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Chapter 1

Probability Models

1.2 Probability Models

Exercises

1.21

(a) P({1,2}) = P({1}) + P({2}) =1/24+1/3 =5/6.

(b) P({1,2,3}) = P{1}) + P{2}) + P{3}) =1/2+1/3+1/6 =1.
(c) P({1}) = P({2,3}) = 1/2.

1.2.2

(a) P({1,2}) = P({1}) + P({2}) =1/8+1/8 = 1/4.

(b) P({1,2,3}) = P({1}) + P({2}) + P({3}) = 1/8 + 1/8 + 1/8 = 3/8.
(c) There are (2) = 8!1/414! = 70 such events.

1.2.3 P{2}) = P({1,2}) - P({1}) =2/3—-1/2=1/6.

1.2.4 No, since P({2,3}) # P({2}) + P({3}).

1.2.5 Here P({s}) = P([s,s]) = s — s =0 for any s € [0,1].

1.2.6 We have that a = ANB°NC b=ANBNC ¢c=A“NBNCe,
d=ANnB‘NC,e=ANBNC, f=A°NBNC,and g=A“NnB°NC.

1.2.7 This is the subset (AN B°)U (A°N B).

1.2.8 P({1}) = P(S — {2,3}) = P(S) — P({2,3}) = 1—2/3 = 1/3, P({2}) =
P({1,2})+ P({2,3}) = P(S) = 1/3+2/3—1 =0, and P({3}) = P(S—{1,2}) =
P(S)— P({1,2}) =1—1/3 =2/3.

1.2.9 P({1}) = 1/12, P{2}) = P({1,2}) — P{1}) = 1/6 — 1/12 = 1/12,
P((3)) = P{1,2,3))~ P(LL,2}) = 1/3-1/6 = 1/6, and P({4}) = P({1,2,3,4})~
P({1,2,3})=1—1/3 =2/3.

1.2.10 From the totality, 1 = P(S) = P({1}) + P({2}) + P({3}) = 5P({2}).
Hence, P({2)) = 1/5, P({1}) = 2P({2}) = 2/5, and P({3}) = P({1}) = 2/5.

1
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1.2.11 From the totality, 1 = P(S) = P({1}) + P({2}) + P({3}) = 4P({2}) +
1/6. Hence, P({2}) = 5/24, P({1}) = P({2}) + 1/6 = 3/8, and P({3}) =
2P({2}) =5/12.

1.2.12 From the totality, 1 = P(S) = P({1}) + P({2}) + P({3}) + P({4}) =
(31/12)P({2}) + 1/8. Hence, P({2}) = 21/62, P{1}) = P({2}) + 1/8 —
115/248, P({3}) = P({2})/3 = 7/62 and P({4}) = P({2})/4 — 21/248.

Problems

1.2.13 No, since P([0,1]) = 1, while > 1) P({s}) = > 5¢j01;0 = 0. Here
additivity fails because [0, 1] is not countable.

1.2.14 No, since for countable S we would then have P(S) = Y ¢ P({s}) =
>sefo) 0 =0, contradicting the fact that P(S) = 1.

1.2.15 Yes. For example, this is true for the uniform distribution on [0, 1]. Since
[0,1] is not countable, there is no contradiction.

1.3 Basic Results for Probability Models

Exercises

131

(a) P({2,3,4,...,100}) = P({1,2,3,4,...,100}) — P({1}) =1 — 0.1 = 0.9.

(b) P({1,2,3}) = P({1})+P({2})+P({3}) = P({1}) = 0.1. And, P({1,2,3}) =
0.1 if P({2}) = P({3}) = 0. So, 0.1 is the smallest possible value of P({1}).

1.3.2 Let A be the event “Al watches the six o’clock news” and B be the
event “Al watches the eleven o’clock news.” Then P(A) =2/3, P(B) =1/2 and
P(ANB) = 1/3. Therefore, the probability that Al only watches the six o’clock
news is P(A\ (AN B)) = P(A)— P(ANB) =2/3—1/3 = 1/3. The probability
that Al watches neither news is given by P((AUB)“) =1—-P(AUB) =1 —
P(A)— P(B)+ P(ANnB)=1-2/3—-1/2+1/3=1/6.

1.3.3 P(late or early or both) = P(late) + P(early) — P(both) = 10% + 20% —
5% = 25%.

1.3.4 P(at least one knee sore) = P(right knee sore) + P(left knee sore)—
P(both knees sore) = 25% — P(both knees sore). The maximum is when
P(both knees sore) = 0, where P(at least one knee sore) = 25%. The minimum
is when P(both knees sore) = 10% (so the right knee is always sore whenever
the left one is), where P(at least one knee sore) = 15%.

1.3.5 (a) There are 2° = 32 possibilities and the size of the event having all five
heads is 1. Thus, the probability of getting all five heads is 1/32 = 0.03125.
(b) Let A be the event having at least one tail and B be the event having all
five heads. There will be at least one tail unless five heads are observed. Thus,
A = B¢ and the probability of A is

P(A) = P(B°)=1- P(B) = 1— (1/32) = 31/32 = 0.96875.
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1.3.6 (a) There are only 4 Jacks in a standard 52-card deck. Hence, the prob-
ability having a Jack from a standard 52-card deck is 4/52 = 1/13 = 0.0769.
(b) There are 13 Clubs &. Thus, the probability having a Club is 13/52 =
1/4 = 0.25.

(c) There is only one card showing a Jack and a Club. So, the probability having
a Club Jack is 1/52 = 0.01923.

(d) There are 4 Jacks and 13 Clubs. Among 52 cards, only one card is both
Club and Jack. By Theorem 1.3.3, the probability having either a Jack or a
Club is 4/52 4+ 13/52 — 1/52 = 16/52 = 4/13 = 0.3077.

1.3.7 The event tying the game is the remainder part of the event winning
or tying the game after subtracting the event winning the game. Thus, the
probability of tying is 40% — 30% = 10%.

1.3.8 Suppose a student was chosen. The probability of being a female is 55%,
the probability of having long hair is 44%+15% = 59%, and the probability that
the student is a long haired female is 44%. By Theorem 1.3.3, the probability
of either being female or having long hair is 55% + 59% — 44% = 70%.

Problems

1.3.9 We see that P({2,3,4,5}) = P({1,2,3,4,5}) — P({1}) = 0.3 - 0.1 =
0.2. Hence, the largest is P({2}) = 0.2 (with P({6}) = 0.4). The smallest is
P({2}) =0 (with, e.g., P({3}) = 0.2 and P({6}) =0.4).

Challenges
1.3.10

(a) Let D = BUC. Then P(AUBUC) = P(AUD) = P(A)+P(D)—P(AND) =
P(A)+PBUC)-P(ANB)U(ANC)) =P(A)+ (P(B)+ P(C)—-P(BnNn
C))— (P(ANB)+ P(ANC)—P((ANB)N(ANC)) = P(A)+ (P(B)+ P(C) —
P(BNC))—P(ANB)—P(ANC)— P(An BNC), which gives the result.

(b) We use induction on n. We know the result is true for n = 2 from the text

(and for n = 3 from part (a)). Assume it is true for n — 1, so that P(B; U

L UB, 1) ="]P(B;) - > 11 P(B; N Bj) + Z’Li . P(B NB; N By) —
..xP(BiN...NBy_1) foranyeventsBl,... B, _1. LetD AiU...UA, 1.

Then P(A; U...UA,) = P(DUA,) = P(D)+ P(A,) — P(DN A,). Now,

by the induction hypothesis, P(D) = P(A; U... U An,l) = S P4y —

Z’:J% P(A; N A;) +z’:7£ L P(4; 0 A nAk) L+ PAIN... N Au).

Also P(D NA,) = ((A1 n A n)U(A2NA,)U...U(A,—1NA,)), so by the

induction hypothesis this equals Z;:ll P(A; N An) - Zn;ll P(A;NA;NA,)+

Sk P(AiNA;MAR N A,) —.. £ P(A1N...NA,_1 N Ay,). Putting this

i<j<k
all together, we see that P(A1U...UA,) =" | P(4;) =" =1 P(A;NAj)+
Zz gix=t P(A;NA;NAg)—...£P(AiN...NA,). This proves the statement

for thlb value of n. The general result then follows by induction.
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1.4 Uniform Probability on Finite Spaces

Exercises

141

(a) By independence, P(all eight show six) = (1/6)® = 1/1679616.

(b) By additivity, P(all eight show same) = Z?:l P(all eight show i) =

S (1/6)8 =6 (1/6)8 = (1/6)7 = 1/279936.

(¢c) For the sum to equal 9, we need seven of the dice to show 1, and the eighth
die to show 2. There are eight ways this can happen, each having probability
(1/6)%. So, P(sum equals nine) = 8 (1/6)% = 1/209952.

1.4.2 There are (120) = 45 ways of choosing which two dice will have 2 showing.

Then the probability that those two dice show 2, and the other eight do not, is
(1/6)2(5/6)%. So, the answer is 45 (1/6)%(5/6)® = 1953125/6718464 = 0.2907.

1.4.3

P(at least three heads) = 1 — P(< two heads)
=1— P(0 heads) — P(one head) — P(two heads)

== (M are— () a

=1—(1+100+ 4950)(1/2)*° =1 — 5051 /2"

144

: . S 52
(a) There is only one way this can happen, so the probability is 1/ (%) =
1/2598960.
(b) There are (%’) ways this can happen, so the probability is (%) /(%) =
33/66640.
(c) The number of ways this can happen is equal to (52 - 48 - 44 - 40 - 36) /5! =
1317888, so the probability is 1317888 / () = 2112/4165.
(d) The number of ways this can happen is equal to (13)(12)(3)(5) = 3744, so
the probability is 3744 / () = 6/4165.
145

(a) The number of ways this can happen is equal to (1) (13) (15 53 15)
= 337912392291465600, so the probability is

92

337912392291465600 / (13 13 13 13

) = 1/158753389900.

(b) The number of ways this can happen is equal to (‘11) (i) (498) (13 fg 13), so the
probability is

4\ [/4\ /48 39 59
<1> <4> (9) <13 13 13> / <13 13 13 13) = 44/4165 = 0.0106.

1.4.6 The complement of this event is the event that the sum is less than 4,
which means we chose either two Aces, or one Ace and one 2. P(two Aces) =
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(3) / (522) = 1/221. P(one Ace and one 2) = (‘11) (‘11) / (522) = 8/663. So, P(sum >
4)=1-1/221 — 8/663 = 652/663.

1.4.7 This is the probability that the first ten cards contain no Jack, so it equals
(15) / (32) = 246/595 = 0.4134.

1.4.8 Out of all 52! different orderings, the number where the Ace of Spades
follows the Ace of Clubs is equal to 51! (since the two Aces can then be treated
as a single card). The same number have the Ace of Clubs following the Ace
of Spades. Hence, the probability that those two Aces are adjacent equals
2.511 /52! = 1/26.

1.4.9 The probability of getting 7 on any one role equals 6/36 = 1/6. Hence,
the probability of not getting 7 on the first two roles, and then getting it on the
third role, is equal to (5/6)%(1/6) = 25/216.

1.4.10 There are (3) ways of choosing which two dice are the same, and six ways
of choosing which number comes up twice, and then 5 ways of choosing which
number comes up once. Hence, the probability equals (g) (6)(5)/(6-6-6) = 5/12.

1.4.11 The probability they are all red equals ((g) / (132)) ((g) / (138)) = 5/4488.
Similarly, the probability they are all blue equals ((D / (132)) ((132) / (138)) =
35/816. Hence, the desired probability equals 5/4488 + 35/816 = 395/8976 =
0.0440.

1.4.12 The number of heads are 0,1,2 and 3. The probability that the total
number of heads is equal to the number showing on the die is

P(die =1 and 1 heads) + P(die = 2 and 2 heads) + P(die = 3 and 3 heads)
1/3\1 1/3\1 1/3\1 7
Y A VY A Ty A T T
6(1)23 +6<2)23 +6(3>23 58— 0148
1.4.13 There are two possible combinations: (1) $0.01 x 1+ $0.05 x 2+ $0.1 x 2

and (2) $0.01 x 1+ 80.1 x 3. Let A be the event that the total value of all coins
showing heads is equal to $0.31. Hence, the probability of A is

2\ 1 3\ 1 4\ 1 2\ 1 3\ 1 4\ 1 11
(1)?(2)5-@w(l)ﬁ(O)ﬁ(g)g—m—mg-

Problems

1.4.14 If Ay, Ao, ... are disjoint sets, then |[A; UAs U...| = |A1| + |42 + .. ..
Hence, P(A1UA2U) = |A1UA2U|/|S| = (|A1|+|A2|+)/|S| =
|[A1]/|S] + |A2|/|S] + ... = P(A1) + P(A3) + ... Hence, P is additive.

1.4.15 By considering all 8-tuples of numbers between 1 and 6, we see that 9
can occur if and only if one of the dice takes the value 2 and the remaining
seven take the value 1. This occurs with probability (513) (%)8 = 4.7630 x 1076,

The value 10 can occur if and only if one of the dice takes the value 3 and
the remaining seven take the value 1 or two of the dice take the value 2 and the
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remaining six take the value 1. This occurs with probability (%) (%)84—(2) (l,)8 =
2.1433 x 1072,

The value 11 can occur if and only if one of the dice takes the value 4 and
the remaining seven take the value 1 or one of the dice takes the value 3, one of
the dice takes the value 2, and the remaining six take the value 1. This occurs

with probability (%) (2)*+ (3)(]) (1)° = 3.8104 x 10-°.

1.4.16 For 1 < i < 6, the probability that the die equals 7 and the number of
heads equals 7 is equal to (1/6) (%) /26. Hence, by additivity, the total proba-

bility is equal to 375, (1/6)(%) /28 = (1/6) S5_, (%) /26 = (1/6)(1) = 1/6.

1.4.17 There are (,%.) = 2520 ways of choosing which two dice show 2, and
which three dice show 3. For each such choice, the probability is
(1/6)2(1/6)3(4/6)® that the dice show the proper combination of 2, 3, and other.

Hence, the desired probability equals 2520(1/6)%(1/6)3(4/6)> = 280/6561.

1.4.18 For 1 < i < 6, the number of ways of apportioning the Spades to North,
East, and Other (i.e., West and South combined), so that North and East each
have i Spades, is equal to (, ; 15_,.). The number of ways of apportioning the
non-Spades to North, East, and Other is then (15, o 15 +o;)- Hence, the
number of deals such that North and East each have i Spades is equal to

13 39
i113—2i)\13—¢13 -4 13+23i/)"

On the other hand, the number of ways of apportioning all the cards to North,
East, and Other is equal to (13 ?g 26). It then follows by additivity that the
desired probability is equal to

i 13 39 / 52
i i 13—2i)\13—i 13—4 13+2 13 13 26

i=1
= 28033098249/158753389900 = 0.1766.

1.4.19 For 1 <14 < 9 the probability that the card’s value is 7 and that the num-
ber of heads equals i is equal to (4/52) (") /21°. For i = 10, (4/52) is replaced
by (20/52) since any Ten, Jack, Queen, or King will do. Hence, by additiv-
ity, the total probability is equal to 37_, (4/52)("?) /20 + (20/52)(;0) /2 =
79/1024 = 0.0771.

Challenges

1.4.20 For 2 < ¢ < 7, the probability that the sum of the numbers equals @
is equal to (¢ — 1)/36, while for 7 < 4 < 12 it is equal to (13 — ¢)/36. Hence,
the desired probability is equal to S1_,((i — 1)/36) (') /22 + 228((13 —
i)/36)('?) /2! = 18109/147456 = 0.1228.

1.4.21
(a) This equals 365/365% = 1/365.
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(b) This equals 365/365¢ = 1/365¢ 1.

(c) This equals 1 — (365 - 364 - -- 366 — C) / 365 = 1 — 365!/(365 — C)! 365€.
(d) When C = 23, the probability equals 0.507297. That is, with 23 people in
a room, there is more than a 50% chance that two share the same birthday. (If
C = 40 this probability is 0.891232.) Many people find this surprising.

1.5 Conditional Probability and Independence

Exercises

151

(a) Here P(first die 6, and three dice 6) = (1/6)(3)(1/6)%(5/6) = 15/6*. Also,
P(three dice 6) = (3)(1/6)%(5/6) = 20/6*. Hence, the conditional probability
equals (15/6%) /(20/6*) = 3/4 = 0.75. (This also follows intuitively since any
three of the four dice could have shown 6.)

(b) Here P(first die 6, and at least three dice 6) = P(first die 6, and three dice
6) + P(first die 6, and four dice 6) = 15/6* + (1/6)* = 16/6*. Also, P(at least
three dice 6) = P(three dice 6) + P(four dice 6) = 20/6%+1/6* = 21/6*. Hence,
the conditional probability equals (16/6%) / (21/6%) = 16/21 = 0.762.

1.5.2

(a) This probability equals P(one head, and die shows 1) + P(two heads, and
die shows 2) = (%)(1/2)2(1/6) + (3)(1/2)2(1/6) = 1/12 + 1/24 = 1/8.

(b) This probability equals P(one head, and die shows 1) / P(die shows 1) =
(1/12) /(1/6) = 1/2. (This makes sense since it is the same as the probability
that the number of heads equals 1.)

(c) Tt is larger, since the die showing 1 makes it much easier for the number of
heads to equal the number showing on the die.

1.5.3

(a) This probability equals (1/2)% = 1/8.

(b) Here P(number of heads odd) = P(one head)+P(three heads) = (7)(1/2)3+
(3)(1/2)® = 4/8 = 1/2. Also P(number of heads odd, and all three coins
heads) = P(all three coins heads) = (1/2)3 = 1/8. Hence, desired conditional
probability equals (1/8)/(1/2) =1/4.

(c) Here P(number of heads even) = P(0 heads) + P(two heads) = (8) (1/2)3 +
(3)(1/2)* = 4/8 = 1/2. Also P(number of heads even, and all three coins
heads) = 0 since this is impossible. Hence, desired conditional probability
equals 0/(1/2) = 0.

1.5.4 P(five Spades) = (153) / (552) = 33/66640. Also, P(four Spades) =

(")) (%) / (7) = 143/13328. Hence, P(five Spades | at least 4 Spades) =

P(five Spades) / P(four Spades) + P(five Spades) = (33/66640) / [(143/13328) +
(33/66640)] = 3/68 = 0.044.

1.5.5 This probability equals P(four Aces) / P(four Aces) = 1.
1.5.6 This probability equals (%) (%)” / (%) = 0.54318.
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1.5.7 This equals P(home run | fastball) P(fastball) 4+ P(home run | curve ball) x
P(curve ball) = (8%)(80%) + (5%)(20%) = (0.08)(0.80) -+ (0.05)(0.20) = 0.074.

1.5.8 By Bayes’ Theorem, P(snow |accident) = [P(snow) / P(accident)]x
P(accident | snow) = [0.20,/0.10] (0.40) = 0.80.

1.5.9 Here P(A) =1/6, P(B) =1/36, P(C) =1/6, and P(D) = 1/6.

(a) P(AN B) = P(both dice show 6) = 1/36 # (1/6)(1/36) = P(A) P(B), so A
and B are not independent.

(b) P(ANC) = P(both dice show 4) = 1/36 = (1/6)(1/6) = P(A) P(C), so A
and C are independent.

(¢) P(AN D) = P(both dice show 4) = 1/36 = (1/6)(1/6) = P(A) P(D), so A
and D are independent.

(d) P(C N D)= P(both dice show 4) =1/36 = (1/6)(1/6) = P(C) P(D), so C
and D are independent.

(e) P(ANC N D) = P(both dice show 4) =1/36 # (1/6)(1/6)(1/6) =

P(A) P(C)P(D), so A and C and D are not all independent. (Thus, A and C
and D are pairwise independent, but not independent.)

1.5.10 We have from the Exercise 1.4.11 solution that P(all red) = 5/4488,
while P(all blue) = 35/816. Hence, P(all red | all same color) = P(all red) / P(all
same color) = (5/4488)/[(5/4488) + (35/816)] = 2,79 = 0.025.

