is the uniform distribution on the set of all sequences of 0�s and 1�s of
length n that have nx̄ 1�s.

8.1.14 We have that

(θ − αa1 − (1− α)a2)2 = θ2 − 2θ (αa1 + (1− α)a2) + (αa1 + (1− α)a2)2

= α (θ − a1)2 + (1− α) (θ − a2)2 − αa21 − (1− α)a21 + (αa1 + (1− α)a2)2

= α (θ − a1)2 + (1− α) (θ − a2)2 − α (1− α)a21 − α (1− α)a21 + α (1− α) 2a1a2
= α (θ − a1)2 + (1− α) (θ − a2)2 − α (1− α) (a1 − a2)2

≤ α (θ − a1)2 + (1− α) (θ − a2)2 .
Then by Jensen�s inequality we have that MSEθ (T ) = Eθ((T − ψ (θ))2) =
Eθ(EP (· |U) (T − ψ (θ))2) ≥ Eθ(

¡
EP (· |U) (T )− ψ (θ)

¢2
) =MSEθ (TU) .

8.1.15 We have that

|x+ y| =
½

x+ y x+ y ≥ 0
− (x+ y) x+ y ≤ 0 ≤ |x|+ |y|

for any x, y. Therefore,

|θ − αa1 − (1− α)a2| = |α (θ − a1) + (1− α) (θ − a2)|
≤ |α (θ− a1)|+ |(1− α) (θ− a2)| = α |θ − a1|+ (1− α) |θ − a2| .

Then by Jensen�s inequality Eθ (|T − ψ (θ)|) = Eθ
¡
EP (· |U) (|T − ψ (θ)|)

¢ ≥
Eθ
¡¯̄
EP (· |U) (T )− ψ (θ)

¯̄¢
= Eθ (|TU − ψ (θ)|) .

8.1.16 We have that

MSE(µ,σ2)
¡
cs2
¢
= E(µ,σ2)

³¡
cs2 − σ2¢2´ = σ4E(µ,σ2)

Ãµ
c

(n− 1)X − 1
¶2!

= σ4

(µ
c

n− 1
¶2
E(µ,σ2)

¡
X2
¢− 2c

n− 1E(µ,σ2) (X) + 1
)
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whereX = (n− 1) s2/σ2 ∼ χ2(n−1). SoE(µ,σ2) (X) = n−1 and Var(µ,σ2) (X) =
2(n− 1), which implies E(µ,σ2)

¡
X2
¢
= 2(n− 1) + (n− 1)2 . Differentiating the

above expression with respect to c, and setting the derivative equal to 0, gives
that the optimal value satisÞes

c

(n− 1)2E(µ,σ2)
¡
X2
¢− 1

n− 1E(µ,σ2) (X) = 0

or

c = (n− 1) E(µ,σ2) (X)
E(µ,σ2) (X2)

= (n− 1) (n− 1)
2(n− 1) + (n− 1)2 =

n− 1
n+ 1

.

We have that the bias equals

E(µ,σ2)
¡
cs2
¢− σ2 = (c− 1)σ2 = µn− 1

n+ 1
− 1
¶
σ2 =

−2σ2
n+ 1

σ2.

8.1.17 Suppose that c is a function such that Eθ (c (U)) = 0 for every θ.
Then Eθ (c (h(T ))) = 0 for every θ, and the completeness of T implies that
Pθ ({s : c (h(T (s))) = 0}) = 1 for every θ. Now suppose u is such that c (u) 6= 0.
Then Pθ (U = u) = Pθ (h (T ) = u) = Pθ

¡
T = h−1 (u)

¢
=

Pθ
¡©
s : T (s) = h−1 (u)

ª¢
= 0 since c(h(T (s)) = c (u) for s in©

s : T (s) = h−1 (u)
ª
. This implies that U is complete.

8.1.18 We have that X = (n− 1) s2/σ2 ∼ χ2(n−1) = Gamma((n− 1) /2, 1/2)
and so

E
³
X1/2

´
=

1

Γ
¡
n−1
2

¢ Z ∞

0

x1/2
³x
2

´n−1
2 −1

e−
x
2
1

2
dx

=
21/2

Γ
¡
n−1
2

¢ Z ∞

0

³x
2

´n
2−1

e−
x
2
1

2
dx =

21/2Γ
¡
n
2

¢
Γ
¡
n−1
2

¢ .
Therefore, (n− 1)1/2 Γ ¡n−12 ¢ s/21/2Γ ¡n2 ¢ is an unbiased estimator of σ. Since
it is a function of the complete sufficient statistic, it is UMVU.

8.1.19 From Problem 8.1.18 we have that x̄+(n− 1)1/2 Γ ¡n−12 ¢
s z.25/2

1/2Γ
¡
n
2

¢
is an unbiased estimator of the Þrst quartile. Since it is a function of a complete
sufficient statistic, it is UMVU.

8.1.20 The likelihood function is given by L (x1, . . . , xn |µ) =
exp

n
−n (x̄− µ)2 /2σ20

o
for µ ∈ {µ1, µ2} . Clearly, given x̄ we can determine the

likelihood function so x̄ is sufficient. Now the log-likelihood function takes the
values −n (x̄− µ1)2 /2σ20 and −n (x̄− µ2)2 /2σ20 , which give

−n (x̄− µ1)2
2σ20

+
n (x̄− µ2)2

2σ20
=
nx̄ (µ1 − µ2)

σ20
− n

¡
µ21 − µ22

¢
2σ20

,

so we can determine x̄ from the likelihood, and x̄ is a minimal sufficient statistic.
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Now supposing µ1 < µ2, we have that

Pµ (µ1 < x̄ < µ2) = Pµ

µ
µ1 − µ
σ0/

√
n
<
x̄− µ
σ0/

√
n
<
µ2 − µ
σ0/

√
n

¶

= Φ

µ
µ2 − µ
σ0/

√
n

¶
−Φ

µ
µ1 − µ
σ0/

√
n

¶
=

 Φ
³
µ2−µ1
σ0/

√
n

´
−Φ (0) µ = µ1

Φ (0)−Φ
³
µ1−µ2
σ0/

√
n

´
µ = µ2

and, since Φ
³
µ2−µ1
σ0/

√
n

´
= 1 − Φ

³
µ1−µ2
σ0/

√
n

´
, we see that this probability is inde-

pendent of µ ∈ {µ1, µ2} . Now I(µ1,µ2) (x̄) is unbiased for Pµ (µ1 < x̄ < µ2) and
therefore I(µ1,µ2) (x̄) − Pµ (µ1 < x̄ < µ2) is an unbiased estimator of 0 that is
not 0 with probability 1. Therefore, x̄ is not complete.

8.1.21 The log-likelihood function is given by −n (x̄− µ)2 /2σ20, so
S (µ |x1, . . . , xn) = n (x̄− µ) /σ20. Then S0 (µ |x1, . . . , xn) = −n/σ20, so I (µ) =
n/σ20 . Since ψ (µ) = µ

2+σ20 , then ψ
0 (µ) = 2µ and the information lower bound

for an unbiased estimator is given by 4µ2σ20/n. The estimator that obtains this

lower bound is given by µ2 + σ20 − 2µσ
2
0

n
n(x̄−µ)
σ20

= −2µx̄ + 3µ2 + σ20, which is
not equal to the UMVU estimator obtained in Exercise 8.1.3. Therefore, the
UMVU estimator cannot obtain the lower bound.

8.1.22 The log-likelihood function is given by l (β |x1, . . . , xn) = nα0 lnβ−βnx̄,
so S (β |x1, . . . , xn) = nα0/β−nx̄, S0 (β |x1, . . . , xn) = −nα0/β2, which implies
I (β) = nα0/β

2. Since ψ (β) = β−1, ψ0 (β) = −β−2 the information lower bound
for unbiased estimators is given by

¡
1/β4

¢ ¡
β2/nα0

¢
= 1/nα0β

2. Note that
by Exercise 8.1.7 x̄/α0 is UMVU for β−1 and this has variance α0/nα20β2 =
1/nα0β

2, which is the Cramer-Rao lower bound.

8.1.23 The log-likelihood function is given by l (θ |x1, . . . , xn) =
n ln θ + (θ − 1)Pn

i=1 lnxi, so S (θ |x1, . . . , xn) =
n/θ+

Pn
i=1 lnxi, S

0 (β |x1, . . . , xn) = −n/θ2, which implies I (β) = n/θ2. Since
ψ (θ) = θ, ψ0 (β) = 1 the information lower bound for unbiased estimators is
given by θ2/n. This is attained by the estimator θ+ θ2

n

¡
n
θ +

Pn
i=1 lnxi

¢
= 2θ+

θ2

n

Pn
i=1 lnxi. Since this depends on θ, this implies that any UMVU estimator,

if it exists, cannot have variance at the lower bound.

8.1.24 The deÞnition of completeness is Eθ[g(T )] = 0 for all θ ∈ Ω implies
Pθ(g(T ) = 0) = 1 for all θ ∈ Ω. To be a complete statistic for a submodel
Ω0 ⊂ Ω, T must satisfy that Eθ[g(T )] = 0 for all θ ∈ Ω0 implies Pθ(g(T ) =
0) = 1 for all θ ∈ Ω0. Hence, the restriction is shrunken from Ω to Ω0. This
smaller restriction may cause incompleteness of T . For example T = (X̄, S2)
is complete for N(µ, σ2) model as in Example 8.1.4. If we consider the model
Ω0 = {N(θ, θ2) : θ > 0} ⊂ Ω, the statistic T is not complete because Eθ[nX̄2 −
(n+ 1)S2] = 0 even though Pθ(nX̄2 − (n+ 1)S2 = 0) = 0.
8.1.25 Let Ω0 be a submodel of Ω. Assume that for a Borel set B, Pθ(B) = 0
for θ ∈ Ω if Pθ(B) = 0 for θ ∈ Ω0. Suppose T is a complete statistic for the
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submodel Ω0. Suppose there is a function g such that Eθ[g(T )] = 0 for all θ ∈ Ω.
Since Ω0 ⊂ Ω, Eθ[g(T )] = 0 for all θ ∈ Ω0. The completeness of T in Ω0 implies
Pθ(g(T ) = 0) = 1 for all θ ∈ Ω0. Let B = {g(T ) 6= 0}. Then Pθ(B) = 0 for
all θ ∈ Ω0. Thus, Pθ(B) = 0 for all θ ∈ Ω by the assumption. Therefore T is
complete for the model Ω as well.

Challenges
8.1.26 We can assume that c = 0 (or else replaceX by Y = X−c).We have that
X(s) = X(s)I(−∞,−1) (X(s)) + X(s)I[−1,1] (X(s)) + X(s)I(1,∞) (X(s)) . Then
E(X) = E

¡
XI(−∞,−1) (X)

¢
+ E

¡
XI[−1,1] (X)

¢
+ E

¡
XI(1,∞) (X)

¢
and −1 ≤

E
¡
XI[−1,1] (X)

¢ ≤ 1.Also, E ¡X2
¢
= E

¡
X2I(−∞,−1) (X)

¢
+E

¡
X2I[−1,1] (X)

¢
+

E
¡
X2I(1,∞) (X)

¢
, and each term in this sum is nonnegative (possibly inÞnite).

Now suppose E
¡
XI(1,∞) (X)

¢
= ∞. Then, when X > 1, we have X2 > X

and so E
¡
X2I(1,∞) (X)

¢ ≥ E ¡XI(1,∞) (X)¢ =∞. If E ¡XI(−∞,−1) (X)¢ = −∞
then, when X < −1, we have −X2 < X, so E

¡−X2I(1,∞) (X)
¢ ≤

E
¡
XI(1,∞) (X)

¢
= −∞, which implies E ¡X2I(1,∞) (X)

¢
= ∞. In both cases,

we have that E(X2) =∞.
8.1.27 The log-likelihood function is given by l (β |x1, . . . , xn) = nα0 lnβ−βnx̄,
so x̄ determines the likelihood and as such is sufficient. Now S (β |x1, . . . , xn)
= nα0/β − nx̄, and, setting the score function equal to 0, we obtain the MLE
of β as α0/x̄, so we can also obtain x̄ from the likelihood. This implies that x̄
is minimal sufficient.
We know that x̄ ∼ Gamma(nα0, nβ). We will present the argument when

n = 1 and the proof is the same for n > 1.
Now suppose h is such that Eβ (h (X)) = 0 for every β > 0.
Suppose that h ≥ 0. Then this implies that R∞0 h(x)xα−1e−βx dx = 0 for any

β, but since the integrand is nonnegative, this can only happen when h(x) = 0.
Similarly if h ≤ 0.
Nowwrite h = h+−h− where h+(x) = max{0, h(x)}, h−(x) = max{0,−h(x)},

and we must have
R∞
0
h+(x)xα−1e−βx dx =

R∞
0
h−(x)xα−1e−βx dx. This im-

plies
R∞
0 h+(x)xα−1e−x dx =

R∞
0 h−(x)xα−1e−x dx. Now suppose h+ > 0 and

h− > 0 on subintervals of (0,∞). Note they cannot both be nonzero on the
same subinterval. Then we have thatR∞

0
e−(β−1)xh+(x)xα−1e−x dxR∞
0
h+(x)xα−1e−x dx

=

R∞
0
e−(β−1)xh−(x)xα−1e−x dxR∞
0
h−(x)xα−1e−x dx

or m+ (β − 1) =m− (β − 1) for every β > 1, where m+ is the mgf of the distri-
bution on (0,∞) with density given by h+(x)xα−1e−x/ R∞0 h+(x)xα−1e−x dx,
and m− is the mgf of the distribution on (0,∞) with density given by
h−(x)xα−1e−x/

R∞
0 h−(x)xα−1e−x dx. But the equality of the mgf�s implies the

equality of the distributions (Theorem 3.4.6), and these distributions are con-
centrated on disjoint subsets, so we have a contradiction to the supposition that
h+ > 0 and h− > 0 on subintervals of (0,∞). This implies that h+ = h− = 0
and so h = 0.
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8.2 Optimal Hypothesis Testing

Exercises
8.2.1 The ratio fb(s)/fa(s) has the following distribution when θ = a :
Pa (fb(s)/fa(s) = 3/2) = Pa ({1, 2}) = 1/2, Pa (fb(s)/fa(s) = 2) = Pa ({3}) =
1/12, and Pa (fb(s)/fa(s) = 1/5) = Pa ({4}) = 5/12.When α = .1, using (8.2.4)
and (8.2.5), we have that c0 = 3/2 and γ = ((1/10)− (1/12)) / (1/2) = 1/30.
The power of the test is Pb ({3}) + Pb ({1, 2}) /30 = 1/6 + (3/4)/30 = 23/120.
When α = .05 we have that c0 = 2 and γ = ((1/20)− 0) / (1/12) = 3/5.The

power of the test is Pb ({3}) (3/5) = (1/6) (3/5) = 1/10.
8.2.2 Such a test completely ignores the data and so makes no use of any
information that this provides about the true value of θ. The power of such a
test is clearly 1/20, and this is smaller than the power 1/10 of the optimal size
.05 test derived in Exercise 8.2.1.

8.2.3 By (8.2.6) the optimal .01 test is of the form (using z.99 = 2.3263)

ϕ0 (x̄) =


1 x̄ ≥ 1 +

√
2√
10
2.3263

0 x̄ < 1 +
√
2√
10
2.3263

=

 1 x̄ ≥ 2.0404

0 x̄ < 2.0404.

8.2.4
(a) Let C be the 0.975-conÞdence interval for µ. Then, Pµ(C) = 0.975. The
size of the test is the rejecting probability of H0. Hence, the size is α = P0(0 6∈
C) = 1− P0(C) = 1− 0.975 = 0.025.
(b) The conÞdence interval C is [x̄− z0.9875/

√
20, x̄ + z0.9875/

√
20]. Since x̄ ∼

N(θ, 1/20) if θ is true, the power function is given by

β(θ) = Pθ(0 6∈ C) = Pθ(x̄ < −z0.9875/
√
20 or x̄ > z0.9875/

√
20)

= Φ(−(z0.9875 + θ)/
√
20) + 1− Φ((z0.9875 − θ)/

√
20).

8.2.5
(a) Since Pθ(X > 1) = 0 for all θ ≤ 1, the size α = supθ∈H0

Pθ(X > 1) = 0.

(b) Suppose θ > 1. The power function is β(θ) = Pθ(X > 1) =
R θ
1
(1/θ)dx =

1− 1/θ.
8.2.6 The power is too low to conÞdently say that H0 is true. A small power
indicates that we have a low probability of detecting practically signiÞcant de-
viations from 0 with this test.

8.2.7 The test is H0 : µ = 0 versus Ha : µ = 2. Hence, the UMP size α test has
the rejection region φ1/n(x̄− 2)/φ1/n(x̄) = exp(2n(x̄− 1)) > kα. The rejection
region is equivalent to x̄ > k0α for some k0α > 0. Since α = P0(x̄ > k0α) =
1 − Φ(√nk0α) = 1 − Φ(z1−α), the critical point is k0α = z1−α/

√
n. The power

function is given by

β(2) = P2(x̄ > k
0
α) = P2(x̄ > z1−α/

√
n) = 1−Φ(z1−α − 2

√
n) ≥ 0.99

= 1−Φ(z0.01).
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The solution is

n ≥ (z1−α − z0.01)2/4 = (z0.95 − z0.01)2/4 = (1.6449− (−2.3263))2/4 = 3.9426.
Hence, we need at least n = 4 samples.

8.2.8 What we care in optimal hypothesis testing theory is type I and II errors,
i.e., signiÞcance level and power function. Hence, we must ignore the difference
of two test procedures whenever two tests have the same signiÞcance level and
the same power function.

8.2.9 Suppose we have two size α test functions ϕ and ϕ0 for this testing prob-
lem, with corresponding power functions βϕ and βϕ0 . Since ϕ is UMP we must
have that βϕ(θ) ≥ βϕ0 for all θ > 0. This implies that the graph of βϕ lies above
the graph of βϕ0 .

Computer Exercises
8.2.10 The power β(θ) is given by

β(θ) = Eθ(IR(X)) = Pθ(X ∈ R) =
X
x∈R

µ
n

x

¶
θx(1− θ)n−x

The result is given by the following table.

θ 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
β 1.000 0.639 0.248 0.101 0.172 0.384 0.532 0.334 0.000

The Minitab macro for the computation is given below.

macro
solution
mcolumn c7 c8 c9 c10
mconstant k1 k2
set c7
0 1 7 8

end
set c8
1:9

end
let c8=(c8-1)/8
do k1=2:8
let k2=c8(k1)
pdf c7 c10;
binomial 10 k2.

let c9(k1) = sum(c10)
enddo
let c9(1) = 1
let c9(9) = 0
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name c8 "theta" c9 "power"
print c8 c9
endmacro

8.2.11 We use notations in Example 8.2.1 with σ20 = 1. The choice of σ
2
0 does

not make any difference except the scale of µ, i.e., βσ20 (µ) = β1(σ0µ). The
rejection region is given by R = {(x1, . . . , xn) : |x̄ − µ0| > z1−α/2/

√
n} where

µ0 = 0. The power function is

β(µ) = EµIR((X1, . . . ,Xn)) = Pµ(R)

= Pµ(X̄ > z1−α/2/
√
n or X̄ < −z1−α/2/

√
n)

= 1−Φ(z1−α/2 − µ
√
n) +Φ(−z1−α/2 − µ

√
n)

= Φ(−z1−α/2 + µ
√
n) +Φ(−z1−α/2 − µ

√
n).

The graph of the power functions is drawn below.

The Minitab code for this graph is as below.

%solution 0.05
# the corresponding macro "solution.mac"
macro
solution ALPHA
mcolumn c1 c2 c3 c4 c5 c6 c7 c8 c9
mconstant ALPHA k1 k2 k3 k4 k5 k6 k7 k8
# ALPHA is the significance level alpha
set c1
1:2001

end
let c1=(c1-1001)/1000*7
let k2=1-ALPHA/2
invcdf k2 k1;
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normal 0 1.
# n=1
name k2 "N"
let N=1
let c7=-k1+c1*sqrt(N)
cdf c7 c8;
normal 0 1.

let c7=-k1-c1*sqrt(N)
cdf c7 c9;
normal 0 1.

let c2=c8+c9
# n=4
name k2 "N"
let N=4
let c7=-k1+c1*sqrt(N)
cdf c7 c8;
normal 0 1.

let c7=-k1-c1*sqrt(N)
cdf c7 c9;
normal 0 1.

let c3=c8+c9
# n=10
name k2 "N"
let N=10
let c7=-k1+c1*sqrt(N)
cdf c7 c8;
normal 0 1.

let c7=-k1-c1*sqrt(N)
cdf c7 c9;
normal 0 1.

let c4=c8+c9
# n=20
name k2 "N"
let N=20
let c7=-k1+c1*sqrt(N)
cdf c7 c8;
normal 0 1.

let c7=-k1-c1*sqrt(N)
cdf c7 c9;
normal 0 1.

let c5=c8+c9
# n=100
name k2 "N"
let N=100
let c7=-k1+c1*sqrt(N)
cdf c7 c8;
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normal 0 1.
let c7=-k1-c1*sqrt(N)
cdf c7 c9;
normal 0 1.

let c6=c8+c9
name c1 "mu" c2 "n=1" c3 "n=4" c4 "n=10" c5 "n=20" c6 "n=100"
plot (c2-c6) * c1;
nodtitle;
connect;
graph;
color 23;

overlay.
endmacro

(a) The power is increasing at any Þxed parameter µ as the sample size n is
increasing.
(b) A test ϕ is unbiased if β(θ) ≥ α for all θ ∈ Ha. Since all power functions
are above 0.05, all tests are unbiased.

Problems
8.2.12 From the argument in the text we have that (8.2.7) is UMP size α for
H0 : µ = µ0 versus Ha : µ = µ1 for some µ1 < µ0. Since the test does not
depend on µ1, this says that (8.2.7) is UMP size α for H0 : µ = µ0 versus Ha :

µ < µ0. Now the power function is given by βϕ0 (µ) = Pµ
³
x̄ ≤ µ0 + σ0√

n
zα

´
=

Pµ

³
x̄−µ
σ0/

√
n
≤ µ0−µ

σ0/
√
n
+ zα

´
= Φ

³
µ0−µ
σ0/

√
n
+ zα

´
. Note that this is decreasing in µ.

This implies that ϕ0 is a size α test function for H0 : µ ≥ µ0 versus Ha : µ < µ0.
Observe that, if ϕ is a size α test function for H0 : µ ≥ µ0 versus Ha : µ < µ0,
then it is also a size α test for H0 : µ = µ0 versus Ha : µ < µ0. From this we
conclude that ϕ0 is UMP size α for H0 : µ ≤ µ0 versus Ha : µ > µ0.
8.2.13 We have that Eθ (ϕ) = α for every θ, so it is of exact size α. For this
test, no matter what data is obtained, we randomly decide to reject H0 with
probability α.

8.2.14 Suppose that ϕ0 is a size α UMP test for a speciÞc problem and let ϕ
be the test function of Problem 8.2.13. Then for θ such that the alternative is
true we have that Eθ (ϕ0) ≥ Eθ (ϕ) = α, so ϕ0 is unbiased.
8.2.15 The likelihood function is given by L (β |x1, . . . , xn) = βnα0 exp {−βnx̄} .
Therefore, we reject H0 : β = β0 versus Ha : β = β1 whenever
βnα01 exp {−β1nx̄} /βnα00 exp {−β0nx̄} > c0 or, equivalently, whenever
(β0 − β1)nx̄ > nα0 (β0 − β1) + ln c0 or, since β0 < β1, whenever nx̄ <
(nα0 (β0 − β1) + ln c0) / (β0 − β1) . When H0 is true we have that nX̄ ∼
Gamma(nα0, β0), so with x1−α (β0) denoting the (1−α)th quantile of this dis-
tribution, the UMP size α test is to reject whenever nx̄ ≤ xα (β0) .
Since this test does not depend on β1, it is also UMP size α for H0 : β =

β0 versus Ha : β > β0. Now observe that when X ∼ Gamma(α, β) , Z =
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βX ∼ Gamma(α, 1) . Therefore, Pβ (nx̄ ≤ x1−α (β0)) = Pβ (βnx̄ ≤ βxα (β0)) =
P1 (Z ≤ βxα (β0)) , where Z ∼ Gamma(α, 1) . The above implies that the power
function is increasing in β. Therefore, the above test is size α for H0 : β ≤ β0
versus Ha : β > β0. Now suppose ϕ is also size α for H0 : β ≤ β0 versus
Ha : β > β0. Then ϕ is also size α for H0 : β = β0 versus Ha : β > β0 and so
must have its power function uniformly less than or equal to the power function
for the above test when β > β0. This implies that the above test is UMP size α
for H0 : β ≤ β0 versus Ha : β > β0.
8.2.16 Without loss of generality, assume µ0 = 0. Then for H0 : σ2 = σ20 versus
Ha : σ2 = σ21, the UMP size α test rejects H0 whenever

L
¡
σ21 |x1, . . . , xn

¢
L (σ20 |x1, . . . , xn)

=
σ−2n1 exp

n
− 1
2σ21

Pn
i=1 x

2
i

o
σ−2n0 exp

n
− 1
2σ20

Pn
i=1 x

2
i

o > c0
or, equivalently, whenever n

¡
σ20 − σ21

¢
+ 1

2

³
1
σ20
− 1

σ21

´Pn
i=1 x

2
i > ln c0 or, using

σ20 < σ
2
1, whenever

1

σ20

nX
i=1

x2i >
2

σ20

µ
1

σ20
− 1

σ21

¶−1 ¡
ln c0 − n

¡
σ20 − σ21

¢¢
.

Under H0 we have that 1
σ20

Pn
i=1 x

2
i ∼ χ2 (n), so the test is to reject when-

ever 1
σ20

Pn
i=1 x

2
i > x1−α, where x1−α is the (1− α)th quantile of the χ2 (n)

distribution. Since the test does not involve σ21, it is UMP size α for H0 :
σ2 = σ20 versus Ha : σ

2 > σ20. The power function of this test is given by

Pσ2
³
1
σ20

Pn
i=1 x

2
i ≥ x1−α

´
= Pσ2

³
1
σ2

Pn
i=1 x

2
i ≥ σ20

σ2x1−α
´
= P

³
Z ≥ σ20

σ2x1−α
´

where Z =
¡Pn

i=1 x
2
i

¢
/σ2 ∼ χ2 (n), so the power function is increasing in σ2.

This implies that the above test is of size α forH0 : σ2 ≤ σ20 versusHa : σ2 > σ20.
Now suppose ϕ is also size α for H0 : σ2 ≤ σ20 versus Ha : σ2 > σ20. Then ϕ is
also size α for H0 : σ2 = σ20 versus Ha : σ

2 > σ20 and so must have its power
function uniformly less than or equal to the power function for the above test
when σ2 > σ20 . This implies that the above test is UMP size α for H0 : σ

2 ≤ σ20
versus Ha : σ2 > σ20.

8.2.17 For H0 : θ = θ0 versusHa : θ = θ1, the UMP size α test rejectsH0 when-
ever L (θ1 |x1, . . . , xn) /L (θ0 |x1, . . . , xn) = θ−n1 I(0,θ1)

¡
x(n)

¢
/θ−n0 I(0,θ0)

¡
x(n)

¢
>

c0 or, equivalently, whenever I(0,θ1)
¡
x(n)

¢
/I(0,θ0)

¡
x(n)

¢
> θ−n0 c0/θ

−n
1 . So we

reject categorically whenever x(n) > θ0 because the likelihood ratio equals ∞.
When 0 ≤ x(n) ≤ 1 the likelihood ratio equals θ−n1 /θ−n0 . This implies that the
UMP size α rejects whenever the likelihood ratio is greater than θ−n1 /θ−n0 (i.e.,
equals ∞) and otherwise we randomly reject with probability α (i.e., when the
likelihood ratio does not equal ∞).
Note that the above test does not depend on θ1 and so is UMP size α for H0 :

θ = θ0 versusHa : θ > θ0. Further, if θ < θ0 we have that Pθ
³
L(θ1 |x1,...,xn)
L(θ |x1,...,xn) <∞

´
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= 1, so the above test has size α for H0 : θ ≤ θ0 versus Ha : θ > θ0. Now sup-
pose ϕ is size α for H0 : θ ≤ θ0 versus Ha : θ > θ0. Then ϕ is also size α for
H0 : θ = θ0 versus Ha : θ > θ0 and so must have its power function uniformly
less than or equal to the power function for the above test when θ > θ0. This
implies that the above test is UMP size α for H0 : θ ≤ θ0 versus Ha : θ > θ0.
8.2.18 Suppose X ∼ Binomial(n, θ) and put

F (x) =
Γ (n+ 1)

Γ (x+ 1)Γ (n− x)
Z 1

θ

yx (1− y)n−x−1 dy.

So F (0) = Γ(n+1)
Γ(0+1)Γ(n−0)

R 1
θ
y0 (1− y)n−0−1 dy = n R 1

θ
(1− y)n−1 dy = (1− θ)n

= P (X = 0). Using integration by parts we put u = yx, giving du = xyx−1 and
dv = (1− y)n−x−1 , giving v = − (1− y)n−x /(n− x), so that

F (x) =
Γ (n+ 1)

Γ (x+ 1)Γ (n− x)
Z 1

θ

yx (1− y)n−x−1 dy

=
Γ (n+ 1)

Γ (x+ 1)Γ (n− x)

−yx (1− y)n−xn− x

¯̄̄̄
¯
1

θ

+
x

n− x
Z 1

θ

yx−1 (1− y)n−x dy


=

µ
n

x

¶
θx (1− θ)n−x + Γ (n+ 1)

Γ (x)Γ (n− x+ 1)
Z 1

θ

yx−1 (1− y)n−x dy
= P (X = x) + F (x− 1).

Continuing this recursively establishes the result.

8.2.19 Let X ∼ Poisson(λ) and put F (x) = 1
x!

R∞
λ
yxe−y dy. Then F (0) =

1
0!

R∞
λ
y0e−y dy = e−y = P (X = 0). Using integration by parts with u = yx,

giving du = xyx−1, dv = e−y, giving v = −e−y, we have that

F (x) =
1

x!