1.5.11
(a) The number showing on the die must be greater than or equal to 3. Hence,
the probability that the number of heads equals 3 is

6 6

1
> P(die = i, # of heads = 3) :ZE< >—— = 0.1667.

i=3 i=1
(b) The conditional probability is
, P(die =5, # of heads =3) (3= 5
P(die=5 f heads = 3) = : =632 _ =
(die = 5[## of heads = 3) P(# of heads = 3) 1/6 16
= 0.3125.

1.5.12
(a) Let D be the number showing on the die and J be the number of Jacks in

our hands. Then, the distribution of J given D = d is Hypergeometric
(52,4,d). Hence,

208

1
- = = 0.0233.
6 8925 0.0233

P(J:Q):iP( J=2|D=d)P zb: )

d=1 d=1

4) (48
(b) Since P(D =3,J =2) = %(()02) =12/5525 = 0.002172,

3

P(D=3|J =2)=P(D=3,J =2)/P(J =2) = 1071/11492 = 0.093195.
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Problems

1.5.13

(a) P(red) = P(card #1) P(red|card #1) + P(card #2) P(red|card #2) +
P(card #3) P(red | card #3) = (1/3)(1) + (1/3)(0) + (1/3)(1/2) = 1/2.

(b) P(card #1|red) = P(card #1, red)/P(red) = P(card #1) P(red|card
#1) / P(red) = (1/3)(1) / (1/2) = 2/3. (Many people think the answer will be
1/2.)

(¢) Make three cards as specified, and repeatedly run the experiment. Discard
all experiments where the one side showing is black. Of the experiments where
the one side showing is red, count the fraction where the other side is also red.
After many experiments, it should be close to 2/3.

1.5.14 Assume A and B are independent. Then since A° N B and AN B are
disjoint with union B, P(A° N B) + P(AN B) = P(B). Hence, P(A° N B) =
P(B) - P(ANB) = P(B) — P(A) P(B) = P(B)[1 — P(A)] = P(B) P(A%). So,
A® and B are independent. The converse then follows by interchanging A and
AC throughout.

1.5.15 If P(A|B) > P(A), then P(ANB)/P(B) > P(A), so P(ANB) >
P(A)P(B), so P(ANB)/P(A) > P(B), so P(B|A) > P(B). The converse
follows by interchanging A and B throughout.

Challenges

1.5.16 Let ¢; be the probability that the sum of the second and third dice
(to be called the “other dice”) equals i. Then the desired probability equals
P(first die 4, sum of three dice 12) / P(sum of three dice 12) = P(first die
4, sum of other dice 8)/ Z?:1 P(first die ¢, sum of other dice 12 — i) =
(1/6) s / 304 (1/6) qr12-i = a5/ 3,2 = (5/36) / [(6/36)+(5/36)+(4/36)+
(3/36) +(2/36) +(1/36)] = 5/[6+5+4+3+2+1] = 5/21.

1.5.17

(a) This probability is equal to P(sum is 4 |sum is 4 or 7) = (3/36) /[(3/36) +
(6/36)] =3/9=1/3.

(b) p2 = p3 = p12 = 0, and p; = p1; = 1. Also py = 1/3 from part (a). For
other i, let ¢; = P(sum is 7) as in the previous solution. Then p; = P(sum
is i|sum is i or 7) = ¢i /g + (6/36)] = ¢i/lg: + (1/6)] = 1/[1 + (1/6¢:)].
Thus, ps = 1/[1+ (1/6(4/36))] = 2/5, po = 1/[1 + (1/6(5/36))] = 5/11,
ps =1/[1+(1/6(5/36))] = 5/11, pg = 1/[1 + (1/6(4/36))] = 2/5, and p,0 =
1/[1+(1/6(3/36))] =1/3.

(¢c) By the law of total probability, the probability of winning at craps is
SO 12, P(first sum 7) P(win | first sum ) = 312, gipi = (1/36)(0) + (2/36)(0) +
(3/36)(1/3)+(4/36)(2/5)+(5/36)(5/11)+(6/36)(1)+(5/36)(5/11)+(4/36)(2/5)+
(3/36)(1/3) + (2/36)(1) + (1/36)(0) = 244/495 = 0.492929. This is just barely
less than 50%; but that “barely less” is still enough to ensure that, if you play
craps repeatedly, then eventually you will lose money (and the casino will get
rich).
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1.5.18

(a) Since you chose door A, the host will always open either door B or door
C. Without any further information, those two events are equally likely, i.e.,
P(host opens B) = P(host opens C) = 1/2. Also, the car was originally equally
likely to be behind any of the three doors, so P(car behind A) = P(car behind
B) = P(car behind C) = 1/3. Also, if the car is actually behind A, then the host
had a choice of opening door B or C, so P(host opens B |car behind A) = 1/2.
Then by Bayes’ Theorem P(win if don’t switch | host opens B) = P(car behind
A | host opens B) = [P(car behind A) / P(host opens B)] P(host opens B|car
behind A) = [(1/3) / (1/2)] (1/2) = 1/3. So, if you don’t switch, then only 1/3 of
the time will you win the car. (This makes sense if you consider that originally,
you had 1/3 chance of guessing the correct door. When the host opens another
door it may change the probabilities of the other doors concealing the car, but
it won’t change the probability that you guessed right in the first place, which
is still 1/3.)

(b) If the car is actually behind C, then the host had to open door B, so P(host
opens B|car behind C) = 1. Then P(win if switch |host opens B) = P(car
behind C|host opens B) = [P(car behind C) / P(host opens B)] P(host opens
B car behind C) = [(1/3) /(1/2)] (1) = 2/3. (This makes sense since we must
have P(win if don’t switch | host opens B) + P(win if switch | host opens B) = 1.)

(¢) Many people find this very surprising. To do an experiment, hide a pebble
under one of three cups (say), let a volunteer guess one cup, then reveal an
unselected non-pebbled cup, and give a volunteer the option to switch to the
other cup or stick with the original cup. Do this repeatedly, and compute what
fraction of the time they win if they do or do not switch.

(d) In this case, we would instead have P(host opens B | car behind C) = 1. Also,
we would have P(host opens B) = P(host opens B, car behind A)+ P(host opens
B, car behind C) = 1/3+1/3 = 2/3. So, in this case, P(win if don’t switch | host
opens B) = P(car behind A |host opens B) = [P(car behind A) / P(host opens
B)] P(host opens B|car behind A) = [(1/3)/(2/3)](1) = 1/2. Also, P(win
if switch|host opens B) = P(car behind C|host opens B) = [P(car behind
C) / P(host opens B)] P(host opens B | car behind C) = [(1/3) / (2/3)] (1) = 1/2.
So in this case, it doesn’t matter if you switch or not.

(e) This is a standard conditional probability calculation. We have P(win if
don’t switch | car not behind B) = P(car behind A |car not behind B) = P(car
behind A, car not behind B) / P(car not behind B) = (1/3) / (2/3) = 1/2. Simi-
larly, P(win if switch | car not behind B) = P(car behind C | car not behind B) =
P(car behind C, car not behind B) / P(car not behind B) = (1/3) /(2/3) = 1/2.
So in this case also, it doesn’t matter if you switch or not. (When the original
Monty Hall problem was first proposed, many people incorrectly interpreted it
as this case, leading to confusion over whether the correct answer was 1/3 or

1/2.)
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1.6 Continuity of P

Exercises

1.6.1 For the first way, let A, = {2,4,6,...,2n}. Then by finite additivity,
P(A,) = P2)+P4)+ -+ P2n) =272 4+274 .. 427 = (1/4)]1 -
1/ /1 - (1/4)] = (1/3)[1 — (1/4)™]. But also {A4,,} /" A. Hence, P(A) =
limy, 00 P(A4,) = lim,—(1/3)[1 — (1/4)"] = 1/3. For the second way, by
countable additivity, P(A) = P(2) + P(4) + P(6) +---+=2"24+2"4 4+ 276
ce 27 = (1/4) /1 - (1/4)] = 1/3.

1.6.2 Let A, =[1/4, 1 —e™™"]. Then {A,} A, where A =[1/4, 1). Hence,
lim, oo P([1/4, 1 —e™™]) = lim,, o P(A,) = P(A) = P([1/4,1))=1-1/4=
3/4.

1.6.3 Let A, = {1,2,...,n}. Then {A,} / A, where A = {1,2,3,...} = S.
Hence, lim,,_,o, P(4,) = P(A) = P(S) = 1.

1.6.4 The event of the interest is {0} = [0,0] = (\,—;[0,8/(4 + n)]. Theorem
1.6.1 implies P({0}) = lim,,—o0 P([0,8/(44+n)]) = lim,,—o(2+€7™)/6 = 2/6 =
1/3.

1.6.5 The event {0} is the complement of (0, 1] which can be represented as
(0,1] = U2 ,[1/n, 1]. Using Theorem 1.6.1, we have

P((0,1]) = lim P((1/n,1]) = lim 0=0.

Thus, P({0}) = P([0,1]) — P((0,1]) =1 — 0 = 1.

1.6.6
(a) Note [1/n,1/2] C (0,1/2) for all n > 1. Monotonicity of a probability
measure (see Corollary 1.3.1) and Theorem 1.6.1 imply

P((0,1/2)) = lim P([1/n,1/2]) < lim 1/3 =1/3.

(b) Suppose P({0}) = 2/3 and P({1/2}) = 1/3. Then, P([1/n,1/2]) = P({1/2})
=1/3<1/3 forn =1,2,.... However, P([0,1/2]) = P({0,1/2}) =1 > 1/3.
Hence, P([0,1/2]) < 1/3 does not hold.

1.6.7 Suppose that there is no n such that P([0,n]) > 0.9. Note [0,m] C
[0,n] whenever 0 < m < n and [0,00) = |J;2,[0,n]. Theorem 1.6.1 implies
1= P(]0,00)) = limy—00 P([0,n]) < 0.9. It makes a contradiction. Hence, there
must exist a number N > 0 such that P([0,n]) > 0.9 for all n > N.

1.6.8 Suppose that P([1/n,1/2]) < 1/4for alln. Note (0,1/2] = J,—,[1/n,1/2].
Theorem 1.6.1 implies 1/3 = P((0,1/2]) = lim, o P([1/n,1/2]) < 1/4. Tt

makes a contradiction. Hence, there must exist N > 0 such that P([1/n,1/2]) >

1/4 for all n > N.

1.6.91If P((0,1/2]) > 1/4, then there must be a number n such that P([1/n,1/2])
> 1/4. Otherwise, i.e. P((0,1/2]) < 1/4, P([1/n,1/2]) < P((0,1/2]) < 1/4 for
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all n > 0. Unfortunately, P([0,1/2]) = 1/3 doesn’t guarantee P((0,1/2]) > 1/4.
For example, a probability measure having P({0}) = 1/3 and P({1}) = 2/3 also
satisfies P([0,1/2]) = P({0}) =1/3 but P([1/n,1/2]) =0 < 1/4 for all n. > 0.

Problems

1.6.10

(a) Let A, = (0, 1/n). Then {A,} \, A, where A = () is the empty set. Hence,
limy, oo P(A,) = P(A) = P(8) = 0.

(b) Suppose P({0}) = 1, so that P puts all of the probability at the single value
0. Then P([0,1/n)) = 1 for all n, so lim, . P([0,1/n)) =1 > 0. (However,
here P((0, 1/n)) 0 for all n.)

Challenges

1.6.11 Let A;, Ay, A, ... be disjoint, and let B = (J;- | A,. We must prove
that 3% | P(A,) = P(B). Well, let B, = A; U Ay U---U A,. Then P(B,) =
P(Ay) + P(A2) + --- + P(A,) by finite additivity. Also, B, € Byi1, and
U,, Bn = B, so that {B,} /" B. It follows that limy_..c P(By) = P(B). But
iy 30, PlA) = S5, PUA). So. S50, PlA) = P(B)



Chapter 2

Random Variables and
Distributions

2.1 Random Variables

Exercises

2.1.1

(a) mingeg X(s) = X(1) =1 since X(s) > 1 for all other s € S.

(b) maxses X (s) does not exist since limg_,o X (s) = 0o but X(s) # oo for all
ses.

(c) minges Y (s) does not exist since lim,_.o Y (s) = 0 but Y(s) # 0 for all
ses.

(d) maxses Y (s) =Y (1) = 1 since Y (s) < 1 for all other s € S.

2.1.2

(a) No, since X (low) > Y (low).

(b) No, since X (low) > Y (low).

(c) No, since Y (middle) = Z(middle).

(d) Yes, since Y(s) < Z(s) for all s € S.

(e) No, since X (middle) Y (middle) = Z(middle).

(f) Yes, since X (middle) Y (middle) < Z(middle) for all s € S.

2.1.3
(a) For example, let X (s) = s and Y(s) = s% for all s € S.
(b) For the above example, Z(1) = X(1) +Y(1)2 = 1+ 12 = 2, Z(2)
X(2)+Y(2)?2 =2+4% =18, Z(3) = X(3) + Y(3)2 = 3+ 9% = 84, Z(4)
X(4) + Y (4)2 = 44 16% = 260, and Z(5) = X(5) + Y (5)> = 5 + 252 = 630.

2.1.4 Here Z(1) = X(1) V(1) = (1)(13 + 2) = 3, Z(2) = X(2) Y(2) = (2)(2°

2) = 20, Z(3) = X(3) Y (3) = (3)(3°+2) = 87, Z(4) = X (4) Y (4) = (4)(44+2)
1032, Z(5) = X(5)Y(5) = (5)(5° +2) = 15,635, and Z(6) = X(6)Y(6) =
(6)(6° + 2) = 279,948.

13
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2.1.5 Yes, X is an indicator function of the event AN B, i.e., X = [4nB.

2.1.6

(a) By the definition, W (1) = X(1) + Y(1) + Z(1) = 1{1}2}(1) + 1{2}3}(1) +
1{374}(1) =1+0+0=1.

(b) By the definition, W(2) = X (2) + Y(2) + Z(2) = I{12}(2) + I{2,33(2) +
(c¢) By the definition, W(4) = X(4)+Y(4) + Z(4) = 1{1}2}(4) + 1{2}3}(4) +
(d) Note that I4 > 0. Thus, I4(s) > 0 for all s € S. Then, W(s) = X(s) +
Y(s) + Z(s) = I1,2y(s) + I12,31(s) + Z(s) > Z(s) for all s € S. Therefore,
W > Z.

?)1 %y deition, W(1) = X(1) =Y (1) +2Z(1) = Iiyay (1)~ Lpaay (D) + sy (1) =
gb;?; dgﬁ_nigion, W(2) = X2)—Y(2)+2(2) = 1.9y (2)— (o) (2) + L13.0)(2) =
(c)_By+deﬁ;1tion, W(3) = X(3)-Y(3)+ Z(3) = T2y (3)—T12.5)(3) + Ty (3) =
(()d; Iln—‘_(cl),zﬂe(?)) =0 but Z(3) = 1. Hence W > Z is not true.

(a)BydeﬁnitionW():X() Y1) +Z(1)=1-14+0=0.
(b) By definition W(2) = X(2) - Y(2) + Z(2)=1-1+0=0.
(¢) By definition W(5) = X(5) —=Y(5) + Z(5) =0—-0+1=1.
(d) Suppose that A € B C S. We will show that I4 — Ip = I4_p. For all

s € A%, Ta(s) = Ip(s) = Ia_p(s) = 0. Hence I4(s) — Ip(s) =0 = I4_p(s).
For all s € B, I4(s) = Ig(s) =1 and I4_p(s) = 0. Thus, I4(s) — Ip(s) =
0 = Is_p(s). Finally, for s € A — B, Ia(s) = I4s_p(s) = 1 and Ig(s) = 0.
Hence, I4(s) —Ip(s) =1 =1I4_p(s). Since {1,2} C {1,2,3}, we have X - Y =
Iti23y — Ifi2y = Ity > 0. Therefore W(s) = X(s) =Y (s) + Z(s) > Z(s) for
all s € S.

2.1.9

(a) By definition, Y (1) = 1?2X(1) = 1.
(b) By definition, Y (2) = 22X (2) = 4.
(c) By definition, Y'(4) = 42X (4) = 0.

Problems

2.1.10

(a) No, we could have X (s) < 0 for some s € S.

(b) No, if S is infinite, then it could be that for all ¢ there is some s € S with
X(s) < ¢, so that X(s) +c¢<0.

(c) Yes, if S is finite, then we can take ¢ = —mingeg X (s) < oo and then
X(s)+c>0forall sesS.

2.1.11 No, if S is finite, then maxseg|X(s)| must be finite, so X must be
bounded.
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2.1.12 Yes, then X = I4, where A= {s € S; X(s) =1}.

2.1.13 If |S| = m, then the number of subsets of S is 2™ (since each s € S can
be either included or not). Since subsets are in one-to-one correspondence with
indicator functions, this means there are 2™ indicator functions as well.

2.1.14 No, if X(s) < 0 for some s € S, then Y(s) = 4/X(s) is undefined (or,
at least, not a real number), so Y is not a random variable.

2.2 Distributions of Random Variables

Exercises

2.2.1 Clearly, X must equal 0, 1, or 2. Also, X = 0 if and only if the coins
are both tails, which has probability (1/2)? = 1/4. Similarly, X = 2 if and only
if the coins are both heads, which also has probability (1/2)? = 1/4. Hence,
P(X=0=P(X=2)=1/4and P(X =1)=1-P(X =0)-P(X =2)=1/2,
with P(X =z) =0 for x #0, 1, 2.

2.2.2

(a) Clearly, P(X = z) = 0 for z # 0,1,2,3. For z € {0,1,2,3}, there are (*)
ways we could end up with z heads, and each has probability (1/2)% = 1/8.
Hence, P(X = z) = () /8 for = 0,1,2,3, so that P(X =0) = P(X = 3) =
1/8,and P(X =1) = P(X =2) =3/8.

(b) Here P(X € B) = (1/8)Ip(0) + (3/8)Ip(1) + (3/8)Ip(2) + (1/8)Ip(3).

2.2.3
(a) Here P(Y =y) =0 for y # 2,3,4,5,6,7,8,9,10,11, 12. For

y€{2,3,4,5,6,7,8,9,10,11,12}

P(Y = y) equals the number of ways the two dice can add up to y, divided by
36. Thus, P(Y = 2) = 1/36, P(Y = 3) = 2/36, P(Y = 4) = 3/36, P(Y =5) =
4/36, P(Y = 6) = 5/36, P(Y = 7) = 6/36, P(Y = 8) = 5/36, P(Y = 9) = 4/36,
P(Y =10) = 3/36, P(Y = 11) = 2/36, and P(Y = 12) = 1/36.

(b) Here

P(Y € B) =(1/36)Ip(2) + (2/36)I(3) + (3/36)I5(4) + (4/36)Ip(5)
+(5/36)I5(6) + (6/36)I5(7) + (5/36)I5(8) + (4/36)I5(9)
+(3/36)15(10) + (2/36)I5(11) + (1/36)I5(12).

2.2.4 Here P(Z = 2z) =1/6 for z=1,2,3,4,5,6. Hence:

(a) P(W = w) = 1/6 for w = 5,12,31,68,129,220, with P(W = w) = 0
otherwise.

(b) P(V =) = 1/6 for v = 1,v/2,v/3,2,1/5,v/6, with P(V = v) = 0 otherwise.
(¢) P(ZW = z) = 1/6 for w = 5,24,93,272,645,1320, with P(ZW = z) =0
otherwise.

(d) P(VW =y) = 1/6 fory = 5,12v/2, 311/3, 136, 129/5, 2201/6, with P(VIW =
y) = 0 otherwise.
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(e) P(V+W =7)=1/6 for r = 6,12 + /2,31 + /3,72,129 + /5,220 + /6,
with P(V + W = r) = 0 otherwise.

2.2.5
(a) P(X =1)=.3,P(X=2)=.2,P(X =3)=.5 and P(X = z) = 0 for all

(b) ( ) =3,P(Y =2)=2,P(Y =3) = .5 and P(Y =) = 0 for all
y¢{1,2 3}
c) ( = (.3)2 = 0.09, P(W = 3) = 2(.3)(:2) = 0.12, P(W = 4) =

2) 4)
+2(.3)(.5) = 0.34, P(W =5) =2(.2) (.:5) = 0.2, P(W = 6) = (.5)* = 0.2
and P(W = w) = 0 for all other choices of w.

ot

(a) P(X =) = 4/52 = 1/13 for z € {1,2,...,13} and P(X = z) = 0
otherwise.

(b) P(Y =y) =13/52 =1/4 for y € {1,2,3,4} and P(Y =y) = 0 otherwise.
(c) PW =2)=PX =1Y =1)=1/52, P(W =3) = P(X = 1Y =
9) + P(X =2,Y = 1) = 2/52, P(W = 4) = 3/52, P(W = 5) = 4/52, P(W =
6) = 4/52, P(W = T) = 4/52, P(W = 8) = 4/52, P(W = 9) = 4/52, P(W =
10) = 4/52, P(W = 11) = 4/52, P(W = 12) = 4/52, P(W = 13) = 4/52, and
P(W = 14) = 4/52, P(W = 15) = 3/52, P(W = 16) = 2/52, P(W = 17) =
1/52.

2.2.7 P(X =25) = .45, P(X = 30) = .55, and P(X = x) = 0 otherwise.

2.2.8 Note that each number w € {0,1,...,99} can occur and
P(W =w) =P (Xs=|w/10],X; = w— 10 |w/10]) = (1/10)* = 1/100.

Problem

2.2.9 Note that each number w € {0,1,....99} N {0,11,22,...,99} can occur
and so

P(W =w)=P(Xy=|w/10],X; = w— 10 |w/10]) = (1/10) (1/9) = 1/90.
Challenges

2.2.10 Clearly, P(Z = z) = 0 unless z € {—5,—4,...,2,3}, in which case

P(Z=2)= > P(X ==z, Y =y)
0<z<3, 0<y<5, z—y==2

-y (Qar(g)user

T—y=z2

o2 06)

L9, URYXI,
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Hence

P(Z=3) = (1/2)8@) (g) =1/

P(Z=2)=(1/2)?* @ f) + (3) g)] =8/2

P(Z=1)=(1/2)} @ ;) * @ 51)) - @ g)

rz=o=02 [0+ ()0 + () ()
= (1/2)8 + +

2.3 Discrete Distributions

Exercises

2.3.1 Here py (2) = 1/36, py (3) = 2/36, py (4) = 3/36, py (5) = 4/36, py (6)
5/36, py (7) = 6/36, py(8) = 5/36, py(9) = 4/36, py(10) = 3/36, py(11)

2/36, and py (12) = 1/36, with py (y) = 0 otherwise.
2.3.2

(a) pz(1) = pz(3) =1/2, with pz(z) = 0 otherwise.
(b) pw(2) = pw(12) = 1/2, with py (w) = 0 otherwise.

17

2.3.3 Here pz(1) = pz(5) = 1/4, with pz(0) =1/4+1/4=1/2 and pz(z) =0

otherwise.

2.34

(a) pz(0) = pz(2) = 1/4, with pz(1) = 1/4 + 1/4 = 1/2 and pz(2) = 0

otherwise.

(b) pw (1) = 1/4, with py(0) = 1/4+1/4+1/4 = 3/4 and pw (w) = 0 otherwise.

2.3.5 Here pw(1) = 1/36, pw(2) = 2/36, pw(3) = 2/36, pw(4) = 2/36 +
1/36 = 3/36, pw(5) = 2/36, pw(6) = 2/36 4+ 2/36 = 4/36, pw(8) = 2/36,
pw (9) = 1/36, pw (10) = 2/36, pw (12) = 2/36 + 2/36 = 4/36, pw (15) = 2/36,
pw(16) = 1/36, pw(18) = 2/36, pw(20) = 2/36, pw(24) = 2/36, pw(25) =

1/36, pw (30) = 2/36, and py (36) = 1/36, with py (w) = 0 otherwise.
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N5 (1_.\10
236 P(5<2<9) =Y (1-p)p=pirb = (1-p)° - (1-p)

2.3.7 Here P(X = 11) = (13)p**(1 — p)* = 12p''(1 — p). This has derivative
12-11p'°(1 — p) — 12p't, which equals 0 if either p = 0, or 11(1 — p) = p whence
p=11/12. We see that p = 11/12 maximizes P(X = 11).

2.3.8 Here P(W = 11) = e *\} /11!. This is maximized when e *\!! is
maximized. This has derivative —e *A!! 4+ e=*11 A9, which equals 0 if either
A =0, or A =11. We see that A = 11 maximizes P(W = 11).

2.3.9
P(Z<2)=P(Z=0)+P(Z=1)+P(Z=2)

_ @(1/4)3(1 _1/4)0 4 (i’) (1/4%(1 = 1/4)"

+(5) asara -y
=1/4% +9/4* +54/4° = 53 /512

2.3.10

P(X?<15)=P(X < \/ﬁ):P(Xgis):iP(X:

(1-1/9(1/9) = Tt

2.3.11 P(Y =10) = (jp)p*°(1 — p)10710 = p0
23.2py(y)=P(Y =y)=PX-T=y)=P(X =y+7) = e\ /(y+7)!
for y = —7,—6,—5, ..., with py(y) = 0 otherwise.

2.3.13 px(3) = (;) (*?)/ (%) = 0.35759 and P(X = 8) = 0 since there are only
seven elements in the population with the label in question.

2.3.14

(a) Binomial(20,2/3).

(b) P(X =5) = (¥) (2/3)° (1/3)"° = 1.4229 x 10~*.
2.3.15

(a) (1) (.35) (.65)7 = 0.25222.

(b) (.3

() (7

Mw

(1/5) = 369/625

£
Il

b) (.35) (.6 ) =7.2492 x 1073,
c) (9)(:35)% (.65)° = 3.5131 x 10~2.

2.3.16

(a) (%) (4/9)° (5/9)'° = 0.14585.

(b) (4/9) (5/9)14 =1.1858 x 107,

(©) (%) (4/9)° (5/9)" = 6.6297 x 10-2.
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2.3.17
(a) Hypergeometric(9,4,2).
(b) Hypergeometric(9,5,2) .

2.3.18
(a) P(X =5) = ((2 -9)° /5!) exp {—2- 2} = 0.15629.

(b) P(X =5,Y =5) = P(X =5)P(Y = 5) = (0.15629)* = 2.4427 x 102.
() P(X =0) = (2-10)exp {—2- 10} = 2.0612 x 10~°.

2.3.19 The number of black balls observed is distributed Binomial(10,1/1000).
Then

(100/1000)°
51

2.3.20 This is the probability that the test fails 4 times and passes on the fifth
test, so this probability is (1/3) (2/3)* = 6.5844 x 10~2.

Computer Exercises

2.3.21 The tabulation is given by
0 0.000357

0.009526

0.075018

0.240057

0.350083

0.240057

0.075018

0.009526

0.000357

and the plot is as below.

P(X =5)~ exp {—100/1000} = 7.5403 x 1075.

0 O Ui Wi

2.3.22 The Binomial(30, .3) probability function is plotted below.
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The Binomial(30,.7) probability function is plotted below.

We have that
<Z>p 1-p"" = ( : ) 1-p" " 1-1-p)".

n—=x

Problems

2.3.23

(a) py(y) = 27VY for y = 1,4,9,16,25, ... (i.e., for y a positive perfect square),
with py (y) = 0 otherwise.

(b) pz(z) =27*7t for 2 = 0,1,2, ..., with pz(2) = 0 otherwise. Hence, Z ~
Geometric(1/2).

2.3.24 Here Z ~ Binomial(n; 4+ ng,p). This is because X corresponds to the
number of heads on the first ny coins (where each coin has probability p of being
heads), and Y corresponds to the number of heads on the next ng coins, so Z
corresponds to the number of heads on the first ny + ns coins.

2.3.25 Z ~ Negative Binomial(2,6) since X + Y is equal to the number of
tails until the second head is observed in independent tosses with heads oc-
curring with probability §. With 7 coins the sum will be distributed Negative
Binomial(r, §) .

2.3.26
P(X<Y) ZPX<y —Z(Zel (1—61) )92(1—92)?/
y=0 y=0
i( = 00" ) 02 (1= 02)" = 1 02 (1 - 1) i 1—01)Y (1 - 6)"
y=0 y=0
0> (1—61)

C1—(1—61)(1—6)
This is the probability that, in tossing two coins that have probability #; and
0> of yielding a head respectively, the first head occurs on the first coin.
2.3.27 limy, oo P(X <) =limp_oo 1 — (1 = A/n)" T =1,
2.3.28 Z ~ Negative Binomial(r 4 s,0) since X + Y is equal to the number

of tails until the (r + s)th head is observed in independent tosses with heads
occurring with probability 6.
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2.3.29 The probability is (Ajfl) (Af?) (N_A?;_Mz)/(g), provided

max {0,n — (N — M)} < f1 <min{My,n},

max {0,n — (N — M)} < fo < min{Ms,n},

max {0,n — (M7 + M)} < f3 <min{N — My — Ma,n},
and f1 + fo + f3 = n.

2.3.30 P(T > t) = P (no units arrive in (0,]) = ((At)o /0!) exp {— At}

2.4 Continuous Distributions

Exercises
2.4.1

=3
~—~

(U <2/3) = 2/3.

A~~~ o~
-0
—~
d
A\

—_
N2
Il

N AAAAN
NECIOICIOINEOICICNG

=N

PG

N

:folcxd:rzc/Z so ¢ =2.
:folcx”dx:c/(n+1) soc=n+1.

1= [T ea'2de = ¢(2/3)a®?2|] = ¢(2/3)2%/2 s0 ¢ = 3/ (V24).
w/2

= =h SUT VW Syt UN WS UY

CRORN

—~ o~~~
¢)
~

d) 1= foﬂ csinzdr = —ccosz|y’” =c.

2.4.5 This is not a density because it takes negative values.

2.4.6 Let F( ) =P0< X <x) for x € [0,00). Then, F(z fo 3e 3dy =
_e*3y| =1 —e 3%,
y= 0

(a) PO< X <1)=F(1)=1—e"3=0.95021.

(b) P(0< X <3)=F(3)=1—e? = 0.99988.

(c) P(0< X <5)=F(5) =1—e 15 =0.9999997.

(d) (2<X<5) P(<X<5) PO < X <2 =Fb)-FQ2 =
l—e B —(1—e b)) =e5(1—e?) =0.00247845. (e) P(2 < X < 10) = P(0 <
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X <10)-P(0 < X <2) = F(10)—F(2) = 1—e 30— (1—¢ ) = e 6(1—¢~24) =
0.00247875. (f) P(X >2) =1—-P(0 < X <2) =1—F(2) = ¢~¢ = 0.00247852.

2.4.7 To be a density function, f must satisfy f > 0 and fOM f(z)dz = 1. The
first condition is equivalent to ¢ > 0. The second condition is

M M 3
1= / f(z)dx = c/ ride = c—
0 0 3

Hence, the constant is ¢ = 3/M3.

=M
=cM3/3.
=0

2.4.8 The probability P(0.3 < X < 0.4) is

0.4 0.4
P03<X <04) = (x)dz > / 2dz = 2z|°=5 = 2(0.4 — 0.3) = 0.2.
0.3 0.3

2.4.9 By the definition of a density,
2 2
Pl<X<2)= / f(z)dz > / glx)dr =P(1 <Y <2).
1 1
Suppose P(1 < X <2) =P(1 <Y < 2). Then,
2
0:P(1<X<2)—P(1<Y<2):/ (F(z) — g(a))da
1

implies f(x) = g(z) for almost everywhere on (1,2). It contradicts to the
assumption f(z) > g(x). Hence, we must have P(1 < X <2) > P(1<Y <2).

2.4.10 Suppose X takes values on (1,2) and f(z) > g(z) for all x € (1,2).
Then, P(1 < X <2)=P(1 <Y <2)=1 but, from Exercise 2.4.9, P(1 < X <
2) > P(1 <Y < 2) =1 and this is a contradiction. Hence, f(x) > g(z) for all
x is impossible.

2.4.11 Let ¢ = supye(1 ) f(y). Then, f(z) > c> f(y)forall0 <z <1<y <2
Hence, P(0< X < 1) = fol f(x)dx > fol cdr = ¢ > f12 fly)dy = P(1 < X <2).
Note that f(z) — f(x+1) >0forall0 <z <1. FPO<X<1)=Pl<X <
2), then [ f(z) — f(z +1)de = P(0 < X < 1) — P(1 < X < 2) = 0. Hence,
we get f(z) = f(x + 1) almost everywhere on (0,1) and this is a contradiction.
Thus, P(0 < X < 1) > P(1 < X < 2) holds.

2.4.12 Let f be a density function given by f(z) = 2/5ifz € (0,1), f(z) = 3/10
if © € (1,3) and 0 otherwise. Then, f satisfies f(z) = 2/5 > 3/10 = f(y)
whenever 0 < z < 1 <y < 3. However, P(0 < X < 1) = fol 2/5dx = 2/5 <
3/5= [23/10dy = P(1 < X < 3). Therefore, P(0 < X < 1) > P(1 < X < 3)
doesn’t hold.
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2.4.13 The density of N(u,0?) is (2702) /2 exp(—(z — p)?/(20?)).
3
POV <3)= [ Cr) expl-(y— 12/2)dy

= /2 (2m) Y2 exp(—u?/2)du = P(X < 2).

Hence, P(Y < 3) = P(X < 2) < P(X < 3) by the monotonicity.
Problems

2414 P(Y —h>y|Y >h)=P(Y >y+h)/P(Y > y) = e uFh) e~ =
e N =P(Y >7y).
2.4.15
(a) Using integration by parts, I'(a+1) = [ t*e™" dt = 0— [ (at* ) (—e ") dt =
af e et dt = al(a).
(b) (1) = [, t% " dt = (—e ™) . = 1.
=l
(c) We use induction on n. By part (b), the statement is true for n = 1. By
part (a), if the statement is true for n, then it is also true for n + 1.

t=o00

2.4.16 Using the substitution ¢ = 22 /2,

/O:O¢(w)dx—2/oo¢(x)dx—2/oo \/LQ_ﬂefﬁ/gdx

1 —-1/2 2 1
= dt = Loepay) =1
\/271'/ 2 2 (1/2)
since I'(1/2) = /7.
2 4 17 Using the substitution ¢ = Az, fo x)dr = OOO % e Mdy =

F(a s Jot et e M dr = g5 [T (/) e (1/>\) dt = iy Jo t* et dt =
oy @) = 1.
2.4.18 We have that f () > 0 for every z and putting u = e %, du = —e *dx
we have [ e ™ (1+ e P dy = oS+ w) P du=—(1+ u)71’0 =1
2.4.19 We have that f (z) > 0 for every = and putting u = 2, du = az® ' dx
we have [[Caz® e ™ do = [[Tetdu= —e V| =1
2.4.20 We have that f (z) > 0 for every z, and we have fo 1+4+z)~ ol dr =
4+ =1

(1+2)°]

2.4.21 We have that f (z

) 2
Larctanz|®,_ =1 (2 - (5£)) =1.

0 for every x, and we have [~ #ﬁ) dr =
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2.4.22 We have that f (z) > 0 for every z, and we have

h —el*ldgy = h le*I dx + ' lem dx
2 , 2 2
11/ 0 _ 1 1 _
=545 () =3+3-1
2.4.23 We have that f (z) > 0 for every z, and we have [*_e “exp{—e "} dz =
exp{—e "} =1-0=1.
2.4.24
(a) We have that f( ) > 0 for every z, and fo (a,0)z% 1 (1 — 2)" ! da =
~(a,b)B(a,b) =
(b) () =1 for 0 <z < 1 and this is the Unlform(() 1) distribution.

(c) f(z) = (21):r—( (2)L (1) /L (3) 'z =2z for 0 <z <1.
gd) (z) = BY(1,2)(1—2) = (C(T©2)/L3) 'e=21—z)for0 <z <
(e) f(z) = BY(2,2)z(1—2) = (T(2)T(2)/T(4) 'z = 6z (1l —x) for 0 <

<1l
Challenges

2.4.25 The transformation u = = 4+ y,v = x/u has inverse = wv,y = u(1 — v)
and therefore Jacobian

det( v >'—uv+u(1—v)_1

1—v —u
so we have that

I'(a)T(b)

0 1 0
= / / 2 Yyt et Y de dy = / / (uw0)* b7 (1 = v)’ e dudo
o Jo o Jo
1 e’}
= v@ 1 — )Pt (/ uathley du> dv
0 0

2.5 Cumulative Distribution Functions (cdfs)

Exercises

2.5.1 Properties (a) and (b) follow by inspection. Properties (c) and (d) follow
since Fx(x) =0 for z < 1, and Fx(z) =1 for « > 6.
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2.5.2

0 <1

1/6 1<z<4

2/6 4<z<9

Fx(z)=< 3/6 9<x <16
4/6 16 <x <25
5/6 25 < x < 36
1 36<zx

Properties (a) and (b) follow by inspection. Properties (c¢) and (d) follow since
Fy(y) =0 for y < 1, and Fy(y) =1 for y > 36.

2.5.3

(a) No, since F(z) > 1 for x > 1.

(b) Yes.

(c) Yes.

(d) No, since, e.g., FI(2) =4 > 1.

(e) Yes.

(f) Yes. (This distribution has mass 1/9 at the point 1.)

(g) No, since F(—1) > F(0) so F' is not non-decreasing.

254

(a) P(X < —5) = ®(—5) = 2.87 x 10~7.

(b) P(~2 < X < 7) = ®(7) — &(—2) = 0.977.

() P(X >3)=1—-P(X <3)=1—(3) = 0.00135.

2.5.5 Here (Y +8)/2 ~ Normal(0, 1). Hence:

(a) P(Y < —5) = P((Y+8)/2 < (=5+8)/2) = ®((—5+8)/2) = ®(3/2) = 0.933.
(b) P((2<Y <7)=P((-2+8)/2< (Y +38)/2 < (7+8)/2) = P((7T+8)/2) —

(a) The fact p; > 0 and F;(z) > Oforalli = 1,..., k implies G(z) = Zle piFi(x) >
Zlepi -0 = 0. Similarly, p; +---+pr = 1, p; > 0 and Fj(x) < 1 for all

i=1,...,k implies G(z) = Zle piFi(z) < Zlepi 1=1.
(b) Suppose y > x. Then, F;(y) > Fi(z) foralli=1,... k.

k k
G(y) = ZPiFi(Z/) > ZpiFi(m) = G(x).

(¢c)Foralli=1,... k, limy_,o Fi(z) = 1. Hence,

k

k k
lim G(r) = Th_{go lesz(x) = Zpi Tll_{glo Fi(z) = vaz =1

=1 =1
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(d) Fori=1,...,k, lim,_,_o F;(z) = 0. Thus,

TgmmG = EI_H Zp7 P Zpl hm Fi(z Zpl 0=0.

2.5.7 By definition Fx(z) = P(X < ). Since Fx(x) is a continuous function,
P(X = z) = F(z) — limy ~, F(y) = 2? — lim, ~, y*> = 22 — 2% = 0. Hence,
PX<z)=PX<z)-PX=2)=F()-0=F(z). (a) P(X <1/3) =
P(X <1/3) = F(1/3) = (1/3)2 = 1/9. (b) P(1/4 < X < 1/2) = P(X <
1/2) — P(X <1/4) = F(1/2) — F(1/4) = (1/2)? — (1/4)?> = 3/16. (c) P(2/5 <
X <4/5) = P(X <4/5)— (X<2/5) F(4/5)—F(2/5) = (4/5)* — (2/5)* =
12/25. (d) P(X < 0) = F(0)=0. (e) P(X <1)=F(1) =12 = 1. (f) Since
0<PX<-1)<PX<0)= ( ) =0, we have P(X < —1) = 0. (g) Since
1>PX <3)>PX<1)=F(1)=12=1, we have P(X < 3) = 1. (h)
P(X =3/7)=P(X <3/7)—P(X <3/7)=F(3/7) — F(3/7)=0.