½
−yxe−y ¯̄∞

λ
+ x

Z ∞

λ

yx−1e−y dy
¾
=
λxe−λ

x!
+ F (x− 1)

= P (X = x) + F (x− 1) .
Continuing this recursively establishes the result.

8.2.20 The UMP size α test for H0 : λ = λ0 versus H0 : λ = λ1 is of the form

L (λ1 |x1, . . . , xn)
L (λ0 |x1, . . . , xn) =

(λ1)
nx̄ e−λ1

(λ0)
nx̄ e−λ0

> c0

or, equivalently, whenever nx̄ (lnλ1 − lnλ0) > (λ1 − λ0) ln c0, and since λ1 >
λ0, this is equivalent to rejecting whenever nx̄ > (λ1 − λ0) ln c0/ (lnλ1 − lnλ0) .
Now recall that nx̄ ∼ Poisson(nλ0) under H0 so we must determine the smallest
k such that Pλ0 (nx̄ > k) ≤ α and then put γ = (α− Pλ0 (nx̄ > k)) /Pλ0 (nx̄ = k) .
Since this test does not involve λ1, it is UMP size α for H0 : λ = λ0 versus H0 :
λ > λ0. From Problem 8.2.19 we have that Pλ (nx̄ > k) ≤ 1− 1

x!

R∞
λ
yxe−y dy,
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and we see that this is increasing in λ. Therefore, this test is UMP size α for
H0 : λ ≤ λ0 versus H0 : λ > λ0.
8.2.21 When H0 : µ = µ0 holds, the log-likelihood and score functions are given
by l

¡
x1, . . . , xn |σ2

¢
= −n lnσ2 − 1

2σ2

Pn
i=1 (x− µ0)2 , S

¡
x1, . . . , xn |σ2

¢
=

− n
σ2 +

1
2σ4

Pn
i=1 (x− µ0)2 . Then S

¡
x1, . . . , xn |σ2

¢
= 0 leads to the MLE

�µH0
= µ0, �σ2H0

= 1
n

Pn
i=1 (x− µ0)2 , and the maximized log-likelihood equals

l
¡
x1, . . . , xn | �σ2H0

¢
= n lnn− n lnPn

i=1 (x− µ0)2 − n
2 .

When Ha : µ 6= µ0 holds, the log-likelihood function is given by
l
¡
x1, . . . , xn |µ, σ2

¢
= −n lnσ2 − 1

2σ2

Pn
i=1 (x− µ)2 .

By Example 6.2.6 the MLE is given by �µ = x̄, �σ2 = 1
n

Pn
i=1 (x− x̄)2 and the

maximized log-likelihood is given by l
¡
x1, . . . , xn | �µ, �σ2

¢
=

n lnn− n lnPn
i=1 (x− x̄)2 − n

2 . Then the likelihood ratio test rejects whenever

2
¡
l
¡
x1, . . . , xn | �µ, �σ2

¢− l ¡x1, . . . , xn | �σ2H0

¢¢
= 2

Ã
−n ln

nX
i=1

(x− x̄)2 + n ln
nX
i=1

(x− µ0)2
!
= 2n ln

Pn
i=1 (x− µ0)2Pn
i=1 (x− x̄)2

> x1−α

where x1−α is the (1− α)th quantile of the χ2 (2− 1) = χ2 (1) distribution.
8.2.22
(a) We have that

Pθ (ψ (θ) ∈ C(s)) = Pθ ({s : ψ (θ) ∈ C(s)}) = Pθ
¡©
s : ϕψ(θ) (s) = 0

ª¢
= 1− Pθ

¡©
s : ϕψ(θ) (s) = 1

ª¢
= 1−Eθ

¡
ϕψ(θ)

¢ ≥ 1− α
since Eθ

¡
ϕψ(θ)

¢ ≤ α.
(b) We have that Eθ

³
ϕ∗ψ(θ)

´
= Pθ (ψ (θ) /∈ C∗(s)) = 1 − Pθ (ψ (θ) ∈ C∗(s)) ≤

1− (1− α) = α since Pθ (ψ (θ) ∈ C∗(s)) ≥ 1− α.
(c) Suppose now that, for each value of ψ0, the test function ϕψ0 is UMP size
α for H0 : ψ (θ) = ψ0 versus Ha : ψ (θ) 6= ψ0. Then, if C is the conÞdence
set corresponding to this family of tests, we have that Pθ (ψ (θ∗) ∈ C(s)) =
Pθ ({s : ψ (θ∗) ∈ C(s)}) = 1− Pθ (ψ (θ∗) /∈ C∗(s)) = 1− Eθ

¡
ϕψ(θ∗)

¢
, and since

Eθ
¡
ϕψ(θ∗)

¢
is maximized when ψ (θ) 6= ψ (θ∗) , part (b) implies that the prob-

ability of covering a false value is uniformly minimized by C.

Challenges
8.2.23 Suppose that a test ϕ is size α and UMP for H0 : θ = θ0 versus Ha :
θ = θ1. Let ϕ0 be as in Theorem 8.2.1. Following the proof of Theorem 8.2.1,
let S∗ = {s : ϕ0 (s) 6= ϕ (s)}∩ {s : fθ1 (s) 6= c0fθ0 (s)} . Then Eθ1 (ϕ) = Eθ1 (ϕ0)
and, since ϕ is size α, we have that 0 ≥ Eθ1 (ϕ0)−Eθ1 (ϕ)− c0 (α−Eθ0 (ϕ)) =P
s∈S (ϕ0 (s)− ϕ (s)) (fθ1 (s)− c0fθ0 (s)) =

P
s∈S∗ (ϕ0 (s)− ϕ (s))

× (fθ1 (s)− c0fθ0 (s)) ≥ 0 since (ϕ0 (s)− ϕ (s)) (fθ1 (s)− c0fθ0 (s)) > 0 on S∗.
But this implies that S∗ = φ and we have that ϕ0(s) = ϕ (s) whenever fθ1 (s) 6=
c0fθ0 (s) . The values ϕ0 and ϕ may differ on B = {s : fθ1 (s) = c0fθ0 (s)} .
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Since Eθ1 (ϕ0)−Eθ1 (ϕ) = 0 the inequalities above establish that
c0 (α−Eθ0 (ϕ)) = 0. If c0 = 0, then ϕ0(s) = 1 whenever fθ1 (s) > 0, so the
power of the UMP test is 1. If c0 6= 1, then Eθ0 (ϕ) = α and ϕ has exact size α.

8.3 Optimal Bayesian Inferences

Exercises
8.3.1 The posterior distribution of θ is given by

Π (θ = 1 | 2) =
1
2
1
6

1
2
1
6 +

1
2
1
4

=
2

5
, Π (θ = 2 | 2) =

1
2
1
4

1
2
1
6 +

1
2
1
4

=
3

5
,

so Π (θ = 2 | 2) > Π (θ = 1 | 2) and we accept H0 : θ = 2.
8.3.2 The Bayes rule is given by the posterior mean and this is given by 2

5+
3
52 =

8
5 .

8.3.3 In Example 7.1.2 we determined that the posterior distribution of µ is
given by the

N

Ãµ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
,

µ
1

τ20
+
n

σ20

¶−1!
distribution. Then the Bayes rule is given by the posterior meanµ

1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶
→
µ
n

σ20

¶−1µ
n

σ20
x̄

¶
= x̄

as τ0 →∞.
8.3.4 From Example 7.1.1 we have that the posterior distribution of θ is
Beta(nx̄+ α, n (1− x̄) + β) . The Bayes rule is given by the posterior mean and
this is evaluated in Example 7.2.2 to be (nx̄+ α) / (n+ α+ β) .

8.3.5 The likelihood is given by L (β |x1, . . . , xn) = βnα0 exp {−βnx̄} and the
prior density is π (β) ∝ βτ0−1e−υ0β. Therefore, the posterior density is pro-
portional to βnα0+τ0−1 exp {− (nx̄+ υ0)β} , and from this we deduce that the
posterior distribution of β is Gamma(nα0 + τ0, nx̄+ υ0) .The Bayes rule is given
by the posterior mean and this equals (nα0 + τ0) / (nx̄+ υ0) . By the weak
law of large numbers this converges in probability to (since Eβ (x̄) = α0/β)
α0/ (α0/β) = β as n→∞.
8.3.6 The Bayes rule is given by the posterior mean of 1/β and this equals

(nx̄+ υ0)
nα0+τ0

Γ (nα0 + τ0)

Z ∞

0

µ
1

β

¶
βnα0+τ0−1 exp {− (nx̄+ υ0)β} dβ

=
(nx̄+ υ0)

nα0+τ0

Γ (nα0 + τ0)

Z ∞

0

βnα0+τ0−2 exp {− (nx̄+ υ0)β} dβ

=
(nx̄+ υ0)

nα0+τ0

Γ (nα0 + τ0)

Γ (nα0 + τ0 − 1)
(nx̄+ υ0)

nα0+τ0−1 =
nx̄+ υ0

nα0 + τ0 − 1
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and this converges to (α0/β) /α0 = β−1 as n→∞.
8.3.7 By Theorem 8.3.2 the Bayes rule is given by ϕ(x̄) = 1 whenever the
posterior probability of H0 is less than or equal to the posterior probability of
Hc
0. Equivalently, ϕ(x̄) = 1 whenever the posterior probability of H0 is less than

or equal to 1/2. By (7.2.9) and Theorem 7.2.1 the posterior probability of H0
is given by

Π (ψ (θ) = ψ0 | s) = rBFH0

1 + rBFH0

where r = p0/(1− p0), BFH0 = m1(s)/m2(s) and mi(s) is the prior predictive
density of s = (x1, . . . , xn) under the prior Πi, where Π1 is the prior degenerate
at µ0, and Π2 is the N(µ0, σ20) prior. Note that Π (ψ (θ) = ψ0 | s) ≤ 1/2 if and
only if BFH0 ≤ r−1. Then following Example 7.2.13 we have that
m2(x1, . . . , xn)

=
¡
2πσ20

¢−n/2
exp

µ
−n− 1
2σ20

s2
¶
τ−10 exp

Ã
1

2

µ
1

τ20
+
n

σ20

¶−1µ
µ0
τ20
+
n

σ20
x̄

¶2!

× exp
µ
−1
2

µ
µ20
τ20
+
nx̄2

σ20

¶¶µ
n

σ20
+
1

τ20

¶−1/2
.

Because Π1 is degenerate at µ0, it is immediate that the prior predictive
under Π1 is given by

m1(x1, . . . , xn) =
¡
2πσ20

¢−n/2
exp

µ
−n− 1
2σ20

s2
¶
exp

µ
− n

2σ20
(x̄− µ0)2

¶
.

Therefore, BFH0
equals

BFH0 =
exp

³
− n
2σ20

(x̄− µ0)2
´

τ−10
³
n
σ20
+ 1

τ20

´−1/2
exp

µ
1
2

³
1
τ20
+ n

σ20

´−1 ³
µ0
τ20
+ n

σ20
x̄
´2
− 1

2

³
µ20
τ20
+ nx̄2

σ20

´¶
and we reject whenever this is less than (1−p0)/p0. As τ20 →∞ the denominator
converges to 0 and so in the limit we never reject H0.

8.3.8 Since the posterior distribution given data is the same as the posterior
distribution given a minimal sufficient statistic, we base our calculations on
T = X1 + · · ·+Xn ∼ Binomial(n, θ). Let Π1 be the prior degenerate at θ0 and
Π2 be the U [0, 1] prior. By (7.2.9) and Theorem 7.2.1 the posterior probability
of H0 is given by

Π (ψ (θ) = ψ0 | s) = rBFH0

1 + rBFH0

where r = p0/(1 − p0), BFH0 = m1(t)/m2(t) and mi(t) is the prior predictive
density of T when the prior Πi is being used. By Theorem 8.3.2 the Bayes rule is
given by ϕ(x̄) = 1 whenever Π (ψ (θ) = ψ0 | s) ≤ 1/2, or, equivalently, BFH0 ≤
r−1.
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We have that m1(t) =
¡
n
t

¢
θt0(1− θ0)n−t and

m2(t) =

Z 1

0

µ
n

t

¶
θt(1− θ)n−tdθ =

µ
n

t

¶
Γ(t+ 1)Γ(n− t+ 1)

Γ(n+ 2)
.

Therefore,

BFH0 =
Γ(n+ 2)

Γ(t+ 1)Γ(n− t+ 1)θ
t
0(1− θ0)n−t

and we reject whenever this is less than (1− p0)/p0.
Problems
8.3.9 Suppose T (s) ∈ {θ1, θ2} for each s. The Bayes rule will minimize

EΠ (Pθ (T (s) 6=θ)) = EΠ
¡
Eθ
¡
1− I{θ} (T (s))

¢¢
= 1−EΠ

¡
Eθ
¡
I{θ} (T (s))

¢¢
= 1−EM

¡
EΠ(· | s)

¡
I{θ} (T (s))

¢¢
.

Therefore, the Bayes rule at s is given by T (s) which maximizes

EΠ(· | s)
¡
I{θ} (T (s))

¢
= Π ({θ1} | s) I{θ1} (T (s)) +Π ({θ2} | s) I{θ2} (T (s))

and this is clearly given by

T (s) =

½
θ1 Π ({θ1} | s) > Π ({θ2} | s)
θ2 Π ({θ2} | s) > Π ({θ1} | s)

and when Π ({θ1} | s) = Π ({θ2} | s) we can take T (s) to be either θ1 or θ2. So
the Bayes rule is given by the posterior mode.

8.3.10 Since Π (θ = 2 | 2) > Π (θ = 1 | 2) , we have that the Bayes rule takes the
value T (s) = 2 for this data. An advantage for this estimator over the posterior
mean is that the posterior mode is always an element of the parameter space,
while the posterior mean may not be, as in Exercise 8.3.1. So if we use the
posterior mean, we may estimate the parameter by a value that it could never
possibly take.

8.3.11 In Example 7.1.4 we derived the posterior distribution of
¡
µ, 1/σ2

¢
, and

in Example 7.2.1 we derived the marginal posterior distribution of µ to be

µx +

s
2βx

(2α0 + n) (n+ 1/τ20 )
Z.

where Z ∼ t (n+ 2α0) where µx =
¡
n+ 1/τ20

¢−1 ¡
µ0/τ

2
0 + nx̄

¢
and

βx = β0 +
n

2
x̄2 +

µ20
2τ20

+
n− 1
2

s2 − 1
2

µ
n+

1

τ20

¶−1µ
µ0
τ20
+ nx̄

¶2
.

We know the Bayes rule is given by the posterior mean of µ and this equals

µx +

s
2βx

(2α0 + n) (n+ 1/τ20 )
EΠ(· |x1,...,xn) (Z) = µx
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since the mean of a Student(λ) random variable is 0 (provided λ > 1). So the
Bayes rule is given by µx.

8.3.12 Suppose T (s) ∈ {θ1, . . . , θk} for each s. The Bayes rule will minimize

EΠ (Pθ (T (s) 6=θ)) = EΠ
¡
Eθ
¡
1− I{θ} (T (s))

¢¢
= 1−EΠ

¡
Eθ
¡
I{θ} (T (s))

¢¢
= 1− EM

¡
EΠ(· | s)

¡
I{θ} (T (s))

¢¢
.

Therefore, the Bayes rule at s is given by T (s), which maximizes

EΠ(· | s)
¡
I{θ} (T (s))

¢
=

kX
i=1

Π ({θi} | s) I{θi} (T (s))

and this is clearly given by T (s) = θi whenever Π ({θi} | s) > Π ({θj} | s) for
every j 6= i. When more than one value of θ maximizes Π ({θ} | s) we can take
T (s) to be any of these values.

Challenges
8.3.13 We have that

E
³¡
�t (s)− t¢2´ = EΠµEPθ µEQθ(· | s)

µ³
�T (s)− t

´2¶¶¶
= EM

µ
EPθ(· | s)

µ
EQθ(· | s)

µ³
�T (s)− t

´2¶¶¶
= EM

µµ
EQ(· | s)

µ³
�T (s)− t

´2¶¶¶
where Q (· | s) is the posterior predictive measure for t given s (has density or
probability function q (t | s) as speciÞed in Section 7.2.4). This is minimized if
we can Þnd �T (s) that minimizes EQ(· | s)

µ³
�T (s)− t

´2¶
for each s. By Theorem

8.1.1 this is minimized by taking �T (s) = EQ(· | s) (t) , the posterior predictive
mean of t.

8.4 Decision Theory

Exercises
8.4.1 The model is given by the collection of probability functions
{θnx̄ (1− θ)n−nx̄ : θ ∈ [0, 1]} on the set of all sequences (x1, . . . , xn) of 0�s and
1�s. The action space is A = [0, 1] , the correct action function is A (θ) = θ, and
the loss function is L (θ, a) = (θ − a)2 .
The risk function for T is given by RT (θ) = Eθ

³
(θ − x̄)2

´
=Varθ (x̄) =

θ (1− θ) /n. This is plotted below.
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8.4.2 The model is given by the collection of probability functions

{λnx̄e−nλ/Πni=1xi! : λ ≥ 0}

on the set of all sequences (x1, . . . , xn) of nonnegative integers. The action space
is A = [0,∞), the correct action function is A (λ) = λ, and the loss function is
L (λ, a) = (λ− a)2 .
The risk function for T is given by RT (λ) = Eλ((λ− x̄)2) =Varλ (x̄) = λ/n.

This is plotted below for n = 25.

8.4.3 The model is given by the collection of density functions

(
1√
2πσ0

exp

(
− 1

2σ20

nX
i=1

(xi − µ)2
)
: µ ∈ R1

)

on the set of all sequences (x1, . . . , xn) of real numbers. The action space is
A = R1, the correct action function is A (µ) = µ, and the loss function is
L (µ, a) = (µ− a)2 .
The risk function for T is given by RT (µ) = Eµ

³
(µ− x̄)2

´
=Varµ (x̄) =

σ20
n .

This is plotted below for n = 25 and σ20 = 2 (note 2/25 = 0.08).
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8.4.4 The model is given by the collection of probability functionsn
θnx̄ (1− θ)n−nx̄ : θ ∈ [0, 1]

o
on the set of all sequences (x1, . . . , xn) of 0�s and

1�s. The action space is A = {H0,Ha} , where H0 : θ = 1/2, the correct action
function is

A (θ) =

½
H0 θ = 1/2
Ha θ 6= 1/2

and the loss function is

L (θ, a) =

½
0 θ = 1/2, a = H0 or θ 6= 1/2, a = Ha
1 θ = 1/2, a = Ha or θ 6= 1/2, a = H0.

The test function ϕ is given by

ϕ (nx̄) =

½
0 nx̄ /∈ {0, 1, n− 1, n}
1 nx̄ ∈ {0, 1, n− 1, n} .

The risk function for ϕ is given by

Rϕ (θ) = Pθ (ϕ (nx̄) = 1) = Pθ ({0, 1, n− 1, n})

=

µ
n

0

¶
(1− θ)n +

µ
n

1

¶
θ (1− θ)n−1 +

µ
n

n− 1
¶
θn−1 (1− θ) +

µ
n

n

¶
θn.

A plot of Rϕ, when n = 10 (the power equals 2.148 4×10−2 at θ = 1/2) follows.
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8.4.5
(a) The risk function is given by

Rd (a) = Ea (L (a, d (s)))

=
1

4
L (a, d (1)) +

1

4
L (a, d (2)) + 0L (a, d (3)) +

1

2
L (a, d (4))

=
1

4
L (a, a) +

1

4
L (a, a) +

1

2
L (a, b) =

1

2
L (a, b) =

1

2
,

Rd (b) = Eb (L (b, d (s)))

=
1

2
L (b, d (1)) + 0L (b, d (2)) +

1

4
L (b, d (3)) +

1

4
L (b, d (4))

=
1

2
L (b, a) +

1

4
L (b, a) +

1

4
L (b, b) =

1

2
L (b, a) +

1

4
L (b, a) =

3

4
.

(b) Consider the risk function of the decision function d∗ given by
d∗ (1) = b, d∗ (2) = a, d∗ (3) = b, d∗ (4) = a. The risk function is given by

Rd∗ (a) = Ea (L (a, d
∗ (s)))

=
1

4
L (a, d∗ (1)) +

1

4
L (a, d∗ (2)) + 0L (a, d∗ (3)) +

1

2
L (a, d∗ (4))

=
1

4
L (a, b) +

1

4
L (a, a) +

1

2
L (a, a) =

1

4
L (a, b) =

1

4
,

Rd∗ (b) = Eb (L (b, d
∗ (s)))

=
1

2
L (b, d∗ (1)) + 0L (b, d∗ (2)) +

1

4
L (b, d∗ (3)) +

1

4
L (b, d∗ (4))

=
1

2
L (b, b) +

1

4
L (b, b) +

1

4
L (b, a) =

1

4
L (b, a) =

1

4
,

so Rd∗ (a) < Rd (a) , Rd∗ (b) < Rd (b) and d is not optimal.

8.4.6 The model is given by the collection of probability functions

{(
nY
i=1

xi!)
−1λnx̄e−nλ : λ ≥ 0}

on the set of all sequences (x1, . . . , xn) of nonnegative integers. The action space
is A = {H0,Ha} , where H0 : λ ≤ λ0. The correct action function is

A (λ) =

½
H0 λ ≤ λ0
Ha λ > λ0

and the loss function is

L (λ, a) =

½
0 λ ≤ λ0, a = H0 or λ > λ0, a = Ha
1 λ ≤ λ0, a = Ha or λ > λ0, a = H0.
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The test function ϕ is given by

ϕ (x1, . . . , xn) =


0 nx̄ <

¥
nλ0 + 2

√
nλ0

¦
1/2 nx̄ =

¥
nλ0 + 2

√
nλ0

¦
1 nx̄ >

¥
nλ0 + 2

√
nλ0

¦
.

The power function for ϕ is given by (using nx̄ ∼ Poisson(λ))
βϕ (λ) = Pλ (ϕ (x1, . . . , xn) = 1)

=
1

2
Pλ
³
nx̄ =

j
nλ0 + 2

p
nλ0

k´
+ Pλ

³
nx̄ >

j
nλ0 + 2

p
nλ0

k´
=
1

2

(nλ)bnλ0+2
√
nλ0c¡¥

nλ0 + 2
√
nλ0

¦¢
!
exp {−nλ}+

∞X
k=bnλ0+2√nλ0c+1

(nλ)k

k!
exp {−nλ} .

When λ0 = 1 and n = 5 then
¥
nλ0 + 2

√
nλ0

¦
= 9, so the power function is

given by

Rϕ (λ) =
1

2

(10λ)9

(9)!
exp {−5λ}+

∞X
k=10

(5λ)k

k!
exp {−5λ}

=
1

2

(5λ)
9

(9)!
exp {−5λ}+ 1−

9X
k=0

(5λ)k

k!
exp {−5λ} .

This is plotted below.

8.4.7 The model is given by the collection of density functions(
1√
2πσ0

exp

(
− 1

2σ20

nX
i=1

(xi − µ)2
)
: µ ∈ R1

)
on the set of all sequences (x1, . . . , xn) of real numbers. The action space is
A = {H0,Ha} , where H0 : µ = µ0. The correct action function is

A (λ) =

½
H0 λ ≤ λ0
Ha λ > λ0
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and the loss function is

L (λ, a) =

½
0 µ = µ0, a = H0 or µ 6= µ0, a = Ha
1 µ = µ0, a = Ha or µ 6= µ0, a = H0.

The test function ϕ is given by

ϕ (x1, . . . , xn) =

½
0 x̄ ∈ [µ0 − 2σ0/√n, µ0 + 2σ0/√n]
1 x̄ /∈ [µ0 − 2σ0/

√
n, µ0 + 2σ0/

√
n] .

The power function for ϕ is given by (using x̄ ∼ N ¡µ, σ20/n¢)
βϕ (µ) = Pµ (ϕ (x1, . . . , xn) = 1) = 1− Pµ

¡
x̄ ∈ £µ0 − 2σ0/√n, µ0 + 2σ0/√n¤¢

= 1− Pµ
µ
µ0 − µ
σ0/

√
n
− 2 < x̄− µ

σ0/
√
n
<
µ0 − µ
σ0/
√
n
+ 2

¶
= 1−

µ
Φ

µ
µ0 − µ
σ0/

√
n
+ 2

¶
−Φ

µ
µ0 − µ
σ0/

√
n
− 2
¶¶

.

When µ0 = 0, σ0 = 3, n = 10 the power function is

βϕ (µ) = 1−
µ
Φ

µ
− µ

3/
√
10
+ 2

¶
−Φ

µ
− µ

3/
√
10
− 2
¶¶

.

This is plotted below (power equals 0.0455 at µ = 0).
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Problems
8.4.8 Suppose we have that δ (s, ·) is degenerate at d(s) for each s. Then clearly
d : S → A.
Now suppose we have d : S → A and deÞne

δ (s,B) =

½
1 d(s) ∈ B
0 otherwise

for B ⊂ A. Then δ (s,A) = 1 and, if B1, B2, . . . are mutually disjoint subsets
of A, then d(s) ∈ Bi for one i (and only one) if and only if d(s) ∈ ∪∞j=1Bj , so
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δ
¡
s,∪∞j=1Bj

¢
=
P∞
j=1 δ (s,Bj) . Therefore, δ (s, ·) is a probability measure for

each s and δ is a decision function.
Now, using the fact that δ (s, ·) is a discrete probability measure degenerate

at d(s), we have that Rδ (θ) = Eθ
¡
Eδ(s,·) (L (θ, a))

¢
=

Eθ(δ (s, {d (s)}) (L (θ, d (s))) = Eθ (L (θ, d (s))) since δ (s, {d (s)}) = 1.
8.4.9
(a) Consider the decision function dθ0(s) ≡ A(θ0). Then note that Rdθ0 (θ0) = 0.
Then, if δ is optimal, we must have that Rδ (θ0) ≤ Rdθ0 (θ0) for every θ0,
so Rδ (θ) ≡ 0. But this implies that Eδ(s,·) (L (θ, a)) = 0 at every s, where
Pθ ({s}) > 0. Since L (θ, a) ≥ 0, then Challenge 3.3.29 implies that
δ (s, {L (θ, a) = 0}) = 1 and, since L (θ, a) = 0 if and only if a = A (θ) , this
implies that δ (s, ·) is degenerate at A (θ) for each s for which Pθ ({s}) > 0.
(b) Part (a) proved that, for an optimal δ, δ (s, ·) is degenerate at A (θ) for each
s for which Pθ ({s}) > 0. But if there exists s such that Pθ1 ({s}) > 0 and
Pθ2 ({s}) > 0 and A (θ1) 6= A (θ2) , then this cannot happen and so no optimal
δ can exist.

8.4.10 Suppose δ is not minimax. Then there exists decision function δ∗ such
that supθRδ∗ (θ) < supθRδ (θ) . But since Rδ (θ) is constant in θ this implies
that Rδ∗ (θ) < Rδ (θ) for every θ and so δ is not admissible, contradicting the
hypothesis. Therefore, δ must be minimax.

Challenges
8.4.11 We have that Rd (θ0) = Eθ0 (L (θ0, d (s))) = 0. Now suppose that d is
not admissible. Then there exists decision function δ such that Rδ (θ) ≤ Rd (θ)
for every θ and Rδ (θ) < Rd (θ) for some θ. But this implies that 0 = Rδ (θ0) =
Eθ0

¡
Eδ(s,·) (L (θ0, a))

¢
= 0 and then Challenge 3.3.29 implies that the set C =©

s : Eδ(s,·) (L (θ0, a)) > 0
ª
satisÞes Pθ0 (C) = 0. But by hypothesis this implies

that Pθ (C) = 0 for every θ. This in turn implies that Rδ (θ) = 0 for every
θ. This says δ is optimal and contradicts the hypothesis that no such decision
function exists.
In most practical problems, there does not exist an optimal decision function.

So this result says that, in the typical decision problem, constants are admissible,
i.e., decision functions that completely ignore the data are admissible. So the
property of admissibility for a decision function is not a very strong one.



Chapter 9

Model Checking

9.1 Checking the Sampling Model

Exercises
9.1.1 The observed discrepancy statistic is given by D (r) = 1

σ20

Pn
i=1 (xi − x̄)2

= 19
4 4.79187 = 22.761. Now D(R) ∼ χ2 (19) distribution, so the P-value is then

given by P (D(R) > 22.761) = . 248, which does not suggest evidence against
the model.

9.1.2 (a) The plot of the standardized residuals is given below.
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(b) The normal probability plot of the standardized residuals is given below.
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(c) The preceding plots suggest that the sample is probably not from a normal
distribution.

9.1.3 (a) The plot of the standardized residuals is given below.
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(b) The normal probability plot of the standardized residuals is given below.
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(c) The preceding plots suggest that the normal assumption seems reasonable.

9.1.4 We have f.1 = 5 conservative, f1. = 3 males, and f11 = 2 conserva-
tive males. The Hypergeometric(10, 5, 3) probability function is given by the
following table.

i 0 1 2 3
p (i) 0.083 0.417 0.417 0.083

The P-value is then equal to 1. Hence, we have no evidence against the model
of independence between gender and political orientation.

9.1.5 By grouping the data into Þve equal intervals each having length 0.2, the
expected counts for each interval are npi = 4, and the observed counts are given
in the following table.

Interval Count
(0.0, 0.2] 4
(0.2, 0.4] 7
(0.4, 0.6] 3
(0.6, 0.8] 4
(0.8, 1] 2
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The Chi-squared statistic is equal to 3.50 and the P-value is given by (X2 ∼
χ2 (4)) P

¡
X2 ≥ 3.5¢ = 0.4779 Therefore, we have no evidence against the Uni-

form model being correct.

9.1.6 First note that if the die is fair, the expected number of counts for each
possible outcome is 166.667. The Chi-squared statistic is equal to 9.5720 and
the P-value is given by (X2 ∼ χ2 (5)) P ¡X2 ≥ 9.5720¢ = .08831. Therefore, we
have some evidence that the die might not be fair. The standardized residuals
are given in the following table.

i 1 2 3 4 5 6
ri −0.069541 0.214944 −0.467818 −0.316093 0.309772 0.328737

None of these look unusual.