2.5.8 The function Fy is continuous on (0,1/2) and (1/2,1). Hence, P(Y
y) = limg », P(Y < z) = lim, », Fy(z) = Fy(y) = P(Y < y) for all y
(0,1/2) U (1/2,1). (a) P(1/3 <Y < 3/4) = P(Y < 3/4) — P(Y < 1/3)
Fy(3/4) — Fy(1/3) =1 —(3/4)* — (1/2)3 = 29/64. (b) P(Y =1/3) = P(Y
1/3) = P(Y < 1/3) = Fy(1/3) — Fy(1/3) = 0. (¢) P(Y = 1/2) = P(Y
1/2) = P(Y < 1/2) = Fy(1/2) —lim, 12 Fy (x) = 1 — (1/2)® — lim, ~ /o 2*
1—(1/2)% — (1/2)® = 3/4.

2.5.9

H INIA I m A

(b) The given F' doesn’t satisfy (a) and (c) in Theorem 2.3.2 because F'(2) =
22 =4 > 1 and lim; o F(z) =4 > 1. Thus F can’t be a cumulative distribu-
tion function.
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2.5.10
(a)

104

0.g4

0.6

F(x)

0.4 4

0.2

0oy ——-

(b) The given F' doesn’t satisfy (b) and (c) in Theorem 2.3.2 because F(0) =
1> e ! = F(1) even though 0 < 1, lim, o F(z) = lim, . e~% = 0. Hence,
F is not a cumulative distribution function.

2.5.11
(a)

084

0.6

Fix)

0.4

0.z4

0.04

i
o
-
[
w
S
wm

(b) Since 0 < e * <1forz>0,0<F(x)<1forall z. On [0,00), F'(z) > 0.
Hence, F is increasing on [0,00). limy .o F(x) = limy—o(1 —e ) = 1 and
lim,,_o F(x) = 0. Hence, F is a cumulative distribution function.

2.5.12 The density of X is fx(z) = 3e73*I(z > 0). Since X is defined on
[0,00), Fx(z) = P(X <z)=0for all z < 0. For z > 0,

Fx(z) = / fx(y)dy = / 3e Wdy = —e*?’y}zig =¥ pl=1-e5"
—00 0
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2.5.13
(a)

1.04 —

0.8 4

0.6

F(x)

0.4

0.2 4

0.0 4 E—

T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 10
X

(b) The function F' is non-decreasing in (a) and the range of F is [0,1]. Finally,
lim, .o F(x) = 0 and lim,_.o F(z) = 1. Hence, F is a valid cumulative
distribution function. (c) P(X > 4/5) = 1-P(X < 4/5) = 1—-F(4/5) = 1-1 =
0. P(-1 <X <1/2) =P(X <1/2) - P(X < —1) =lim, » o F(z) - F(-1) =
3/4—-0=3/4. P(X =2/5) = P(X <2/5)—P(X < 2/5) = F(2/5) —
lim, ~o/5 F(x) = 3/4—1/3 = 5/12. P(X = 4/5) = P(X < 4/5) - P(X <
4/5) = F(4/5) —lim, ~4/5 F(x) = 1—3/4 = 1/4. Besides, it is not hard to show
that P(X = 0) = 1/3. Hence, P(X € {1,2/5,4/5}) =1/3+5/12+1/4 =1,
that is,

1/3 ifex=0,
5/12  if z = 2/5,

1/4  ifx=4/5,

0 otherwise.

P(X=x)=

2.5.14

(a) For all z > 0, 0 < e~ < 1. Hence, 0 < G(x) < 1 for all x > 0. Since G'(x),
for © > 0, is non-negative, G is non-decreasing, i.e., G(z) > G(y) whenever
x > y. Finally, lim;—,_ oo G(z) = 0 and lim,; o G(z) = limg 001 — ™% =
1 —lim, . ce® = 1—0 = 1. Hence, G is a valid cumulative distribution
function. (b) Since G is a continuous function, P(Y < y) = lim, ~, G(z) =
Gly). P(Y >4) =1—-P(Y <4)=1-G4) =1—e* =0.98168. P(-1 <Y <
2)=P(Y <2)-P(Y <-1)=G(2)-G(-1)=1—e"2-0=1—e"2 = 0.86466.
P(Y =0) = P(Y <0) — P(Y < 0) = G(0) — G(0) = 0.

2.5.15 Since G is continuous, lim, -, G(y) = G(z). P(Z = z) = P(Z < z) —
P(Z < z) = H(z)—lim, ~, H(x) = (1/3)F(2)+(2/3)G(2)—(1/3) lim, », F(z)—
(2/3)lim, - G(@) = (1/3)(F(2) — lim,.-. F(x)) + (2/3)(G(2) — G(2)) —
(1/3)P(X = z). We already showed that P(X = z) > O only if z € {0,2/5,4/5}
in Exercise 2.5.13.

(a) P(Z > 4/5) = 1—P(Z < 4/5) = 1—H(4/5) = 1—(F(4/5)/3+2G(4/5)/3) =
1—(1/3+2(1 — e %/%)/3) = 2¢7%/5/3 = 0.29955. (b) P(—1 < Z < 1/2) =



N
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2.5. CUMULATIVE DISTRIBUTION FUNCTIONS (CDFS)

P(Z < 1/2) = P(Z < ~1) = lim, o H(z) — H(-1) = (1/3)lim, 172 (2

)
(2/3)lim -1 /5 G(2) = ((1/3) - 0+ (2/3) - 0) = (1/3)(3/4) + (2/3)(1 — e7/?)
11/12 — 2e71/2/3 = 0.51231. (c) P(Z = 2/5) = P(Z < 2/5) — P(Z < 2/5)
) —
1
)

o+

H(2/5) —lim, 55 H(z) = (1/3)F(2/5) + (2/3)G(2/5) — (1/3) lim.,_3/5 F(2
(2/3)lim, ro/5 G(z) = (1/3)(3/4) + (2/3)(1 — e=2/%) — (1/3)(1/3) — (2/3)(
e"2/5) = 5/36 = 0.13889. (d) P(Z = 4/5) = P(Z < 4/5) — P(Z < 4/5
H(4/5) = lim; r4/5 H(z) = (1/3)F(4/5) 4+ (2/3)G(4/5) — (1/3) lim. »4/5 F(2)
(2/3)1im. a5 G(2) = (1/3)1+(2/3)(1—e*/°) = (1/3)(3/4)— (2/3) (1 —e~*/%)
1/12 =0.08333. (e) P(Z =0) = P(Z < 0)—P(Z < 0) = H(0)—lim, -0 H(z) =
(1/3)F(0) + (2/3)G(0) — (1/3) lim. -0 F'(2) = (2/3) lim 0 G(2) = (1/3)(1/3) +
(2/3)-0—(1/3)-0—(2/3)-0 = 1/9 = 0.11111. (f) P(Z = 1/2) = P(Z <
1/2) = P(Z <1/2) = H(1/2) ~lim, ~ 2 H(z) = (1/3)(3/4) +(2/3)(1—e /%) ~
(1/3)lim. 12 F(2) = (2/3)lim, o172 G(2) = (1/3)(3/4) + (2/3)(1 — e7'/?) =
11/12 — 2e71/2/3 = 0.51231.

Problems

2.5.16 Since F is non-decreasing, lim,, . |F(2n) — F(n)| = lim,—[F(2n) —
F(n)] = lim,—o F(2n) — lim, o Fi(n) =1 -1 = 0. (Hence, lim,_. P(n <
X <2n) =0 for any X.)

2.5.17 Let X have cdf F, let A be the event {X < =z}, and let A, be the
event {X <z + %} Then A,41 € A, and (), A, = A. Hence, {4,} \, 4,
so by continuity of probabilities, lim,,_,., P(4,) = P(A), i.e., lim, . P(X <
z+1)=P(X <a),ie, limy,_o F(z+ ) = F().

2.5.18 Since F' is non-decreasing, then F' is continuous at a if and only if
F(a™) = F(a™). But the previous exercise shows F(a*) = F(a). Hence, F is
continuous at a if and only if F'(a) = F(a™), i.e., F(a) — F(a~) = 0. The result
follows since P(X = a) = F(a) — F(a™).

2.5.19 Note that ¢5( ) ¢(z). Hence, using the substitution s = —t, we

have ®(—z) = [~ 7 ¢(t) — [T o(s) (—ds) = [° ¢(s)ds = ®(c0) — D(z) =
1—®(x )
2520 F(z)= [* _e*(1+e %) 2dz=(14e)"
25.21 F(z) = [j cz® texp{—2"} dz =1—exp {—z°}.
2522 F(z)=afy (1+2) “ lde=1-(1+2)"".
2523 F(z)=n"1["_(1+ 22)71 dz = (arctan (z) + 7/2) /7.
2.5.24
3 [f o efdz=1e” <0
F(l‘)_{l_’_ fo 7Zdz—%+%(1—67$) >0

2525 F(z) = [* e exp{—e*}dz = exp{—e*}|" _ =exp{—e"}.
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(b) F(z)= [y dz=xzfor0 <z <1.

(c) F(z) = [y 2zdz =2 for 0 <z < 1.

d) Flz) = [f2(1—2)dz=1-(1—2)’ for 0 <z < L.

(e) F(z) = [y 6z l—z)dz= [ 6(z—2%) dz=322 - 223 for 0 <z < 1.

2.6 One-dimensional Change of Variable

Exercises

2.6.1 Let h(z) = cx +d. Then Y = h(X) and h is strictly increasing, so
fr(y) = fx (" (y)) / |W (R ()| = fx((y—d)/c) / ¢, which equals 1/(R — L)c
for L < (y—d)/c <R,ie,cL+d<y<cR+d, otherwise equals 0. Hence,
Y ~ Uniform[cL +d, cR+d].

2.6.2 Let h(z) = cx +d. Then Y = h(X) and h is strictly decreasing, so

fr(y) = fx () /IW (R )| = fx((y — d)/c) / |e|, which equals 1/(R —
L)|e| =1/(cL —cR) for L < (y—d)/c < R, ie., cR+d <y <cL+d, otherwise
equals 0. Hence, Y ~ Uniform[cR + d, cL + d].

2.6.3 Let h(z) = cx +d. Then Y = h(X) and h is strictly increasing, so
frw) = fx(h @) / W (A ()] = e~ (=072 ) oo

= e~lv=d=cu*/2¢%* /05 /o7 Hence, Y ~ Normal(cp + d, c20?).

2.6.4 Let h(z) = cx. Then Y = h(X) and h is strictly increasing, so fy(y) =
fx (WY (y) /10 (B (y))| = fx(y/c) / ¢, which equals Ae™*¥/¢/c = (A /c)e~ (M
for y > 0, otherwise equals 0. Hence, Y ~ Exponential(A/c).

2.6.5 Let h(x) = 23. Then Y = h(X) and h is strictly increasing, and h=!(y) =
y'/%. Hence, fy(y) = fx(h™'(y)) /I (h— ()] = fx(y'/%)/3(y"/?)?, which
equals Ae='""" /3y2/3 = (A/3)y=2/3¢= """ for y > 0, otherwise equals 0.

2.6.6 Let h(z) = z'/% Then Y = h(X), and h is strictly increasing over
the region {x > 0}, where fx(z) > 0. Also, h~!(y) = y* on this region.
Hence, for y > 0, fy (y) = fx (b= () /[P (" ()| = fx(y*) / (/4 @) > =
e N /(1/4)y~3 = 4 e with fy (y) = 0 for y < 0.

2.6.7 Let h(z) = 2. Then Y = h(X), and h is strictly increasing over the
region {0 < x < 3}, where fx(z) > 0. Also, h~'(y) = y'/? on this region.
Hence, fy(y) = 0 unless y > 0 and 0 < y'/? <3, ie.,0 <y <9, in which case
Fry) = Fx(B @) /W ()] = Fx(y/?) /2517 = 1/3 (291/2) = 1/6y'/2
for 0 <y < 9.

2.6.8 The transformation is y = h(x) = 2u — 2z and so h™ 1 (y) = 2u —y
and h/(z) = —1 and so the density of Y is given by fy (y) = fx (h™! (y)) =
fx@u-y)=fx(p+kp-y)=fxw-(p—y) = fx(y) so X and Y have
the same distribution. Since the N (p, 02) density is symmetric about u, this
proves that Y ~ N (p,0?) .



2.6. ONE-DIMENSIONAL CHANGE OF VARIABLE 31

2.6.9

(a) The inverse function of Y is Y~1(y) = y*/? and the derivative of Y is
Y'(x) = 2. Hence, fy(y) = fx(Y~ (y))/ly' 1( N = Fx(y'/)/2y"? = y/8.
(b) Since Z71(z2 )*zand Z'(2) =1, fz(z) = fx(2)/1 = 23 /4.

2.6.10 The density function of X is fx(x ) =2/mif0<z<7w/2and fx(z)=0

otherwise. The inverse image of y is Y ~!(y) = arcsin(y). The derivative of Y’
is Y'(x) = cos(z). fy(y) = fx(arcsin(y))/|Y'(arcsin(y))| = 2/(w+/1 — y?) for
y €0, 1].

2.6.11 Since fx is defined on 0 < z < 7, the inverse of Y is Y 71 (y) = VY- The
derivative of Y is Y'(z) = 2z. From Theorem 2.6.2,

fr(y) = fx(V)/ 125 =y~ ?sin(y/?) /4
for y > 1 and fy(y) = 0 otherwise.

2.6.12 Since Y (z) = x'/3 is increasing, Y is also 1-1. The inverse if Y = (y) = ¢*
and the derivative is Y'=2/3/3. By applying Theorem 2.6.2, we get

Fr@) = fx@)/N*) B =y Sy =y

2.6.13 Note fx(z) = (27) /2 exp(—x2/2). The transformation = + 23 is
monotone increasing. The inverse of Y is Y ~1(y) = y!/3 and the derivative is
Y’2. By Theorem 2.6.3, we have

Fr) = fx@")/13"3)?| = (2m) 72 B]y|*?) exp(—|y|*/? /2).
Problems

2.6.14

(a) First, let h(z) = x3. Then Y = h(X) and h is strictly increasing and
h™'(y) = y*/®. Hence, fy(y) = fx(h™"(y)) / [N (K" ()] = fx(y/*) /3(y"/*)?,
which equals (1/5)/3y%/? = y=2/3/15 for 2 < y'/3 < 7, ie., 8 < y < 343,
otherwise equals 0. Second, let h(y) = y'/2. Then Z = h(Y) and h is strictly
increasing over the region {8 < y < 343}, where fy(y) > 0. Also, h=!(z) = 22
on this region. Hence, for v/8 < z < /343, f7(2) = fy(h=1(2)) / [W (h~(2))| =
fr(2%) [ (1/2)(z%)712 = [(z*)7*/3/15] / (1/2)(2%) /% = 2271/3 /15, with fz()
= 0 otherwise.

(b) Let h(z) = 23/2. Then Z = h(X) and h is strictly increasing over the region
{2 <z < 7}, where fx(x) > 0. Hence, fz(z) = fx(h™'(y)) /| (h"'(y))| =
fX( 2/3) /(3/2)(22/3)Y/2 which equals (1/5)/(3/2)2*/3 = 2271/3/15 for 2 <

3 <7, 1e., 2%/2 < 2 < 73/2 otherwise equals 0.

2.6.15 Here h is strictly decreasing on x < ¢, and is strictly increasing on

x > c¢. Hence, we can apply Theorem 2.6.2 if ¢ < L. < R and Theorem 2.6.3 if

L<R<ec.

2.6.16 Let h(z) = cx +d. Then Y = h(X) and h is strictly decreasing, so
2 2

fr(y) = fx (W) /W (W ()| = sme Wwm /=l /207 /||

oV 2

= L __e-lv—d—cul?/2** Hence, Y ~ Normal(cu + d, c*o?).

|e|lov2T
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2.6.17 The transformation y = h(x) = e® has h/(z) = €* and h=(y) = Iny.
Therefore, Y has density

1 . (Iny)? o~y 1 o (Iny)*\ 1
X — = —eX _— —
V2rT P 272 VorT P 272 Y

2.6.18 The transformation y = h(z) = z” has h'(z) = B2P~! and ™1 (y) =
y'/B. Therefore, Y has density (a/B) (yl/ﬁ)a_1 e*(yl/ﬂ) /(yl/ﬁ)’g—l
= (a/ By /P 1e*yo/ﬁ for y > 0, so Y ~ Weibull(a/3) .

for y > 0.

2.6.19 The transformation y = h(z) = (1 —|—a:)’8 — 1 has h'(z) = 5(1 —|—x)6_1
and h=1(y) = (1 + y)l/ﬁ — 1. Therefore, Y has density

—a—1 B—1

% (1 +(1+yt - 1) (1+y) /D71

for y > 0, so Y ~ Pareto(«/) .

/(1+(1+y)1/5—1) _%

2.6.20 The transformation y = h(x) = e™® has h/(z) = —e~® and h~(y) =
—Iny. Therefore Y has density e™¥ exp {—elny} /Y = e for y > 0 and so
Y ~ Exponential(1) .

Challenges
2.6.21 We have that, for y > 0,

d d

fr ) = TR W) = PV <5) = TP <) = ZPVT <X < V7

_d _ (V) w(—\/@)
=gy @ —e v = P
_ Lo e (VU) _ ew{y/2

PN N RN RN

for y > 0.

2.7 Joint Distributions

Exercises

2.7.1
0 min[z, (y +2)/4] <0
Fxy(z,y)=4 1/3  0<minfz, (y+2)/4 <1
1 minfz, (y+2)/4] > 1
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2.7.2
0 r<0andy <0
0 r<landy< -7
Fxy(z,y)=4 1/4 0<z<landy>0
3/4 r>land —7<y <0
1 z>landy >0
2.7.3

(a])a px(2) = px(3) = px(=3) = px(-2) = px(17) = 1/5, with px(z) = 0
otherwise.

(b) py(3) = pv(2) = py(=2) = py(=3) = py(19) = 1/5, with py(y) = 0
otherwise.

(C) P(Y > X) = pX7y(2,3) +pX7Y(—3, —2) +px,y(17, 19) = 3/5

(d) P(Y = X) = 0 since this never occurs.

(e) P(XY < 0) = 0 since this never occurs.

2.7.4

(a) C =4, and P(X < 0.8, Y < 0.6) = 0.0863.

(b) 0:18/5 and P(X < 0.8, Y < 0.6) = 0.200.

(c) C =9/1024003600 and P(X < 0.8, Y <0.6) =5.09 x 10710,

(d) C = 9/1024000000 and P(X < 0.8, Y < 0.6) = 2.99 x 10~'2.

2758Simce {X <z, VY <ylC{X <z}land {X <z, V Y < y}

<y C{y
then P(X <z, Y <y) <P(X <z)and P(X <z, Y <y) <PY <y),i
Fxy(z,y) < Fx(z) and Fx y (z,y) < Fy(y), so Fx,y(z,y) < min (Fx(z), F
2.7.6

(a) The joint cdf is defined by Fxy(z,y) = P(X < z,Y < y). Since both
variables are discrete, the value of Fx y is constant on some rectangles. For
example, for x < 3 and y € R!,

" ))-

Fxy(z,y) =P(X <z,Y <y)<P(X <z)<P(X<3)=0.

The rectangles having the same Fx y value are (—00, 3), [3,5), and [5, 00) for X
and (—o0,1), [1,2), [2,4), [4,7), and [7,0). Hence, the joint cdf is summarized
in the following table.

Fxy(z,y) |y<l 1<y<2 2<y<4 4<y<7 y>7
r <3 0 0 0 0 0

3<z<5]| 0 1/8 1/4 3/8 1/2
z>5 0 1/4 1/2 3/4 1

(b) Recall pxy(z,y) = P(X = z,Y =vy). Hence, px yv(z,y) =1/8if 2 =3,5
and y =1,2,4,7, otherwise px v (z,y) = 0.

(c) Since px,y(z,y) > 0 holds only for x = 3 or z = 5 among = € R!, we have
px(z) > 0 only for z = 3 or z = 5. By definition, px(3) = >_ cp P(X =
3Y=y)=P(X=3Y=1)+PX=3Y=2+PX=3Y=4)+P(X =
3,Y = 7) = 1/2. Similarly, px(5) = 1/2. In sum, px(z) = 1/2if z = 3 or
x = 5, otherwise px(z) = 0.
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(d) Similar to (¢), py(y) > 0 only for y = 1,2,4, and 7. Note py (1) = P(X =
3,Y=1)+P(X =5,Y =1) = 1/4. Similar computations give py (y) = 1/4 for
y=1,2,4, and 7, otherwise py (y) = 0.

(e) By definition, Fx(z) = P(X <) =), ., px(2). Since px(x) > 0 only for
r=3and x =5, Fx(z) =0 for z < 3, Fx(z) = px(3) =1/2 for 3 < z < 5,
and Fx(z) = px(3) +px(5) =1 for z > 5.

(f) Similar to (e), the range of y is separated into (—oo, 1), [1,2), [2,4), [4,7)
and [7,00). Hence, we have Fy(y) =0 for y < 1, Fy(y) =1/4 for 1 <y < 2,
Fy(y) =1/2for 2 <y < 4, Fy(y) =3/4for4 <y < 7, and Fy(y) = 1 for
y=>T.

2.7.7

(a) By integrating y out, the marginal density fx(z) is given by

2
fx@) = [ @y = c [ sin(ey)dy = o] = cos(on)/a]!
1 0
= ¢(1 — cos(2z)) /x
for 0 < z < 1 and otherwise fx(z) = 0.
(b) Now integrating x out is required.

1
. x=1
i) =c [ sinfay)do = cf - cos(a) /5] 74 = (1 = cos(w)y
for 0 < y < 2 and otherwise fy (y) = 0.
2.7.8
(a) The marginal density fx(x) is given by

122 4y v=4 432 +8 1?42

2’y +y°/2
fx(w) = - fX,Y(l“,y)dy = /0 36 dy = 36

for —2 < z < 1, otherwise fx(z) =0.
(b) The marginal density fy (y) is given by

y=0 36 9

! xQ—l—ydx:xS/?)—l—xy

B B s=l 343y 14y
JCY(?J)—/R1 J"'X,Y(x,y)dx—/_2 36 35 =— =—0"

r=—2 36 12
for 0 < y < 4, otherwise fy(y) =0.
(c) By integrating fy (y), we get
1 2 —
14y y+y?/2y=1 1
P Y 1 = d = = —.
(¥ <1) /0 12 Y 12 ly—0 8

(d) By the definition of cdf, we get Fx v (z,y) = P(X <z,Y <y)=0ifx < -2
ory<0.Ifrx>1landy >4, then Fxy(z,y)=1. If-2<z<land0 <y <4,

then

T Y2 4y x u2v+112/2 v=y v 2U2y+yz

F — dvdu= [ ———=| du= [ ——d
X,Y(a:;y) /_2/0 36 vau /_2 36 v=0 b /;2 72 B

23+ yPupu=e 2y(a® 4 8) 4 3y (z + 2)
N 72 u=—2 216
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If -2 <2 <1 and y >4, then

Fyy(z,y) = /_T2 /Oy fx,y (u,v)dvdu = /T fx (u)du = /T UZZQdU

—2 —2
U334 2upu=r (x4 2)(2? — 2z +10)
4 lu=—2 12 '

Finally, if x > 1 and 0 < y < 4, then

y @ v Y14w
Fxy(z,y) Z/ / fX,Y(U’U)dUdU:/ fY(U)dU:/ T3 W
0 —2 0 0
_v+0?/2
12

In sum, the joint cdf is

vy 2+
v=0 N 24 ’

0 ifxe <—-2o0ry<0,
1 ife>1y>4,
Fxy(z,y)=1¢ (x+2)(3y*+2y(a? —22+4))/216 if —2<2<1,0<y<4,
(x4 2)(2? — 22 + 10) /12 if —2<z<l,y>4,
y(2+y)/24 ifz>10<y<4.

2.7.9
(a) It is not hard to see that fx(z) =0if z & (0,2). For = € (0, 2),

2 x2 2 2/9 jy= 2 3

°+y ry+y?/21y=2 443z —22
fX(m):/ fX,Y(ﬂc,y)dyz/ 1 dy = 1 / :T'
R! x y=x

(b) From the range of fxy, fy(y) =0if y ¢ (0,2). For y € (0,2),

Y24 23/3+x
)= [ Ferlepo= [( T e - TEE
R? 0

(c) By integrating fy (y), we get

1 1,3 2 4 3 y=
y° + 3y y*/4 4+ yo y=l 5
PY <1) = ay— [ L3V ‘ _5
¥<1) /_oon(y) Y /0 12 Y 12 ly—o 48

v=y 1% 4 3y
e=0 12

2.7.10 Note that fxy(z,y) = (2ro102)7 (1 — ,02)_1/2 exp [ — ﬁ((aj —

m)?/ot+(y—p2)?/o3 —Qp(w—m)(y—uz)/(am))}- (a) Let 21 = (z — ) /o
and zy = (y — p2)/0a. Since 27 + 23 — 2pz120 = (1 — p)223 + (22 — p21)?,

% ovn(—(z — )2/ (202 exp(—(y*“TQZ(;If;g%/Ul)Q)
fx(@) :/ . ((271'0‘/;;;1)/2/( ) ' (2m02(1 —2(p2))1)/2
exp(—(z — 11)2/(202)) [ exp(—u2/2)
_ &P (27ml51/2 ! / —I()Qﬁ)lﬂ du
exp(—(z — pu)*/(201))
@ro?) 72

dy

— 00

—0o0
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Hence, X ~ N(u1,0%). In the question, 3 = 3, o1 = 2. Thus, X ~ N(3,4).
(b) By changing X and Y, we have ¥ ~ N(/@,J%) Since pg = 5, o2 = 4,
Y ~ N(5,16).

(¢) We know that X and Y are independent if and only if fx(z)fy(y) =

fxy(z,y).
1 1 — 2 1 — 2
o (-3(5) —3(5) )
2wo109 2 o1 2 o9

Hence, fx(z)fy(y) = fxy(z,y) if and only if p = 0. Thus, X and Y are
independent if and only if p = 0. In the question p = 1/2 is given. Therefore,
X and Y are not independent.

Problems

2711 Fxy(z,y) = P(X <2, Y <y) = P(X <2, X3 <y) = P(X <
z, X < y'/?) = P(X < min(z, y'/?)), which equals 1 — ¢~ ™in(=, v’ for
x,y > 0, otherwise equals 0.

2.7.12 We know Fxy(x,y) < Fx(z) and that lim, , . Fx(z) = 0. Hence,
lim, o Fx y(z,y) <lim,,_ Fx(z) =0.

2.7.13 Let z = (x — p1)/o1 and w = [(y — p2)/o2] — [p(x — p1)/o1]. Then
fxy(@,y) = 2roroay/1 - p2) exp{—[2(1 — p*)]7'[(1 - p*)2* +w?]}. Also,

dy = oo dw. Hence,

/_ Ixy(z,y)dy

— (2rovoa/T= 7)1 /Oo exp{—[2(1 = )11 — p2)22 + w2} oa dus
= (2mo1021/1 — p?) texp{—[2(1 — p*)]” )22 /2 (1 — p2)o]

LSSy T e*(w*mf/?ffl'

2 o1V 2T

fx(@)fy(y) =

2.7.14
a) fo Jo Cye v dudy = [ —Ce=*v|y dy=C [} (1—e7) dy
=C (1 + €_y|(1]> =CelandsoC=e

(b) €f11/2 f11/2 ye Wdrdy =e f11/2 e_Uﬁy|1/2 dy = 6[11/2 (ev/2—ev) dy

e (=202}, 4 ey y) = e (2714 - 2072 el - em1/2) = 028784
(¢) Using integration by parts Wlth u= y, du=1,dv = e"y“'l, and
v=—e %l /2 we have that fx (x f ye Tl dy = _”””1}(1) +
L ey = - —m%e*wyﬂ Ce(d ) o<
Also, we have that fy (y) = f ye Wl dy = —e*W“ﬁ) = e(l—eY) for

0<y<l1.
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2.7.15
(a) Jo J§ Cye¥dedy = [y ~Ce=™v|§ dy =C [, (1 - ein) dy

(:b)c« (147 (®(0)—®(v2))) and so C = (1+ /7 (®(0) — @ (v2)))

0/1;2 /1j2 pe dedy = C/ljz e_my}zljm dy = 0/1;2 (6_9/2 - e—yz> dy
o (2], e () -0(49)
=0 (22 VR (0 (VE2) - 0 (V2))

-1

(c) Using integration by parts with u = y,du = 1,dv = ey = —e=o¥ 1 /g
we have that
1 y Lo
fx (z) :/ ye Wl dy = — LTyt _/ et gy
T X T T Jp
—z+1 —r _ 2 —
f—m2+1_eT _i —ay+1)l _ 2 e e et
- x 22 € . =ele T 22
for 0 < x < 1. Also, we have that fy (y) = foy ye wutl dp = _efmy+1|(y] _
e(l—e_yz> for 0 <y < 1.

2.7.16

(a) [,° J) Ce @t dady = C [)° —e~@tv) |g dedy=C [[“e vV (1—e¥) dy=
C(l— [ edy)=C(1-1/2) =C/2,50 C =2.

(b) We have that fx (z) =2 [ e @ dy = 2e72 [ e ¥dy = 2 %50 X ~
Exponential(2) and fy (y) =2 [/ e @t dx =27V [Ye T dz =2e7Y (1 —e7Y)
for y > 0.

2.7.17

(a) We need to calculate fol 0179” x;“*lngl (1—mz — .1'2)&3_1 dzq dxs

—1 agfl
1l as—1 ataz—2 1—zo 21 1 zq
= Jo T2 (1—a2) 0 T-my -1 dzy | dxg and,

making the transformation u = 1/ (1 — 23) ,du = (1 — x3) " dz1, we have that
this integral equals

1 1
[t ([t ) e
0 0

o F(Oél—l-()ég) /0 2 (1
- F(O&ﬂf(og) F(OéQ)F(Otl —|—043) o I‘(al)F(ag)F(ag)

o F(a1+a3) F(Oé1+042+043) F(a1+a2+a3)

)a1+a371 d

- I2 T2

by two applications of (2.4.10). This establishes that fx, x, is a density.
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(b) We have that

fxl(ml)
T (041 + o + 043) /1_11 =1 as—1 as—1

= AR e 1—x1 —20)" " dx
Fla)T (@) T ag) Jo 1 = (mmma)tdr
r (a1 + as + 043) 1—1 agtaz—2

= iy 1—x s
Fla)T (@) Tz L7

1—x1 as—1 az—1
T2 €2
X 1-— d
/0 (1 —xl) < 1 —{L‘1> 2

- Tlai+aetas) o (1_x1)a2+a3_1x/1w1
0

as—1 az—1
= T (e T (a2) T (ag) ! , U mwd
_ I (a1 + ao + 043) xal_l (1 o )a2+a371 I (O[Q) I (OZ3)
T (a)T (o2) T (ag) " ! ! T (a2 + o)
- TPl +as+as) o1

(1 _ xl)az+a371 ,

T T(a)T (as +a3) !
so X1 ~ Beta(ay, as + a3) . Similarly, Xo ~ Beta(ag, a3 + ag3).
2.7.18 We have that

1— Xr3—r " —Tk 1— XTo—r " —Tk
a1 — 1 Qg — 1 akfl
/ ’ / o agr T a

(1—2—x9g — -+ — xk)a’““ dridzo - -+ dxy,

1 171"37»»-7@‘, 9
_ az—1 ap—1 altagy1—
—// x5 cxpt T (=g — - — ) X
0 0

l—@g—--—xp ar1—1 agpt1—1
L) )
0 1l—z9—-- —x 1l—z9g—-- =z

X dxg -+ dxy,

1 171"37»»-7@‘, 1
_ az—1 ap—1 altoagy1—
—/ x5 cxpt T (=g — - — )
0 0

1
X (/ ut (1 - u)a’““_1 du) dxo -+ dxy,
0

and this in turn equals

l—z3——x
F ak+1 / / ? " az 1, QR 1
k
Oé1+0¢k+1

X(1—zg—- —xp a1+a’““ Ydry - doy,
_ F(al)F(akH) T (ag)T (o + agpr1) T'(ag) T (g + -+ ag)
I'(ar +agg1) T(og + oo+ aggr) D(og + -+ agy1)

_ Dla) T (eg) - T (aria)
I'(ar+ -+ apt1)
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and this establishes that fx, . x, is a density.

77777

Challenges

2.7.19 For example, take X and Y to be i.i.d. ~ Normal(0, 1), with h(z) = —=z.
Then Fxy(z,h(z)) = P(X <z, ¥V < —2) < PY < —z) = &(—x) — 0 as

T — OQ.

2.8 Conditioning and Independence

Exercises

28.1

(@) px(~2) = pxy(~2,3) + pxy(=2,5) = 1/6 + 1/12 = 1/4. px(9) =
Pxy(9,3)+pxy(9,5) = 1/6+1/12 = 1/4. px(13) = pxy(13,3)+px1(13,5) =
1/341/6 = 1/2. Otherwise, px(z) = 0.

(b) py(3) = px,v(=2,3) + px,v(9,3) + px,y(13,3) = 1/6 + 1/6 + 1/3 = 2/3.
py(5) = px,v(=2,5) + pxy(9,5) + px,v(13,5) = 1/12 + 1/12 + 1/6 = 1/3.
Otherwise, py (y) = 0.

(c) Yes, since px(x) py (y) = px,v(z,y) for all z and y.

2.8.2

(a) px(=2) = px,y(=2,3) + px,y(-2,5) = 1/16 +1/4 = 5/16. px(9) =

pX’y(g, 3)—|—pX’y(9, 5) = 1/2—|—1/16 = 9/16. px(13) = pxﬁy(l?), 3)—|—pX7y(13, 5) =
1/16 +1/16 = 1/8. Otherwise, px(z) = 0.

(b) py(3) = px,y(=2,3) + px,v(9,3) + px,v(13,3) = 1/16 + 1/2+ 1/16 = 5/8.

py(5) = px,y(—2,5) +px7y(9,5) +px,y(13,5) =1/4+1/16 +1/16 = 3/8.

Otherwise, py (y) = 0.

(c) No, since, e.g., px(—2) py(3) # px,v(-2,3).

2.8.3

(@) For0 <z <1, fx(z) = f01(12/49)(2+x+my+4y2)dy = (18x/49)+(40/49),
otherwise fx(z) =0.

(b)For0<y <1, fy(y) = f01(12/49)(2+x—|—xy—|—4y2) dr = (48y*+6y+30)/49,
otherwise fy(y) =0.

(c) No, since fx(z) fy(y) # fx,v(z,y).

2.8.4

(@) For 0 <z <1, fx(x) = f01(2/5(2+e))(3+e””+3y+3yey+yem+ye“+y) dy =
(34 €")/(2 + e), otherwise fx(x)=0.

(b) For 0 <y <1, fy(y) = [, (2/5(2+€))(3+e” +3y+3ye? +ye” +ye™ ) dx =
2(1 +y + ye¥) /5, otherwise fy(y) = 0.

(¢) Yes, since fx(x) fy(y) = fx,v(z,y) for all x and y.

2.8.5

@) P(Y =4|X =9) = P(X =9,Y =4) /P(X = 9) = (1/9) / (3/9 + 2/9 +
1/9) = 1/6.
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(b) P(Y = 2| X =9) = P(X =9, Y = —2) / P(X = 9) = (3/9) / (3/9+2/9+
1/9) =1/2.

() P(Y =0|X=-4)=P(X =—4,Y =0)/P(X =—4) =0/ (1/9) = 0.

(d) P(Y =—2|X =5)=P(X =5,Y = -2) / P(X =5) = (2/9) / (2/9) = 1.
() P(X =5|Y = —2) = P(X =5,Y = —2) /P(Y = —2) = (2/9)/ (1/9 +
2/9 +3/9) = 1/3.

286 P(Z=0)=P(X =0,Y =0) = (1-p)p. For z, a positive integer, P(Z =
) =PX=0Y=2)+PX=1Y=z2-1)=1-p)1-p)'p+p(l—p)'p
=1 =p)* A =p)?’p+p’ ] =p(L—p)* 1 -p+p°].

2.8.7
(a) Recall C' = 4. Hence, fx(z) = f01(2a:2y +4y5)dy = 22 +2/3 and fy(y) =
f01(2x2y+4y5) de = 4y°+2y/3. Thenfor0 <z <land0<y <1, fyx(y|z) =
Ifxy(@,y)/ fx(x) = (22%y+4y°) / (x*+2/3) (otherwise fy|x(y|z) = 0). Thus,
X and Y are not independent since fy|x(y|z) # fy(y)-

(b) Here fx(z) = [y Clzy +2%y°) dy = C(2®/6 +2/2) and fy (y) = [, Clay +
2PyP)dr = C(y°/6 +y/2). Thenfor 0 <z <land 0 <y <1, fyx(y|z) =
fxy(@y)/ fx(@) = Clay +2°y°) / C(2° /6 + 2/2) = (zy + 2°y°) / (2°/6 +
x/2) (otherwise fy|x(y|x) = 0). Thus, X and Y are not independent since
fyix(ylz) # fr(y).

(c) Here fx(z) = fow C(zy + 2°y°)dy = C(500002°/3 + 50z) and fy (y)
f04 C(zy + 25y°) dz = C(2048y°/3 + 8y). Then for 0 < z < 4 and 0 < y <
10, fyix(ylz) = fxy(2,y)/ fx(x) = Clzy + 2°y°) / C(500002° /3 + 50z)
(zy + 2°y°) / (5000027 /3 + 50z) (otherwise fy|x(y|z) = 0). Thus, X and V
are not independent since fy|x(y|z) # fy (y).

(d) Here fx(x) = folo C(z5y®) dy = C(500002°/3) and fy(y) = f04 Clzy
2°y°) dz = C(2048y°/3). Then for 0 < z < 4 and 0 < y < 10, fy|x(y|z) =
Ixvy(z,y)/ fx(x) = C(a’y®) / C(500002° /3) = 3y® / 50000 (otherwise fyix(w|z)
= 0). Here X and Y are independent since fy|x(y|x) = fy(y) for all x and y.

I +

2.8.8 We have that e* = P(Y > 5|X = z) = [J° fy|x(y|z)dy. Hence,
PY >5) = P(Y >5, X >0) = [ [ fx(@) fyx(y] ) dyda

= [y 27 e da = —(2/5)e " |T_ "= 2/5.

2.8.9 For example, suppose P(X =1, Y =1)=P(X =1,Y =2) = P(X =
2V =1)= P(X =3,Y =3) = 1/4. Then P(X = 1) = P(Y = 1) = 1/2,
so PIX =1)PY =1) =1/4 = P(X = 1,Y = 1). On the other hand,
PX=3)PY =3)=(1/4)(1/4) #1/4=P(X =3,Y =3),s0 X and Y are
not independent.

2810 Here P(X =1,Y =0) =P(X =1)—-P(X =1,Y = 1) = P(X =
)—P(X=1)PY =1)=P(X =1)(1-PY =1)) = P(X = )P(Y = 0).
Similarly, P(X =0,V =1)=P(Y =1)-P(X =1,V =1) = P(Y = 1)P(X =
0). Finally, P(X =0,Y =0) = P(X =0)— P(X =0,Y = 1) = P(X =
0)-P(X =0)P(Y =1)=P(X =0)(1 - P(Y =1)) = P(X = 0)P(Y = 0)



2.8. CONDITIONING AND INDEPENDENCE 41

Hence, P(X =z, Y =y) = P(X =2)P(Y = y) for all x and y, so X and Y
are independent.