9.1.7
(a) The probability of the event s = 3 is 0 based on the probability measure P
having S as its support. Also the event s = 3 is surely surprising. Hence, the
most appropriate P-value is 0.
(b) Since P is Geometric(0.1), the probability P (s = k) = θ(1 − θ)k for
k = 0, 1, . . . where θ = 0.1. Since P (s = k) is decreasing as k increases, the
probability of the set of k such that s = k is at least surprising as much as
(s = 3) is P (s ≥ 3) =P∞

i=3 θ(1− θ)i = (1− θ)3 = 0.93 = 0.729. Hence, 0.729 is
an appropriate P-value for checking whether (s = 3) comes from Geometric(0.1)
or not.

9.1.8 We measure the probability of the set having the same or less degree of
surprise than s = 3. The values k having P (s = k) ≤ P (s = 3) are at least as
surprising as s = 3 and this set is given by {s : s ≤ 3 or s ≥ 7}. Therefore a
P-value representing the surprise of (s = 3) is

P ({s : s ≤ 3 or s ≥ 7}) = 1− 2P (s = 4)− P (s = 5)
= 1− 420(1/2)10 − 252(1/2)10 = 11/32 = 0.34375.

Hence, it is not that surprising.

9.1.9 A discrepancy statistic looks for a particular kind of deviation from model
correctness. Hence, the model might be incorrect even though no evidence
against the model is found using a particular discrepancy statistic. Also there
might not be enough data to detect a deviation from model correctness even
when one exists.

9.1.10 The probability of the scores that is at least as surprising as −4 is
considered. The set of scores at least as surprising as −4 is {|s| ≥ 4}. Hence,
the P-value is P ({|s| ≥ 4}) = Φ(−4)+ 1−Φ(4) = 2Φ(−4) = 0.00006334. Thus,
the value −4 is very surprising and this is strong evidence that the statement is
incorrect.
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9.1.11
(a) Under the assumption that the coin is unbiased and it is tossed indepen-
dently, the probability of observing (x1, . . . , xn) is θnx̄(1− θ)n(1−x̄). The distri-
bution of nx̄ is Binomial(n, θ). Therefore, the conditional probability function
of (x1, . . . , xn) is θnx̄(1 − θ)n(1−x̄)/

¡
n
nx̄

¢
θnx̄(1 − θ)n(1−x̄) = 1/

¡
n
nx̄

¢
. This is the

probability function of a uniform distribution on the set of all sequences of zeros
and ones of length n containing nx̄ ones.
(b) The probability distribution of k = the number of ones in the Þrst bn/2c ob-
servations, given that there are nx̄ ones overall, is a Hypergeometric(n, bn/2c, nx̄0)
distribution. (Think of taking a sample of size nx̄0 without replacement from a
population of n sequence positions and counting the number of sequence posi-
tions in the sample less than or equal to bn/2c.)
(c) Let y be the number of 1�s in the Þrst bn/2c observations. The probability
P (y = k|nx̄ = 6) is ¡5k¢¡ 5

6−k
¢
/
¡
10
6

¢
for k = 1, . . . , 5. Hence, P (y = 1|nx̄ = 6) =

P (y = 5|nx̄ = 6) = 1/42, P (y = 2|nx̄ = 6) = P (y = 4|nx̄ = 6) = 10/42 and
P (y = 3|nx̄ = 6) = 20/42. Thus, the P-value is P (y ∈ {1, 5}|nx̄ = 6) = 1/21 =
0.0476. Therefore, the observation (1, 1, 1, 1, 1, 0, 0, 0, 0, 1) is surprising at level
5%.

Computer Exercises
9.1.12 The plot is given below.
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From this we have no evidence against the normality assumption.

9.1.13 Not all the graphs look like straight lines. With a small sample size like
n = 10, we should expect a fairly wide variety of shapes.

9.1.14 We have X·1 = 56 conservative, X1· = 35 males and X11 = 20 con-
servative males. Using the Hypergeometric(100, 56, 35) probability function to
calculate the probability of observing a value with probability less than or equal
to P (X11 = 20 | |X1·,X·1) = 0.164941, we obtain that the P-value is 1. There-
fore, we have no evidence against the model of independence between gender
and political orientation.

9.1.15 The Binomial(10, 0.2) distribution gives rise to the following cell proba-
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bilities and cell expected numbers.

x P (X = x) expected numbers
0 0.107374 1.07347
1 0.268435 2.68435
2 0.301990 3.01990
3 0.201327 2.01327
4 0.088080 0.88080
5 0.026424 0.26424
6 0.005505 0.05505
7 0.000786 0.00786
8 0.000074 0.00074
9 0.000004 0.00004
10 0.000000 0.00000

So we grouped from the elements having the smallest probability, i.e, x = 10,
until the expected number of the group is greater than or equal to 1. It turns
out the last 7 cells are grouped , say G5, to ensure E(IG5(X)) = nP (G5) ≥ 1.
Let Gi = {i− 1} for i = 1, . . . , 4. Then, the expected numbers of all groups are
at least 1. The next table summarizes this result.

i Gi P (X = x) expected numbers
1 {0} 0.107374 1.07347
2 {1} 0.268435 2.68435
3 {2} 0.301990 3.01990
4 {3} 0.201327 2.01327
5 {4,5,6,7,8,9,10} 0.120874 1.20874

The Chi-squared statistic obtained from the simulated sample of 1000 was equal
to 2.09987 with P-value 0.71740. Hence, there is no evidence that the sample is
not from this distribution. If a P-value close to 0 is obtained, we would conclude
the data may not come from Binomial(10, 0.20) distribution. However, it didn�t
happen in the simulation study. The Minitab code for the simulation is given
below.

%solution 1000
# the corresponding macro file "solution.mac"
macro
solution M
# solution 9.1.15
mcolumn c1 c2 c3 c4 c5 c6
mconstant M k1 k2
# M is the length of sample
set c1
0:10

end
pdf c1 c2;
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binomial 10 0.2.
let c3=10*c2
print c1 c2 c3
copy c2 c3;
include;
rows 5:11.

let c2(5) = sum(c3)
delete 6:11 c2
let c3=10*c2
print c2 c3
let c3 = M*c2
random M c5;
binomial 10 0.2.

copy c5 c6;
include;
where "c5 = 0".

let c4(1) = count(c6)
copy c5 c6;
include;
where "c5 = 1".

let c4(2) = count(c6)
copy c5 c6;
include;
where "c5 = 2".

let c4(3) = count(c6)
copy c5 c6;
include;
where "c5 = 3".

let c4(4) = count(c6)
copy c5 c6;
include;
where "c5 >= 4".

let c4(5) = count(c6)
let k1=sum((c4-c3)**2/c3)
cdf k1 k2;
chisquare 4.

let k2=1-k2
name k1 "Chi-square" k2 "P-value"
print k1 k2
endmacro

9.1.16 A contiguous grouping is applied as long as the grouped probability is
bigger than 0.13. So we get a grouping, 0 − 3, 4, 5, 6 − 7, 8 −∞. The group
probabilities, expected cell counts and the observed cell counts in a simulation
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are summarized in the next table.

group start x end x probability expected counts observed counts
G1 0 3 0.2650 265.0 255
G2 4 4 0.1755 175.5 186
G3 5 5 0.1755 175.5 168
G4 6 7 0.2507 250.7 238
G5 8 ∞ 0.1334 133.4 153

The chi-squared statistic obtained from the above table is equal to 4.8582 with
P-value 0.3022. Hence, there is no evidence that the sample is not from this
distribution. If a P-value close to 0 is obtained, we would conclude that the
data may not come from Poisson(5) distribution. However, it did not happen
in the simulation study. The Minitab code for the simulation is given below.

%solution 1000
# the corresponding macro "solution.mac"
macro
solution M
# solution 9.1.16
mcolumn c1 c2 c3 c4 c5
mconstant M k1 k2
# M is the length of sample
set c1
3:5 7

end
cdf c1 c2;
poisson 5.

let c1=c2
let c1(5)=1-c2(4)
do k1=2:4
let c1(k1) = c2(k1)-c2(k1-1)

enddo
let c2=M*c1
let c3=0*c1
random M c4;
poisson 5.

copy c4 c5;
include;
where "c4 <= 3".

let c3(1) = count(c5)
copy c4 c5;
include;
where "c4 = 4".

let c3(2) = count(c5)
copy c4 c5;
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include;
where "c4 = 5".

let c3(3) = count(c5)
copy c4 c5;
include;
where "c4 >= 8".

let c3(5) = count(c5)
let c3(4) = M-sum(c3)
let k1=sum((c3-c2)**2/c2)
cdf k1 k2;
chisquare 4.

let k2=1-k2
print c1 c2 c3
name k1 "Chi-square" k2 "P-value"
print k1 k2
endmacro\textbf{\medskip}

9.1.17 We separate R1 into 5 cells having the same N(0, 1) probability. Sim-
ply, R1 is separated using the Þrst four quintile points, i.e., the Þve cells are
(−∞, z0.2], (z0.2, z0.4], (z0.4, z0.6], (z0.6, z0.8], and (z0.8,∞). The group proba-
bilities, expected cell counts and the observed cell counts in a simulation are
summarized in the next table.

group group range prob. expected counts observed counts
G1 (−∞,−0.8416] 0.2 200 202
G2 (−0.8416,−0.2533] 0.2 200 214
G3 (−0.2533, 0.2533] 0.2 200 200
G4 (0.2533, 0.8416] 0.2 200 203
G5 (0.8416,∞) 0.2 200 181

The chi-squared statistic obtained from the above table is equal to 2.8500 with
P-value 0.5832. Hence, there is no evidence that the sample is not from this
distribution. The Minitab code for the simulation is given below.

%solution 1000
# the corresponding macro "solution.mac"
macro
solution M
mcolumn c1 c2 c3 c4 c5 c6 c7
mconstant M k1 k2 k3
# M is the length of sample
set c2
1:4

end
let c2=c2/5
invcdf c2 c1;
normal 0 1.
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cdf c1 c2;
normal 0 1.

let c2(5)=1-c2(4)
do k1=4:2
let c2(k1) = c2(k1)-c2(k1-1)

enddo
let c3=M*c2
let c4=0*c2
random M c5;
normal 0 1.

let c6=c5
let k2=minimum(c6)
if k2 > minimum(c1)
let k2=minimum(c1)

endif
let k3=maximum(c6)
if k3 < maximum(c1)
let k3=maximum(c1)

endif
let k3=k3-2*k2+3
do k1=4:1
let c7=ceiling((c6+k3)/(c1(k1)+k3)-1)
let c4(k1+1) = sum(c7)
let c6=c6*(1-c7)+(k2-1)*c7

enddo
let c4(1) = sum(ceiling((c6+k3)/(k2-.5+k3)-1))
let k1=sum((c4-c3)**2/c3)
cdf k1 k2;
chisquare 4.

let k2=1-k2
print c1 c2 c3 c4
name k1 "Chi-square" k2 "P-value"
print k1 k2
endmacro

Problems
9.1.18 We have E (a1Y1 + · · ·+ akYk) = a1µ1 + · · · + akµk, so E (Yi) = µi
by taking ai = 1 and aj = 0 whenever j 6= i. By Theorem 3.3.3 (b) we have
Var(a1Y1 + · · ·+ akYk) = a21Var(Y1)+···+a2k Var(Yk)+2

P
i<j aiaj Cov(Yi, Yj) =Pk

i=1

Pk
j=1 aiajσij . Putting ai = 1 and aj = 0 whenever i 6= j, we obtain

Var(Yi) = σii and this implies that Yi ∼ N (µi, σii) .
Putting ai = aj = 1 and al = 0whenever l /∈ {i, j} ,we obtain Var(Yi + Yj) =

σii + σjj + 2σij =Var(Yi)+Var(Yj) + 2Cov(Yi, Yj) . This immediately implies
that Cov(Yi, Yi) = σij .



260 CHAPTER 9. MODEL CHECKING

9.1.19 Using Theorem 4.6.1, we have that

nX
i=1

aiRi =
nX
i=1

ai
¡
Xi − X̄

¢
=

nX
i=1

aiXi − 1

n

Ã
nX
i=1

ai

!
nX
i=1

Xi =
nX
i=1

(ai − ā)Xi

∼ N
Ã

nX
i=1

(ai − ā)µ, σ20
nX
i=1

(ai − ā)2
!
= N

Ã
0, σ20

nX
i=1

(ai − ā)2
!
.

Therefore, by Problem 9.1.18, R is multivariate normal with mean vector given
by (0, . . . , 0) and variance matrix given by Σ = (Cov (Ri, Rj)) andPk
i=1

Pk
j=1 aiaj Cov(Ri, Rj) = σ20

Pn
i=1 (ai − ā)2 . Putting ai = 1 and aj = 0

whenever i 6= j, we have that Var(Ri) = σ20

n
(1− 1/n)2 + (n− 1)/n2

o
=

σ20 (1− 1/n) . Putting ai = aj = 1 and al = 0 whenever l /∈ {i, j} , we ob-
tain Var(Ri)+Var(Rj) + 2Cov(Ri, Rj) = σ20

Pn
i=1 (ai − ā)2 = 2σ20 (1− 2/n)2 +

σ20(n − 2)4/n2 = σ20
¡
2− 8/n+ 8/n2 + 4/n− 8/n2¢ = σ20(2 − 4/n). Therefore,

Cov(Ri, Rj) = σ20(1− 2/n− 1 + 1/n) = −σ20/n.
9.1.20 We have that (arguing as in the solution to Problem 9.1.18)

Cov

Ã
X̄,

nX
i=1

aiRi

!
= Cov

Ã
nX
i=1

1

n
Xi,

nX
i=1

(ai − ā)Xi
!

=
nX
i=1

nX
j=1

1

n
(aj − ā) Cov (Xi,Xj) = 1

n

nX
i=1

(ai − ā) Cov (Xi,Xi)

=
1

n

nX
i=1

(ai − ā) Var (Xi) = σ20
n

nX
i=1

(ai − ā) = 0.

Theorem 4.6.2 gives the result.

9.1.21 The likelihood function is given by

L (α1, β1) = α
x1·
1 (1− α1)n−x1· βx·11 (1− β1)n−x·1 .

The log-likelihood function is then l (α1, β1) = x1· ln (α1)+(n− x1·) ln (1− α1)+
x·1 ln (β1) + (n− x·1) ln (1− β1) . If we Þx β1, then the partial derivative with
respect to α1 is

x1·
α1
− n− x1·
1− α1

with second derivative
−x1·
α21
− n− x1·
(1− α1)2

.

Solving
x1·
α1
− n− x1·
1− α1 = 0

leads to �α1 = x1·/n. That this is a maximum is seen from the second derivative
as it is negative at this point. Since it does not involve β1, this is the MLE of
α1. A similar argument leads to the value �β1 = x·1/n as the MLE of β1.
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9.1.22 Consider the set of all sequences of ordered pairs ((a1, b1) , . . . , (an, bn))
where x1· of the ai equal 1 (with the rest equal to 2), and x·1 of the bi equal
1 (with the rest equal to 2). We are required to count the number of such
sequences.
We can select x1· of these pairs to have ai = 1 in

¡
n
x1·

¢
ways. Let us suppose

that we have made these choices.
Now let i denote the number of pairs where ai = 1 and bi = 1. Clearly

max {0, x1· + x·1 − n} ≤ i ≤ min {x1·, x·1} . We can pick i of the pairs where
ai = 1 so that bi = 1 in

¡
x1·
i

¢
ways and then choose the remaining pairs that

will have ai = 2 and bi = 1 in
¡
n−x1·
x·1−i

¢
ways. The multiplication principle then

implies that there are
¡
n
x1·

¢¡
x1·
i

¢¡
n−x1·
x·1−i

¢
such sequences. Therefore, the number

of samples satisfying the constrains (9.1.2) is equal toµ
n

x1·

¶ min{x1·,x·1}X
i=max{0,x1·+x·1−n}

µ
x1·
i

¶µ
n− x1·
x·1 − i

¶
.

Using the fact that the probability function of Hypergeometric(n, f1., f.1) is
given by

P (X11 = i) =

¡
x1·
i

¢¡
n−x1·
x·1−i

¢¡
n
x·1

¢ ,

for max {0, x1· + x·1 − n} ≤ i ≤ min {x1·, x·1} , we get that the number of such
samples is equal toµ

n

x1·

¶µ
n

x·1

¶ min{x1·,x·1}X
i=max{0,x1·+x·1−n}

¡
x1·
i

¢¡
n−x1·
x·1−i

¢¡
n
x·1

¢ =

µ
n

x1·

¶µ
n

x·1

¶
as claimed.

Computer Problems
9.1.23 A density histogram of a sample of 104 from the distribution of D (R) =
− 1
n

P10
i=1 ln

³
R2
i

n−1
´
, when the model is correct, is given below.
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Using the data of Exercise 9.1.3 we obtained the valueD (r) = − 1
n

Pn
i=1 ln(r

2
i /(n−

1)) = 2.60896, and the proportion of sample values of D in the simulation that
were greater is 0.9864. This can be viewed as evidence that the normal location-
scale model is not correct as the observed value of D is surprisingly small.

The following code was used for this simulation.

gmacro

goodnessoffit

base 34256734

note - generated sample is stored in c1

note - residuals are placed in c2

note - value of D(r) are placed in c3

note - k1 = size of data set

let k1=10

do k2=1:10000

random k1 c1

let k3=mean(c1)

let k4=sqrt(k1-1)*stdev(c1)

let c2=((c1-k3)/k4)**2

let c2=loge(c2)

let k5=-sum(c2)/k1

let c3(k2)=k5

enddo

endmacro

9.1.24 We get the following histogram (using the code below) when we are
sampling from a normal distribution.
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We get the following histogram (using the code below) when we are sampling
from a Cauchy distribution.
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We see that the distribution of D is quite different under a normal model than
under a Cauchy model. The distribution when sampling under Cauchy sampling
has a longer right tail and a sharp peak at its mode. Note that a larger sample
size than 104 is required to get a smoother histogram.
gmacro

goodnessoffit
base 34256734

note - generated sample is stored in c1
note - residuals are placed in c2
note - value of D(r) are placed in c3

note - k1 = size of data set
let k1=10

do k2=1:10000
random k1 c1
let k3=mean(c1)

let k4=sqrt(k1-1)*stdev(c1)
let c2=((c1-k3)/k4)**2

let c2=loge(c2)
let k5=-sum(c2)/k1

let c3(k2)=k5
random k1 c1;
student 1.

let k3=mean(c1)
let k4=sqrt(k1-1)*stdev(c1)

let c2=((c1-k3)/k4)**2
let c2=loge(c2)
let k5=-sum(c2)/k1

let c4(k2)=k5
enddo

endmacro

9.1.25 The interval counts are 10, 3, 1, 2, 1, 3. The likelihood function is then
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given by

L (θ | f1, ..., f6) =
¡
1− e−2θ¢10 ¡e−2θ − e−4θ¢3 ¡e−4θ − e−6θ¢ ¡e−6θ − e−8θ¢2
× ¡e−8θ − e−10θ¢ ¡e−10θ¢3 ,

so the log-likelihood is given by

10 ln
¡
1− e−2θ¢+ 3 ln ¡e−2θ − e−4θ¢+ ln ¡e−4θ − e−6θ¢+ 2 ln ¡e−6θ − e−8θ¢

+ ln
¡
e−8θ − e−10θ¢− 30θ.

This is plotted below.

By successively plotting the log-likelihood over smaller and smaller intervals,
the MLE was determined to be �θ = .22448. Accordingly, we get the following
expected counts 20(1 − e−2�θ) = 7.2342, 20(e−2�θ − e−4�θ) = 4.6175, 20(e−4�θ −
e−6�θ) = 2.9473, 20(e−6�θ − e−8�θ) = 1.8812, 20(e−8�θ − e−10�θ) = 1.2008, 20e−10�θ =
2.1190, and the chi-squared statistic equals

X2
0 =

(7.2342− 10)2
7.2342

+
(4.6175− 3)2
4.6175

+
(2.9473− 1)2
2.9473

+
(1.8812− 2)2
1.8812

+
(1.2008− 1)2
1.2008

+
(2.1190− 3)2
2.1190

= 3.3180

The P-value equals (X2 ∼ χ2(1)) P (X2 ≥ 3.3180) = 1− .4939 = 0.5061. Hence,
we do not have evidence against the model.

9.1.26
(a) We have that
P ((−∞, 600]) = Φ ¡600−µ500

¢
,

P ((600, 1200]) = Φ
¡
1200−µ
500

¢−Φ ¡600−µ500

¢
,

P ((1200, 1800]) = Φ
¡
1800−µ
500

¢−Φ ¡1200−µ500

¢
,

P ((1800,∞)) = 1−Φ ¡1800−µ500

¢
,

so the log likelihood is given by

9 lnΦ

µ
600− µ
500

¶
+ 20 ln

µ
Φ

µ
1200− µ
500

¶
−Φ

µ
600− µ
500

¶¶
+

7 ln

µ
Φ

µ
1800− µ
500

¶
−Φ

µ
1200− µ
500

¶¶
+ 2 ln

µ
1−Φ

µ
1800− µ
500

¶¶
.
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This is plotted below.

Plotting the log-likelihood over successively smaller intervals, we obtain the
MLE as �µ = 914.3. This leads to the expected counts

38NormalDist
³
600−�µ
500

´
= 10.063,

38
³
NormalDist

³
1200−�µ
500

´
−NormalDist

³
600−�µ
500

´´
= 17.151,

38
³
NormalDist

³
1800−�µ
500

´
−NormalDist

³
1200−�µ
500

´´
= 9.333,

38
³
1−NormalDist

³
1800−�µ
500

´´
= 1.453,

and the Chi-squared statistic is given by

X2
0 =

(10.063− 9)2
10.063

+
(17.151− 20)2

17.151
+
(9.333− 7)2
9.333

+
(1.453− 2)2
1.453

= 1.375.

The P-value in this case is given by (X2 ∼ χ2 (2)) P (X2 ≥ 1.375) = 1− .4972 =
0.5028, so we have no evidence against the model.
(b) The overall MLE of µ, namely without grouping, is �µ = x̄ = 900, so there
is a difference.
(c) We have that
P ((−∞, 600]) = Φ ¡600−µσ

¢
,

P ((600, 1200]) = Φ
¡
1200−µ

σ

¢−Φ ¡600−µσ

¢
,

P ((1200, 1800]) = Φ
¡
1800−µ

σ

¢−Φ ¡1200−µσ

¢
,

P ((1800,∞)) = 1−Φ ¡1800−µσ

¢
,

so the log likelihood is given by

9 lnΦ

µ
600− µ
σ

¶
+ 20 ln

µ
Φ

µ
1200− µ

σ

¶
− Φ

µ
600− µ
σ

¶¶
+ 7 ln

µ
Φ

µ
1800− µ

σ

¶
−Φ

µ
1200− µ

σ

¶¶
+ 2 ln

µ
1−Φ

µ
1800− µ

σ

¶¶
.

9.1.27 The symmetry of a N(0, 1) distribution implies that −r and r have the
same distribution. SinceDskew(−r) = n1/2(n−1)−3/2

Pn
i=1(−ri)3 = −Dskew(r),

both Dskew(−r) and Dskew(r) have the same distribution. Thus, Dskew is sym-
metric. The density histogram of Dskew and Dkurtosis, when n = 10, is drawn
below based on m = 104 samples.
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In the graphs, both statistics are unimodal. Since the skewness is symmetric,
the P-value for assessing the normality is

P (|Dskew(r)| > |Dskew(r0)|).

The density histogram for kurtosis is not symmetric but skewed to the right. To
measure the surprise of a value r0, we compute a P-value, i.e., the probability
of the set of more surprising values to r0. If the observed discrepancy d0 =
Dkurtosis(r0) is around the peak, there will be no evidence against the sample
coming from a normal distribution. If d0 is placed on the right side of the peak,
we must Þnd a left side boundary lb of the peak giving the same density to
d0. Then, compute p = P (D ≤ lb or D ≥ d0) based on the simulation. It is
the P-value for checking normality using the kurtosis statistic. If d0 is placed
on the left side of the peak, then Þnd a right side boundary rb and compute
p = P (D ≤ d0 or D ≥ rb).
The same graphs are provided below when n = 20.



9.1. CHECKING THE SAMPLING MODEL 267

The graphs look similar, with the n = 20 case perhaps a bit more regular.
The Minitab code for this simulation is given below.

%solution 10 10000
%solution 20 10000
# the corresponding macro "solution.mac"
macro
solution N M
# solution 9.1.27
mcolumn c1 c2 c3 c4
mconstant N M k1 k2 k3 k4
# N is the sample size
# M is the number of repetition
set c1
1:M

end
let c1=c1*0
let c2=c1
let k3=N**0.5 * (N-1)**(-1.5)
let k4=N * (N-1)**(-2)
do k1=1:M
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random N c3;
normal 0 1.

let c4 = (c3-mean(c3))/stdev(c3)
let c1(k1) = k3*sum(c4**3)
let c2(k1) = k4*sum(c4**4)

enddo
name c1 "skewness" c2 "kurtosis"
histogram c1;
density;
bar;
color 23;

nodtitle;
graph;
color 23.

histogram c2;
density;
bar;
color 23;

nodtitle;
graph;
color 23.

endmacro

Challenges
9.1.28 We have that Xi = µ+ σZi where Z1, . . . , Zn is a sample from f . Now
observe that x̄ = µ + σz̄ and

Pn
i=1 (xi − x̄)2 =

Pn
i=1 (µ+ σzi − µ+ σz̄)2 =

σ2
Pn
i=1 (zi − z̄)2 . Therefore,

r (x1, . . . , xn) =

µ
x1 − x̄
s

, . . . ,
xn − x̄
s

¶

=

 z1 − z̄qPn
i=1 (zi − z̄)2

, . . . ,
zn − z̄qPn
i=1 (zi − z̄)2

 ,
and so is a function of the zi. This implies that the distribution of R is inde-
pendent of (µ, σ) and so is ancillary.

9.2 Checking the Bayesian Model

Exercises
9.2.1
(a) The probability of obtaining s = 2 from f1 is 1/3, which is a reasonable
value, so we have no evidence against the model {f1, f2}.
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(b) The prior predictive M distribution is given by

m(1) =
3

10

1

3
+
7

10

1

3
=
1

3
,

m(2) =
3

10

1

3
+
7

10
0 =

1

10
,

m(3) =
3

10

1

3
+
7

10

2

3
=
17

30
.

So the probability of a data set occurring with probability as small as or smaller
than m(2) is 1/10, so the observation 2 is not very surprising. Accordingly,
there is no evidence of a prior-data conßict.

(c) The prior predictive M now is given by

m(1) =
1

100

1

3
+
99

100

1

3
=
1

3
,

m(2) =
1

100

1

3
+
99

100
0 =

1

300
,

m(3) =
1

100

1

3
+
99

100

2

3
=
199

300
.

So the probability of a data set occurring with probability as small as or smaller
than m(2) is 1/300, and the observation 2 is surprising. Accordingly, there is
some evidence of a prior-data conßict.

9.2.2 The prior predictive probability function for the minimal sufficient statis-
tic y = nx̄ =

Pn
i=1 xi is given by

m (y) =
Γ (7)

Γ (12)

Γ (6)

(Γ (3))2
Γ (y + 3)Γ (9− y)
Γ (y + 1)Γ (7− y) .

A tabulation and a plot of this is given below.

y m(y)

0 0.060606

1 0.136364

2 0.194805

3 0.216450

4 0.194805

5 0.136364

6 0.060606
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Using the symmetry of the prior predictive, the probability of obtaining a value
with probability of occurrence no greater than y = nx̄ = 2 is equal to m (0) +
m (1)+m(2)+m(4)+m (5)+m (6) = 2 (0.060606)+2(0.194805)+2 (0.136364) =
0.78355. Therefore, the observation y = nx̄ = 2 is not surprising and we conclude
that there is not any prior-data conßict.

9.2.3 The distribution of x̄ given the parameter µ is x̄|µ ∼ N(µ, σ20/n). Hence,
we can write x̄ = µ + z where z ∼ N(0, σ20/n) is independent of µ. Since
µ ∼ N(µ0, τ20 ) in the prior speciÞcation, the prior predictive distribution of x̄ is
N(µ0, τ

2
0 ) +N(0, σ

2
0/n) ∼ N(µ0, τ20 + σ20/n) by Theorem 4.6.1.

9.2.4 The prior predictive distribution is Mx̄ ∼ N(0, 1 + 2/5) ∼ N(0, 1.4) as
is in Example 9.2.3. We compute the prior probability of the event mx̄(s) ≤
mx̄(7.3) = (|s| ≥ 7.3) to assess whether or not observing x̄ = 7.3 is surprising.
Hence we get

p = P (|s| ≥ 7.3) = P (s ≥ 7.3) + P (s ≤ −7.3)
= 1−Φ(7.3/

√
1.4) +Φ(−7.3/

√
1.4) = 6.845× 10−10.

It is very surprising. Hence, we Þnd a strong evidence that there is a prior-data
conßict.

9.2.5 The maximum possible value of x from x ∼ Uniform[0, θ] is x = θ. And
the maximum possible value of θ from the prior is 1. Hence, the gross maximum
possible value of x is 1. However, x = 2.2 is observed. It is very surprising.
Hence, an appropriate P-value for checking for prior-data conßict must be 0.
We will show the same result mathematically. The prior predictive distribution
is m(x) =

R 1
0 fθ(x)dθ =

R 1
0 I[0,θ](x)/θdθ =

R 1
θ 1/θdθ = ln θ|θ=1θ=x = − lnx for

x ∈ [0, 1] and 0 for x 6∈ [0, 1]. Since m(2.2) = −I[0,1](2.2) ln 2.2 = 0, the P-value
for checking prior-data conßict is

p =M(m(x) ≤m(2.2)) =M(m(x) ≤ 0) = 0.