2.8.11 If X = C is constant, then P(X € By) = I, (C) and P(X € By, Y €
Bs) = I, (C)P(Y € By). Hence, P(X € By, Y € By) = P(X € B)) P(Y €
B;) = Ip,(C) P(Y € By) for any subsets By and Bs, so X and Y are indepen-
dent.

2.8.12 Since X and Y are independent, P(X =1]Y =5)=P(X =1)=1/3.
2.8.13 In Exercise 2.7.6, we show that px(z) = 1/2 for £ = 3 or x = 5 and
px(x) =0 otherwise. Also py(y) =1/4 for y =1,2,4,7 and otherwise py (y) =

0. (a) By definition, py|x(y|z) = px,v(2,y)/px(z). Hence, we have the next
conditional probability table.

pyix(y|z) || y=1 y=2 y=4 y=7 others
r=3 1/4 1/4 1/4 1/4 0
r=>5 1/4 1/4 1/4 1/4 0

(b) By definition, pxy (z|y) = px,y (z,¥)/py (y). pxy (3I1) = px,v(3,1)/py (1)
=1/8/(1/4) = 1/2. Similar calculation gives the next conditional probability
table.

x|y (x]y) || r=3 x =5 others

y=1 12 1/2 0
y=2 12 1/2 0
y=4 12 1/2 0
y="1 12 1/2 0

(c) Note that py|x(y|z) = 1/4 = py(y) for all z = 3,5 and y = 1,2,4,7. By
Theorem 2.8.4 (a), X and Y are independent.

2.8.14 In Exercise 2.7.8, we already showed that fy(z) = (2% +2)/4 for -2 <
x < 1 and otherwise fx(x) = 0. Also we showed that fy(y) = (1 + y)/12 for
0 < y < 4, otherwise fy(y) = 0.

(a) Since fx (z) > 0 for —2 < = < 1, the conditional density is fy|x (y|z) = («*
y)/36/[(z* +2)/9] = (2% +y)/(42® +8) for 0 < y < 4, otherwise fy|x(y|z)

(b) Since fy (y) > 0 for 0 < y < 4, the conditional density is fx|y (z|y) = (
y)/36/[(1+y)/12] = (*+y)/(3y+3) for =2 <z < 1, otherwise fx|y (z|y) = 0.
(c) We compare fy|x(y|z) and fy(y). Note that fy|x(ylz) = (2* +y)/(4
8)# (14+y)/12 = fy(y) for —2 < 2 < 1,0 < y < 4 except © = —1,y =
Hence, X and Y are not independent.

2.8.15 In Exercise 2.7.9, we already showed that fx(z) = (4 +32% — 223)/8 for
0 < x < 2 and otherwise fx(z) = 0 as well as fy (y) = (y>+3y?)/12for 0 < y <
2, otherwise fy(y) = 0. (a) Since fx(z) > 0 only for 0 < z < 2, the conditional
density is fy|x (y|lz) = (2* +y)/4/[(4432% —22°) /8] = 2(2® +y) /(4 + 32> —22%)
for x <y < 2, otherwise fy|x(y|z) = 0.

(b) Since fy(y) > 0 for 0 < y < 2, the conditional density is fx|y(z|y) =
(2% +y)/4/[(v® + 3y*)/12] = 3(z* + y)/(y® + 3y?) for 0 < = < y, otherwise
fxpy (zly) = 0.
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(c) We compare fy|x (y|z) and fy (y). Note that fy|x (y|z) = 2(z*4y)/(4+32*—
223) = (y3 + 3y?)/12 = fy(y) holds only on a curve amongst 0 < z < y < 2.
Hence, X and Y are not independent.

2.8.16 The observed data 12,8,9,9,7,11 is sorted as 7,8,9,9,11,12. Hence,
X(l) = 7, X(g) = 8, X(g) = 9, X(4) = 9, X(5) = 11, and X(b’) =12.

Problems

2.8.17 We compute that fx(x) = C1(2?+C2/6) and fy (y) = C1(Cay®+2y/3),
with fol fol Ixy(z,y)dedy = C1(Ca/6 + 1/3). So, we require that C1(C2/6 +
1/3) = 1 and that Cy(2® + Ca/6) C1(Cay® + 2y/3) = C1(22%y + Cay®) for
0<z<1and0 <y <1. The second condition requires that C5 = 0, while the
first requires that C7 = 3, which gives the solution.

2.8.18 Let C1 =3, g(x), and Co = 3 h(y). then > pxy(z,y) = Ci1C2 =
L. Also, px(z) = >, pxy(z,y) = g(z) >, hy) = g(x)C2 and py(y) =
S, Py (2,9) = h(y) S g(x) = h(y)Cr. Hence, px (@)py (y) = g(w)Cah(y)Cy =
(C1C)g(x)h(y) = g(x)h(y) = px,y(x,y), so X and Y are independent.

2.8.19 Let Cy = [ g(z), and Cy = [*°_h(y). Then [*_[% fxy(z,y) =
C1Cy = 1. Also, fx(z) = [*_ fxy(z,y)dy = g(x) [Z_ h(y)dy = g(x)Cy and

@) = [, v (e,y) de = h(y) [, g(x) dz = h(y)Cr. Hence, fx(z)fy () =
9(@)C2h(y)Cr = (C1C2)g(2)h(y) = g(x)h(y) = fx,y(z,y), so X and Y are in-

dependent.

2.8.20 If X and Y were independent, then we would have P(Y = 1) = P(Y =
1|X =1)=3/4,and P(Y =2) = P(Y =2| X =2) = 3/4. This is impossible
since we must always have P(Y = 1)+ P(Y =2) < 1.

2.8.21 We have from Problem 2.7.13 that fx(z) = (01\/271')_1 e~ (@=m)*/201

and, similarly, fy(y) = (02\/271')_1 e~(W=n2)*/202  Multiplying these together,
we see that they are equal to the expression for fx y(z,y), except with p = 0.
Hence, fx(z)fy(y) = fxv(z,y) if and only if p = 0.

2.8.22 We have that P(X1 = f1) = S50 (4 on” o)

S (el 0 (1= 00— 0)" TR = (1ol (1 - 00" x
Shd (0 () (1 )" = et a0t
(v +1- 1—225)"% = (1)8f" (1—6:)" ", 50 X, ~ Binomial(n, ;).
2.8.23 We have that

P(Xy = fo| X1 =f1)

= " figfegn—Ffi—fo 7 { M \pofi (1 _ g \n—F1
B (fl fan—fi _f2)91 05°03 /<f1>91 (1—6y)

B n— fi 0y fa . 0, n—fi—f2
_( f2 >(1—91) (_1—91> ’

9{19529?*)5*}02 _
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so X2 | X1 = f1 ~ Binomial(n — f1,602/ (1 —61)).

2.8.24 The cdf of the Exponential(\) is given by F(z) = 1 — e ** for z > 0
and is 0 otherwise. Therefore for X > 0, P (X, <) = (1—e )", so
fxom (@) = £ (1—e )" = nA(1- e”‘””)n*1 . Also, P(Xqy<z) =1-—

e "\ 50 Ixa (z) = % (1 — e*”M) =ni (1 — e”‘w)nfl .

2.8.25 We have that P (X(;) <z) = P (at least ¢ sample values are <z) =
>_j—i P (exactly j sample values are <) = 37, (1) F/(z) (1 — F(x))"7 .
2.8.26 From Problem 2.8.25 the distribution function of X3, for 0 <z <1, is
given by P (X(3) <) = Z?:s (?)xﬂ (1—2)"7 =102 (1 —2)* +52* (1 — ) +
25 = 1023 — 152* + 625, so f(z) = 3022 — 602> + 302* = 3022 (z — 1)*. This is
the Beta(3,3) density.
2.8.27 From (2.7.1) we have that X = p14+0121,Y = patoa(pZ1++/1 — p?Zs),
so specifying X = x implies that 7, = (x — p1) /o1, 50 Y = po + poa (x — 1) +
02+/1 — p2Z5, and this immediately implies the result.

By symmetry we can also write that the distribution of (X,Y") is obtained

from Y = ps + 0221, X = 1 + 01(pZ1 + /1 — p?>Z3), so the conditional
distribution of X given Y =y is N (u1 + po1 (y — p2) , (1 — p?) o) .

Challenges

2.8.28

(a) The “only if” part follows from Theorem 2.8.4(a). For the “if” part, the
condition says that P(X =z, Y =y) = P(X = z) P(Y = y) whenever P(X =
xz) > 0. But if P(X =2) =0, then P(X =2,Y =y) < P(X =x) =0, so
P(X=2,Y=y)=P(X =1z)P(Y =y) =0. We conclude that P(X =z, Y =
y) = P(X =2) P(Y =y) for all z and y. Hence, X and Y are independent.
(b) Very similar to (a).

2.9 Multi-dimensional Change of Variable

Exercises
2.9.1 We compute that

Oh _ —cos(2mus) / u1+/2log(1/u1), O _ —2v27 sin(27ug)v/2log(1/u1)

Ouy Ouy

Oha . Oha

T —sin(2muz) / u1+/2log(1/uy), o —2v/27 cos(2mus)v/21og(1/uy).
1 2

Then J(uy,u2) = g—Zi g—zz - g—Z/f g—z; = =27 /u;.

2.9.2
(a) fx,y(z,y) =e @ for x > 0 and 1 <y < 4, otherwise fx,y(x,y) =0.
(b) h(z,y) = (z+y, z—y).
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(c) hH(zw) = ((z+ w)/2,

(d) Here J( y) =Gule — Grih _ |(1)(-1) — (1)(1)| = 2,50 fzw(z,w) =
fxy(h™'(z,w)) ! = fxy((z+w)/2, (z—w)/2) /2, which equals

—
I\
|
g
~

e~ /2 for (z +w)/2 > 0 and 1 < (2 — w)/2 < 4, ie., for z > 1 and
max(—z, z —8) < w < z — 2, otherwise fz w(z,w) = 0.

2.9.3

(b) h(z,y) = (2* + 2, 2* — y?)

(c) h= Yz, w) = (/( z+w/2 V(2 —w)/2), at least for z+w > 0 and z—w > 0
() Here J(z,y) = Q%%f—%#%<4@><%n(%ﬂ%n—4wﬁmayza
S0

fzw(z,w) = fxy (W™ (z,w)) /1T (R (z,0)))]
= fxy(V(z+w)/2, V(2= w)/2) 4/ (z + w)/2/ (2 —w
= Ixy (VE+w)/2, Vi —w)/2) [2Vz2 - w?

which equals e VEF®/2 /222 2 for /(2 +w)/2 > 0and 1 < /(2 — w)/2
<4, 1i.e., for z >4 and max(—z, z —64) < w < z—4, otherwise fzw(z,w)=0.

2.9.4

(b) h(z,y) = (z +4, y = 3)

(c) i1 (z,w) = (2—4, w+ 3

() Here J(e,y) = 232 — 222 |(1)(1) — (0)(0)] = 1, 50 fruw(2,w) =
fxy (b7 (z,w)) /| J(h (z,w))| = fxy(z —4, w+3) /1, which equals e~ (z=4)
forz—4>0and 1 <w+3<4,ie,for z>4and —2 < w < 1, otherwise
fz,w(z,w) =0.

2.9.5

(b) h(z,y) = (y*, «*)
(c) b1 (z,w) = (w'/4, 21/1)

(4) Here J(2.y) = % — G2t = (0)(0) = (49 (4a™)| = 42", at Tt

for z,y > 0, so fzw(z,w) = fxy(h~'(2,w))/ |J( Yz, w))| =
fx,y(wl/‘l, 214 [ 4w3/* 2374, which equals e ' for /4 >0and 1 <24 <
4, ie., for w >0 and 1 < z < 256, otherwise fz w(z,w) = 0.

2.9.6

(@) pzw(5,5) = 1/7; pzw(8,2) = 1/7; pzw(9,1) = 1/7; pzw(8,0) = 3/7;
pzw(12,4) = 1/7; pz w(z,w) = 0 otherwise.

(b) pa,B(25,10) = 1/7; pa,p(34,—17) = 1/7; pa (41, —38) = 1/T;
pa,5(64,16) = 3/7; pa,5(80,—32) =1/7; pa,g(a,b) = 0 otherwise.

(c) pz,a(5,25) = 1/7; pz,4(8,34) = 1/7; pz,4(9,41) = 1/7; pz.4(8,64) = 3/T;
pz,4(12,80) = 1/7; pz a(z,a) = 0 otherwise.

(d) pZB(5 10) = 1/7 pZB( —17) = 1/7 pZB(9 38) = 1/7 pZB(8 16) =
3/7; pz(12,-32) = 1/T; pz,B(z b) = 0 otherwise.

2.9.7 pz(2) = (1/3)(1/6) = 1/18; pz(4) = (1/2)(1/6) = 1/12; pz(5) =
(1/3)(1/12) + (1/6)(1/6) = 1/18; pz(7) = (1/2)(1/12) = 1/24; pz(8) =
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(1/6)(1/12) = 1/72; pz(9) = (1/3)(3/4) = 1/4; pz(11) = (1/2)(3/4) = 3/8;
pz(12) = (1/6)(3/4) = 1/8; pz(z) = 0 otherwise.
2.9.8 If w is an integer between 2 and 4, then py (w) = P(Y =2, X =w—2) =
(1/6)(3/4)*=2(1/4) = (3/4)¥~2/24. If w is an integer between 5 and 8, then
pww)=PY =2, X =w-2)+P(Y =5, X =w—5) = (1/6)(3/4)*2(1/4)+
(1/12)(3/4)“’_5(1/4). If w is an integer > 9, then py(w) = P(Y =2, X =
2)+PY =5 X=w-5+PY =9 X=w-9)=(1/6)(3/4)*"2(1/4) +
(1/12)(3/4)1”*5(1/4) +(3/4)(3/4)¥=9(1/4). Otherwise, py (w) = 0.

2.9.9 From the given probability measure, we have

(z,v) | (1,1) (1,2) (1,3) (2,2) (2,3) otherwise
PX=z,Y=y | 1/5 1/5 1/5 1/5 1/5 0
Z(z,y) 0 -3 -8 -2 -7 T
W(x,y) 6 11 16 14 19 22 + 5y
(a) From the above table we have
(z,w) | (-816) (-7,19) (-3,11) (-2,14) (0,6) otherwise
P(Z=zW=uw)]| 1/5 1/5 1/5 1/5 1/5 0

(b) From the probability table we have pz(z) = 1/5 for z = —8,-7,—-3,—-2,0,
otherwise pz(z) = 0. (c) From the probability table we have py (w) = 1/5 for
w = 6,11, 14,16, 19, otherwise py (w) = 0.

2.9.10

(a) From Theorem 2.8.3 (b), fxv(z,y) = fx(z)fy(y). Hence, fxyv(z,y) =
53yt /128 for 0 < z < 2, 0 < y < 2, otherwise fy,y(z,y) = 0.

(b) The density of fz(z) can be obtained using Theorem 2.9.3 (b). Since X and
Y have positive density only when 0 < z,y < 2, new random variable Z has
positive density only when 0 < z =z +y < 4. Thus, fz(z) = 0 for z ¢ (0,4).
For 0 < z < 4,

0 min(2,z) )
= / fx(@)fy(z — z)dz = / 52°(2 — x)*/128dx.
—0oo max(0,z—2)

For 0 < z < 2, the integration range is (max(0,z — 2), min(2, z)) = (0,z). Let
u = z/z. Then,

128 128 7168
For 2 < z < 4, the integration range is (max(O, z—2),min(2,2)) = (z — 2, 2).

Z z 3 28
fz(z) = i/0 23 (z —x)tde = bz w1 —u)idu = 5—Beta(4 5) =

5 (7 ;
fz(z) = — / 27 — 422 + 62225 — 4232 + 212 dx

128
7i[ﬂc_8 4Z£E7+ 0 ¢ 42320 +z4m4r:2
TIsls 7 TR 5 I P
1 9 5 35, 28

= o (— 20248557 — 2122 4 220 - ).
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Problems

2.9.11

(a) The transformation h : (z,y) — (z,w) = (z — y,4x + 3y) has inverse
h=Y(z,w) = (32 + w) /7, (w — 42)/7). J(z,y) = %%—Zj - g—;g—laf =1-3—(-1)-
4 = 7. From Theorem 2.9.2, fzw(z,w) = fxy(h~(z,w))/|J(h7(z,w))| =
(5/128)((32 + w)/7)3((w — 42)/7)*/7 = 5(3z + w)3(w — 42)*/(2778) for 0 <
3z+w < 14,0 < w— 4z < 14, otherwise fzw(z,w) = 0.

(b) By integrating w out, we have

min(14—3z,14+4z2)

Falz) = / Frw (2 w)dw — / 5(32 + w)(w — 42)" /(277 dw
Rt max(—3z,4z)

For —2 < z < 0, the integration range is (max(—3z,4z), min(14 —3z,14+4z)) =

(—3z,14 + 4z). Hence,

fale) = =2 HE (T = Tau® - 212207 2030w+
2 =g |, 1122403 — 201625w? + 691227 ) Y

1 9 3 28
= 5= (35602 + 3522+ 720 + ).
For 0 < z < 2, the integration range is (max(—3z,4z), min(14 — 32,14 + 4z)) =
(42,14 — 3z). Hence,

fal2) = 5 =32 /0T — T8 — 212205 + 2033w+ d
2= g8 1122403 — 201625w? + 691227 v
4 8

1 9 3 Z z
= 2—8(35—802+702 —282% 4 2 - ﬁ)
(c) By integrating z out, we have

min((14—w)/3,w/4) )

fww) = [ frw(zw)dz = / 5(32 + w)? (w— 42)1/(277)d>
R! max(—w/3,(w—14)/4)

For 0 < w < 6, the integration range is (max(—w/3, (w — 14)/4), min((14 —

w)/3,w/4)) = (—w/3,w/4). Hence,

for(w) = 5 WA — TS — 212205 + 20323wh+ d
WA | s\ 11224% — 20162502 + 691227
wS
T 218357

For 6 < w < 8, the integration range is (max(—w/3, (w — 14)/4), min((14 —
w)/3,w/4)) = ((w—14)/4,w/4). Hence,

5 /“’/4 ( wT — Tzw® — 212205 + 20323w*+ > &
(

fw(w) = 57 wotaya \ 1122003 — 20162°w? + 691227

_ 2 3
_21—07(—945+540w—105w 7w )
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For 8 < w < 14, the integration range is (max(—w/3, (w — 14)/4), min((14 —
w)/3,w/4)) = ((w — 14)/4, (14 — w)/3). Hence,

5 (14-w)/3 ( w? — Tzw® — 2122w5 + 20323wi+ > &

fw (w) 112243 — 201625w2 + 691227

278 Jwe14ya
8 8

_ 7 2 3 4 W
= o (294875 — 168500w + 37315w? — 3853uw® + 160w* — 2T7)

2.9.12 For z, an integer between 0 and ny + ng,

P(Z==z= pr(ﬂc)py(z — 1)

min(z,n1)

= ) (711)19””(1 —p)m (anx)pz‘“(l —p)m )

z=max(0, z—n2)
min(z,n1) - -
e Y (M),
z=max (0, z—n2) t =TT

Now this sum represents the number of ways of choosing z positions out of n1+ns
positions, so it equals ("1;”12). (Indeed, of the z positions chosen, some number
x of them must be among the first n, positions, with the remaining z —x choices
among the final ny positions.) Thus, P(Z = z) = ("1"2)p*(1 — p)™+m2== for
z, an integer between 0 and ny + ne. Hence, Z ~ Binomial(ny 4 na, p).