Hence, there is deÞnitely a prior-data conßict.
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Computer Exercises
9.2.6 The prior predictive probability function for the minimal sufficient statis-
tics y = nx̄ =

Pn
i=1 xi is given by

m (y) =
Γ (21)

Γ (26)

Γ (6)

(Γ (3))2
Γ (y + 3)Γ (23− y)
Γ (y + 1)Γ (21− y)

A tabulation and plot of this is given below.
y m(y)
0 0.0043478
1 0.0118577
2 0.0214568
3 0.0321852
4 0.0431959
5 0.0537549
6 0.0632411
7 0.0711462
8 0.0770751
9 0.0807453

10 0.0819876
11 0.0807453
12 0.0770751
13 0.0711462
14 0.0632411
15 0.0537549
16 0.0431959
17 0.0321852
18 0.0214568
19 0.0118577
20 0.0043478

20100
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0.07
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Using the symmetry of the prior predictive, the probability of obtaining a value
probability of occurrence no greater than y = nx̄ = 6 equals 2m (0) + 2m (1) +
2m (2)+2m (3)+2m (4)+2m (5)+2m(6) = 0.460079. Therefore, the observation
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y = nx̄ = 6 is not surprising and we conclude that there is not any prior-data
conßict.

Problems

9.2.7 First, by Corollary 4.6.1 we have X̄ ∼ N(µ, σ20/n). Then we can write
X̄ as X̄ = µ + Z/

√
n, where Z ∼ N(0, σ20) is independent of µ ∼ N(µ0, τ

2
0 ).

Hence, by Theorem 4.6.1 we have that the prior predictive distribution of X̄ is
the N(µ0, τ20 + σ

2
0/n) distribution.

9.2.8 We have that Y = nX̄ ∼ Gamma(n, θ) , so the prior predictive distribu-
tion of Y is given by

m (y) =

Z ∞

0

θn

Γ (n)
yn−1 exp (−yθ) β

α0
0 θ

α0−1e−β0θ

Γ (α0)
dθ

=
βα00

Γ (α0)Γ (n)
yn−1

Z ∞

0

θn+α0−1 exp (− (β0 + y) θ) dθ

=
βα00

Γ (α0)Γ (n)

Γ (α0 + n)

(β0 + y)
n+α0

yn−1 =
Γ (α0 + n)

Γ (α0)Γ (n)

µ
y

β0

¶n−1µ
1 +

y

β0

¶−(α0+n) 1
β0
.

Making the transformation x̄ = y/n, we see that the prior predictive density of
X̄ is given by

m (x̄) =
Γ (α0 + n)

Γ (α0)Γ (n)

µ
nx̄

β0

¶n−1µ
1 +

nx̄

β0

¶−(α0+n) n
β0

and from this we deduce that the prior predictive of α0X̄/β0 is F (n, α0) .

9.2.9 We know that (x1, ..., xk) ∼ Multinomial(n, θ1, . . . , θk) . Therefore, the
prior predictive distribution of (x1, ..., xk) is given by

m (x1, ..., xk) =

µ
n

x1 ... xk

¶
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk)

Z 1

0

. . .

Z 1−θ2−···−θk−1

0

θα1+x1−11 · · ·

× (1− θ1 − · · ·− θk−1)αk+xk−1 dθ1 · · · dθk−1
=

µ
n

x1 ... xk

¶
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk)

Γ (α1 + x1) · · ·Γ (αk + xk)
Γ (α1 + · · ·+ αk + n) .

9.2.10 When X1, . . . ,Xn is a sample from the Uniform[0, θ] distribution then
X(n) has density given by n

¡
x(n)

¢n−1
/θn for 0 < x(n) < θ. Therefore, the prior
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predictive density of X(n) is given by

m
¡
x(n)

¢
=

Z ∞

0

n

θn
¡
x(n)

¢n−1
I[x(n),∞) (θ)

θ−αI[β,∞) (θ)
(α− 1) βα−1 dθ

=
n
¡
x(n)

¢n−1
(α− 1) βα−1

Z ∞

0

θ−α−nI[max{x(n),β},∞) (θ) dθ

=
n
¡
x(n)

¢n−1
(α− 1) βα−1

Z ∞

max{x(n),β}
θ−α−n dθ

=
n
¡
x(n)

¢n−1
(α+ n− 1) (α− 1)βα−1

¡
max

©
x(n), β

ª¢−α−n+1
.

9.2.11 Suppose µ∗ is the true value of µ. The P-value for checking for prior-data
conßict in Example 9.2.3 is given by

M(|X̄ − µ0| ≥ |x̄− µ0|) = 2(1−Φ(|x̄− µ0|/(τ20 + σ20/n)1/2)).
Since x̄→ µ∗ and σ20/n→ 0 as n→∞, the limit P-value is

lim
n→∞M(|X̄ − µ0| ≥ |x̄− µ0|) = 2− 2 limn→∞Φ(|x̄− µ0|/(τ

2
0 + σ

2
0/n)

1/2))

= 2− 2Φ(|µ∗ − µ0|/τ0).
So we see that, in the limit, we have prior-data conßict when the true value of
the parameter lies in the tails of the prior.

9.2.12
(a) The prior predictive distribution ism(x) =

R 1
0
θ(1−θ)xdθ = Beta(2, x+1) =

1/[(x + 1)(x + 2)]. Since m(x) is strictly decreasing, the set of values at least
as surprising as x0 is {x ≥ x0}. Thus, the appropriate P-value for checking for
prior-data conßict is

M(x ≥ x0) =
∞X

x=x0

1

(x+ 1)(x+ 2)
=

∞X
x=x0

³ 1

x+ 1
− 1

x+ 2

´
=

1

x0 + 1
.

(b) Since the P-value in (a) is decreasing as x0 increases, the bigger value x0
causes the stronger prior-data conßict.
(c) Note that the Geometric(0) does not make sense as it implies that we will
never observe any data. So putting a prior on θ which is positive at 0 does
not make sense as this implies that θ = 0 is a possibility. Note we cannot
eliminate this possibility by simply deÞning the prior density to be 0 at 0 because
limθ→0 π(θ) = 1 so every small interval about θ = 0 has non-negligible prior
probability. We conclude that the U [0, 1] prior does not make sense in this
example.

Challenges
9.2.13 The prior predictive distribution is given by the joint density of¡
X̄, S2, µ, 1/σ2

¢
divided by the posterior density of

¡
µ, 1/σ2

¢
. The joint density
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of
¡
X̄, S2, µ, 1/σ2

¢
, using the fact X̄ ∼ N(µ,σ2/n) independent of (n− 1)S2/σ2 ∼

χ2 (n− 1) , is given by½
n1/2√
2πσ

exp
³
− n

2σ2
(x̄− µ)2

´¾( 1
Γ((n−1)/2)

¡
n−1
2σ2

¢n−1
2
¡
s2
¢n−1

2 −1

× exp ¡−n−1
2σ2 s

2
¢ )

×
½

1√
2πτ0σ

exp

µ
− 1

2τ20σ
2
(µ− µ0)2

¶¾(
βα00
Γ (α0)

µ
1

σ2

¶α0−1
exp

µ
−β0
σ2

¶)
.

Then using the same algebraic manipulations as carried out in Section 7.5, we
have that this joint density equalsn1/2√

2π

(n− 1)n−12 ¡
s2
¢n−1

2 −1

Γ ((n− 1) /2)


½
1

τ0

βα00
Γ (α0)

¾(µ
n+

1

τ20

¶−1/2
Γ (α0 + n/2)

β
α0+n/2
x

)

× 1√
2π

µ
n+

1

τ20

¶1/2µ
1

σ2

¶1/2
exp

µ
− 1

2σ2

µ
n+

1

τ20

¶
(µ− µx)2

¶
× β

α0+n/2
x

Γ (α0 + n/2)

µ
1

σ2

¶α0+n/2−1
exp

µ
−βx 1

σ2

¶
.

where µx = (n+ 1/τ20 )
−1(µ0/µ0 + nx̄) and

βx = β0 +
n

2
x̄2 +

µ20
2τ20

+
n− 1
2

s2 − 1
2

µ
n+

1

τ20

¶−1µ
µ0
τ20
+ nx̄

¶2
.

Since we know that the posterior distribution of (µ, σ2) is given by µ |σ2, x ∼
N(µx, (n+ 1/τ

2
0 )
−1σ2) and 1/σ2 |x ∼Gamma(α0 + n/2, βx) , this implies that

the prior predictive density of
¡
X̄, S2

¢
is given byn1/2√

2π

(n− 1)n−12 ¡
s2
¢n−1

2 −1

Γ ((n− 1) /2)


½
1

τ0

βα00
Γ (α0)

¾(µ
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.



Chapter 10

Relationships Among
Variables

10.1 Related Variables
Exercises
10.1.1 From the deÞnitions we know that if the conditional distribution of
Y given X does not change as we change X, then X and Y are unrelated
and then for any x1, x2, (that occur with positive probability) and y we have
P (Y = y |X = x1) = P (Y = y |X = x2) . Hence,

P (X = x1, Y = y)

P (X = x1)
=
P (X = x2, Y = y)

P (X = x2)

so P (X = x1, Y = y) = P (X = x2, Y = y)P (X = x1) /P (X = x2) . Summing
this over x1 leads to P (X = x2, Y = y) = P (X = x2)P (Y = y) , and this im-
plies that X and Y are statistically independent. Conversely, if X and Y are
statistically independent, then for all x and y we have

P (Y = y |X = x) =
P (X = x, Y = y)

P (X = x)
=
P (X = x)P (Y = y)

P (X = x)
= P (Y = y) ,

so the conditional distribution of Y given X does not change as we change X,
and therefore X and Y are unrelated.

10.1.2 Suppose there exists x1 6= x2 such that g (x1) 6= g (x2) and fX (x1) 6=
0, fX (x2) 6= 0, where fX is the relative frequency function for X. Then we must
have

fY (y |X = xi) =
fX,Y (xi, y)

fX (xi)
=

½
0 y 6= g (xi)
1 y = g (xi)

for i = 1, 2. Since g (x1) 6= g (x2) , this implies that the conditional distribution
of Y changes as we change X, and therefore X and Y are related.

275
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If g (x) = c for all x, we have g (x1) = g (x2) = c, so fY (y |X = x1) =
fY (y |X = x2) for all y, i.e., the conditional distribution of Y given X does not
change as we change x and so they are not related.

10.1.3 To check whether or not a relationship exists between Y and X we
calculate the conditional distributions of Y given X. These are given in the
following table.

Y = 1 Y = 2 Y = 3
X = 1 0.15/0.73 = .20548 0.18/0.73 = .24658 0.40/0.73 = .54795
X = 2 0.12/0.27 = .44444 0.09/0.27 = .33333 0.06/0.27 = .22222

The conditional distribution of Y given X = x does change as we change x, so
we conclude that X and Y are related.

10.1.4 To check whether or not a relationship exists between Y and X we
calculate the conditional distribution of Y given X. These are given in the
following table.

Y = 1 Y = 2 Y = 3

X = 1 1/6
2/3 =

1
4

1/6
2/3 =

1
4

1/3
2/3 =

1
2

X = 2 1/12
1/3 =

1
4

1/12
1/3 =

1
4

1/6
1/3 =

1
2

As we can see, the conditional distribution of Y given X = x does not change
at all as we change x, so we conclude that X and Y are unrelated.

10.1.5 Suppose that P (X = x) > 0. We have that

P (Y = y |X = x) =
P
¡
X = x,X2 = y

¢
P (X = x)

=

½
0 y 6= x2
1 y = x2

and so the conditional distributions will change with x whenever X is not de-
generate.

10.1.6 This cannot be claimed to be a cause-effect relationship because we
cannot assign the value birth-weight at birth.

10.1.7 If the conditional distribution of life-length given various smoking habits
changes, then we can conclude that these two variables are related. However, we
cannot assign the value of smoking habit (perhaps different amount of smoking),
and there might be many other confounding variables that should be taken into
account, e.g., exercise habits, eating habits, sleeping habits, etc. So we cannot
conclude that this relationship is a cause-effect relationship.

10.1.8 The teacher should conduct an experiment in which a random sample is
drawn from the population of students. Then half of this sample should be ran-
domly selected to write the exam with open book, while the other half writes
it with closed book. Then a comparison should be made of the conditional
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distributions of the response variable Y (the grade obtained) given the predic-
tor X (closed or open book) using the samples to make inference about these
distributions.

10.1.9 The researcher should draw a random sample from the population of
voters and ask them to measure their attitude towards a particular political
party on a scale from favorably disposed to unfavorably disposed. Then the
researcher should randomly select half of this sample to be exposed to a negative
ad (an ad that points out various negative attributes about the opponents),
while the other half is exposed to a positive ad (one that points out various
positive attributes of the party). They should all then be asked to measure
their attitude towards the particular political party on the same scale. Then
compare the conditional distribution of the response variable Y (the change in
attitude from before seeing the ad to after) given the predictor X (type of ad
exposed to) using the samples to make inference about these distributions.

10.1.10 Recall that the correlation of any two random variables is non-zero only
if the covariance of them is non-zero. This immediately implies that the two
variables are not independent, else Cov(X,Y ) = 0. Therefore, the two variables
are related.

10.1.11
(a) First, let x1 = 0 denote usual diet and x2 = 1 denote new diet. The
experimental design is given by {(0, 100) , (1, 100)} .
(b) There are several concerns about the conduct of this study. First, we have
not taken a sample from the population of interest. The individuals involved
in the study have volunteered and, as a group, they might be very different
from the full population, e.g., in their ability to stick to the diet. Second, the
sample size might be too small relative to the population size, so inference may
be inconclusive.
(c) We should group the individuals according to their initial weight W into
homogenous groups (blocks) and then randomly apply the treatments to the
individuals in each block and compare the conditional distribution of the re-
sponse given the two predictors, type of diet and initial weight. This will make
the comparisons more accurate by reducing variability.

10.1.12
(a) There are 10 conditional distributions since the factor W has 2 levels and
the factor X has 5 levels and so there 5(2) = 10 combinations.
(b) The predictor variable W (gender) is a categorical variable, while both the
response variable Y and the predictor variable X (age in years) are quantitative
variables.
(c) To have a balanced design we should allocate 200 individuals to each com-
bination of the factors.
(d) A relationship between the response and the predictors cannot be claimed to
be a cause-effect relationship since we cannot assign the values of the predictor
variables.
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(e) We should use family income as a blocking variable having, say, two levels,
namely low and high. Then look at the conditional distributions of the response
given the blocking variable and the two predictors.

10.1.13
(a) The response variable could be the number of times an individual has
watched the program. A suitable predictor variable is whether or not they
received the brochure.
(b) Yes as we have controlled the assignment of the predictor variable.

10.1.14 Given a Þxed value of X, the conditional distribution of Y given W
and X does not change as W changes and is given by the N(3, 5) distribution
for X = 0 and the N(4, 5) distribution for X = 1. Therefore, we can conclude
that W does not have a relationship with Y . However, for a Þxed value of W,
the conditional distribution of Y givenW and X changes as X changes from the
N(3, 5) distribution for X = 0 to the N(4, 5) distribution for X = 1. Therefore,
we can conclude that X does have a relationship with Y.

10.1.15 Given the value X = 1, the conditional distribution of Y given W and
X does not change asW changes and is given by the N(4, 5) distribution. While
given the value X = 0, the conditional distribution of Y givenW and X changes
asW changes from theN(2, 5) distribution forW = 0 to theN(3, 5) distribution
for W = 1. Therefore, we conclude that W does have a relationship with Y .
Now, the conditional distribution of Y given W and X changes as X changes,
for a Þxed value of W, and we can conclude that X does have a relationship
with Y.

10.1.16 In Exercise 10.1.14 the predictors do not interact since the changes
in the conditional distribution of Y given W and X, as we change X, does
not depend on the value of W . While in Exercise 10.1.15 the changes in the
conditional distribution of Y given W and X, as we change W, depend on the
value of X, so the predictors interact.

10.1.17
(a) X(i) = 1 for i ∈ {1, 3, 5, 7, 9} and X(i) = 0 for i ∈ {2, 4, 6, 8, 10}. Hence,
the relative frequencies are

X = 0 X = 1 sum
Rel. Freq. 0.5 0.5 1.0

(b) Y (i) = 1 for i ∈ {3, 6, 9} and Y (i) = 0 for i ∈ {1, 2, 4, 5, 7, 8, 10}. Hence,

Y = 0 Y = 1 sum
Rel. Freq. 0.7 0.3 1.0

(c) There are four possible pairs (X,Y ). The relative frequency table is given
by
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Rel. Freq. X = 0 X = 1 sum
Y = 0 0.3 0.4 0.7
Y = 1 0.2 0.1 0.3
sum 0.5 0.5 1.0

(d) The conditional probability table is as follows.

P (Y = y|X = x) y = 0 y = 1 sum
x = 0 0.6 0.4 1.0
x = 1 0.8 0.2 1.0

(e) The conditional distribution of Y given X varies as X varies. For example,
P (Y = 0|X = 0) = 0.6 6= 0.8 = P (Y = 0|X = 1). Thus, X and Y are related.

10.1.18 If there is exact relationship between X and Y , then Þnding a function
g such that Y = g(X) may not be a bad idea. However, there is no such g
in most practical problems. In most cases, the responses, Y , are not unique
even though the predictor values, X, are the same because of variation. For
example, a study on the relationship between blood pressure and age. Blood
pressures of the same aged people are not the same. Even though there is a
certain relationship between responses and predictors, responses may not be
determined by only predictors in most practical problems. So, we must take
into account this variability of responses when looking for relationships among
variables.

10.1.19 The distribution of Y given X = x is not the same when x changes
from 1 to 2. Thus, X and Y are related. We see that only the variance of the
conditional distribution changes as we change X.

10.1.20 The conditional distribution of Y given X = x changes as x changes.
Thus, X and Y are related. Both the mean and variance of the conditional
distributions change as we change X but the distribution is always normal.

10.1.21 The correlation is given by Cov(X,Y ) = E(XY ) − E(X)E(Y ) =
E(X3) − E(X)E(X2) = 0 since E(Xk) = 0 for positive odd integer k because
X is symmetric. Even though the correlation between Y and X is 0, there is a
deÞnite relationship, namely, Y = X2. Note that the conditional distribution of
Y given X = x puts 1/2 the probability at x and 1/2 the probability at −x and
so the conditional distributions change with X. Thus, X and Y are related.

Problems
10.1.22 The situation is somewhat simpler when the predictors do not interact
because we can ignore the other predictor when studying the effects of changing
just one predictor as the change is the same no matter what value the other
predictor takes. Typically, the experimenter cannot control whether or not the
predictors interact.

10.1.23 IfX and Y are related, then there exist x1, x2, y such that fY |X (y |x1) 6=
fY |X (y |x2) . Now suppose that fX|Y (x | y) = fX|Y (x | y0) for all x, y, y0 , i.e.,
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that the conditional distribution of X given Y does not change as we change
Y. Then fX|Y (x | y) = fX,Y (x, y) /fY (y) = fX,Y (x, y

0
)/fY (y

0
) = fX|Y (x | y0)

which implies fX,Y (x, y) = (fX,Y (x, y
0
)/fY (y

0
))fY (y) for all x, y, y

0
, which in

turn implies

fX,Y (x, y) =
X
y0
fX,Y (x, y) fY

³
y
0´
=
X
y0

fX,Y

³
x, y

0
´

fY (y
0)

fY (y) fY

³
y
0´

=

X
y0
fX,Y

³
x, y

0´ fY (y) = fX (x) fY (y)
for every x, y. But this implies fY |X (y |x1) = fX (x1) fY (y) /fX (x1) = fY (y) =
fY |X (y |x2) , which is a contradiction. Therefore we must have that fX|Y (x | y) 6=
fX|Y (x | y0) for all x, y, y0 , i.e., that the conditional distribution of X given Y
changes as we change Y, which implies that Y and X are related variables (by
DeÞnition 10.1).

10.1.24 We have that

Cov (U, V ) = E(UV )−E(U)E(V )
= E((X + Z) (Y + Z))−E(X + Z)E(Y + Z)
= E(XY +XZ + Y Z + Z2)− (E(X) +E(Z)) (E(Y ) +E(Z))
= E (XY ) +E (XZ) +E (Y Z) +E

¡
Z2
¢− 0

= E (X)E(Y ) +E (X)E(Z) +E (Y )E(Z) +E
¡
Z2
¢
= 1,

so U and V are not independent and so must be related.

10.1.25 First note that the joint probability distribution function of X and
Y is given by P (X = x, Y = y) =

¡
n
x

¢¡
n−x
y

¢ ¡
1
3

¢x ¡1
3

¢y ¡1
3

¢n−x−y
. Since X ∼

Binomial(n, 1/3) , the marginal probability function ofX is given by P (X = x) =¡
n
x

¢ ¡
1
3

¢x ¡2
3

¢n−x
. Therefore, the conditional distribution of Y given X = x has

probability function¡
n
x

¢¡
n−x
y

¢ ¡
1
3

¢x ¡1
3

¢y ¡ 1
3

¢n−x−y¡
n
x

¢ ¡
1
3

¢x ¡2
3

¢n−x =

µ
n− x
y

¶µ
1

3
/
2

3

¶y µ
1

3
/
2

3

¶n−x−y
=

µ
n− x
y

¶µ
1

2

¶y µ
1

2

¶n−x−y
and this is the Binomial(n− x, 1/2) distribution and this changes with x. There-
fore, X and Y are related.

10.1.26 By Problem 2.8.27 X and Y are independent if and only if ρ = 0 and
Corr(X,Y ) = ρ.

10.1.27 If the conditional distribution of Y given X = x and Z = z changes
as we change x for some value z then X and Y are related. If the conditional
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distribution of Y given X = x and Z = z never changes as we change z for each
Þxed value of x, then Z and Y are not related.
Now pX,Y,Z (x, y, z) = pY |X,Z (y |x, z) pX,Z(x, z) =

pY |X,Z (y |x, z) pX|Z(x | z)pZ (z) and, because pY |X,Z (y |x, z) is constant in z,
we must have that

pY |X (y |x) = pX,Y (x, y)

pX (x)
=

P
z pY |X,Z (y |x, z) pX|Z(x | z)pZ (z)

pX (x)

=

P
z pX|Z(x | z)pZ (z)

pX (x)
= pY |X,Z (y |x, z) .

Therefore, pX,Y,Z (x, y, z) = pY |X (y |x) pX|Z(x | z)pZ (z) .

10.2 Categorical Response and Predictors

Exercises
10.2.1 First, note that the predictor variable, X-year, is not random. The
estimated conditional distribution of Y given X are recorded in the following
table.

June July August
Year 1 60/240 = .25 100/240 = .41667 80/240 = .33333
Year 2 80/240 = .33333 100/240 = .41667 60/240 = .25

Under the null hypothesis of no difference in the distributions of thunderstorms
between the two years, the MLE�s are given by

�θ1 =
140

480
= .29167, �θ2 =

200

480
= .41667, �θ3 =

140

480
= . 29167.

Then the estimates of the expected counts niθj are given in the following table.

June July August
Year 1 70 100 70
Year 2 70 100 70

The Chi-squared statistic is then equal to X2
0 = 5.7143 and, with X

2 ∼ χ2 (2),
the P-value equals P

¡
X2 > 5. 7143

¢
= .05743. Therefore, we do not have evi-

dence against the null hypothesis of no difference in the distributions of thun-
derstorms between the two years, at least at the .05 level.

10.2.2 First note that the predictor variable, X (received vitamin C or not),
is deterministic. The estimated conditional distributions of Y given X are
recorded in the following table.

No cold Cold
Placebo .22143 .77857
Vitamin C .12230 .87770
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Under the null hypothesis of no relationship between taking vitamin C and the
incidence of the common cold, the MLE�s are given by

�θ1 =
48

279
= .17204, �θ2 =

231

279
= .82796.

Then the estimates of the expected counts niθj are given in the following table.

No cold Cold
Placebo 24.086 115.91
Vitamin C 23.914 115.09

The Chi-squared statistic is equal to X2
0 = 4. 8105 and, with X2 ∼ χ2 (1) ,

the P-value equals P
¡
X2 > 4. 8105

¢
= .02829. Therefore, we have evidence

against the null hypothesis of no relationship between taking vitamin C and the
incidence of the common cold.

10.2.3 The estimated conditional distributions of Y (second digit) givenX (Þrst
digit) are recorded in the following table.

Second digit 0 Second digit 1
First digit 0 0.489796 0.510204
First digit 1 0.500000 0.500000

Under the null hypothesis of no relationship between the digits, the MLE�s are
given by

�θ.1 =
495

1000
= .495, �θ.2 =

505

1000
= .505

for the Y probabilities and

�θ1. =
490

1000
= .49, �θ.2 =

510

1000
= .51

for the X probabilities. Then the estimates of the expected counts niθi·.θ·j are
given in the following table.

Second digit 0 Second digit 1
First digit 0 242.55 247.45
First digit 1 252.45 257.55

The Chi-squared statistic is then equal to X2
0 = . 10409 and, with X

2 ∼ χ2 (1) ,
the P-value equals P

¡
X2 > 0.104092

¢
= .74698. Therefore, we have no evidence

against the null hypothesis of no relationship between the two digits.

10.2.4 First, note that the predictor variable, X (university), is not random.
The estimated conditional distributions of Y given X are recorded in the fol-
lowing table.

Fail Pass
University 1 0.187500 0.812500
University 2 0.077193 0.922807
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Under the null hypothesis of no relationship between calculus grades and uni-
versity, the MLE�s are given by

�θ1 =
55

461
= .11931, �θ2 =

406

461
= .88069.

Then the estimates of the expected counts niθj are given in the following table.

Fail Pass
University 1 20.999 155.0
University 2 34.003 251.0

The Chi-squared statistic is then equal to X2
0 = 12. 598 and, with X

2 ∼ χ2 (1) ,
the P-value equals P

¡
X2 > 12. 598

¢
= .00039. Therefore, we have strong evi-

dence against the null hypothesis of no relationship between the calculus grades
and university.

10.2.5
(a) First, note that the predictor variable, X (gender), is not random. The
estimated conditional distributions of Y given X are given in the following
table.

Y = fair Y = red Y = medium Y = dark Y = jet black
X = m 0.281905 0.0566667 0.404286 0.240000 0.0171429
X = f 0.305104 0.0544027 0.379697 0.252944 0.0078519

Under the null hypothesis of no relationship between hair color and gender, the
MLE�s are given by

�θ1 =
1136

3883
= .292557, �θ2 =

216

3883
= .055627, �θ3 =

1526

3883
= .0.392995,

�θ4 =
955

3883
= .245944, �θ5 =

50

3883
= 0.012877.

Then the estimates of the expected counts niθj are given in the following table.

Y = fair Y = red Y = medium Y = dark Y = jet black
X = m 614.370 116.817 825.290 516.482 27.041
X = f 521.630 99.183 700.710 438.518 22.959

The Chi-squared statistic is then equal to X2
0 = 10.4674 and, with X

2 ∼ χ2 (4) ,
the P-value equals P

¡
X2 > 10.4674

¢
= .03325. Therefore, we have some ev-

idence against the null hypothesis of no relationship between hair color and
gender.
(b) The appropriate bar plots are the two conditional distributions and these
are plotted as follows for males and then females.
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(c) The standardized residuals are given in the following table. They all look
reasonable, so nothing stands out as an explanation of why the model of inde-
pendence doesn�t Þt. Overall, it looks like a large sample size has detected a
small difference.

Y = fair Y = red Y = medium Y = dark Y = jet black
X = m −1.07303 0.20785 1.05934 −0.63250 1.73407
X = f 1.16452 −0.22557 −1.14966 0.68642 −1.88191

10.2.6
(a) First, note that the predictor variable X, is not random. The estimated
conditional distributions of Y given X are given in the following table.

X = 1 X = 2 X = 3 X = 4
Y = 0 0.48 0.40 0.64 0.56
Y = 1 0.52 0.60 0.36 0.44

Under the null hypothesis of no relationship between X and Y , the MLE�s are
given by

�θ1 =
52

100
= .52, �θ2 =

48

100
= .48.

Then the estimates of the expected counts niθj are given in the following table.

X = 1 X = 2 X = 3 X = 4
Y = 0 13 13 13 13
Y = 1 12 12 12 12

The Chi-squared statistic is then equal to X2 = 3.20513 and, with X2 ∼ χ2 (3) ,
the P-value equals P

¡
X2 > 3.20513

¢
= .36107. Therefore, we do not have any
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evidence against the null hypothesis of no cause-effect relationship between X
and Y .
(b) If a relationship had been detected, this would be evidence of a cause-effect
relationship because we have assigned the value of X to each sample element.

10.2.7 We should Þrst generate a value for X1 ∼ Dirichlet(1, 3). Then generate
U2 from the Beta(1, 2) distribution and set X2 = (1−X1)U2. Then generate
U3 from the Beta(1, 1) distribution and set X3 = (1−X1 −X2)U3. Then set
X4 = 1−X1 −X2 −X3.
10.2.8 The Þrst step is drawing the frequency table of (X,Y ), that is, tabulate
fx,y, the number of items having X = x and Y = y. Also let N be the size of the
population. Then check whether X and Y are independent or not, i.e., check
whether fx,y = fx·f·y/N for all x and y or not. If X and Y are independent,
there is no relationship between X and Y . And there is a relationship otherwise.
If the frequency table is close to that of independent variables, there is a weak
relationship. So, if |fx,y − fx·f·y/N | is small there is a weak relationship and if
it is big there is a strong relationship.

10.2.9 Let X and Y be the numbers showing on each die. Then there are 36
possible pairs (i, j) for i, j = 1, . . . , 6. Then, write a 6×6 frequency table, say fij ,
and compute chi-squared statistic, X2 =

P6
i=1

P6
j=1(fij−fi·f·j/n)2/(fi·f·j/n).

Using X2 → χ2((6− 1)(6− 1)) ∼ χ2(25), we compute P (χ2(25) > X2). If this
is small, we have evidence against the null hypothesis.

10.2.10
(a) First of all, write a frequency table, say fij for i = A,B,C,D,E and F , and
j =,female, male. Then, compute the chi-squared statistic, X2 =

P
i

P
j(fij −

fi·f·j/n)2/(fi·f·j/n). Based on X2 → χ2((6 − 1)(2 − 1)) ∼ χ2(5), compute
P (χ2(5) > X2). If it is small, we have evidence against the null hypothesis of
no difference in the Þnal grade distributions between females and males.
(b) As indicated in part (a), the distribution of X2 is asymptotically χ2(5)-
distribution. However, the professor has not sampled from a population. To
carry out the test the professor needs to assume that the class is like a random
sample from some larger population of interest and this may not be the case.

10.2.11 We look at the differences |fij − fi·f·j/n| to see how big these are. If
these are all quite small, then the deviation from independence detected by the
test is of no practical importance.

Problems
10.2.12 We place a Dirichlet(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) prior distribution on
(θ11, θ21, θ31, θ12, θ22, θ32, θ13, θ23, θ33, θ14, θ24, θ34), so the posterior is propor-
tional to (using θ34 = 1− the other parameters) θ1711θ1721θ1231θ1112θ922θ1332θ1113θ823θ1933θ1414
×θ724θ2834. Therefore, the posterior distribution is Dirichlet(18, 18, 13, 12, 10, 14,
12, 9, 20, 15, 8, 29).

10.2.13 We place a Dirichlet(1, 1, 1) prior on
¡
θO|X=j , θA|X=j

¢
for j = P,G,C,

and we assume that these three distributions are independent. Therefore, the



286 CHAPTER 10. RELATIONSHIPS AMONG VARIABLES

posterior is proportional to¡
θO|X=P

¢983 ¡
θA|X=P

¢679 ¡
θB|X=P

¢134 × ¡θO|X=G¢383 ¡θA|X=G¢416 ¡θB|X=G¢84
× ¡θO|X=C¢2892 ¡θA|X=C¢2625 ¡θB|X=C¢570 ,
so
¡
θO|X=P , θA|X=P

¢ |data ∼ Dirichlet(984, 680, 135) , ¡θO|X=G, θA|X=G¢ |
data ∼ Dirichlet(384, 417, 85) , ¡θO|X=C , θA|X=C¢ |data ∼ Dirichlet(2893, 2626,
571) and they are independent.

10.2.14 Consider the following 2× 2 table.

Y = 1 Y = 2 P (X = x)
X = 1 θ11 θ12 θ11 + θ12
X = 2 θ21 θ22 θ21 + θ22

P (Y = y) θ11 + θ21 θ12 + θ22 1

NowX and Y independent implies that

θ11 = (θ11 + θ12) (θ11 + θ21) , θ12 = (θ11 + θ12) (θ12 + θ22)

θ21 = (θ21 + θ22) (θ11 + θ21) , θ22 = (θ21 + θ22) (θ12 + θ22) .

and this implies that

θ11θ22
θ12θ21

=
(θ11 + θ12) (θ11 + θ21) (θ21 + θ22) (θ12 + θ22)

(θ11 + θ12) (θ12 + θ22) (θ21 + θ22) (θ11 + θ21)
= 1.

Now θ11θ22/θ12θ21 = 1 implies that θ11θ22 = θ12θ21 and so (θ11 + θ12) θ22 =
θ12 (θ21 + θ22) and (θ11 + θ12) (θ12 + θ22) = θ12 (θ21 + θ22 = θ11 + θ12) = θ12.
Also, θ11θ22 = θ12θ21 implies (θ11 + θ21) θ22 = (θ12 + θ22) θ21 and so (θ11 + θ21)
× (θ21 + θ22) = (θ12 + θ22 + θ11 + θ21) θ21 = θ21. Similarly, θ22 = (θ21 + θ22)
× (θ12 + θ22) and θ11 = (θ11 + θ12) (θ11 + θ21), so X and Y are independent.

10.2.15 When sampling with replacement from the population, we can think
of the sample as an i.i.d. sample from this population, so each observation has
probability θij of falling in the (i, j) category, namely θij . Then when fij sample
elements fall in this cell the likelihood takes the form

Qa
i=1

Qb
j=1 θ

fij
ij as claimed.

10.2.16 First, note that there are only ab−1 free parameters, so we place θab =
1−P(i,j)6=(a,b) θij . The likelihood function is given by L(θ11, ..., θab | (x1, y1), ...,
(xn, yn)) =

Qa
i=1

Qb
j=1 θ

fij
ij . The log-likelihood function is given by l(θ11, ..., θab |

(x1, y1), ..., (xn, yn)) =
Pa
i=1

Pb
j=1 fij ln θij .

The score function is then given by

S
¡
θ11, ..., θa(b−1) | (x1, y1) , ..., (xn, yn)

¢
=


f11
θ11
− fab

θab
f12
θ12
− fab

θab
...

 .
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Setting this equal to 0 and solving leads to θij = (fij/fab) θab. Then summing
both sides over all (i, j) 6= (a, b) leads to 1 − θab = (n− fab) θab/fab or θab =
fab/n, and this implies that θij = fij/n gives a unique solution to the score
equations.
Now the log-likelihood takes the value −∞ whenever any θij = 0, so the

log-likelihood does not attain its maximum at such a point. Therefore, the log-
likelihood is maximized at some point for which all θij 6= 0, and the log-likelihood
is continuously differentiable at such a point. Since the unique solution to the
score equations is such a point, it must be the MLE.

10.2.17 We let θ1·, . . . , θ(a−1)·, θ·1, . . . , θ·(b−1) be the free parameters since θa· =
1 −Pa−1

i=1 θi· and θ·b = 1 −
Pb−1
j=1 θ·j . The likelihood function is then given by

L(θ1·, . . . , θ(a−1)·, θ·1, . . . , θ·(b−1) | (x1, y1), ..., (xn, yn)) =
Qa
i=1

Qb
j=1(θi·θ·j)

fij =Qa
i=1 θ

fi·
i·
Qb
j=1 θ

f·j
·j . The log-likelihood function is given by l(θ1·, . . . , θ(a−1)·, θ·1,

. . . , θ·(b−1) | (x1, y1), ..., (xn, yn)) =
Pa
i=1 fi· ln θi· +

Pb
j=1 f·j ln θ·j . The score

function is then given by

S
¡
θ1·, . . . , θ(a−1)·, θ·1, . . . , θ·(b−1) | (x1, y1) , ..., (xn, yn)

¢
=


f1·
θ1· −

fa·
θa·

...
f·1
θ·1
− f·b

θ·b
...

 .
Setting this equal to 0 and solving leads to

θi· =
fi·
fa·
θa·, θ·j =

f·j
f·b
θ·b.

Summing these over i = 1, . . . , a− 1 and j = 1, . . . , b− 1 leads to the equations

1− θa· = n− fa·
fa·

θa· and 1− θ·b = n− f·b
f·b

θ·b.

Therefore, θa· = fa·/n, θ·b = f·b/n, and this implies that θi· = fi·/n, θ·j = f·j/n
gives a unique solution to the score equations.
Now the log-likelihood takes the value −∞ whenever any θi· = 0 or θ·j = 0,

so the log-likelihood does not attain its maximum at such a point. Therefore,
the log-likelihood is maximized at some point for which all θi· 6= 0 or θ·j 6= 0,
and the log-likelihood is continuously differentiable at such a point. Since the
unique solution to the score equations is such a point, it must be the MLE.

10.2.18 There are a (b− 1) free parameters because θb|X=i = 1−
Pb−1
j=1 θj|X=i

for i = 1, . . . , a. The likelihood function is given by

L
¡
θ1|X=1, . . . , θb−1|X=1, . . . , θb−1|X=a | (x1, y1) , ..., (xn, yn)

¢
=

aY
i=1

bY
j=1

¡
θj|X=i

¢fij .
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The log-likelihood function is given by

l
¡
θ1|X=1, . . . , θb−1|X=1, . . . , θb−1|X=a | (x1, y1) , ..., (xn, yn)

¢
=

aX
i=1

bX
j=1

fij ln θj|X=i.

The score function is then given by

S
¡
θ1|x=1, θ1|x=2 | (x1, y1) , ..., (xn, yn)

¢
=

 f11
θ1|X=1

− f1b
θb|X=1

...

 .
Setting this equal to 0 and solving leads to θj|X=i = (fij/fib) θb|X=i. Summing
both sides over j = 1, . . . , b− 1 leads to

1− θb|X=i = ni· − fib
fib

θb|X=i

and this implies that θb|X=i = fib/ni further implying that θj|X=i = fij/ni
gives a unique solution to the score equations.
Now the log-likelihood takes the value −∞ whenever any θj|X=i = 0, so

the log-likelihood does not attain its maximum at such a point. Therefore, the
log-likelihood is maximized at some point for which all θj|X=i 6= 0, and the
log-likelihood is continuously differentiable at such a point. Since the unique
solution to the score equations is such a point, it must be the MLE.

10.2.19 There are b−1 free parameters because θb = 1−
Pb−1
j=1 θj . The likelihood

function is given by L (θ1, . . . , θb−1 | (x1, y1) , ..., (xn, yn)) =
Qa
i=1

Qb
j=1 θ

fij
i =Qb

j=1 θ
f·j
j . The log-likelihood function is given by

l (θ1, . . . , θb−1 | (x1, y1) , ..., (xn, yn)) =
Pb
j=1 f·j ln θj . The score function is then

given by

S (θ1, . . . , θb−1 | (x1, y1) , ..., (xn, yn)) =


f·1
θ1
− f·b

θb
...

f·(b−1)
θb−1

− f·b
θb

 .
Setting this equal to 0 gives θj = (f·j/f·b) θb and summing this over j =
1, . . . , b − 1 gives 1 − θb = (n− f·b) θb/f·b. This implies that θb = f·b/n, fur-
ther implying that θj = f·j/n gives a unique solution to the score equations.
Now the log-likelihood takes the value −∞ whenever any θj = 0, so the

log-likelihood does not attain its maximum at such a point. Therefore the log-
likelihood is maximized at some point for which all θj 6= 0, and the log-likelihood
is continuously differentiable at such a point. Since the unique solution to the
score equations is such a point, it must be the MLE.
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10.2.20 First, note that the density of Dirichlet(α1, ..., αk) density is given by
Γ(α1+···+αk)
Γ(α1)···Γ(αk) x

α1−1
1 xα2−12 · · ·xαk−1k . Therefore,

E
³
Xl1
1 · · ·Xlk

k

´
=

Z 1

0

· · ·
Z 1−x2−···−xk−1

0

xl11 · · · (1− x1 − · · ·− xk−1)lk

× Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk) x

α1−1
1 xα2−12 · · · (1− x1 − · · ·− xk−1)αk−1 dx1 · · · dxk−1

=
Γ (α1 + · · ·+ αk)
Γ (α1) · · ·Γ (αk)

Γ (α1 + l1) · · ·Γ (αk + lk)
Γ (α1 + · · ·+ αk + l1 + · · ·+ lk) .

Computer Problems
10.2.21 The following code generates the sample in c2, c3, c4, c5.
gmacro
dirichlet
note - the base command sets the seed for the random number

generator (so you can repeat a simulation).
base 34256734
note - here we provide the algorithm for generating from a

Dirichlet(k1,k2,k3,k4) distribution.
note - assign the values of the parameters.
let k1=1
let k2=1
let k3=1
let k4=1
let k5=K2+k3+k4
let k6=k3+k4
note - generate the sample with i-th sample in i-th row of

c2, c3, c4, c5, ....
do k10=1:10000
random 1 c1;
beta k1 k5.
let c2(k10)=c1(1)
random 1 c1;
beta k2 k6.
let c3(k10)=(1-c2(k10))*c1(1)
random 1 c1;
beta k3 k4.
let c4(k10)=(1-c2(k10)-c3(k10))*c1(1)
let c5(k10)= 1-c2(k10)-c3(k10)-c4(k10)
enddo
endmacro
Based on the output, the following commands calculate the estimates of the

expectations.
MTB > let k1=mean(c2)
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MTB > let k2=mean(c3)
MTB > let k3=mean(c4)
MTB > let k4=mean(c5)
MTB > print k1-k4
Data Display
K1 0.247073
K2 0.251701
K3 0.251028
K4 0.250198
From Appendix C the exact values of each of these expectations is given by
1/(1 + 1 + 1 + 1) = .25.

10.2.22 From Problem 10.2.12 we need to generate from a Dirichlet(18, 18, 13, 12,
10, 14, 12, 9, 20, 15, 8, 29) distribution. The code below generates the sample.
gmacro
dirichlet
note - the base command sets the seed for the random number

generator (so you can repeat a simulation).
base 34256734
note - here we provide the algorithm for generating from a

Dirichlet(k1,k2,k3,k4) distribution.
note - assign the values of the parameters.
let k1=18
let k2=18
let k3=13
let k4=12
let k5=10
let k6=14
let k7=12
let k8=9
let k9=20
let k10=15
let k11=8
let k12=29
let k20=K2+k3+k4+k5+k6+k7+k8+k9+k10+k11+k12
let k21=k3+k4+k5+k6+k7+k8+k9+k10+k11+k12
let k22=k4+k5+k6+k7+k8+k9+k10+k11+k12
let k23=k5+k6+k7+k8+k9+k10+k11+k12
let k24=k6+k7+k8+k9+k10+k11+k12
let k25=k7+k8+k9+k10+k11+k12
let k26=k8+k9+k10+k11+k12
let k27=k9+k10+k11+k12
let k28=k10+k11+k12
let k29=k11+k12
let k30=k12
note - generate the sample with i-th sample in i-th row of
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c2, c3, c4, c5, ....
do k100=1:10000
random 1 c1;
beta k1 k20.
let c2(k100)=c1(1)
random 1 c1;
beta k2 k21.
let c3(k100)=(1-c2(k100))*c1(1)
random 1 c1;
beta k3 k22.
let c4(k100)=(1-c2(k100)-c3(k100))*c1(1)
random 1 c1;
beta k4 k23.
let c5(k100)=(1-c2(k100)-c3(k100)-c4(k100))*c1(1)
random 1 c1;
beta k5 k24.
let c6(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100))*c1(1)
random 1 c1;
beta k6 k25.
let c7(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)

-c6(k100))*c1(1)
random 1 c1;
beta k7 k26.
let c8(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)

-c6(k100)-c7(k100))*c1(1)
random 1 c1;
beta k8 k27.
let c9(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)

-c6(k100)-c7(k100)-c8(k100))*c1(1)
random 1 c1;
beta k9 k28.
let c10(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)

-c7(k100)-c8(k100)-c9(k100))*c1(1)
random 1 c1;
beta k10 k29.
let c11(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)

-c7(k100)-c8(k100)-c9(k100)-c10(k100))*c1(1)
random 1 c1;
beta k11 k30.
let c12(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)

-c7(k100)-c8(k100)-c9(k100)-c10(k100)-c11(k100))*c1(1)
let c13(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)

-c7(k100)-c8(k100)-c9(k100)-c10(k100)-c11(k100)-c12(k100))
enddo
endmacro
Once the sample is generated, the following code generates the estimates.
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MTB > let k1=mean(c2)
MTB > let k2=mean(c3)
MTB > let k3=mean(c4)
MTB > let k4=mean(c5)
MTB > let k5=mean(c6)
MTB > let k6=mean(c7)
MTB > let k7=mean(c8)
MTB > let k8=mean(c9)
MTB > let k9=mean(c10)
MTB > let k10=mean(c11)
MTB > let k11=mean(c12)
MTB > let k12=mean(c13)
MTB > print k1-k12
Data Display
K1 0.101230
K2 0.101019
K3 0.0728538
K4 0.0675903
K5 0.0562978
K6 0.0785378
K7 0.0675277
K8 0.0507912
K9 0.112003
K10 0.0844297
K11 0.0449191
K12 0.162800
From Appendix C the exact posterior expected values are given by (where

s = 18 + 18 + 13 + 12 + 10 + 14 + 12 + 9 + 20 + 15 + 8 + 29 = 178) and
(18/s, 18/s, 13/s, 12/s, 10/s, 14/s, 12/s, 9/s, 20/s, 15/s, 8/s, 29/s). So the esti-
mates are as recorded in the following table.

i Estimate of posterior mean of αi
1 1.0112× 10−1
2 1.0112× 10−1
3 7.3034× 10−2
4 6.7416× 10−2
5 5.6180× 10−2
6 7.8652× 10−2
7 6.7416× 10−2
8 5.0562× 10−2
9 0.112 36
10 8.4270× 10−2
11 4.4944× 10−2
12 0.16292
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Challenges
10.2.23 We have that U1, U2, . . . , Uk−1 are independent, with
Ui ∼ Beta(αi, αi+1 + · · ·+ αk) and

X1 = U1,X2 = (1−X1)U2, . . . ,Xk−1 = (1−X1 − · · ·−Xk−1)Uk−1,
so

U1 = X1, U2 = X2/ (1−X1) , . . . , Uk−1 = Xk−1/ (1−X1 − · · ·−Xk−1) .
From this we deduce that the matrix of partial derivatives of this transforma-
tion is lower triangular and the ith element along the diagonal is ∂Ui/∂Xi =
1/ (1−X1 − · · ·−Xi−1) . Therefore, the Jacobian derivative is given byQk−1
i=2 (1−X1 − · · ·−Xi−1)−1 . Now the joint density of (U1, U2, . . . , Uk−1) pro-

portional to

uα1−11 (1− u1)α2+···+αk−1 uα2−12 (1− u2)α3+···+αk−1 · · ·uαk−1−1k−1 (1− uk−1)αk−1 .
Therefore, the joint density of (X1,X2, . . . ,Xk−1) is proportional to

xα1−11 (1− x1)α2+···+αk−1
³

x2
1−x1

´α2−1 ³
1− x2

1−x1

´α3+···+αk−1
· · ·
³

xk−1
1−x1−···−xk−2

´αk−1−1
k−1

³
1− xk−1

1−x1−···−xk−2

´αk−1


×
k−1Y
i=2

(1− x1 − · · ·− xi−1)−1

= xα1−11 xα2−12 · · ·xαk−1−1k−1 (1− x1 − · · ·− xk−1)αk−1

× (1− x1)α2+···+αk−1 (1− x1)1−α2−(α3+···+αk−1) (1− x1)−1

× (1− x1 − x2)α3+···+αk−1 (1− x1 − x2)1−α3−(α4+···+αk−1) (1− x1 − x2)−1 × · · ·
= xα1−11 xα2−12 · · ·xαk−1−1k−1 (1− x1 − · · ·− xk−1)αk−1 ,
so (X1,X2, . . . ,Xk−1) ∼ Dirichlet(α1, α2, . . . , αk) .

10.3 Quantitative Response and Predictors

Exercises
10.3.1 Since x̄ ∈ [0, 1] with probability 1, we have that x̄ is the least-squares
estimate of the mean θ.

10.3.2 Since x̄ ∈ [0, θ] ⊂ [0,∞) with probability 1, we have that x̄ is the
least-squares estimate of the mean θ/2 ∈ [0,∞) .
10.3.3 Since x̄ ∈ (0,∞) with probability 1, we have that x̄ is the least-squares
estimate of the mean 1/θ ∈ (0,∞).
10.3.4
(a) A scatter plot is given below.
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50-5
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(b) The least-squares estimates of β1 and β2 are given by b2 = 2. 1024 and
b1 = ȳ = −0.00091, so the least-squares line is given by y = −0.00091+2. 1024x.
A scatter plot of the data together with a plot of the least-squares line follows.
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S = 1.54276      R-Sq = 95.8 %      R-Sq(adj) = 95.3 %

Y = -0.0009091 + 2.10236 X

Regression Plot

(c) The plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals is given below.
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(e) Both graphs indicate that the normal simple linear regression model is rea-
sonable.
(f) A .95-conÞdence interval for the intercept is given by

−0.00091± 0.4652 (2.2622) = (−1.0533, 1.0515)
and a .95-conÞdence interval for the slope is given by 2.1024± 0.1471 · 2. 2622 =
(1. 7696, 2.4352) .
(g) The ANOVA table is follows.

Source Df SS MS
X 1 486.19 486.19
Error 9 21.42 2.38
Total 10 507.61

The F statistic for testing H0 : β2 = 0 is given by F = 486.19/2.38 = 204. 28
and, since F ∼ F (1, 9) underH0, the P-value is given by P (F > 204. 28) = .000,
so we reject the null hypothesis of no effect between X and Y.
(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 486.19/507.61 = .9578.
(i) The prediction is given by y = −0.00091 + 2. 1024 (0) = −0.00091. This is
an interpolation because 0.0 is in the range of observed X values. The standard
error of this prediction is, since x̄ = 0 (using Corollary 10.3.1), (2.38/11)1/2 =
0.46515.
(j) The prediction is given by y = −0.00091 + 2. 1024 (6) = 12. 613. This is an
extrapolation because 6 is not in the range of observed X values. The standard
error of this prediction is, since x̄ = 0 (using Corollary 10.3.1),

(2.38)
1/2

Ã
1

11
+
(6− 0)2
110

!1/2
= 0.99763.

(k) The prediction is given by y = −0.00091 + 2. 1024 (20) = 42.047. This is an
extrapolation because 12 is not in the range of observed X values. The standard
error of this prediction is, since x̄ = 0 (using Corollary 10.3.1),

(2.38)
1/2

Ã
1

11
+
(20− 0)2
110

!1/2
= 2.978 4.
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The standard errors get larger as we move away from the observed X values.

10.3.5
(a) A scatter plot of the data follows.
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(b) The least-squares estimates of β1 and β2 are given by b2 = 2.10236 and
b1 = 29.9991. The least-squares line is then given by y = 29.9991+2.10236x. A
scatter plot of the data together with a plot of the least-squares line follows.
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Regression Plot

(c) The plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals follows.
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(e) The plot of the standardized residuals against X indicates very clearly that
there is a problem with this model.

(f) Based on (e), it is not appropriate to calculate conÞdence intervals for the
intercept and slope.

(g) Nothing can be concluded about the relationship between Y and X based
on this model as we have determined that it is inappropriate.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 486.193/7842.01 = 0.062, which is very low.

10.3.6
(a) A scatter plot of the data is given below.
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(b) The least-squares estimates of β1 and β2 are given by b2 = 2732.67 and b1 =
−9033.28, respectively. The least-squares line is then given by y = −9033.28 +
2732.67x. A scatter plot of the data together with a plot of the least-squares
line follows.
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Regression Plot

(c) A plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals follows.
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(e) The plot of the standardized residuals against X indicates very clearly that
there is a problem with this model.
(f) Taking the logarithm of the response, we obtain the least-squares line given
by ln (y) = 0.169155 + 1.06500x. A scatter plot of the data together with the
least-squares line follows
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A plot of the standardized residuals against X follows.
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A normal probability plot of the standardized residuals follows.
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Both graphs above look reasonable and therefore indicate no evidence against
the normal linear model for the transformed response.
(g) As we can see from the scatter plot in part (a), the relationship between X
and Y is deÞnitely non-linear, and therefore it is not appropriate to calculate
conÞdence intervals for the intercept and slope. However, after transforming the
response, the relationship looks quite linear, so for this model 0.95-conÞdence
intervals for the intercept and the slope are given by 0.169155±0.4760 (2.306) =
(−.9285, 1.2668) and 1.065± 0.07671 (2.306) = (.88811, 1.2419) , respectively.
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(h) The ANOVA table based on the transformed data (in part f) is given below.

Source Df SS MS
X 1 93.573 93.573
Error 8 3.884 0.486
Total 9 97.458

The F statistic for testing H0 : β2 = 0 for this model is then given by F =
93.573/3.884 = 24. 092 and, since F ∼ F (1, 8) under H0, the P-value is P (F >
24. 092) = 0.000. Therefore, we have strong evidence against the null hypothesis
of no relationship between lnY and X.
(i) Yes, we can conclude that there is a relationship. We can then express the
relationship between X and Y as E (lnY |X = x) = 0.169155 + 1.06500x.

(j) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 616068769/1.042E+09 = 59.1 for the Þrst model, which is quite low, and
R2 = 93.573/97.458 = . 96014 for the second model (as in part f), which is quite
high.
(k) The prediction of lnY at X = 12 is given by 0.169155 + 1.06500 (12) =
12.949. The prediction of Y is then given by exp (12.949) = 4.204 2× 105. This
is an extrapolation as 12 lies outside the range of observed X values.

10.3.7
(a)

(b) For the data analysis, we need to do some computations. We deÞne SAB =Pn
i=1(ai−ā)(bi−b̄) for two random variables A and B. Then, SXY =

Pn
i=1(xi−

x̄)(yi− ȳ) =
Pn
i=1 xiyi−

Pn
i=1 xi

Pn
i=1 yi/n = 5822−78 ·852/12 = 284, XXX =Pn

i=1(xi − x̄)2 =
Pn
i=1 x

2
i −

¡Pn
i=1 xi

¢2
/n = 650 − 782/12 = 143 and XY Y =Pn

i=1 y
2
i −

¡Pn
i=1 yi

¢2
/n = 62104− 8522/12 = 1612. The regression coefficients

are b2 =
Pn
i=1(xi− x̄)(yi− ȳ)/

Pn
i=1(xi− x̄)2 = SXY /SXX = 284/143 = 1.9860

and b1 = ȳ − b2x̄ = 71− 1.9860× 6.5 = 58.9090.
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(c)

(d) The standardized residual of the ninth week departs from the other residuals
in part (c). This provides some evidence that the model is not correct.
(e) From Corollary 10.3.2, the γ-conÞdence intervals of β1 and β2 are b1 ±
s(1/n+ x̄2/SXX)1/2t(1+γ)/2(n− 2) and b2 ± sS−1/2XX t(1+γ)/2(n− 2). Note that
t0.975(10) = 2.228 from Table D.4. Hence, the required conÞdence intervals are

b1 ± s(1/n+ x̄2/SXX)1/2t(1+γ)/2(n− 2) = 58.0909± (10.2370)(0.6155)(2.228)
= [44.0545, 72.1283]

b2 ± sS−1/2XX t(1+γ)/2(n− 2) = 1.9860± (10.2370)(0.0836)(2.228)
= [0.0787, 3.8933].

(f) For the ANOVA table, we need to compute the total sum of squares and
the regression sum of squares. They are

Pn
i=1(yi− ȳ)2 = SY Y = 1612 and RSS

= b22
Pn
i=1(xi− x̄)2 = (SXY /SXX)2 ·SXX = S2XY /SXX = 2842/143 = 564.0280.

Hence, ESS = 1612− 564.0280 = 1047.9720.
Source Df Sum of Squares Mean Square
X 1 564.0280 564.0280
Error 10 1047.9720 104.7972
Total 11 1612.0000
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We compute the F -statistic

F =
RSS

ESS/(n− 2) =
564.0280

1047.9720/10
= 5.3821.

The probability P (F (1, 10) ≥ 5.3821) < 0.05 from Table D.5. Hence, we con-
clude there is evidence against the null hypothesis of no linear relationship
between the response and the predictor.
(g) The coefficient of determination is given by

R2 =
b22
Pn
i=1(xi − x̄)2Pn
i=1(yi − ȳ)2

=
RSS
SY Y

=
564.0280

1612
= 0.3499.

Hence, almost 35% of the observed variation in the response is explained by
changes in the predictor.

10.3.8
(a) From the relationship, Z = Y −E(Y |X) and

E(Z|X) = E(Y −E(Y |X)|X) = E(Y |X)−E(Y |X) = 0.
(b) The covariance can be written as

Cov(E(Y |X), Z) = E(E(Y |X)Z)−E(E(Y |X))E(Z).
Theorem 3.5.2 implies E(Z) = E(E(Y |X)) and E(Z |X) = 0 from part (a).
So, E(Z) = E(E(Z |X)) = E(0) = 0. In a similar vein, E(E(Y |X)Z) =
E(E(E(Y |X)Z|X)) and E(E(Y |X)Z|X) = E(Y |X)E(Z|X) = 0. Therefore,
Cov(E(Y |X), Z) = 0− 0 = 0.
(c) Given X = x, E(Y |X = x) is constant. So, the conditional cdf of Y given
X = x is

FY |X(y |x) = P (Y ≤ y |x) = P (Y −E(Y |X = x) ≤ y −E(Y |X = x) |x)
= P (Z ≤ y −E(Y |X = x) |x) = FZ(y −E(Y |X = x)).

We see from this that the conditional distribution Y given X depends on X
only through its conditional mean E(Y |X).
10.3.9 In general, E(Y |X) = exp(β1 + β2X) is not a simple linear regression
model since it cannot be written in the form E(Y |X) = β∗1 + β∗2V where V is
an observed variable and the β∗i are unobserved parameter values.

10.3.10 Corollary 3.6.1 implies that

Y = E(Y ) +
Cov(X,Y )
Var(X)

(X −E(X)).

By letting β2 = Cov(X,Y )/Var(X) and β1 = E(Y ) − β2E(X), the model be-
comes Y = β1 + β2X. Hence, it is a simple linear regression model where
Z ≡ 0.
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10.3.11 We can write E(Y |X) = E(Y |X2) in this case and E(Y |X2) =
β1 + β2X

2 so this is a simple linear regression model but the predictor is X2

not X.

10.3.12 The conditional expectation of Y given X is

E(Y |X) = E(X + Z|X) = X +E(Z|X) = X +E(Z) = X = 0 + 1 ·X.
Hence, β1 = 0, β2 = 1 and σ2 = Var(Y −E(Y |X)) = Var(Z) = 1.
10.3.13 The residual analysis shows the model is compatible with the data.
Also there is a linear relationship between the response and predictor from the
ANOVA test. However, the obtained R2 = 0.05 is very small. That means the
linear model only explains 5% of the response. Hence, the predictor explains
only 5% of the response and 95% of the variation in the response is due to
random error. The model will not have much predictive power.

Computer Exercises
10.3.14
(a) A scatter plot of the data is given below.
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(b) The least-squares estimates of β1 and β2 are given by b2 = 3.04845 and
b1 = 344.703. The least-squares line is then given by y = 344.703+3.04845x. A
scatter plot of the data together with a plot of the least-squares line follows.
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(c) The plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals follows.

10-1-2

2

1

0

-1

-2

N
or

m
al

 S
co

re

Standardized Residual

Normal Probability Plot of the Residuals
(response is Income)

(e) Both plots above indicate that the model assumptions are reasonable.
(f) A .95-conÞdence interval for the intercept is given by 344.703±16.48 (2.1009)
= (310.08, 379.33) and a .95-conÞdence interval for the slope is given by 3.04845±
0.3406 (2.1009) = (2.3329, 3.764) .