2.9.13 For z a non-negative integer,
P(Z==z= pr(x)py(z — )
- 2_; (" e (BT
_ (] _p)z; (7"1 —xl + x) <’I“2 —le-; - x)

Now this sum represents the number of ways of lining up z red balls and 1 + 75
black balls, such that a black ball comes last. (Indeed, all balls up to and includ-
ing the r1th black ball are responsible for the first factor, with the remaining
balls responsible for the second factor.) Thus,

i ri—1l+z\(ro—14+z—-2\ [(ri+ro—1+42
s x z—x N 2 '

Hence, P(Z = z) = p"t72(1 — p)z(rl+r2z_1+z), for z, a non-negative integer.
Hence, Z ~ Negative-Binomial(ry + 72, p).
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2.9.14 We have that fz(z) = [7 fx (@) fy(z—a)dz = [T #ﬁe*(m*m)g/%l

1
227T

o
1= e~t’/2 4t = \/27, we compute that

Fe) = (2ntot 4 03) oo (o~ — /207 03

so that Z ~ Normal(u; + pa, 03 + 03).

X e~ (z—w—p2)?/202 dx. Squaring out the exponents, and remembering that

2.9.15 We have that

/ fx(@) fy(z —z)dz

_/ F(al) 1)\(11 oy — 1 )\wl-\(az) 1)\&2(2_.1,)&27167)\(2795) de
0

1 z
= 7)\0‘1+a26_)‘2/ z 2 — 2)*2 da.
Tan)(az) , e

We recognize this integral as a Beta integral, with
/ p 7z — )2 dy = 22271 (0 )T () /T (a1 + ).
0
Hence, fz(z) = D(aq + ag) " tamtazzantaz—le=Az go that Z ~ Gamma(ag +
a2, )\)

2.9.16 The joint density of (Z1, Z2) is (27)~ exp{ (22 + 23) /2} . The inverse
of the transformation given by (2.7.1) is Z; = (X — p1) /o1,

Zy = ((Y — p2) Joa — p(X — p1) Jo1) /+/1 — p?, and this has Jacobian

1/0’1 0

(s (o) (o) )| T

So the joint density of (X,Y) is given by

2 2
1 1 (1 — p2) (X_;l/ﬂ> + p? (X_;lﬂ> —
————————exXpl ————+
2no1094/1 — p? 2(1—-p%) 2p<X—u1) (Y—m) 4 (Y—u2>2
o1 g2 g2
2
1 1 <—LX§1“> -

= ———————¢€xp

21094/ 1 — p?

_2 1—p? X—u Y —pu Y —p 2
( p?) 2( 011)(022>_’_(022)

and this proves the result.
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2.10 Simulating Probability Distributions

Exercises

2.10.1 Wecanlet Z=-7ifU <1/2, Z=-2if1/2<U <5/6, and Z =5 if
U>5/6.

2.10.2

(a) Here F~1(t) =t, so we can let X = U.

(b) Here F~1(t) = \/Z so we can let X =+/U.

(c) Here Ffl(t) =3/, so we can let X = 3\/—

(d) Here F~1(t) = 3/t for t > 1/9, with F~1(t) = 1 for t < 1/9. Hence, we can

let X =1 for U < 1/9, with X = 3y/U for U > 1/9.

(e) Here F~1(t) = 5t'/5, so we can let X = 5U/°,

(f) Here F~1(t) equals 0 for t < 1/3, and equals 7 for 1/3 < ¢t < 3/4, and equals
11 for ¢t > 3/4. Hence, we can let X =0for U <1/3, X =7 for 1/3 < U < 3/4,
and X = 11 for U > 3/4.

2.10.3 Since U € [0, 1], the range Y is [0, 00). For y € [0, 00),
P(Y <y)=PW(1/U)/3<y)=P1JU <e¥)=PU >e %) =1—e"%.

Hence, the density of Y is fy (y) = dyP(Y <y)= d—’;(l —e73Y) = 3¢~ that is
a density of Exponential(3). Therefore, Y ~ Exponential(3).

2.10.4

(a) From Exercise 2.10.3, Y = In(1/U)/3 ~ Exponential(3). Note W =

In(1/U)/A =Y (3/A). It is not hard to show that In(1/U) ~ Exponential(1).
P(W <w)=P(Y(3/A) <w)=PY <w)/3)=1—e 30N =1 _ 2w,

Hence, the density of W is fi(w) = L P(W < w) = (1 — e ) = Xe™ ™

that is a density of Exponential(\). Therefore, W ~ Exponential()).

(b) It is not difficult to generate a pseudo random number » having Uniform|0, 1]
distribution. Then, y = In(1/u)/A has an Exponential(A) distribution.

2.10.5 In Example 2.10.7, it is shown that X; = /21n(1/U;) cos(2nUz) has a
N(0,1) distribution and X = Xj¢1/v2 + ca ~ N(ca,c3/2). Hence, c; = 5 and
¢3/2 =9. The solution is ¢; = +3+/2 and ¢, = 5.

2106 Let Y =3if0< U < 2/5, Y =4if2/5 < U < 4/5, and Y = 7

if U > 4/5. Then, Y = 3119,2/5(U) + 4L(2/5,4/5/(U) + TI(4/5,1)(U). Hence,

P(Y =3) = P(0 < U < 2/5) = 2/5, P(Y = 4) = P(2/5 < U < 4/5) =

PU < 4/5) — P( < 2/5) =4/5—-2/5 =2/5, and P(Y = 7) = P(4/5 <
1 1) — P(U <4/5) =1-4/5=1/5. For any y & {3,4,7},
) =

(U
PY =y :P(U [0,1]

2.10.7
(a) By definition, Fx(z

) = ). Hence, Fx(x) = 0 for z < 1. For
1<z<2 Fx(z)=P(X <

<
P(X = )_1/3 For 2 <z <4, Fx(z) =
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PX<z)=PX=1lor X=2)=PX=1)+P(X =2)=1/2. For x > 4,
Fx(2) = P(X <2) > P(X <4) > P(X = 1)+ P(X = 2) + P(X = 4)
implies Fx(z) = 1. (b) The range of ¢ must be restricted on (0,1] because
F3H0) = —oc0. Fl(t) =1 for t € (0,1/3], F'(t) = 2 for t € (1/3,1/2], and
Fil(t) =4fort € (1/2,1]. (¢) Let Y = F5'(U). Then Fy(y) = P(Y < y) is the
same to F. Fory < 1, Fy(y) = P(Y <y) = P(Fx'(U) <y) = P(0)) = 0. For
1<y <2 Fy(y) = P(Fx'(U) <y) = P(Fx'(U) =1) = P(U € (0,1/3]) =
1/3. For 2 < y < 4, Fy(y) = P(F{'(U) < y) = P(F{'(U) = Lor2) =
P(U € (0,1/2]) = 1/2. For y > 4, Fy(y) = P(F5\(U) < y) = P(FRM(U) =
lor2or4)=PU € (0,1]) = 1. Hence, the cdf Fy of Y is the same to Fx.

2.10.8
(a) From the density, F'x(z) =0 for all z <0, and Fx(z) =1 for all z > 1. For
< (0,1),

Px@) = PX <o) = [ fxtn =] [ Vit =330 =2

=0
(b) For t € (0,1], we will find z satisfying t = Fx (z) = 2%/2/2. Hence, Fy'(t) =
z = (2t)%/3. (c) Let Y = F;'(U). Then, by Theorem 2.10.2, Y had the cdf F.
The density fy of Y is
d d

d
dyP(Y y) = —Fx(y) = —y*/?/2 = y'/23/4.

fr(y) = dy dy

Hence, fy = fx.
2.10.9 The cdf of Z is given by, for z € (0,1),

Fae) =Pz <) = [ wiay =yl =2
0

For t € (0,1], we can solve the equation t = Fyz(z) = 2* for the inverse cdf
F;1(t) =z =tY* Hence, Y = F,;'(U) = U'* has the cdf Fz and the density
fz.

Problems

2.10.11 First choose a random variable I, independent of all the X;, such that
I{1,2,...,k}, with P(I =) = ;. Then set Y = X;. [That is, Y is equal to
X, for the choice ¢ = I.] Then P(Y < y)=>,PI =P <y|l =1i) =
> Fi(y) = G(y), as desired.

2.10.12 Here Fx(z) = 0 for # < 1, while for z > 1, Fx(z) = [*__ fx(t)
[t 2dt = —t‘1|Z:1 =1—(1/z). Hence, F~1(t) = 1/(1 —t). Thus, we can let
Z—1)1-1).

2.10.13 From Problem 2.5.20 we have that F(z) = (1 + e*$)71 = u, so invert-
ing this we have that z = F~(u) = In (u/ (1 — u)) for 0 <u < 1.
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2.10.14 From Problem 2.5.21 we have that F(z) = 1—exp {—2*} = u for z > 0,

so inverting this we have that x = F~1(u) = (—In (1 — u))l/a for 0 <u<1.

2.10.15 From Problem 2.5.22 we have that F(z) =1—(1+ ) “ =uforz > 0,

so inverting this we have that z = F~1(u) = (1 — u)_l/a —1for0<u<1.

2.10.16 From Problem 2.5.23 we have that F(z) = (arctan (z) + 7/2) /7 = u,

so inverting this we have that x = F~1(u) = tan (mu — 7/2) for 0 < u < 1.

2.10.17 From Problem 2.5.24 we have that F(z) = & [*_e*dz = Je® = u

for # <0,and F(z) = 3+ 3 [ e*dz =1+ 3(1—e®) =uforz > 0. So,

for 0 < u < 1/2, inverting this we have that = F~!(u) = In(2u) and, for

1/2<u<l,z=F'u)=-n2(1—u).

2.10.18 From Problem 2.5.25 we have that F'(z) = exp {—e™%} = u, so inverting

this we have that z = F~!(u) = —In(—Inu) for 0 <u < 1.

2.10.19 From Problem 2.5.26 we have that

b)u=F(z)=xfor0<z<l,sox=ufor0<u<l.

(c)u=F(z)=a?for0<z<1,soz=+/ufor0<u<l.

(u=F@)=1-(1-2z)for0<z<l,sox=1—-yI—ufor0<u<l.

2.10.20 We have that P(Y < y) = [* (fi)o fyix (2] ) dz) fx (z) do =

Sl [ [ (@2) dude = [Y fy (2) dz = Fy (y).

Challenges

2.10.21

(a)

Pla<yY <b f(Y) > Ucg(Y))

Pla<Y <b|f(Y)>Ucg(Y)) =
( 0= 090D = =500 = Uegv)

E(Pla<y<b f(Y)2Ucg(u)|Y =y)) E(Lwn(¥)f¥)/cgY))

)
E(f(y) > Ucg(y)|Y =y)  E(f(Y)/cg(Y))
_B(Pl<y<b fY)2Ucqg)|Y =y)  Euy)f)/cg(Y))
E(f(y) >Ucg(y)|Y =) E(f(Y)/eg(Y))

i) * fly) [
= [ L8 ay [ LLgway= [ s

a

(b) Let p = P (f(Y) > Ucg(Y)). Then, using (a) and the independence of the
U; and Y;, we have that

P(X;, <a)=> P(Y; <z =)
j=1

& (Y < f(V) < Ureg(Va), .. f(Yio1) < Uj_1cg(Y;_1),
_JZlP< f(Y5) > Uj—1cq(Y5) )

o L )

Jj=1
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= Y P(Y; < 2l £(Y) 2 Uyeg(¥, >>p<1—p>ﬂ'1—/w £ ) dy,

so Xi, ~ f.
Further, we have that

P(X;, <a1,, Xiy <mo) =Y Y PV, <wy,in =41, Y, < 39,00 = o)
J1=1j2=j1+1
, < @1, f(Y1) < Ureg(Ya),

— Z Z P f(Y}1 1) < UJ1 109( Ji— 1) f(Y]l) > UJ1CQ( jl)v
=50 Y, <o, f(Y41) < Uji11c9(Yj41), - -
f(Y}2 1) < U]z 189()/;2 1) f(yrjz) > U]zc.g( )

_Z Z {P (Y, <, f(Y5,) > Ujeq(Yy,)) x

J1=1j2=j1+1
P(f(V1) <UiegM1), ..., f(Yii-1) < Uj—1c9(Yj,-1)) x
P(Yj, < a2, f(Y,) < Ujy—109(Yj,)) %
(f( J1+1) < UJ1+1CQ(Y;1+1) f(Yj2—1) < Uj2—1Cg(YJ'2—1))}

= Z Z {P(Y;, <z1| £(Y},) > Ujeg(Yy,)) p(1 — p)it—tx

Ji=1j2=j1+1
P(Yj, <wa| f(Y),) < Uj,1cg(Y3,)) p(1 — p)y2 =171}

- ([:f<y> dy) ( 1w dy).

so X;, ~ f independently of X;, ~ f. Continuing in this fashion proves that
Xi, X;

A SR

!

is an i.i.d. sequence from the distribution, with density given by f.



Chapter 3

Expectation

3.1 The Discrete Case

Exercises

3.1.1
(a) B(X) = (=4)(1/7) + (0)(2/7) + (3)(4/7) = 8/7.
(b) We recognize that X ~ Geometric(1/2). Hence, E(X) = (1-(1/2)) / (1/2) =
1.
(c) Using the substitution y = = — 7, we have E(X) = > 0 227710 =
S+ T2V =T+ Y27 =741 =8 since Y00 y2 v=1=1 s
the mean of a Geometric(1/2) distribution.
3.1.2
a) BE(X) = (5)(1/7) + (5)(1/7) + (5)(1/7) +
) E(Y) = (0)(1/7) + 3)(1/7) + (4)(1/7) +
By hnearlty, EBX+7Y)=3E(X)+7E
) BE(X2) = (5)2(1/7)+ (5)*(1/7) + (5)*(1/7) + (8)%(3/7) + (8)*(1/7) = 331/7.
E(Y?) = (0)*(1/7) + (3)°(1/7) + (4)*(1/7) + (0)*(3/7) + (4)*(1/7) = 41/7.
(XY) = (5)(0)(1/N+G)B)A/N)+G)E)(A/T)+)(0)(3/T)+(8)(4)(1/7) =

7.
By linearity, E(XY + 14) = E(XY) + 14 = 67/7 + 14 = 165/7.
3

(a) (8)(3/7) + (8)(1/7) = 47/7.

(b 0)3/7) + (4)(1/7) =11/7.

(c) (V) = 3(47/7) + 7(11/7) = 218/7.
(d >(3/7)

(e)

() B

7/
(

6
g
3.
(a) E(X) = (2)(1/2)+(=7)(1/6)+(2)(1/12)+(=7)(1/12)+(2)(1/12)+(-7)(1/12)
— —173/12 = —14.4.

(b) E(Y) = (10)(1/2) + (10)(1/6) + (12)(1/12) + (12)(1/12) + (14)(1/12) +
(14)(1/12) = 11,

(c) E(X?) = (2)*(1/2) + (=7)*(1/6) + (2)*(1/12) + (=7)*(1/12) + (2)*(1/12) +
(— 7)2(1/12)— 19.
(d
(1
(e

)
1.
)

) B(Y?) = (10)*(1/2)+(10)*(1/6) +(12)*(1/12) +(12)*(1/12) +(14)*(1/12) +
4)2(1/12) = 370/3 = 123.3.
) E(X2+Y?2) = B(X2) + E(Y?) = 19+ 370/3 = 427/3 = 142.3.

93
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(f) B(XY —4Y) = (2-10— 4-10)(1/2) + ((=7) - 10 — 4-10)(1/6) + (2- 12 — 4 -
12)(1/12)+((—7)-12—4-12)(1/12)+(2-14—4-14) (1/12)+((—7)-14—4-14)(1/12) =
~113/2 = —56.5.

3.1.4 E(4X — 3Y) = 4E(X) — 3E(Y) = 4(p1) — 3(np2).
3.15 E(8X — Y +12) =8E(X) — E(Y) + 12=8((1 — p)/p) — A+ 12.
3.1.6 E(Y 4+ Z) = E(Y) + E(Z) = (100)(0.3) + (7) = 37.

3.1.7 Since X and Y are independent, E(XY) = E(X)E(Y) = ((80)(1/4))(3/2)
= 30.

3.1.8 Let Z be the number showing on the die. Then X =1+ 37, so E(X) =
1+3E(Z) =1+ 3(3.5) =11.5.

3.1.9 Let Y =1 if the coin comes up tails, otherwise Y = 0 if the coin comes
up heads. Then X = 8 —4Y and E(Y) = 1(1/2) + 0(1/2) = 1/2. Hence,
E(X)=8—-4E(Y)=8—-4(1/2) =6.

3.1.10 P(Y = 3) = P(the same face) = P(HH or TT) = P(HH) + P(TT) =
(1/2)(1/2) + (1/2)(1/2) = 1/2. Hence, P(Y =5)=1—-P(Y =3)=1-1/2=
1/2. The expectation is

E(Y)=3P(Y =3)+5P(Y =5)=3-(1/2) +5 - (1/2) = 4.

3.1.11 Let X; and X5 be the two numbers showing on two dice. The expectation
of X, is

6 y
; , 1 6-71 7
By =Y Pt ==y i = ST T
=1 i=1

Since X7 and Xy are identically distributed, E(X1) = E(X3) = 7/2.

(a) The random variable Z becomes Z = X; + X3. From Theorem 3.1.2,
E(Z)=E(X1+X2)=E(X3)+E(Xs) =2E(X1)=2(7/2)=T.

(b) The random variable W = X; X5. Since X; and X, are independent, The-
orem 3.1.3 is applicable. Hence, we get E(W) = E(X;X3) = E(X31)E(Xs) =
(7/2)? = 49/4.

3.1.12 Let Y be the number of heads and Z be the number showing on the
die. The expectations of Y and Z are E(Y) =0P(Y =0)+ 1P(Y =1) =1/2
and E(Z) =1P(Z =1)+ .-+ 6P(Z = 6) = 7/2. Then, X =YZ. Note Y
and Z are independent. From Theorem 3.1.3, we have E(X) = E(Y)E(Z) =
(1/2)(7/2) = 7/4.

3.1.13 Let X be the number showing on the die. When X = x is shown on the
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die, the distribution of Y is Y ~ Binomial(z,1/2). Hence,

y=0 y=0 z=1

6 6 6 6 2\ 1Ny /1Ty ]
=Y uy Pv=ux=2=3u> (")(5) (5) ;

y=0 z=y y=0 z=y Y

6 T 6

1 x " 1 T 16-7 7
=50y amr =5 =5 =

r=1y=0 r=1

3.1.14 Let T be the number of heads. Then, X = T3. Hence, the expectation
of X is

3
£x) = B0 = 38 (7)(3) = OIGHR+HE GG = T

Problems

3.1.15 Let Z be the number of heads before the first tail. Then we know that
P(Z=k)= 1/2’€+1 fork=0,1,2,...,and E(Z) = (1—-(1/2))/(1/2) = 1. Now,
X=142Z, 50 BE(X)=142E(Z)=1+2(1) =3.

3.1.16 Again, let Z be the number of heads before the first tail, so P(Z =
k) = 1/2k1 for k =0,1,2,.... Then X =27 s0 E(X) =) 2,2k (1/2k1) =
Y ore(1/2) = co. Hence, E(X) is infinite in this case.

3.1.17
(a) B(Y) = Y02, min(z, 100) (1-6)70 = 05" 2 2 (1-60)7+6(100) 32210, (1 —
0)* = 6S + 100(1 — 6)1', where S = 2% 2 (1 — 6)*. Then (1 — 6)S
S0 (1 - g)rtt = Z;Oll(y —1)(1 — 6)Y. Hence, S = S — (1 —-6)S
S0 (1 —0)" —100(1 — 6)1" =01 (1 — 0 — (1 —6)'°Y) — 100(1 — §)'0L,
(b) E(Y — X) = E(Y) — E(X) = —(1 — 0)1°%(1/6 + 100).