(g) The F statistics for testing H0 : β2 = 0 is given by F = 53069/662 = 80.165
and, since F ∼ F (1, 18) under H0, the P-value is P (F > 80.165) = 0.000,
indicating strong evidence against the null hypothesis of no linear relationship.
Since we have accepted the model as appropriate, this leads us to conclude that
a relationship between Y and X exists.
(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 53069/64993 = . 81653, which is reasonably high.

10.3.15
(a) A scatter plot of the data follows.
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(b) The least-squares estimates of β1 and β2 are given by b2 = 2.14440 and
b1 = 168.854 respectively. The least-squares line is then given by y = 168.854+
2.14440x. A scatter plot of the data together with a plot of the least-squares
line follows.
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(c) A plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals follows.
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(e) Both plots look reasonable. The Þrst plot might reveal some trend indicating
a possible violation of the assumption of equal variances.
(f) Then, 0.95-conÞdence intervals for the intercept and the slope are given
by 168.854± 28.98 · (2.1009) = (107.97, 229.74) and 2.1444± 0.4250 (2. 1009) =
(1. 2515, 3.0373) , respectively.
(g) The F statistic for testing H0 : β2 = 0 is given by F = 17323/680 = 25.475
and, since F ∼ F (1, 18) under H0, the P-value equals P (F > 25.475) = 0.000,
indicating strong evidence against the null hypothesis of no linear relationship.
We conclude that there is a linear relationship between X and Y .
(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 17323/29570 = . 58583.

10.3.16
(a) A scatter plot of the response Y against the predictor W (speed) follows.
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The scatter plot of the response Y against the predictorX (temperature) follows.
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(b) The least-squares estimates of β1, β2, and β3 are given by b1 = 87.8, b2 =
−0.0406 and b3 = 1.23. The least-squares equation is then given by Y = 87.8−
0.0406W + 1.23X.

(c) a plot of the standardized residuals against W follows.
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The plot of the standardized residuals against X follows.
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(d) A normal probability plot of the standardized residuals follows.
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(e) The normal probability plot seems to indicate that the normality assumption
is suspect. The other residual plots look reasonable.
(f) The .95-conÞdence intervals for the regression coefficients are given by 87.8±
28.98(2.3646) = (19. 274, 156.33) for β1,−0.0406± 0.009142(2.3646) =
(−0.062217,−0.018983) for β2, and 1.23± 0.3595(2.3646) = (.37993, 2.0801) for
β3.
(g) The ANOVA table is given below.

Source Df SS MS
W,X 2 1159.29 579.65
Error 7 315.58 45.08
Total 9 1474.87

The F statistic for testing H0 : β2 = β3 = 0 is given by F = 579.65/45.08 =
12. 858, and since F ∼ F (2, 7) under H0, the P -value equals P (F > 12. 858) =
0.0045. This provides strong evidence against the null hypothesis of no relation-
ship between the response and the predictors.
(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 1159.29/1474.87 = . 78603.
(i) The ANOVA table for testing the null hypothesis H0 : β2 = 0, given that X
is in the model, follows.

Source Df SS MS
X 1 271.06 271.06

W | X 1 888.24 888.24
Error 7 315.58 45.08
Total 9 1474.87

The F statistic is then F = 888.24/45.08 = 19.704, and since F ∼ F (1, 7) under
H0, the P-value equals P (F > 19.704) = .00301, so we have some evidence
against the null hypothesis. We conclude that W (speed) has an effect on the
response Y (tar), given that X is in the model.
(j) The estimate of the mean of Y when W = 2750 and X = 50.0 is given by
Y = 87.8−0.0406 (2750)+1.23 (50.0) = 37.65. This is an extrapolation because
50.0 is not in the range of observed X values.
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10.3.17
(a) A scatter plot of the response Y against the predictor X follows.
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(b) The least-squares estimates of β1, β2 and β3 are given by b1 = 0.752 and
b2 = 2.10 and b3 = 2.92. The least-squares line is then given by Y = 0.752 +
2.10X + 2.92X2.
(c) A plot of the standardized residuals against X follows.

50-5

2

1

0

-1

-2

X

S
ta

n
d

ar
d

iz
ed

 R
es

id
u

al

Residuals Versus X
(response is Y)

(d) A normal probability plot of the standardized residuals follows.
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(e) All plots above, for the most part, look reasonable, so the model assumptions
seem reasonable.
(f) Then, .95-conÞdence intervals for the regression coefficients are given by
0.752± 0.6553(2.306) = (−.75912, 2.2631) for β1, 2.10± 0.1372(2.306) =
(1.7836, 2.4164) for β2, and 2.92± 0.04911(2.306) = (2.8068, 3.0332) for β3.
(g) The ANOVA table is given below.

Source Df SS MS
X,X2 2 7825.5 3912.7
Error 8 16.6 2.1
Total 10 7842.0
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The F statistic for testing H0 : β2 = β3 = 0 is given by F = 3912.7/2.1 =
1890.54, and since F ∼ F (2, 8) under H0, the P-value equals P (F > 1890.54) =
0.000, indicating strong evidence against the null hypothesis of no relationship
between the response and the predictors.
(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R2 = 7825.5/7842.0 = . 9979, which is very high.
(i) The ANOVA table for testing the null hypothesis H0 : β3 = 0 given that X
is in the model follows.

Source Df SS MS
X 1 486.2 486.2

X2 | X 1 7339.3 7339.3
Error 8 16.6 2.1
Total 10 7842.0

The F statistic is given by F = 7339.3/2.1 = 3494. 9, and since F ∼ F (1, 8) un-
der H0, the P-value equals P (F > 3494. 9) = 0.000, so we have strong evidence
against the null hypothesis. We conclude that X2 has an effect on the response,
given that X is in the model.
(j) We predict Y at X = 6 by 29.9991 + 2.10236 (6) = 42.613 using the simple
linear model and by 0.752+2.10 (6)+2.92

¡
62
¢
= 118.47 using the linear model

containing the linear and quadratic terms. So there is a substantial difference
in these predictions.

Problems

10.3.18 First, note that the mean of this distribution is given by (1/2)2 +
(1/2) ((θ − 2) /2) = (θ − 1) /4 and that this value is in the interval (7/4,∞) .
Therefore, the least-squares estimate is given by x̄ whenever x̄ ∈ (7/4,∞) and
is equal to 7/4 whenever x̄ ≤ 7/4.

10.3.19 Since
Pn
i=1 (xi − x̄)2 = 0, we must have (xi − x̄)2 = 0, so xi = x̄ for

every i and all the xi are equal to the same value, say x. Then we need to
estimate the conditional mean of Y at X = x based on a sample (y1, . . . , yn)
from this distribution. The model says that this conditional mean is of the form
E (Y |X = x) = β1 + β2x, where β1, β2 ∈ R1. Therefore, E (Y |X = x) can be
any value in R1, and the least-squares estimate is given by the sample average
ȳ.

10.3.20 For convenience we write Cov(A,B |X1 = x1, . . . ,Xn = xn)
=Cov(A,B) . By Theorem 3.3.2 (linearity of covariance) we have

Cov (Yi −B1 −B2xi, Yj −B1 −B2xj) = Cov (Yi, Yj)−Cov (Yi, B1 +B2xj)
−Cov (Yj , B1 +B2xi) +Cov (B1 +B2xi, B1 +B2xj) .
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Now Cov(Yi, Yj) = σ2δij , where δij = 1 when i = j and is 0 otherwise. Also,

Cov (Yi, B2) = Cov

Ã
Yi,

Pn
j=1

¡
Yj − Ȳ

¢
(xj − x̄)Pn

j=1 (xj − x̄)2
!

=
1Pn

i=1 (xi − x̄)2
Cov

Yi, nX
j=1

xjYj − x̄
nX
j=1

Yj − Ȳ
nX
j=1

xj + nx̄Ȳ


=

1Pn
i=1 (xi − x̄)2

Cov

Yi, nX
j=1

xjYj − x̄nȲ − nx̄Ȳ
nX
j=1

xj + nx̄Ȳ


=

1Pn
i=1 (xi − x̄)2

Cov

Yi, nX
j=1

xjYj − x̄nȲ


=
1Pn

i=1 (xi − x̄)2
¡
xiσ

2 − nx̄Cov ¡Yi, Ȳ ¢¢
=

1Pn
i=1 (xi − x̄)2

¡
xiσ

2 − x̄σ2¢ = σ2 (xi − x̄)Pn
i=1 (xi − x̄)2

.

and Cov(Yi, b1) =Cov
¡
Yi, Ȳ −B2x̄

¢
=Cov

¡
Yi, Ȳ

¢ − x̄Cov(Yi, B2) = σ2/n −
σ2 (xi − x̄) x̄/

Pn
i=1 (xi − x̄)2 . Therefore,

Cov (Yi, B1 +B2xj) =
σ2

n
− σ2 (xi − x̄) x̄Pn

i=1 (xi − x̄)2
+
σ2 (xi − x̄)xjPn
i=1 (xi − x̄)2

= σ2

Ã
1

n
+
(xi − x̄) (xj − x̄)Pn

i=1 (xi − x̄)2
!
= Cov (Yj , B1 +B2xi) .

Also, using Theorem 10.3.3 we have that

Cov (B1 +B2xi, B1 +B2xj)

= Var (B1) + xixj Var (B2) + (xi + xj) Cov (B1, B2)

= σ2

Ã
1

n
+

x̄2Pn
i=1 (xi − x̄)2

+
xixjPn

i=1 (xi − x̄)2
− (xi + xj) x̄Pn

i=1 (xi − x̄)2
!

= σ2

Ã
1

n
+
(xi − x̄) (xj − x̄)Pn

i=1 (xi − x̄)2
!
.

All together this implies that

Cov (Yi −B1 −B2xi, Yj −B1 −B2xj)

= σ2δij − 2σ2
Ã
1

n
+
(xi − x̄) (xj − x̄)Pn

i=1 (xi − x̄)2
!
+ σ2

Ã
1

n
+
(xi − x̄) (xj − x̄)Pn

i=1 (xi − x̄)2
!

= σ2δij − σ2
Ã
1

n
+
(xi − x̄) (xj − x̄)Pn

i=1 (xi − x̄)2
!
.
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10.3.21 We have that

Yi − (B1 +B2xi) = Yi −
¡
Ȳ −B2x̄−B2xi

¢
= Yi − Ȳ −B2 (xi − x̄)

= Yi − Ȳ − (xi − x̄)
Pn
j=1 (xj − x̄)

¡
Yj − Ȳ

¢Pn
j=1 (xj − x̄)2

and we note that this is a linear combination of the independent normals
Y1, . . . , Yn. Therefore, by Theorem 4.6.1 we have that Yi − (B1 +B2xi) , given
X1 = x1, . . . ,Xn = xn, is normally distributed with mean

E (Yi − (B1 +B2xi) |X1 = x1, . . . ,Xn = xn)
= E (Yi |X1 = x1, . . . ,Xn = xn)−E (B1 |X1 = x1, . . . ,Xn = xn)
−E (B2 |X1 = x1, . . . ,Xn = xn)xi

= β1 + β2xi − β1 − β2xi = 0,
and with variance (using Problem 10.3.20 with i = j)

Var (Yi − (B1 +B2xi) |X1 = x1, . . . ,Xn = xn)

= σ2

Ã
1− 1

n
− (xi − x̄)2Pn

i=1 (xi − x̄)2
!
.

Therefore,
Yi − (B1 +B2xi)

σ
³
1− 1

n − (xi−x̄)2!n
i=1(xi−x̄)2

´1/2 ∼ N(0, 1)
as claimed.

10.3.22 We have that

Y − (B1 +B2x) = Y −
¡
Ȳ −B2x̄−B2x

¢
= Y − Ȳ −B2 (x− x̄)

= Y − Ȳ − (xi − x̄)
Pn
j=1 (xj − x̄)

¡
Yj − Ȳ

¢Pn
j=1 (xj − x̄)2

and we note that this is a linear combination of the independent normals
Y, Y1, . . . , Yn. Therefore, by Theorem 4.6.1 we have that Y − (B1 +B2x) , given
X = x,X1 = x1, . . . ,Xn = xn, is normally distributed with mean

E (Y − (B1 +B2x) |X = x,X1 = x1, . . . ,Xn = xn)

= E (Y |X = x,X1 = x1, . . . ,Xn = xn)

−E (B1 |X = x,X1 = x1, . . . ,Xn = xn)

−E (B2 |X = x,X1 = x1, . . . ,Xn = xn)x

= E (Y |X = x)−E (B1 |X1 = x1, . . . ,Xn = xn)
−E (B2 |X1 = x1, . . . ,Xn = xn)x

= β1 + β2x− β1 − β2x = 0,
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and with variance (using Corollary 10.3.1)

Var (Y − (B1 +B2x) |X = x,X1 = x1, . . . ,Xn = xn)

= Var (Y |X = x) + Var (B1 +B2x |X1 = x1, . . . ,Xn = xn)

= σ2

Ã
1 +

1

n
+

(x− x̄)2Pn
i=1 (xi − x̄)2

!
.

Also, Y−(B1 +B2x) is independent of (n−2)S2/σ2 ∼ χ2(n−2), so by DeÞnition
4.6.2

T =
Y − (B1 +B2x)

σ
³
1 + 1

n +
(xi−x̄)2!n
i=1(xi−x̄)2

´1/2 /
s
(n− 2)S2
(n− 2)σ2

=
Y − (B1 +B2x)

S
³
1 + 1

n +
(xi−x̄)2!n
i=1(xi−x̄)2

´1/2 ∼ t (n− 2) .
Therefore,

γ = P
³
−t 1+γ

2
(n− 2) < T < t 1+γ

2
(n− 2)

¯̄̄
X = x,X1 = x1, . . . ,Xn = xn

´
,

so the probability that

Y ∈
B1 +B2x± SÃ1− 1

n
− (xi − x̄)2Pn

i=1 (xi − x̄)2
!1/2

t 1+γ
2
(n− 2)


is equal to γ.

10.3.23
(a) Putting b =

Pn
i=1 xiyi/

Pn
i=1 x

2
i , we have that

nX
i=1

(yi − βxi)2 =
nX
i=1

(yi − bxi + bxi − βxi)2

=
nX
i=1

(yi − bxi)2 + 2 (b− β)
nX
i=1

(yi − bxi)xi + (b− β)2
nX
i=1

x2i

=
nX
i=1

(yi − bxi)2 + (b− β)2
nX
i=1

x2i

since
Pn
i=1 (yi − bxi)xi =

Pn
i=1 xiyi − b

Pn
i=1 x

2
i = 0, and this is clearly mini-

mized, as a function of β, by b.
(b) We have that

E (B |X1 = x1, . . . ,Xn = xn) =
Pn
i=1 xiE (Yi |X1 = x1, . . . ,Xn = xn)Pn

i=1 x
2
i

=

Pn
i=1 xi (βxi)Pn

i=1 x
2
i

= β

Pn
i=1 x

2
iPn

i=1 x
2
i

= β
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and

Var (B |X1 = x1, . . . ,Xn = xn) =
Pn
i=1 x

2
i Var (Yi |X1 = x1, . . . ,Xn = xn)

(
Pn
i=1 x

2
i )
2

=
σ2
Pn
i=1 x

2
i

(
Pn
i=1 x

2
i )
2 =

σ2Pn
i=1 x

2
i

.

(c) We have that

E
¡
S2 |X1 = x1, . . . ,Xn = xn

¢
=

1

n− 1
nX
i=1

E
³
(Yi −Bxi)2 |X1 = x1, . . . ,Xn = xn

´
and

E
³
(Yi −Bxi)2 |X1 = x1, . . . ,Xn = xn

´
= E

³
(Yi − βxi + βxi −Bxi)2 |X1 = x1, . . . ,Xn = xn

´
= Var (Yi |X1 = x1, . . . ,Xn = xn) + x2i Var (B |X1 = x1, . . . ,Xn = xn)
− 2xiCov (Yi, B |X1 = x1, . . . ,Xn = xn)

= σ2 +
σ2x2iPn
i=1 x

2
i

− 2x2iPn
i=1 x

2
i

Var (Yi |X1 = x1, . . . ,Xn = xn)

= σ2 − σ2x2iPn
i=1 x

2
i

= σ2
µ
1− x2iPn

i=1 x
2
i

¶
.

Combining these, we obtain E
¡
S2 |X1 = x1, . . . ,Xn = xn

¢
= σ2.

(d) We have that

nX
i=1

y2i =
nX
i=1

(yi − bxi + bxi)2 =
nX
i=1

(yi − bxi)2 + 2b
nX
i=1

(yi − bxi)xi + b2
nX
i=1

x2i

=
nX
i=1

(yi − bxi)2 + b2
nX
i=1

x2i .

Here we have that
Pn
i=1 (yi − bxi)2 is the error sum of squares and b2

Pn
i=1 x

2
i

is the regression sum of squares. The coefficient of determination is then given
by R2 = b2

Pn
i=1 x

2
i /
Pn
i=1 y

2
i and this is the proportion of the total variation

observed in Y (as measured by
Pn
i=1 y

2
i ) due to changes in X.

(e) Since B is a linear combination of independent normal variables we have
that B is normally distributed with mean given by (part (b)) β and variance
(part (b)) given by σ2/

Pn
i=1 x

2
i .

(f) We have that (B − β) /σ ¡Pn
i=1 x

2
i

¢−1/2 ∼ N(0, 1) independent of (n −
1)S2/σ2 ∼ χ2 (n− 1), so (B − β) /S ¡Pn

i=1 x
2
i

¢−1/2 ∼ t (n− 1) . Now there is
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no relationship between X and Y if and only if β = 0, so we test H0 : β = 0 by
computing the P-value P (|T | > |b/s ¡Pn

i=1 x
2
i

¢−1/2 |), where T ∼ t (n− 1) .
(g) We have that yi = bxi + (yi − bxi) and when the model is correct yi −
bxi is a value from a distribution with mean 0 and variance (see part (b))
σ2
¡
1− x2i /

Pn
i=1 x

2
i

¢
. Therefore, the ith standardized residual is given by

(yi − bxi) /s
¡
1− x2i /

Pn
i=1 x

2
i

¢1/2
.We can plot these in residual plots and nor-

mal probability plots to see if they look like samples from the N(0, 1) distribu-
tion.

10.3.24 First, we should express the β�s in terms of the α�s as follows β2 = α2
and β1 = α1−α2x̄. Substituting those into the sum of squares, and noting thatPn
i=1 (xi − x̄) =

P
(yi − ȳ) = 0, we get

nX
i=1

(yi − β1 − β2xi)2

=
nX
i=1

(yi − α1 − α2 (xi − x̄))2

=
nX
i=1

(yi − ȳ + ȳ − α1 − α2 (xi − x̄))2

=
nX
i=1

(yi − ȳ)2 + 2 (ȳ − α1)
nX
i=1

(yi − ȳ)− 2α2
nX
i=1

(yi − ȳ) (xi − x̄)

+
nX
i=1

(ȳ − α1 − α2 (xi − x̄))2

=
nX
i=1

(yi − ȳ)2 − 2α2
nX
i=1

(yi − ȳ) (xi − x̄) + n (ȳ − α1)2

− 2α2 (ȳ − α1)
nX
i=1

(xi − x̄) + α22
nX
i=1

(xi − x̄)2

=
nX
i=1

(yi − ȳ)2 − 2α2
nX
i=1

(yi − ȳ) (xi − x̄) + n (ȳ − α1)2 + α22
nX
i=1

(xi − x̄)2

as claimed.
Clearly, this is minimized for α1, independently of α2, by selecting α1 = ȳ.

Then we must minimize

− 2α2
nX
i=1

(yi − ȳ) (xi − x̄) + α22
nX
i=1

(xi − x̄)2

=
nX
i=1

(xi − x̄)2
Ã
α2 −

Pn
i=1 (yi − ȳ) (xi − x̄)Pn

i=1 (xi − x̄)2
!2
− (
Pn
i=1 (yi − ȳ) (xi − x̄))2Pn

i=1 (xi − x̄)2

for α2. Clearly, this is minimized by taking
α2 =

Pn
i=1 (yi − ȳ) (xi − x̄) /

Pn
i=1 (xi − x̄)2 as claimed.
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10.3.25 The likelihood function is given by

¡
2πσ2

¢−n/2
exp

Ã
−c

2
y − c2xa2
2σ2

!
exp

³
− n

2σ2
(α1 − ȳ)2

´
exp

µ
− c2x
2σ2

(α2 − a)2
¶

The posterior distribution of α1, given σ2, is then proportional to

exp

µ
− n

2σ2
(α1 − ȳ)2 − 1

2τ21σ
2
(α1 − µ1)2

¶
∝ exp

µ
− 1

2σ2

½µ
n+

1

τ21

¶
α21 − 2

µ
nȳ +

µ1
τ21

¶
α1

¾¶

∝ exp
− 1

2σ2

µ
n+

1

τ21

¶Ã
α1 −

µ
n+

1

τ21

¶−1µ
nȳ +

µ1
τ21

¶!2
and we recognize this as being proportional to the density of a
N(
¡
n+ 1/τ21

¢−1 ¡
nȳ + µ1/τ

2
1

¢
,
¡
n+ 1/τ21

¢−1
σ2) distribution.

Also, the posterior distribution of α2, given σ2, is then proportional to

exp

µ
− c2x
2σ2

(α2 − a)2 − 1

2τ22σ
2
(α2 − µ2)2

¶
∝ exp

µ
− 1

2σ2

½µ
c2x +

1

τ22

¶
α22 −

µ
c2xa+

µ2
τ22

¶
α2

¾¶

∝ exp
− 1

2σ2


µ
c2x +

1

τ22

¶Ã
α2 −

µ
c2x +

1

τ22

¶−1µ
c2xa+

µ2
τ22

¶!2


and we recognize this as being proportional to the density of a
N(
¡
c2x + 1/τ

2
2

¢−1 ¡
c2xa+ µ2/τ

2
2

¢
,
¡
c2x + 1/τ

2
2

¢−1
σ2) distribution.

Finally, the posterior density of 1/σ2 is proportional to¡
1/σ2

¢n
2+κ−1 exp

¡−vxy/σ2¢ , where
vxy =

1

2


¡
c2y − a2c2x

¢
+

·
nȳ2 +

µ21
τ21
−
³
n+ 1

τ21

´−1 ³
nȳ + µ1

τ21

´2¸
+

·
a2c2x +

µ22
τ22
−
³
c2x +

1
τ22

´−1 ³
c2xa+

µ2
τ22

´2¸
+ v

and we recognize this as being proportional to the density of a
Gamma(κ+ n/2, vxy) distribution. Therefore, we established that the posterior
distributions above are from the same family of distribution as the prior and
therefore this prior is conjugate.

10.3.26 When τ1 →∞, τ2 →∞ and ν → 0 and the posterior converges to

α1 |α2, σ2 ∼ N(ȳ, σ2/n), α2 |σ2 ∼ N(a, σ
2

c2x
), 1/σ2 ∼ Gamma

³
κ+

n

2
, νxy

´
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where νxy =
©
c2y − a2c2x

ª
/2, then the marginal posterior density of α1 is pro-

portional toZ ∞

0

µ
1

σ2

¶ 1
2

exp
n
− n

2σ2
(α1 − ȳ)2

oµ 1
σ2

¶κ+n
2−1

exp
n
−νxy
σ2

o
d

µ
1

σ2

¶
=

Z ∞

0

µ
1

σ2

¶κ+n
2− 1

2

exp

½
−
³
νxy +

n

2
(α1 − ȳ)2

´ 1

σ2

¾
d

µ
1

σ2

¶
Making the change of variable 1/σ2 → w, where w =

³
νxy +

n
2 (α1 − ȳ)2

´
/σ2,

in the above integral, shows that the marginal posterior density of α1 is propor-

tional to
³
1 + n

2νxy
(α1 − ȳ)2

´−2κ+n+1
2

. This establishes (Problem 4.6.17) that

the posterior distribution of α1 is given by
√
2κ+ n α1−ȳ√

2νxy/n
∼ t (2κ+ n) .

Challenges
10.3.27 Let µ be the mean and σ2 be the variance of the distribution of X.
By the SLLN we have that X̄ a.s.→ µ so, of necessity, X̄2 a.s.→ µ2. Further,
1
n

Pn
i=1

¡
Xi − X̄

¢2
= 1

n

Pn
i=1X

2
i − X̄2 a.s.→ σ2 + µ2 − µ2 = σ2 since (again by

the SLLN) n−1
Pn
i=1X

2
i
a.s.→ E

¡
X2
¢
= σ2 + µ2. Also, for any random variable

Y, we have that Y/
√
n
a.s.→ 0. Therefore,

Xi − X̄qPn
i=1

¡
Xi − X̄

¢2 =
¡
Xi − X̄

¢
/
√
nq

1
n

Pn
i=1

¡
Xi − X̄

¢2 a.s.→ 0

σ
= 0.

10.4 Quantitative Response and Categorical
Predictors

Exercises
10.4.1
(a) A side-by-side boxplot of the data follows.
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(b) A plot of the standardized residuals against A follows.
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A normal probability plot of the standardized residuals follows.
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Both plots look reasonable, indicating no serious concerns about the correctness
of the model assumptions.
(c) The ANOVA table for testing H0 : β1 = β2 = β3 is given below.

Source Df SS MS
A 2 4.37 2.18

Error 9 18.85 2.09
Total 11 23.22

The F statistic for testing H0 is given by F = 2.18/2.09 = 1. 0431, and since
F ∼ F (2, 9) under H0, we have P-value P (F > 1.0431) = .39135. Therefore,
we do not have evidence against the null hypothesis of no difference among the
conditional means of Y given X.
(d) Since we did not Þnd any relationship between Y and X, there is no need
to calculate these conÞdence intervals.

10.4.2
(a) A side-by-side boxplot of the data follows.
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(b) A plot of the standardized residuals against A follows.
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A normal probability plot of the standardized residuals is given below.
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Both plots indicate a problem with the model assumptions.
(c) A possible way to �Þx� this problem is to remove the extreme observation in
the Þrst category, namely 33.07. After removing this value, we get the following
plot of the standardized residuals against A and normal probability plot of the
standardized residuals. These look much more reasonable.
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(d) The ANOVA table for testing H0 : β1 = β2 = β3, after removing the outlier,
is given below.

Source Df SS MS
A 2 14.840 7.420

Error 8 58.904 7.363
Total 11 73.744

The F statistics for testingH0 is given by F = 7.41/7.363 = 1.01, and since F ∼
F (2, 8) under H0, the P-value equals P (F > 1.01) = .407. Therefore, we have
no evidence against the null hypothesis of no difference among the conditional
means of Y given X.

(e) There is no need to compute these conÞdence intervals as we found no
evidence of a relationship between the response and the predictor.

10.4.3

(a) A side-by-side boxplot of the data follows.
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(b) A plot of the standardized residuals against cheese follows.
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A normal probability plot of the standardized residuals follows.
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Both plots indicate a possible problem with the model assumptions.
(c) The ANOVA table for testing H0 : β1 = β2 is given below.

Source Df SS MS
Cheese 1 0.114 0.114
Error 10 26.865 2.686
Total 11 26.979

The F statistic for testing H0 is given by F = .114/2.686 = .04 and, since
F ∼ F (1, 10) under H0, the P-value equals P (F > .04) = .841. Therefore, we
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do not have any evidence against the null hypothesis of no difference among the
conditional means of Y given Cheese.

10.4.4
(a) A side-by-side boxplot of the data follows.
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Some of the boxplots don�t look very symmetrical, which should be the case
for normal samples. So these graphs are some evidence that the normality
assumption may not be appropriate.
(b) A normal probability plot of the standardized residuals follows.
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A plot of the standardized residuals against the factor gossypol follows.
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Again, these plots provide some evidence that the normality assumption may
not be appropriate.
(c) The ANOVA table for testing H0 : β1 = β2 = β3 = β4 = β5 follows.

Source Df SS MS
Gossypol 4 141334 35333
Error 62 38754 625
Total 66 180087

The F statistic for testing H0 is given by F = 35333/625 = 56. 533, and since
F ∼ F (4, 62) under H0, the P-value equals P (F > 56. 533) = 0.000. Therefore,
we have strong evidence against the null hypothesis of no difference amongst
the mean level of the response given different amounts of gossypol.
(d) The 0.95-conÞdence intervals for the difference between the means are given
in the following table.

Family error rate = 0.279 
Individual error rate = 0.0500 
 
Critical value = 1.999 
 
Intervals for (column level mean) - (row level mean) 
 
                0.00        0.04        0.07        0.10 
 
    0.04      -14.75 
               24.40 
 
    0.07       28.10       21.50 
               66.27       63.23 
 
    0.10       84.60       77.85       35.98 
              119.42      116.53       73.67 
 
    0.13       85.34       78.78       36.87      -16.44 
              124.49      121.40       78.59       22.24 

Only the mean at the 0.00% level does not differ from the mean at the 0.04%
level and the mean at the 0.10% level does not differ from the mean at the 0.13%
level at the 5% signiÞcant level, as both intervals include the value 0.
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10.4.5
(a) A side-by-side boxplot of the data follows.
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(b) A plot of the standardized residuals against the predictor follows.
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A normal probability plot of the standardized residuals follows.
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Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
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(c) The ANOVA table for testing H0 : β1 = β2 = β3 = β4 follows.

Source Df SS MS
Treatment 3 19.241 6.414
Error 20 11.788 0.589
Total 23 31.030

The F statistic for testing H0 is given by F = 6.414/0.589 = 10. 89 and, since
F ∼ F (3, 20) under H0, the P-value equals P (F > 10. 89) = .00019. Therefore,
we have strong evidence against the null hypothesis of no difference among the
conditional means of Y given the predictor.
(d) The 0.95-conÞdence intervals for the difference between the means are given
in the following table.

Family error rate = 0.192 
Individual error rate = 0.0500 
 
Critical value = 2.086 
 
Intervals for (column level mean) - (row level mean) 
 
                   1           2           3 
 
       2     -0.3913 
              1.4580 
 
       3     -2.2746     -2.8080 
             -0.4254     -0.9587 
 
       4     -2.5246     -3.0580     -1.1746 
             -0.6754     -1.2087      0.6746 
 

The mean response for the control treatment does not differ from the mean
response given the Cobalt treatment and the mean response for the Copper
treatment does not differ from the mean response for the Cobalt+Copper treat-
ment at the 5% level, since both intervals include the value 0. All other mean
differences are judged to be nonzero at the 5% level.

10.4.6
(a) A side-by-side boxplot of the data follows.

BA

25

15

5

Diet

W
ei

gh
t 

ga
in

s

(b) A plot of the standardized residuals against Diet follows.
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A normal probability plot of the standardized residuals follows.
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Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
(c) The ANOVA table for testing H0 : β1 = β2 follows.

Source Df SS MS
Treatment 1 136.4 136.4
Error 20 434.0 21.7
Total 21 570.4

The F statistic for testing H0 is given by F = 136.4/21.7 = 6. 2857 and, since
F ∼ F (1, 20) under H0, the P-value equals P (F > 6. 2857) = .02091. There-
fore, we have evidence against the null hypothesis of no difference among the
conditional means of Y given Diet at the 5% level but not at 1%.
(d) A .95-conÞdence interval for the difference between the means follows.

β1 − β2 ∈ (10.0− 15.0)± 4.658
µ
1

10
+
1

12

¶1/2
2. 086 = (−9.1604,−.83961)

Note that this does not include the value 0 and therefore supports our conclusion
from part (c).

10.4.7
(a) A side-by-side boxplot of the data follows.
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(b) Treating the marks as separate samples, the ANOVA table for testing any
difference between the mean mark in Calculus and the mean mark in Statistics
follows.

Source Df SS MS
Course 1 36.45 36.45
Error 18 685.30 38.07
Total 19 721.75

The F statistic for testing H0 : β1 = β2 is given by F = 36.45/38.07 = .95745
and, since F ∼ F (1, 19) under H0, the P-value equals P (F > .95745) = .3408.
Therefore, we do not have any evidence against the null hypothesis of no differ-
ence among the conditional means of Y given Course.

A plot of the standardized residuals against Course follows.
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A normal probability plot of the standardized residuals follows.
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Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
(c) Treating this data as repeated measures, the mean difference between the
mark in Calculus and the mark in Statistics is given by d̄ = −2.7 with stan-
dard deviation s = 2.00250. The P-value for testing H0 : µ1 = µ2, since
T ∼ t (9) under H0, the P-value is given by P

¡|T | > ¯̄−2.7/ ¡2.00250/√10¢¯̄¢ =
2P (T > 4.2637) = .0021, so we have strong evidence against the null hypoth-
esis. Hence we conclude that there is a difference between the mean mark in
Calculus and the mean mark in Statistics. A normal probability plot of the data
follows and this does not indicate any reason to doubt model assumptions.
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(d) The estimate of the correlation between the Calculus and Statistics marks
is given by the sample correlation coefficient rxy = 0.944155.

10.4.8
(a) A side-by-side boxplot of the data follows.
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(b) Treating the Corm High and Corm Low measurements as separate sam-
ples, the ANOVA table for testing any difference between the population means
follows.

Source Df SS MS
Treatment 1 5.040 5.040
Error 12 16.014 1.335
Total 13 21.054

The F statistic for testing H0 : β1 = β2 is given by F = 5.040/1.335 = 3. 7753
and, since F ∼ F (1, 19) under H0, the P-value equals P (F > 3. 7753) = .07585.
Therefore, we do not have substantial evidence against the null hypothesis of
no difference amongst the conditional means of Y given Corm level.
A plot of the standardized residuals against Treatment follows.
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A normal probability plot of the standardized residuals follows.
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Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
(c) Treating this data as repeated measures, the mean difference between the
number of ßorets in plots with Corm High and the number of ßorets in plots
with Corm Low is given by d̄ = −1.2 with standard deviation s = 1.395. The
P-value for testing H0 : µ1 = µ2, since T ∼ t (6) under H0, equals P (|T | >
|−1.2/(1.395/√7|)) = 2P (T > 2. 2759) = .06316, so we do not have substantial
evidence against the null. Hence, we conclude that there is no difference between
the mean number of ßorets in plots with Corm High and the mean number of
ßorets in plots with Corm Low.
A normal probability plot of the data follows and this reveals no evidence of

model incorrectness.
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(d) The estimate of the correlation between the Calculus and Statistics marks
is given by the sample correlation coefficient rxy = 0.301949.
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10.4.9 When Y1 and Y2 are measured on the same individual we have that
Var(Y1 − Y2) = Var(Y1)+Var(Y2)− 2Cov(Y1, Y2) = 2(Var(Y1)− Cov(Y1, Y2)) >
2Var(Y1) since Cov(Y1, Y2) < 0. If we had measured Y1 and Y2 on independently
randomly selected individuals, then we have that Var(Y1−Y2) = 2Var(Y1) since
Cov(Y1, Y2) = 0 in that case. So we get less variation under independence
sampling.

10.4.10 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictor X, i.e., the conditional distribution of Y
given X, depends on X only through E(Y |X) and the error Z = Y −E(Y |X)
is independent of X, (2) the error Z = Y −E(Y |X) is normally distributed.
10.4.11 The following assumption is required: the difference of the two re-
sponses Y1 and Y2 is normally distributed, i.e., Y1 − Y2 ∼ N(µ, σ2).
10.4.12 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictors X1 and X2, i.e., the conditional dis-
tribution of Y given (X1,X2), depends on (X1,X2) only through E(Y |X1,X2)
and the error Z = Y − E(Y |X1,X2) is independent of (X1,X2), (2) the error
Z = Y −E(Y |X1,X2) is normally distributed.
10.4.13 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictors X1 and X2, i.e., the conditional dis-
tribution of Y given (X1,X2), depends on (X1,X2) only through E(Y |X1,X2)
and the error Z = Y − E(Y |X1,X2) is independent of (X1,X2), (2) the er-
ror Z = Y − E(Y |X1,X2) is normally distributed, and (3) X1 and X2 do not
interact.

Problems
10.4.14 To prove this we express the sum of squares as follows

aX
i=1

niX
j=1

(yij − βi)2 =
aX
i=1

niX
j=1

(yij − ȳi + ȳi − βi)2

=
aX
i=1

niX
j=1

(yij − ȳi)2 + 2
aX
i=1

niX
j=1

(yij − ȳi) (ȳi − βi) +
aX
i=1

ni (ȳi − βi)2 .

First, note that the second term is equal to 0 since

niX
j=1

(yij − ȳi) (ȳi − βi) = (ȳi − βi)
 niX
j=1

yij − niȳi


= (ȳi − βi)
 niX
j=1

yij − ni
niX
j=1

yij
ni

 = 0.

So the above sum of squares is minimized as a function of βi if and only if the
second term is equal to 0, and if and only if ȳi − βi = 0, if and only if βi = ȳi.



332 CHAPTER 10. RELATIONSHIPS AMONG VARIABLES

10.4.15 To prove this we express the sum of squares as follows.

aX
i=1

niX
j=1

(yij − ȳ)2 =
aX
i=1

niX
j=1

(yij − ȳi + ȳi − ȳ)2

=
aX
i=1

niX
j=1

(yij − ȳi)2 + 2
aX
i=1

niX
j=1

(yij − ȳi) (ȳi − ȳ) +
aX
i=1

ni (ȳi − ȳ)2 .

Note that the second term is equal to 0 since

aX
i=1

niX
j=1

(yij − ȳi) (ȳi − ȳ) =
aX
i=1

(ȳi − ȳ)
 niX
j=1

yij − niȳi


=
aX
i=1

(ȳi − ȳ)
 niX
j=1

yij − ni
niX
j=1

yij
ni

 = 0

10.4.16 If an interaction exists between the two factors, then the b response
curves are not parallel and therefore cannot be horizontal, i.e., there must be
effect due to both factors.

10.4.17 By assumption we have Yij ∼ N
¡
βi, σ2

¢
and these are all indepen-

dent. Therefore, we have that Ȳi ∼ N
¡
βi, σ

2/ni
¢
. Further, Cov

¡
Yij , Ȳi

¢
=

Cov
³
Yij ,

Pni
k=1

Yik
ni

´
= σ2/ni. Therefore, by Theorem 4.6.1 we have that Yij −

Ȳi ∼ N
¡
0, σ2 (1− 1/ni)

¢
as claimed.

10.4.18 By assumption we have Yijk ∼ N
¡
βij , σ

2
¢
and these are all inde-

pendent. Then we have that Ȳij ∼ N
¡
βij , σ

2/nij
¢
. Further, Cov

¡
Yijk, Ȳij

¢
=

Cov
³
Yijk,

Pnij
l=1

yijl
nij

´
= σ2/nij . Therefore, by Theorem 4.6.1 we have Yijk −

Ȳij ∼ N
¡
0, σ2 (1− 1/nij)

¢
.

10.4.19 First, recall that s2 = 1
N−ab

Pa
i=1

Pb
j=1

Pnij
k=1 (yijk − ȳij)2 . Now if

nij = 1 then ȳij = yijk for all i and j. Hence, yijk − ȳij = 0, which establishes
that s2 = 0 as claimed.

10.4.20 By looking at various plots of the residuals, for example, a normal
probability plot of the standardized residuals.

Computer Problems

10.4.21 Controlling a family error rate of 0.0455, the 0.95-conÞdence intervals
for the difference between the means are given in the following table. It required
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a 0.01 individual error rate.

 
Family error rate = 0.0455 
Individual error rate = 0.0100 
 
Critical value = 2.845 
 
Intervals for (column level mean) - (row level mean) 
 
              Coblat    Coblat+C     Control 
 
Coblat+C     -3.3944 
             -0.8723 
 
Control      -1.7944      0.3389 
              0.7277      2.8611 
 
Copper       -3.1444     -1.0111     -2.6111 
             -0.6223      1.5111     -0.0889 

 

10.4.22
(a) A side-by-side boxplot of the data by treatment (using the coding 3(i−1)+j)
follows.
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(b) A table of the cell means is given follows.

Lot 1 Lot 2 Lot 3
Cheese 1 38.905 35.575 36.510
Cheese 2 38.985 35.550 35.870

(c) A normal probability plot of the standardized residuals follows.
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A plot of the standardized residuals against each of the treatment combinations
(using the coding 3(i− 1) + j) follows.
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Both plots looks reasonable, so indicating no serious concerns about the cor-
rectness of the model assumptions.
(d) The ANOVA table for testing all relevant hypotheses follows.

Source Df SS MS
Cheese 1 0.114 0.114
Lot 2 25.900 12.950

Interaction 2 0.303 0.151
Error 6 0.662 0.110
Total 11 26.979

The F statistic for testing H0 : no interaction between cheese and lot, is
given by F = 0.151/0.110 = 1. 3727 and, since F ∼ F (2, 6) under H0, the
P-value equals P (F > 1. 3727) = .32293. Therefore, we do not have evidence
against the null hypothesis of no interaction effect.
We can then proceed to calculate the P-value for testing H0 : no effect

due to cheese. This is given by P (F > 0.114/0.110 = 1.0364) = . 34794, since
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F ∼ F (1, 6) under H0. Therefore, we do not have any evidence against the null
hypothesis of no effect due to Cheese.
The P-value for testing H0 : no effect due to lot, since F ∼ F (2, 6) under

H0, is given by P (F > 12.950/0.110 = 117.73) = .00002. Therefore, we have
strong evidence against the null hypothesis of no effect due to Lot.
(e) Since we conclude that only the factor Lot has a signiÞcant effect on the
response, we calculate the following table of means.

Lot 1 Lot 2 Lot 3
Mean 38.945 35.563 36.190

The corresponding response curve follows.
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Main Effects Plot - Data Means for % moisture

The .95-conÞdence intervals for the difference between the means are given in
the following table.

 
Family error rate = 0.113 
Individual error rate = 0.0500 
 
Critical value = 2.262 
 
Intervals for (column level mean) - (row level mean) 
 
                   1           2 
 
       2      2.8288 
              3.9362 
 
       3      2.2013     -1.1812 
              3.3087     -0.0738 

 
As we can see, all the conÞdence intervals above do not include the value 0,
indicating differences between all the means at the 5% level.
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(f) Our result here agrees with the result of Exercise 10.4.3 as in both cases no
signiÞcant effect due to cheese was found although we do Þnd an effect due to
Lot.

10.4.23
(a) A side-by-side boxplot of the data by treatment (using the coding 3(i−1)+j
with A = i,B = j) follows.
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(b) A table of the cell means is given follows.

A = 1 A = 2 A = 3
B = 1 21.58 26.64 31.23
B = 2 20.00 26.83 31.72
B = 3 14.02 22.59 27.26

(c) A normal probability plot of the standardized residuals follows.
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A plot of the standardized residuals against each of the treatment combination
follows.
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Both plots indicate a possible problem with the model assumptions, but nothing
severe.

(d) The ANOVA table for testing all relevant hypotheses follows.

Source Df SS MS
A 2 807.2 403.6
B 2 204.2 102.1

A×B 4 17.0 4.2
Error 27 2158.0 79.9
Total 35 3186.3

The F statistic for testing H0 : no interaction between Cheese and Lot, is
given by F = 4.2/79.9 = 0.0526 and, since F ∼ F (4, 27) under H0, the relevant
P-value equals P (F > 0.0526) = .99451. Therefore, we do not have any evidence
against the null hypothesis of no interaction effect.

We can then proceed to calculate the P-value for testing H0 : no effect due
to A and, since F ∼ F (2, 27) under H0, this is given by P (F > 403.6/79.9) =
.01369. Therefore, we have some evidence against the null hypothesis of no effect
due to A.

We can also test H0 : no effect due to B and, since F ∼ F (2, 27) under
H0, the P-value equals P (F (2, 6) > 102.1/79.9) = .29497. Therefore, we have
enough no evidence against the null hypothesis of no effect due to B.

(e) Since we conclude that only factor A has a signiÞcant effect on the response
we calculate the following table of means.

A = 1 A = 2 A = 3
Mean 18.53 25.35 30.07

A plot of the corresponding response curve follows.



338 CHAPTER 10. RELATIONSHIPS AMONG VARIABLES

321

30

25

20

A

R
es

po
ns

e

Main Effects Plot - Data Means for Response

The 0.95-conÞdence intervals for the difference between the means are given in
the following table.

 
Family error rate = 0.120 
Individual error rate = 0.0500 
 
Critical value = 2.035 
 
Intervals for (column level mean) - (row level mean) 
 
                   1           2 
 
       2     -13.872 
               0.237 
 
       3     -18.589     -11.772 
              -4.481       2.337 

 

As we can see, at the 5% signiÞcance level, only the means of the Þrst and third
groups do not differ.

10.4.24

(a) A side-by-side boxplot of the data by treatment (using the coding 3(i−1)+j
with A = i,B = j) follows.
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(b) A table of the cell means follows.

Cask 1 Cask 2 Cask 3
Batch 1 62.70 61.20 62.90
Batch 2 60.70 57.20 60.00
Batch 3 58.10 63.50 64.55
Batch 4 56.75 57.75 64.60
Batch 5 55.10 54.45 58.00
Batch 6 64.15 58.70 60.25
Batch 7 62.55 59.85 57.30
Batch 8 59.30 65.60 64.45
Batch 9 54.80 64.00 57.25
Batch 10 58.80 59.20 57.85

(c) A normal probability plot of the standardized residuals follows.
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A plot of the standardized residuals against each of the treatment combinations
follows.

3020100

2

1

0

-1

-2

treatmen

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

Residuals Versus treatmen
(response is % of fil)

Both plots looks reasonable, indicating no concerns about the correctness of the
model assumptions.
(d) The ANOVA table for testing all relevant hypothesis follows.

Source Df SS MS
Cask 2 20.425 10.213
Batch 9 249.328 27.703

Interaction 18 328.841 18.269
Error 30 19.555 0.652
Total 59 618.150

The F statistic for testing H0 : no interaction between Cask and Batch, is given
by F = 18.269/0.652 = 28.02 and, since F ∼ F (18, 30) under H0, the P-value
equals P (F > 28. 02) = .0000. Therefore, we have strong evidence against the
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null hypothesis of no interaction. It is clear now that both predictors, Cask and
Batch, will have a signiÞcant effect on the response. There is no need to test
for an effect due to either Cask or Batch.
(e) Since we conclude that Cask and Batch interact, the appropriate table of
means is given in part (b). The plot of the response curves follows.
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10.4.25
(a) First, since there is only one observation in each combination of the two
factors, Fertilizer and Plot of Land, we have to assume that no interaction
exists between the two in order to be able to detect an effect due to fertilizer.
The ANOVA table for testing no effect due to fertilizer follows.

Source Df SS MS
Fertilizer 4 0.7308 0.1827
Block 2 0.1086 0.0543
Error 8 0.3384 0.0423
Total 14 1.1778

The F statistic for testing H0 : no effect due to fertilizer, is given by F =
0.1827/0.0423 = 4. 3191 and, since F ∼ F (4, 8) under H0, the P-value equals
P (F (4, 8) > 4.3191) = .03747. Therefore, we have some evidence against the
null hypothesis of no effect due to Fertilizer.
(b) As mentioned in part (a), since nij = 1, we assume, in addition to the usual
assumptions, that there is no interaction between Fertilizer and Plot of Land.
(c) This would increase the number of degrees of freedom available for error,
as we would need only 1 degree of freedom to estimate the effect (slope) of
Fertilizer. So we would have 11 degrees of freedom for error and thus make our
comparisons more accurate.
(d) Using Minitab we Þt this model obtaining the following ANOVA table.
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Analysis of Variance for Response, using Adjusted SS for Tests
Source DF Seq SS MS F P
A 1 0.55981 0.55981 12.09 0.005
B 2 0.10864 0.05432 1.17 0.345
Error 11 0.50939 0.04631
Total 14 1.17784

From this we can see that there is strong evidence of an effect due to A.
To check the validity of this model we provide a normal probability plot of

the standardized residuals below.
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A plot of the standardized residuals against each of the treatment combination
is given below.
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Both plots looks reasonable, indicating no serious concerns about the correctness
of the model assumptions.
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10.5 Categorical Response and Quantitative
Predictors

Exercises
10.5.1 We have

R∞
−∞ f (x) dx =

R∞
0

e−x

(1+e−x)2 dx =
1

1+e−x

¯̄̄∞
−∞

= 1. Hence, f is

indeed a density function. The distribution function is then given by F (x) =R x
−∞

e−t

(1+e−t)2 dt =
1

1+e−t

¯̄̄x
−∞

= 1
1+e−x as claimed. Let p = P (X ≤ x) = F (x) ,

then p ∈ [0, 1] and we have p = (1 + e−x)−1 , which implies F−1 (p) = x =
ln (p/ (1− p)) as claimed.
10.5.2 Let p = P (Y = 1 |x). The log odds at X = x is then given by (10.5.1)
as follows.

ln

µ
p

1− p
¶
= ln

µµ
exp {β1 + β2x}

1 + exp {β1 + β2x}
¶
/

µ
1

1 + exp {β1 + β2x}
¶¶

= ln (exp {β1 + β2x}) = β1 + β2x
as claimed.

10.5.3 Let l = l(p) = ln(p/(1 − p)) be the log odds. Then, el = p/(1 − p) =
1/(1/p− 1). Hence,

el

1 + el
=

1

1 + 1/el
=

1

1 + (1− p)/p =
p

p+ (1− p) = p.

By substituting l = β1 + β2x, we have

p =
exp(β1 + β2x)

1 + exp(β1 + β2x)
.

10.5.4 A Laplace distribution having density f(x) = e−|x|/2 is used for the
inverse cdf. The cdf is F (x) =

R x
−∞ e

−|y|/2dx = ex/2 for x ≤ 0 and F (x) =
1 − e−x/2 for x > 0. Hence, F−1(p) = ln(2p) for p ≤ 1/2 and − ln(2(1 − p)).
Therefore,

P (Y = 1|X1 = x1, . . . ,Xk = xk) = F (β1x1 + · · ·+ βkxk)

=

(
exp(β1x1 + · · ·+ βkxk)/2 if β1x1 + · · ·+ βkxk ≤ 0
1− exp(−(β1x1 + · · ·+ βkxk))/2 if β1x1 + · · ·+ βkxk > 0.

10.5.5 A Cauchy distribution having density f(x) = 1/[π(1 + x2)] is used for
the inverse cdf. The cdf is

F (x) =

Z x

−∞

1

π

1

1 + x2
dx =

Z arctan(x)

−π/2

1

π

1

1 + tan2 θ
sec2 θdθ =

Z arctan(x)

−π/2

1

π
dθ

=
arctan(x) + π/2

π
.
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In the third integral, arc-tangent transformation is used, i.e., x = tan θ is used.
Hence, F−1(p) = tan(π(p− 1/2)). Therefore,

P (Y = 1|X1 = x1, . . . ,Xk = xk) = F (β1x1 + · · ·+ βkxk)
= 1/2 + arctan(β1x1 + · · ·+ βkxk)/π.

Computer Exercises
10.5.6 The results should be the same as presented in Example 10.5.1.

10.5.7
(a) Fitting the model using Minitab leads to the estimates given in the following
table.

Coefficient Estimate Std. Error Z P-value
β1 −1.1850 0.9338 −1.27 0.204
β2 0.9436 0.3966 2.38 0.017
β3 0.0597 0.1462 0.41 0.683

(b) The Chi-squared statistic for testing the validity of the model is then equal
to 4.66204 with P-value given by P

¡
χ2 (8) > 4.66204

¢
= . 79301. Therefore, we

have no evidence that the model is incorrect.
(c) The P-value for testing H0 : β3 = 0 is 0.638, so we do not have any evidence
against the null hypothesis.
(d) Since the null hypothesis H0 : β3 = 0 is not rejected, we dropped the
quadratic term and reÞt the model. This leads to the estimates given in the
following table.

Coefficient Estimate Std. Error Z P-value
β1 −1.0063 0.8150 −1.23 0.217
β2 0.9969 0.4163 2.39 0.017

The P-value for testing H0 : β2 = 0 is 0.017, so we have some evidence against
the null hypothesis and we conclude that there is a linear effect.
(e) The plot of P (Y = 1 |X = x) as a function of x using the estimates found
above follows.
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Problems
10.5.8 The cell count (number of successes) is an observation from a
Binomial(m (x2, x3) , P (Y = 1 | X2 = x2,X3 = x3)) distribution. Let p(x2,x3) (θ)
= P (Y = 1 | X2 = x2,X3 = x3) , where θ = (β2, β3) . Then by Theorem 9.1.2
we have that

X2 =
X

(x2,x3)

(s (x2, x3)−m (x2, x3) �p (x2, x3))2
m (x2, x3) �p (x2, x3)

D→ χ2 (k − 1− dimΩ)

where k is the number of combinations of (x2, x3) and dimΩ = 2. Hence, (10.5.3)
is the correct form of the Chi-squared goodness of Þt test statistic.





Chapter 11

Stochastic Processes

11.1 Simple Random Walk

Exercises
11.1.1
(a) 0.
(b) 0.
(c) 1/3.
(d) 2/3.
(e) 0.
(f) 2(1/3)(2/3) = 4/9.
(g) 0.
(h) (1/3)(1/3) = 1/9.
(i) 0.
(j) 0.
(k)

¡
20
12

¢
(1/3)12(2/3)8 = 0.00925.

(l) 0.
(m)

¡
20
9

¢
(1/3)9(2/3)11 = 0.0987.

11.1.2
(a) P (X1 = 6, X2 = 5) = (2/5)(3/5) = 6/25.
(b) P (X1 = 4, X2 = 5) = (3/5)(2/5) = 6/25.
(c) P (X2 = 5) =

¡
2
1

¢
(2/5)(3/5) = 12/25.

(d) By the law of total probability, P (X2 = 5) = P (X1 = 6, X2 = 5)+P (X1 =
4, X2 = 5).

11.1.3
(a) P (X1 = X3 = 8) = P (X1 = 8, X2 = 7, X3 = 8) + P (X1 = 8, X2 =
9, X3 = 8) = (1/6)(5/6)(1/6) + (1/6)(1/6)(5/6) = 10/216 = 5/108.
(b) P (X1 = 6, X3 = 8) = P (X1 = 6, X2 = 7, X3 = 8) = (5/6)(1/6)(1/6) =
5/216 .
(c) P (X3 = 8) =

¡
3
2

¢
(1/6)2(5/6)1 = 15/216 = 5/72.

347
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(d) By the law of total probability, P (X3 = 8) = P (X1 = 6, X3 = 8)+P (X1 =
8, X3 = 8).

11.1.4
(a) Here E(Xn) = a + n(2p − 1) = 1000 − n(0.02). Hence, E(X0) = 1000;
E(X1) = 999.98; E(X2) = 999.96; E(X10) = 999.80; E(X20) = 999.60;
E(X100) = 998; E(X1000) = 980.
(b) If E(Xn) < 0, then 1000− n(0.02) < 0, i.e., n > 1000/(0.02) = 50, 000.
11.1.5
(a) Here P (τc < τ0) = 0.89819. That is, if you start with $9 and repeatedly
make $1 bets having probability 0.499 of winning each bet, then the probability
you will reach $10 before going broke is equal to 0.89819.
(b) Here P (τc < τ0) = 0.881065.
(c) Here P (τc < τ0) = 0.664169.
(d) Here P (τc < τ0) = 0.0183155.
(e) Here P (τc < τ0) = 4× 10−18.
(f) Here P (τc < τ0) = 2× 10−174.
11.1.6 If p = 0.4, then P (τ0 < ∞) = 1. If p = 0.6, then P (τ0 < ∞) =
((1 − p)/p)a = (0.4/0.6)10 = 0.0173415, i.e., less than 2%. That is, if we start
with $10 and repeatedly make bets with probability 0.4 of winning each bet,
then we will eventually go broke with certainty. However, if the probability of
winning each bet is 0.6, then there is less than 2% chance of eventually going
broke.

11.1.7 We use Theorem 11.1.1.
(a) a = 5, n = 1, k = 1, p = 1/4, q = 3/4 so P (Xn = a+ k) = 1/4
(b) a = 5, n = 1, k = −1, p = 1/4, q = 3/4 so P (Xn = a+ k) = 3/4
(c) a = 5, n = 2, k = 2, p = 1/4, q = 3/4 so P (Xn = a+ k) = (1/4)2 = 0.0625
(d) a = 6, n = 1, k = 1, p = 1/4, q = 3/4 so P (Xn = a+ k) = 1/4
(e) a = 4, n = 1, k = 3, p = 1/4, q = 3/4 so P (Xn = a+ k) = 0
(f) P (X1 = 6 |X2 = 7) = P (X1 = 6, X2 = 7)/P (X2 = 7) = P (X1 =
6)P (X2 = 7 |X1 = 6)/P (X2 = 7) = (1/4)(1/4)/(1/4)2 = 1
(g) We know that the initial fortune is 5 so to get to 7 in two steps the walk
must have been at 6 after the Þrst step.

11.1.8 We use Theorem 11.1.1. a+ n(2p− 1)
(a) a = 1000, n = 1, p = 2/5, q = 3/5 so E(X1) = 1000 + 1(2 · 2/5− 1) = 999.8
(b) a = 5, n = 10, p = 1/4, q = 3/4 so E(X10) = 1000 + 10(2 · 2/5− 1) = 998.0
(c) a = 5, n = 1, p = 2/5, q = 3/5 so E(X100) = 1000 + 100(2 · 2/5− 1) = 980.0
(d) a = 6, n = 1, p = 2/5, q = 3/5 so E(X1000) = 1000+1000(2·2/5−1) = 800.0
(e) 0 ≥ E(X1) = 1000 + n(2 · 2/5− 1) = 1000− n/5 if and only if n ≥ 5000.
11.1.9
(a) P (X1 ≥ a) = P (X1 = a+ 1) = 18/38
(b) P (X2 ≥ a) = (18/38)2 +

¡
2
1

¢
(18/38)(20/38) = 0.72299

(c) P (X3 ≥ a) = (18/38)3 +
¡
3
2

¢
(18/38)2(20/38) = 0.46056

(d) limn→∞ P (Xn ≥ a) = 0
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(e) In the long run the gambler loses money.

Problems
11.1.10
(a) This is equivalent to having $5, and trying to reach $50, by making bets
of just $1 each time � since we can count things in units of $2 instead of $1.
Hence, the desired probability is (1− ((1− p)/p)5)/(1− ((1− p)/p)50).
(b) If p = 0.4, then this equals approximately 1.034× 10−8.
(c) The corresponding probability with $1 bets is (1− ((1− p)/p)10)/(1− ((1−
p)/p)100) = 1.39 × 10−16. Hence, we have a larger probability of reaching our
goal if we bet $2 each time, rather than $1.
(d) The corresponding probability with $10 bets is (1− ((1−p)/p)1)/(1− ((1−
p)/p)10) = 0.00882. Hence, the probability of success increases if we bet $10
each time, rather than $1 or $2.

Challenges
11.1.11 Fix a and c and let f(x) = (1 − xa)/(1 − xc). We wish to com-
pute limp→1/2 f((1 − p)/p). Since limp→1/2((1 − p)/p) = 1, the desired limit
is equal to limx→1 f(x) (if it exists). But from L�Hôpital�s rule, limx→1 f(x) =
limx→1( ddx(1− xa)/ ddx(1− xc)) = limx→1(axa−1)/(cxc−1) = a/c, as desired.

11.2 Markov Chains

Exercises
11.2.1
(a) P (X0 = 1) = µ1 = 0.7.
(b) P (X0 = 2) = µ2 = 0.1.
(c) P (X0 = 3) = µ3 = 0.2.
(d) P (X1 = 2 |X0 = 1) = p12 = 1/4.
(e) P (X3 = 2 |X2 = 1) = p12 = 1/4.
(f) P (X1 = 2 |X0 = 2) = p22 = 1/2.
(g) P (X1 = 2) =

P
i µipi2 = (0.7)(1/4) + (0.1)(1/2) + (0.2)(3/8) = 0.3.

11.2.2
(a) P (X0 = high) = µhigh = 1/3.
(b)P (X0 = low) = µlow = 2/3.
(c) P (X1 = high |X0 = high) = phigh,high = 1/4.
(d) P (X3 = high |X2 = high) = phigh,high = 1/4.
(e) P (X1 = high) =

P
i µipi,high = (1/3)(1/4) + (2/3)(1/6) = 7/36.

11.2.3
(a) P0(X2 = 0) =

P
i p0ipi0 = (0.2)(0.2) + (0.8)(0.3) = 0.28. P0(X2 =

1) =
P
i p0ipi1 = (0.2)(0.8) + (0.8)(0.7) = 0.72. P1(X2 = 0) =

P
i p1ipi0 =

(0.3)(0.2)+(0.7)(0.3) = 0.27. P1(X2 = 1) =
P
i p1ipi1 = (0.3)(0.8)+(0.7)(0.7) =

0.73.
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(b) P0(X3 = 1) =
P
i,j p0ipijpj1 = (0.2)(0.2)(0.8)+(0.2)(0.8)(0.7)+(0.8)(0.3)(0.8)

+(0.8)(0.7)(0.7) = 0.728.

11.2.4
(a) We need π0(0.2) + π1(0.3) = π0 and π0(0.8) + π1(0.7) = π1, where π1 =
(8/3)π0, where π0 = 3/11, and π1 = 8/11.
(b) Since pij > 0 for all i and j, the chain is irreducible and aperiodic, so
limn→∞ P0(Xn = 0) = π0 = 3/11.
(c) Similarly, limn→∞ P1(Xn = 0) = π0 = 3/11.

11.2.5
(a) P2(X1 = 1) = p21 = 1/2.
(b) P2(X1 = 2) = p22 = 0.
(c) P2(X1 = 3) = p23 = 1/2.
(d) P2(X2 = 1) =

P
i p2ipi3 = (1/2)(1) + (1/2)(0) = 1/2.

(e) P2(X2 = 2) =
P
i p2ipi3 = (1/2)(0) + (1/2)(1/5) = 1/10.

(f) P2(X2 = 3) =
P
i p2ipi3 = (1/2)(0) + (1/2)(4/5) = 2/5.

(g) P2(X3 = 3) =
P
ij p2ipijpj3 = (1/2)(0)+(1/2)(1/5)(1/2)+(1/2)(4/5)(4/5) =

37/100.
(h) P2(X3 = 1) =

P
ij p2ipijpj1 = (1/2)(1)(1) + (1/2)(1/5)(1/2) = 11/20.

(i) P2(X1 = 7) = 0.
(j) P2(X2 = 7) = 0.
(k) P2(X3 = 7) = 0.
(l) maxn P2(Xn = 7) = 0 since it is impossible to get from 2 to 7 in any number
of steps.
(m) No, since e.g. it is impossible to get from 2 to 7 in any number of steps.

11.2.6
(a) Here pij > 0 for all i and j, so the chain is irreducible and aperiodic.
(b) Here pij > 0 for all i and j, so the chain is irreducible and aperiodic.
(c) Here p12p21 > 0 and p22 > 0, so the chain is irreducible. Also, p12p21 > 0
and p12p22p21 > 0 and p22 > 0, so the chain is aperiodic.
(d) Since pi2 > 0 for all i, and p2j > 0 for all j, the chain is irreducible. Also,
since p(2)ii > 0 and p

(3)
ii > 0 for all i, the chain is aperiodic.

(e) This chain is irreducible since for all i and j, p(n)ij > 0 for some n ≤ 3.

However, the chain is not aperiodic since p(n)ii > 0 only when n is a multiple of
3.
(f) This chain is irreducible since for all i and j, p(n)ij > 0 for some n ≤ 3. Also,
since p(3)ii > 0 and p

(4)
ii > 0 for all i, the chain is aperiodic.

11.2.7 This chain is doubly stochastic, i.e., has
P
i pij = 1 for all j. Hence, as

in Example 11.2.15, we must have the uniform distribution (π1 = π2 = π3 =
π4 = 1/4) as a stationary distribution.

11.2.8
(a) By moving clockwise one step at a time, we see that for all i and j, we have
p
(n)
ij > 0 for some n ≤ d. Hence, the chain is irreducible.
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(b) Since pii > 0 for all i, each state has period 1, so the chain is aperiodic.
(c) If i and j are two or more apart, then pij = pji = 0. If i and j are one
apart, then πipij = (1/d)(1/3) = 1/3d and πjpji = (1/d)(1/3) = 1/3d. Hence,
the chain is reversible with respect to {πi}.
11.2.9
(a) By either increasing or decreasing one step at a time, we see that for all i
and j, we have p(n)ij > 0 for some n ≤ d. Hence, the chain is irreducible.
(b) The chain can only move from even numbers to odd, and from odd numbers
to even. Hence, each state has period 2.
(c) If i and j are two or more apart, then pij = pji = 0. If j = i + 1, then
πipij = (1/2d)

¡
d
i

¢
((d − i)/d) = (1/2d)(d!/i!(d − i)!)((d − i)/d) = (1/2d)((d −

1)!/i!(d− i− 1)!), while πjpji = (1/2d)
¡
d
i+1

¢
((i+ 1)/d) = (1/2d)(d!/(i+1)!(d−

i−1)!)((i+1)/d) = (1/2d)((d−1)!/i!(d− i−1)!). Hence, the chain is reversible
with respect to {πi}.
11.2.10
(a) This chain is irreducible since for all i and j, p(n)ij > 0 for some n ≤ 3.
(b) Since p(3)ii > 0 and p

(5)
ii > 0 for all i, the chain is aperiodic.

(c) We need π3(1/2) = π1, π1(1) + π3(1/2) = π2, and π2(1) = π3. Hence,
π1 = 1/4 and π2 = π3 = 1/2.
(d) We have limn→∞ P1(Xn = 2) = π2 = 1/2. Hence, P1(X500 = 2) ≈ 1/2.
11.2.11
(a) This chain is irreducible since for all i and j, p(n)ij > 0 for some n ≤ 3.
(b) Since p(3)ii > 0 and p

(5)
ii > 0 for all i, the chain is aperiodic.

(c) We need π3(1/2) = π1, π1(1/2) + π3(1/2) = π2, and π1(1/2) + π2(1) = π3.
Hence, π1 = 2/9, π2 = 3/9, and π3 = 4/9.
(d) We have limn→∞ P1(Xn = 2) = π2 = 3/9 = 1/3. Hence, P1(X500 = 2) ≈
1/3.

11.2.12
(a) This chain is irreducible and aperiodic since pij > 0 for all i and j.
(b) P1(X1 = 3) = .4

(c)

 .3 .3 .4
.2 .2 .6
.1 .2 .7

2

=

 0.19 0.23 0.58
0.16 0.22 0.62
0.14 0.21 0.65

 so P1(X2 = 3) = .3 · .4+ .3 · .6+

.4 · .7 = 0.58

(d)

 .3 .3 .4
.2 .2 .6
.1 .2 .7

3

=

 0.161 0.219 0.620
0.154 0.216 0.630
0.149 0.214 0.637

 so P1(X3 = 3) = .62

(e) ¡
π1 π2 π3

¢ .3 .3 .4
.2 .2 .6
.1 .2 .7

 =
¡
π1 π2 π3

¢
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implies ¡
π1 π2 π3

¢ −7 3 4
2 −8 6
1 2 −3

 =
¡
0 0 0

¢
,

and solving these equations leads to π1 = (12/50)π3, π2 = (17/50)π3 and Þnally
π1+ π2 + π3 = 1 implies π1 = 12/79, π2 = 17/79, and π3 = 50/79. Therefore,
limn→∞ P1(Xn = 3) = 50/79.

11.2.13 P1(X1 + X2 ≥ 5) = P1(X1 = 2,X2 = 3) + P1(X1 = 3,X2 = 2) +
P1(X1 = 3,X2 = 3) = .3 · .6 + .4 · .2 + .4 · .7 = 0.54
11.2.14
(a) The period of 1 is 1 since p(n)11 = 1 for all n. The period of 2 is 2 since p

(n)
11 = 1

when n is even and is 0 otherwise. Similarly, the period of 3 is 2.
(b) The chain is not aperiodic since all states do not have period equal to 1.

11.2.15
(a) The chain is irreducible since we can get from any state to any other state
with positive probability, e.g., the transitions 1→ 2→ 3, 2→ 1, 3→ 2→ 1 all
have positive probability of occurring.
(b) We have that gcd{n : p(n)11 > 0} = gcd{2, 4, 6, . . .} = 2 and so the chain is
not aperiodic.

Problems
11.2.16 For reversibility, we need π1p12 = π2p21, so π2 = (p12/p21)π1 =
((4/5)/(1/5))π1 = 4π1. Then π3 = (p23/p32)π2 = ((4/5)/(1/5))π2 = 4π2 =
42π1. Then π4 = (p34/p43)π3 = ((4/5)/(1/5))π3 = 4π3 = 43π1. Then π5 =
(p45/p54)π4 = ((4/5)/(1/5))π4 = 4π4 = 4

4π1. Hence, since 1+4+42+43+44 =
341, we have π1 = 1/341, π2 = 4/341, π3 = 42/341, π4 = 43/341, and
π5 = 44/341.

11.2.17 We know that this example is irreducible and aperiodic, with πi =
1/d = 1/100 for all i. Hence, limn→∞ P0(Xn = 55) = 1/100. Hence, for large n
(such as the number of seconds in a month), P0(Xn = 55) ≈ 1/100.
11.2.18 We use induction on n. The case n = 1 follows by deÞnition. Assuming
the theorem is true for some n, then Pi(Xn+1 = j) =

P
k Pi(Xn = k, Xn+1 =

j) =
P
k Pi(Xn = k) pkj =

P
k

P
i1,...,in−1 pii1pi1i2 . . . pin−1k pkj . The result

follows by replacing the dummy variable k by in.

11.2.19 If j = 0, then pij > 0 only for i = 1 when p10 = 1/d. Hence,P
i∈S πipij = π1(1/d) = (1/2d)

¡
d
1

¢
(1/d) = (1/2d)(d)(1/d) = (1/2d) = π0.

If j = d, then pij > 0 only for i = d − 1 when pd−1,d = 1/d. Hence,P
i∈S πipij = π1(1/d) = (1/2

d)
¡
d
d−1
¢
(1/d) = (1/2d)(d)(1/d) = (1/2d) = πd.
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11.3 Markov Chain Monte Carlo

Exercises
11.3.1 First, choose any initial value X0. Then, given Xn = i, let Yn+1 = i+1
or i−1, with probability 1/2 each. Let j = Yn+1 and let αij = min(1, πj/πi) =
min(1, e−(j−13)

4+(i−13)4). Then let Xn+1 = j with probability αij , otherwise
let Xn+1 = i with probability 1− αij .
11.3.2 First, choose any initial value X0. Then, given Xn = i, let Yn+1 = i+1
with probability 5/8 or Yn+1 = i − 1 with probability 3/8. Let j = Yn+1
and let αij = min(1, πjqji/πiqij) = min(1, (i+7.5)−8(3/8)/(i+6.5)−8(5/8)) if
j = i+1 or αij = min(1, πjqji/πiqij) = min(1, (i+5.5)−8(5/8)/(i+6.5)−8(3/8))
if j = i − 1. Then let Xn+1 = j with probability αij , otherwise let Xn+1 = i
with probability 1− αij .
11.3.3 First, choose any initial value X0. Then, given Xn = i, let Yn+1 = i+1
with probability 7/9 or Yn+1 = i − 1 with probability 2/9. Let j = Yn+1 and
let αij = min(1, πjqji/πiqij) = min(1, e−j

4−j6−j8(2/9)/e−i
4−i6−i8(7/9)) if j =

i + 1 or αij = min(1, πjqji/πiqij) = min(1, e−j
4−j6−j8(7/9)/e−i

4−i6−i8(2/9))
if j = i − 1. Then let Xn+1 = j with probability αij , otherwise let Xn+1 = i
with probability 1− αij .
11.3.4 Let {Zn} be i.i.d. ∼ N(0, 1). First, choose any initial value X0. Then,
given Xn = x, let Yn+1 = Xn + Zn+1. Let y = Yn+1 and let
αxy = min(1, f(y)/f(x)) = min(1, e

−y4−y6−y8+x4+x6+x8). Then let Xn+1 = y
with probability αxy, otherwise let Xn+1 = x with probability 1− αxy.
11.3.5 Let {Zn} be i.i.d. ∼ N(0, 1). First, choose any initial value X0. Then,
given Xn = x, let Yn+1 = Xn +

√
10Zn+1. Let y = Yn+1 and let αxy =

min(1, f(y)/f(x)) = min(1, e−y
4−y6−y8+x4+x6+x8). Then let Xn+1 = y with

probability αxy, otherwise let Xn+1 = x with probability 1− αxy.
Problems
11.3.6 First, choose any initial valueX0. Then, givenXn = (i1, i2), choose Yn+1
so that P (Yn+1 = (i1, j)) = 2−j for j = 1, 2, 3, . . .. Then, given Yn+1 = (i1, j),
choose Zn+1 so that P (Zn+1 = (k, j)) = 2−k for k = 1, 2, 3, . . .. Then set
Xn+1 = Zn+1 = (k, j).

11.4 Martingales

Exercises
11.4.1 Here E(Xn+1 |Xn) = (3/8)(Xn−4)+(5/8)(Xn+C) = Xn+(5C−12)/8.
This equals Xn if C = 12/5.

11.4.2 Here E(Xn+1 |Xn) = (p)(Xn + 7) + (1− p)(Xn − 2) = Xn + (9p − 2).
This equals Xn if p = 2/9.
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11.4.3 Here E(Xn+1 |Xn) = (p)(2Xn)+ (1−p)(Xn/2) = Xn(2p+(1−p)/2) =
Xn((3p/2) + (1/2)). This equals Xn if (3p/2) + (1/2) = 1, i.e. if p = 1/3.

11.4.4 Let p = P (Xn = 14). Then E(Xn) = (0.1)(8)+(0.9−p)(12)+(p)(14) =
2p + 11.6. But {Xn} is a martingale, so we know that E(Xn) = X0 = 14.
Hence, 2p+ 11.6 = 14, so p = 1.2.

11.4.5 Let p = P (Xn = 4). Then E(Xn) = (2/3)(1 − p)(3) + (1/3)(1 −
p)(4) + (p)(6) = (8p + 10)/3. But {Xn} is a martingale, so we know that
E(Xn) = X0 = 5. Hence, (8p+ 10)/3 = 5, so p = 5/8.

11.4.6
(a) Let Xn be the number of pennies at time n. Then {Xn} is a martingale.
Hence, E(X20) = X0 = 175.
(b) Let p be the probability you have 200 pennies when you stop. Then let
T be the time at which you stop. Then E(XT ) = (p)(200) + (1 − p)(100) =
100+ 100p. But {Xn} is a bounded martingale, so E(XT ) = X0 = 175. Hence,
100 + 100p = 175, so p = 3/4.

11.4.7
(a) Here E(Xn+1 |Xn) = (1/4)(3Xn) + (3/4)(Xn/3) = Xn, so {Xn} is a mar-
tingale.
(b) T is non-negative integer-valued and does not look into the future, so it is
a stopping time.
(c) Since {Xn}n≤T is bounded between 1 and 81, we have E(XT ) = X0 = 27.
(d) Let p = P (XT = 1). Then E(XT ) = (p)(1)+(1−p)(81) = 81−80p. Hence,
81− 80p = 27, so p = 54/80 = 27/40.
Problems
11.4.8 Since T2 happens later than T1, it also does not look into the future, so
it also must be a stopping time. However, since T3 happens earlier, it is possible
that T3 looks into the future, so T3 may not be a stopping time.

11.4.9
(a) Since {T3 ≤ n} = {T1 ≤ n} ∪ {T2 ≤ n} and T1 and T2 are stopping times,
then {T3 ≤ n} is also a function of X0,X1, . . . ,Xn alone, so that T3 is also a
stopping time.
(b) Since {T4 ≤ n} = {T1 ≤ n} ∩ {T2 ≤ n} and T1 and T2 are stopping times,
then {T4 ≤ n} is also a function of X0,X1, . . . ,Xn alone, so that T4 is also a
stopping time.

11.5 Brownian Motion

Exercises
11.5.1
(a) P (Y (1)1 = 1) = 1/2.

(b) P (Y (2)1 = 1) = 0.
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(c) P (Y (2)1 =
√
2) = P (Y

(2)
2/2 = 2/

√
2) = (1/2)(1/2) = 1/4.

(d)We have P (Y (M)
1 ≥ 1) = P (Y (M)

M/M ≥ √M/√M). Hence, P (Y (1)1 ≥ 1) = 1/2.
Also, P (Y (2)1 ≥ 1) = (1/2)(1/2) = 1/4. Also, P (Y (3)1 ≥ 1) =
(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2) + (1/2)(1/2)(1/2) = 3/8. Also, P (Y (4)1 ≥
1) = (1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2)
+(1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2) = 5/16.

11.5.2 Since B1 ∼ N(0, 1), P (B1 ≥ 1) = P (B1 ≤ −1) = Φ(−1) = 0.1587.
11.5.3
(a) P (B2 ≥ 1) = P ((1/

√
2)B2 ≥ 1/

√
2) = Φ(−1/√2) = 0.2397.

(b) P (B3 ≤ −4) = P ((1/
√
3)B2 ≤ −4/

√
3) = Φ(−4/√3) = 0.0105.

(c) P (B9 − B5 ≤ 2.4) = P (B4 ≤ 2.4) = P ((1/2)B4 ≤ 2.4/2) = Φ(2.4/2) =
1−Φ(−2.4/2) = 0.8849.
(d) P (B26 − B11 > 9.8) = P (B15 > 9.8) = P ((1/

√
15)B15 > 9.8/

√
15) =

Φ(−9.8/√15) = 0.0057.
(e) P (B26.3 ≤ −6) = P ((1/

√
26.3)B26.3 ≤ −6/√26.3) = Φ(−6/√26.3) =

0.1210.
(f) P (B26.3 ≤ 0) = P ((1/

√
26.3)B26.3 ≤ 0/

√
26.3) = Φ(0/

√
26.3) = 1/2.

11.5.4
(a) P (B2 ≥ 1, B5 − B2 ≥ 2) = P (B2 ≥ 1)P (B5 − B2 ≥ 2) = P ((1/

√
2)B2 ≥

1/
√
2)P ((1/

√
3)(B5 −B2) ≥ 2/

√
3) = Φ(−1/√2)Φ(−2/√3) = 0.02975.

(b) P (B5 < −2, B13−B5 ≥ 4) = P (B5 < −2)P (B13−B5 ≥ 4) = P ((1/
√
5)B5 <

−2/√5)P ((1/√8)(B13 −B5) ≥ 4/
√
8) = Φ(−2/√5)Φ(−4/√8) = 0.01459.

(c) P (B8.4 > 3.2, B18.6 − B8.4 ≥ 0.9) = P (B8.4 > 3.2)P (B18.6 − B8.4 ≥
0.9) = P ((1/

√
8.4)B8.4 > 3.2/

√
8.4)P ((1/

√
10.2)(B18.6 −B8.4) ≥ 0.9/

√
10.2) =

Φ(−3.2/√8.4)Φ(−0.9/√10.2) = 0.05243.
11.5.5 E(B13B8) = min(13, 8) = 8.

11.5.6
(a) Since B17 −B14 ∼ N(0, 3), E((B17 −B14)2) = 3 + 02 = 3.
(b) E((B17−B14)2) = E(B217)−2E(B17B14)+E(B214) = 17+02−2min(17, 14)+
14 + 02 = 17− 2 · 14 + 14 = 3.
11.5.7
(a) Let p = P (hit −5 before 15) and let T be the Þrst time we hit either. Then
0 = E(BT ) = p(−5) + (1− p)(15) = 15− 20p, so that p = 15/20 = 3/4.
(b) Let p = P (hit −15 before 5) and let T be the Þrst time we hit either. Then
0 = E(BT ) = p(−15) + (1− p)(5) = 5− 20p, so that p = 5/20 = 1/4.
(c) The answer in (a) is larger because −5 is closer to B0 = 0 than 15 is, while
−15 is farther than 5 is.
(d) Let p = P (hit 15 before −5) and let T be the Þrst time we hit either. Then
0 = E(BT ) = p(15) + (1− p)(−5) = −5 + 20p, so that p = 5/20 = 1/4.
(e) We have 3/4 + 1/4 = 1, which it must since the events in parts (a) and (d)
are complimentary events.
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11.5.8
(a) E(X7) = E(5 + 3 · 7 + 2B7) = 5 + 3 · 7 + 2 · 0 = 26.
(b) Var(X8.1) = Var(5 + 3 · 8.1 + 2B8.1) = 4Var(B8.1) = 4 · 8.1 = 32.4.
(c) P (X2.5 < 12) = P (5 + 3 · 2.5 + 2B2.5 < 12) = P (B2.5 < −1/4) =
P ((1/

√
2.5)B2.5 < −1/4

√
2.5) = Φ(−1/4√2.5) = 0.4372.

(d) P (X17 > 50) = P (5+3·17+2B17 > 50) = P (B17 > −3) = P ((1/
√
17)B17 >

−3√17) = Φ(−3/√17) = 0.2334.
11.5.9 E(X3X5) = E((10 − 1.5 · 3 + 4B3)(10 − 1.5 · 5 + 4B5)) = E((5.5 +
4B3)(2.5 + 4B5)) = E(5.5 · 2.5 + 4 · 2.5 · B3 + 4 · 5.5 · B5 + 4 · 4 · B3 · B5) =
5.5 · 2.5 + 4 · 2.5 · 0 + 4 · 5.5 · 0 + 4 · 4 ·min(3, 5) = 61.75.
11.5.10
(a) P (X8 > 500) = P (400+0·8+9B8 > 500) = P (B8 > 100/9) = P ((1/

√
8)B8 >

100/9
√
8) = Φ(−100/9√8) = 0.00004276.

(b) P (X8 > 500) = P (400+5·8+9B8 > 500) = P (B8 > 60/9) = P ((1/
√
8)B8 >

60/9
√
8) = Φ(−60/9√8) = 0.009211.

(c) P (X8 > 500) = P (400+10·8+9B8 > 500) = P (B8 > 20/9) = P ((1/
√
8)B8 >

20/9
√
8) = Φ(−20/9√8) = 0.2160.

(d) P (X8 > 500) = P (400 + 20 · 8 + 9B8 > 500) = P (B8 > −60/9) =
P ((1/

√
8)B8 > −60/9

√
8) = 1−Φ(−60/9√8) = 0.9908.

11.5.11
(a) P (X10 > 250) = P (200 + 3 · 10 + 1B10 > 250) = P (B10 > 20/1) =
P ((1/

√
10)B10 > 20/1

√
10) = Φ(−20/1√10) = 1.27× 10−10.

(b) P (X10 > 250) = P (200 + 3 · 10 + 4B10 > 250) = P (B10 > 20/4) =
P ((1/

√
10)B10 > 20/4

√
10) = Φ(−20/4√10) = 0.05692.

(c) P (X10 > 250) = P (200 + 3 · 10 + 10B10 > 250) = P (B10 > 20/10) =
P ((1/

√
10)B10 > 20/10

√
10) = Φ(−20/10√10) = 0.2635.

(d) P (X10 > 250) = P (200 + 3 · 10 + 100B10 > 250) = P (B10 > 20/100) =
P ((1/

√
10)B10 > 20/100

√
10) = Φ(−20/100√10) = 0.4748.

Problems
11.5.12 We have that E(X) = E(2B3− 7B5) = 2 · 0− 7 · 0 = 0. Also, E(X2) =
E((2B3−7B5)2) = E(4B23+49B25−28B3B5) = 4 ·3+49 ·5−28min(3, 5) = 173.
Hence, Var(X) = 173.

11.5.13 We have that P (Bt < x) = P ((1/
√
t)Bt < x/

√
t) = Φ(x/

√
5), while

P (Bt > −x) = P ((1/
√
t)Bt > −x/

√
t) = 1−Φ(−x/√5) = Φ(x/√5) = P (Bt <

x).

Challenges
11.5.14 Let g(x, y) = fBsBt(x, y) be the joint density function ofBs andBt−Bs.
Since Bs ∼ N(0, s) and Bt −Bs ∼ N(0, t− s) and they are independent, then
g(x, y) = (1/2π

p
s(t− s))e−x2/2se−y2/2(t−s). Then let h(x, y) = fBs,Bt

(x, y) be
the joint density function of Bs and Bt. Then by the two-dimensional change-
of-variable theorem h(x, y) = g(x, y − x)
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= (1/2π
p
s(t− s))e−x2/2se−(y−x)2/2(t−s). Then the conditional density of Bs

given Bt is equal to

h(x|y) = h(x, y)/fBt(y)
= (1/2π

p
s(t− s))e−x2/2se−(y−x)2/2(t−s) / (1/√2πt)e−y2/2t

=
p
t/2πs(t− s)e−x2/2se−y2/2(t−s)e+y2/2t =

p
t/2πs(t− s)e−(tx−sy)2/2st(t−s)

=
p
1/2π[s(t− s)/t]e−(x−sy/t)2/2[s(t−s)/t].

We conclude that, conditional on Bt = y, the conditional distribution of Bs is
normally distributed with mean sy/t and variance s(t − s)/t. Hence, choosing
Z ∼ N(sy/t, s(t − s)/t), we have P (Bs ≤ x |Bt = y) = P (Z ≤ x) = P ((Z −
sy/t)/

p
s(t− s)/t ≤ (x− sy/t)/ps(t− s)/t) = Φ((x− sy/t)/ps(t− s)/t).

11.5.15
(a) limh&0 |(f(t + h) − f(t))2/h| ≤ limh&0 |(Kh)2/h| = limh&0 |Kh| = 0, so
limh&0(f(t+ h)− f(t))2/h = 0.
(b) limh&0E((Bt+h −Bt)2/h) = limh&0 h/h = 1 6= 0

¯
.

(c) They imply that Brownian motion is not always a Lipschitz function. (In
fact, it never is.)
(d) This implies that Brownian motion is not always a differentiable function.
(In fact, it never is.)

11.6 Poisson Processes

Exercises
11.6.1
(a) N2 ∼ Poisson(14), so P (N2 = 13) = e−141413/13! = 0.1060.
(b) P (N5 = 3) = e−35353/3! = 4.5× 10−12.
(c) P (N6 = 20) = e−424220/20! = 6.9× 10−5.
(d) P (N50 = 340) = e−350350340/340! = 0.01873.
(e) We have that P (N2 = 13, N5 = 3) = 0 since we always have N5 ≥ N2.
(f) We have that P (N2 = 13, N5 = 20) = P (N2 = 13, N5−N2 = 7) = P (N2 =
13)P (N5 −N2 = 7) = (e−141413/13!) (e−21217/7!) = 2.9× 10−5.
(g) P (N2 = 13, N5 = 3, N6 = 20) = 0 since we always have N5 ≥ N2.
11.6.2 We have that P (N1/2 = 6) = e−3/2(3/2)6/6! = 0.00353. Also, P (N0.3 =
5) = e−0.9(0.9)5/5! = 0.00200.

11.6.3 We have that P (N2 = 6) = e−2/3(2/3)6/6! = 6.26×10−5. Also, P (N3 =
5) = e−3/3(3/3)5/5! = 0.00307.

11.6.4 We have that P (N2 = 6, N3 = 5) = 0 since we always have N3 ≥ N2.
11.6.5 P (N2.6 = 2 |N2.9 = 2) = P (N2.6 = 2, N2.9 = 2)/P (N2.9 = 2) =
P (N2.6 = 2, N2.9 − N2.6 = 0)/P (N2.9 = 2) = P (N2.6 = 2)P (N2.9 − N2.6 =
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0)/P (N2.9 = 2) = (e
−2.6a2.62/2!)(e−0.3a0.30/0!)/(e−2.9a2.92/2!) = (2.6/2.9)2 =

0.8038

11.6.6
(a) P (N6 = 5 |N9 = 5) = P (N6 = 5, N9 = 5) /P (N9 = 5) = P (N6 =
5, N9 − N6 = 0) /P (N9 = 5) = P (N6 = 5)P (N9 − N6 = 0) /P (N9 = 5) =
(e−6/3(6/3)5/5!)(e−3/3(3/3)0/0!)/(e−9/3(9/3)5/5!) = 0.1317.
(b) P (N6 = 5 |N9 = 7) = P (N6 = 5, N9 = 7) /P (N9 = 7) = P (N6 =
5, N9 − N6 = 2) /P (N9 = 7) = P (N6 = 5)P (N9 − N6 = 2) /P (N9 = 7) =
(e−6/3(6/3)5/5!)(e−3/3(3/3)2/2!)/(e−9/3(9/3)7/7!) = 0.6145.
(c) We have that P (N9 = 5 |N6 = 7) = 0 since we always have N9 ≥ N6.
(d) P (N9 = 7 |N6 = 7) = P (N9 − N6 = 0 |N6 = 7) = P (N9 − N6 = 0) =
e−3/3(3/3)0/0! = 1/e = 0.3679.
(e) P (N9 = 12 |N6 = 7) = P (N9 − N6 = 5 |N6 = 7) = P (N9 − N6 = 5) =
e−3/3(3/3)5/5! = 0.00307.

Problems
11.6.7
(a) P (Ns = j |Nt = j) = P (Ns = j, Nt = j) /P (Nt = j) = P (Ns =
j, Nt − Ns = 0) /P (Nt = j) = P (Ns = j)P (Nt − Ns = 0) /P (Nt = j) =
(e−as(as)j/j!)(e−a(t−s)(as)0/0!)/(e−at(at)j/j!) = (s/t)j .
(b) No, the answer does not depend on a. Intuitively, once we condition on
knowing that we have exactly j events between time 0 and time t, then we no
longer care what was the intensity which produced them.

11.6.8
(a) P (Ns = 1 |Nt = 1) = (s/t)1 = s/t.
(b) This says that P (T1 ≤ s |Nt = 1) = s/t. It follows that, conditional on
Nt = 1, the distribution of T1 is uniform on the interval [0, t].




	newfront
	EvansRosenthalsolutions