3.1.18 Any X with X < 100 will do since then min(X,100) = X. For example,
X =29, or X ~ Bernoulli(80,1/3).

3.1.19 For one example, let P(X = 200) = 1. For another, let P(X = 300) =
P(X = 100) = 1/2.

3.1.20 Let Px, Y( )
P(X =1)=1/2 and P(Y

H"O

y( 0) = 1/4 , with pX’y(0,0) = 1/2. Then
1) =1/4, but E(XY) =1/4.
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3.1.21 We have that

min(n,M) (M) (N—M) min(n,M) (M) (N—M)
r=max(0, n+M—N) (]’:L]) r=max(1l,n+M—N) (17\1[)
M m“%M’ oD o)
I (n-1)
r=max(1l,n+M—N) n—1
min(n—1,M—1) M—-1\ (N—-1—(M-1)
M COCLHS ) M
=N Z (N—l)1 ="y
z=max(0,n—1+(M—-1)—(N—-1)) n—1

since the final sum is the sum of all Hypergeometric(N — 1, M — 1, n) probabil-
ities.

3.1.22 We have that if X7, ..., X, are i.i.d. Geometric(f), then X = X7 +---+
X, ~ Negative Binomial(r,0) so E(X)=E(X;+---+ X,) =7(1-10) /6.

3.1.23 This follows immediately since X; ~ Binomial(n, 6;) .

Challenges

3.1.24 Here B(X?) = Y, K2 P(X = k) = Y0 k2 (1 — p)*p. Hence, (1 —
P)E(X?) = 370k (1= p)*'p = 372, — 1)* (1 — p)’p. Then pE(X?) =
BE(X?) — (1 -p)E(X?) = 33524k — (k — 1)) (1 — p)*p = 3524 [2k — 1] (1 -
p)"p =2E(X) - (1—p)=2(1—p)/p— (1 —p) =2(1—p)/p— (1 - p). Hence,
E(X?) =2(1-p)/p* = (L—p)/p.

3.1.25Let Y = X—min(X, M). ThenY is also discrete. Also, since min(X, M) <
X, we have Y > 0. Now, if E(min(X, M)) = E(X), then E(Y) = 0, so that
0=>,yPY =y) =3 5yPY =y). Butthe only way a sum of non-
negative terms can be 0 is if each term is 0, ie., yP(Y = y) = 0 for all
y € R'. This means that P(Y = y) = 0 for y # 0, so that P(Y = 0) = 1.
But {Y = 0} = {min(X,M) = X} = {X < M}, so P(X < M) =1, ie,
P(X > M) =0.

3.2 The Absolutely Continuous Case

Exercises

3.2.1

(a) 1 = [ fx(z)dz = f59 Cdr = 4C, where C = 1/4. Then E(X) =
I @ fx(x)de = [Dx(1/4)de = (9% - 52)/8 = 1.

) 1= [ fx(z)da = [; Clz+1)de = C(9>—T72)/2 = 16C, where C = 1/16.
Then E(X) = [z fx(x)dz = [} (1/16) (z + 1) dz = (8% — 6%)/48 + (8% —
62)/32 = 169/24 = 7.04.
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(©) 1 = [% fx(a)de = [ Catde = C((=2)° — (=5)")/5 = C'3093/5,
where C = 5/3093. Then E(X) = [*°_x fx(z)de = [T x(5/3093) (¢*) dz =
(5/3093)((—2)¢ — (=5)5)/6 = —8645/2062 = —4.19.

3 2 2
(X):fo fo z (42?y + 2y°) da dy = 2/3.

(b) E(Y)= fo fo (42%y + 2y°) dz dy = 46/63.
(c) B(3X +7Y) = 3E(X) FTE(Y) = 3(2/3) + 7(46/63) = 64/9.
(d) B(X2) = f01 ' 22 (4a2y + 20°) da dy = 23/45.
(e) E(Y?) fo fo (4a?y + 2y°) dx dy = 7/12.
(f) E(XY) = fo fo zy (42%y + 2y°) dx dy = 10/21.
(g) E(XY +14) = E(XY) + 14 = (10/21) + 14 = 304/21.
3.2. 3
(a) = [T [Tz fxy(zy)dedy = fo fo (4zy + 32%y?)/18) dw dy =
17/24

= [T [y fxy(@y)dedy = fo fo (4zy + 32%y?)/18) dx dy =
17/8

= [ [0 2 fxy(@,y) dedy = fo fo ((4xy+322y?)/18) dx dy =
11/20
(d) f f v? fxy(z,y)dedy = fo fo ((4zvy+3z%y?)/18) dx dy =
99/20

f f v fx v (z,y)dedy = fo fo ((4zy +32%y?)/18) dx dy =
216/7
(£) B(X2Y3) = [%_[% a2 fxy(z,y) dedy = [} [y 2% ((doy+32y?) /18) x
dxdy = 27/4
3.2. 4
(a) f f z fxy(z,y)dedy = fo fy z(6zy + (9/2)2%y?) dx dy =
57/70
(b) = 7 Sy oy (wy)dedy = [ [ y(Gey + (9/2)2%y?) dudy =
157/280
(c) =" [T fxyxy)dxdy—fo fy (6zy + (9/2)2%y?) do dy =
11/16
() = 2 S P xy @) dedy = [ [y (6xy + (9/2)a%y?) dudy =
29/80
(e) f f nyxy)dxdy—fO j;/y (6zy + (9/2)2%y?) dx dy =
53/280

(F) B(X2Y3) = [% [% 22 fxy (@, y) dudy = [ [, 2%y (6ay+(9/2)2%y?) x
dx dy = 133/660.

3.2.5 BE(-5X — 6Y) = —5E(X) —6E(Y) = —5((3+7)/2) — 3(1/9) = —76/3.

3.2.6 E(11X + 14Y +3) = 11E(X) + 4E(Y) + 3 = 11(((—12) + (-9))/2) +
14(—8) + 3 = —449/2.
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327 EY +Z)=EY)+E(Z)=(1/9) + (1/8) = 17/72.
328 EY+Z)=EY)+E(Z)=(1/9) + (5/4) = 49/36.
3.2.9 Let pp = E(X*) for k> —3.

2 k+3 k+4 5 p=
3 31T T =2
k k 2 3
— dr — - d :_[_ r
Hi Am f(@)de /0 Tgp@ T = o s T e s
3 (2k+3 N 2’f+4) ~ 3-2F1(3k 4-10)
C20\k+3  k+4/  5(k+3)(k+4) "

Hence, p1 = 39/25 = 1.56, po = 64/25 = 2.56, uz = 152/35 = 4.34. Therefore,
E(X?) > E(X?) > E(X).

3.2.10 Let py, = E(X*) for k > —3.

1 k+3 k44 5 g=
12 1272 x z=1
_ k _ ko120 9 3y, 12
“’“_/Rlx f(x)dx_/o v @ atde == [k+3+k+4 2=0
_E( 1 1 )_ 12(2k +7)
T T \E+3  k+4)  T(k+3)(k+4)
Hence, py3 = 54/70 = 0.771, pe = 22/35 = 0.629, and puz = 26/49 = 0.531.
Therefore, E(X) > E(X?) > F(X?).

3.2.11 Let X and Y be the height of wife and husband. The expected value of
Z=X+Yis

E(Z)=EX +Y)=EX)+EY) =174 + 160 = 334.

Here, we used Theorem 3.2.2 and Example 3.2.7.

3.2.12

(a) From Theorem 3.2.2, E(Z) =E(X +Y)=E(X)+EY)=5+6=11.

(b) We have E(Z) = E(XY) = E(X)E(Y) = 5 x 6 = 30 by Theorem 3.2.3
based on the independence of X and Y.

(c) From Theorem 3.2.2, we have E(Z) = E(2X —4Y) = 2E(X) —4E(Y) =
2:5—4-6=-14.

(d) From Theorem 3.2.2, E(Z) = E(2X(3+4Y)) = E(6X +8XY) =6E(X) +
8E(XY) =6-5+8-30 = 270. The result in part (b) was also used in this
computation.

(e) The formula of Z is simplified as Z = (2+X)(3+4Y) = 6+3X +8Y +4XY.
By Theorem 3.2.2, E(Z) = 6+3E(X)+8E(Y)+4E(XY) = 643-5+8-6+4-30 =
189. (f) The formula is simplified as Z = (2+X)(3X +4Y) = 6X +8Y +4XY +
3X2. By Theorem 3.2.2, E(Z) = 6E(X) + 8E(Y) + 4E(XY) + 3E(X?) =
6-5+8-6+4-30+3E(X?) =198 + 3E(X?). The value E(X?) is unknown.
Hence, E(Z) can be determined based on the given information.

3.2.13 Since the dart’s point is 0.1 centimeters thick, the random variable Y
must be Y = X + 0.1. By Theorem 3.2.2, E(Y)=FE(X +0.1)=E(X)+0.1=
214.1.
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3.2.14 Let X be the citizen’s height from the top of his/her head and Y be the
citizen’s height from the top of his/her head or hat. Then, Y > X. Therefore,
we have E(Y) > E(X) by Theorem 3.2.4.

3.2.15 Let z1,...,x5 be the heights of the members of team A. Let y1,...,y5
be the heights of the member of team B who is guarding x1, . .., x5 respectively.
From the assumption, x; > y;. Hence, the mean height of team A = (z1 +---+
x5)/5 > (y1 + -+ + ys5)/5 = the mean height of team B. Therefore, the mean
height of team A is larger than the mean height of team B.

Problems

3.2.16 Letting t = Az, we have that B(X) = [;° o 25— da

= /7 Aa(a; e M dy = OOO )\ﬁ(if({; et (1/N) dt )\F ) Jo et da

= 57 1((1)1“(04 +1)= )\F(a) al'(a) =a /A

3.2.17 We have E (X) = ff’oo e (1+e ) do+ Jo S we ™ (14 e ) da

=— [ ze " (14 e=2) do+ [ we™™ (1+ e=®) "% dx, so E (X) = 0, provided

Jo we T (14 e=®) "% da < co. This is the case because

Jo we (1 + ™) P da < Jo we " dr = 1.

3.2.18 We have that E(X) = [~ zaz®te =[S az®e™"" dz and
)= i e du -

putting u = 2%, 2 = u'/*, du = ax® 'dx we have that E(
I(1/a+1).
3.2.19 We have that

E(X):/Oooma(l—i-x)al dﬂcz/oooa(1+x)a dr —1

a+1 o0
25+ -1 a1
aln (14 z)[;° a=
. 00 0<a<l
1/(a—1) ifa>1.
3.2.20 We have that fooo art (1 —|—m2)71 dr = (In(1 +m2)) /2};0 = oo and
ffoo et (1+ xZ)_l dr = —o0, so E(X) doesn’t exist.
3.2.21 We have that
0 o0 00 00
E(X)= / xe® dﬂc—i—/ xe Cdr = —/ xe dm—i—/ ze Cdr=-141=0.
0 0 0

— 00

3.2.22 We have that

[t T(a+b) . b1, Dla+b) [, b1
E(X)—/0 xmx (1-2x) dﬂc—m/o 2 (1—2)" dx
I'(a+b) T'(a+1)I'(B)  T(a+b) al'(a)T'(b)  a

"T@I@®) T(atb+1) T()L ) (atd)I(atd) a+bd
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3.2.23 We have that

1— T2
/ / a1 +a2+as) 2 122N (1= my — 20)* Y day das
I ()
1 2
= O¢1+Ot2+0‘3 / / e g2 (1 =z —a0)™ " day das
I‘(O¢1+Ot2+045) ['(ar +1)T(az) T(az) _ a

_F(al)F(ag)F(ag) F(a1+a2+a3+1) 041+a2+a3.

3.3 Variance, Covariance, and Correlation

Exercises

3.3.1

(a) Cov(X,Y) = BE(XY) — E(X) E(Y) = 26 — (4)(19/3) = 2/3.

(b) E(X?) =32(1/2) + 32(1/6) + 62(1/6) + 62(1/6) = 18, so Var(X) = E(X?)
—E(X)? =18 — 42 =2. Also E(Y?) =5%(1/2) + 9%(1/6) + 5%(1/6) + 9%(1/6)
=131/3,s0 Var(Y) = E(Y?) — E(Y)? = 131/3 — (19/3)? = 32/9.

(c) Corr(X,Y) = Cov(X,Y) //Var(X) Var(Y) = (2/3) / /(2)(32/9) = 1/4.
3.3.2

(a) E(X) = (5)(1/7) + (5)(1/7) + (5)(1/7) + (8)(3/7) + (
E(Y) = (0)(1/7) + (3)(1/7) + (4)(1/7) + (0)(3/7) + (4)(1
(b) E(XY) = (5)(0 )( /T)+(5)B)(1/7)+(5)(4)(1/7)+(8)(0)(3/7)+(8)(4)(1/7) =
67/7. Then Cov(X,Y) = E(XY) — E(X)E(Y) = 67/7 — (47/7)(11/7) =
—48/49.

8)(1/7) = 47/7. Also,
J7) =11/1.

(c) B(X?) = (5)2(1/7) + (5)*(1/7) + (5)*(1/7) + (8)*(3/7) + (8)*(1/7) = 331/7.
Then Var(X) = E(X?) — E(X)? = 331/7 — (47/7)? = 108/49. Also, E(Y?) =
(0)2(1/7)+ (32(1/7)+ (W2(1/7)+ (0)2(3/7) + (W(1/7) = 41/7. Then Var(Y) =
E(Y?) — BE(Y)? = 41/7 — (11/7)% = 166/49.

(d) Corr(X,Y) = Cov(X,Y) /\/Var ) Var(Y

(—48/49) / /(108/49)(166/49) = 2/249 = —0 3585.

333We have that

fo fo x (42%y + 2y°) dx dy = 2/3,

fo fo (422 y+2y)d:rdy—46/63
X?) = fofo 242y + 2°) dw dy = fo (5y+3v°) dy =3+
Y2 = fO 4ﬂcy+2y)dxdy—f0 (3y +2y)dy_l2
XY fo fo vy (42%y + 2y°) do dy = fo (v +45) dy =12,

E

E =23

457

=
@IM

(
(
(
E(

- (3) (#)
Corr (X,Y) = 21 23 3 = = —0.18292.

3.3.4 Here
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X) = fo fo 15x3y + 62%y") dx dy = 63/80,
V) = fo fo (1523y* + 622y") de dy = 61/72. E(X?) fo 2 (1523y* +
y7) dzdy = 13/20
BE(Y?) = [} [Ly? (152" + 6a%yT) dedy = 103/140. Var(X) = E(X2) —
E(X)2 = (13/20) — (63/80)2 — 191/6400.
Var(Y) = E(Y?) — E(Y)? = (103/140) — (61/72)? = 3253/181440. E(XY) =
fol fol zy (152%y* + 62%y") do dy = 2/3.
Cov(X,Y) = E(XY) — E(X)E(Y) = (2/3) — (63/80)(61/72) = —1/1920,

Corr(X,Y) = Cov(X,Y)/+/Var(X) Var(Y)

= (—1/1920) / \/(191/6400)(3253/181440) = —3/35/621323 = —0.0225.

3.3.5If X and Y are independent, then Cov(X,Y) = E(XY) — E(X)E(Y)
EX)E(Y)-E(X)E(Y) =0,s0 Corr(X,Y) = Cov(X,Y) / /Var(X) Var(Y)
0.

3.3.6 If X and Z are independent, then Cov(X+Y, Z) = Cov(X, Z)+ Cov(Y, Z) =
0+ Cov(Y, Z) = Cov(Y, 2).

3.3.7

(a) Cov(X,Z) = Cov(X,X +Y) = Cov(X,X)+ Cov(X,Y) = Var(X) + 0 =
1/32 = 1/9.

(b) Corr(X, Z) = Cov(X, Z) / v/ Var(X) Var(Z) = (1/9) / /(1/9)((1/9) 4+ 5) =
1/+/46 = 0.147.

3.3.8 We can write X = L+ (R— L)U, where U ~ Uniform[0, 1]. Then E (X)=
L+(R-L)E(U)=L+(R—-L)/2=(L+ R) /2 and Var(X) = (R— L)% Var(U).
Now E (U?) = [ u?du=1/3, so Var(U) = 1/3 — 1/4 = 1/12.

339 FE(X(X-1)=F(X?*)-E(X),s0o E(X(X—-1)-E(X)(E(X)-1)

= E(X?) - (F (X))? = Var(X). Then, when X ~ Binomial(n,0), we have
that,

x=0
=n(n—1)6° Z (n B 3) 6772 (1 9)”727(9”72)
Tz
xr=2
n—2 n—29
=n(n—1)6 ( )m(l—e)” T —n(n—-1)0
X
=0

soVar(X)=n(n—1)0?>—nf(nd —1) =nd (1 —0).

3.3.10 Since X ~ Binomial(3,1/2), the probability is given by P(X = 0) =
P(X =3) =1/8and P(X = 1) = P(X = 2) = 3/8. Thus, E(X) = (0 +
3)(1/8) + (1 +2)(3/8) = 3/2, E(X?) = (0% + 32)(1/8) + (12 + 22)(3/8) = 3,
E(X3) = (02+3%)(1/8) + (12 +23)(3/8) = 27/4, E(X*) = (0*+3%)(1/8) + (1* +
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24)(3/8) = 33/2, E(X®) = (0°4+3°)(1/8)+(1°+2%)(3/8) = 171/4, and E(X°)
(05 4 35)(1/8) + (16 + 25)(3/8) = 231/2. Hence, we get E(X) = 3/2, E(Y)
E(X?) =3, Var(X) = B(X?)—(E(X))? =3—(3/2)? = 3/4, Var(Y) = B(Y?) -
(E(Y))? = BE(X*) — (B(X?)? = 33/2 - 3% = 15/2, Cov(X,Y) = E(XY) —
E(X)E(Y) = E(X3)-E(X)E(X?) = 27/4—(3/2)(3) = 9/4, and Corr(X,Y) =

Cov\(X,Y)//Var(X)Var(Y) = (9/4)/+/(3/4)(15/2) = 31/10/10 = 0.9487.
3.3.11 We know P(X = z) = 1/6 for x = 1,...,6, otherwise P(X = z) = 0.
Since Y is also a fair die, P(Y = y) = P(X = y). Two dice cannot affect each
other, so X and Y are independent. Thus, E(X) = E(Y) = (1)(1/6) + --- +
(6)(1/6) = 7/2. From Theorem 3.2.3, E(XY) = E(X)E(Y) = (7/2)(7/2) =
49/4. Hence, Cov(X,Y) = E(XY) - E(X)E(Y) =0.

3.3.12 The distribution of X is Binomial(4,1/2). Since X +Y = 4, the dis-
tribution of Y is the same to the distribution of 4 — X. In Example 3.1.7,
E(X) = 4(1/2) = 2. The expectation of YV is E(Y) = E(4 — X) = 4 —
E(X) =4 -2 = 2. For the covariance, F(X?) is required because E(XY) =
E(X(4 - X)) = 4E(X) — E(X?) = 8 — E(X?). Theorem 3.3.1 and Example
3.3.11 implies Var( ) = BE(X?) — (B(X))? = 4(1/2)(1 — (1/2)) = 1. Hence,
E(X?) =1+ (2)? = 5. Thus, E(XY) = 8 — E(X?) = 3. By the definition
of the covariance, Cov(X,Y) = E(XY) - E(X)E(Y) =3 —-2-2 = —1. Since
Var(Y) = Var(4 — X) Var( ) =4(1/2)(1 — 1/2) = 1, we have Corr(X,Y) =

Cov(X,Y) /\/Var Var =-1/1=-1.

3.3.13 It is know that for U ~ Bernoulli(9), E(U) = E(U?) = 6 and Var(U) =
6(1—6). The expectations are E(Z) = E(X+Y)=E(X)+E(Y)=1/2+1/3 =
5/6 and E(W)=E(X-Y)=FE(X)—-E(Y)=1/2—-1/3 =1/6. The variances
are Var(Z) = Var(X +Y) = Var(X)+ Var(Y) = 1/4 + 2/9 = 17/36 and
Var(W) = Var(X — Y) = Var(X)+ Var(Y) = 1/4 + 2/9 = 17/36. E(ZW) =
E(X+Y)(X-Y))=E(X?-Y?) =FE(X?—-E(Y?) =1/2-1/3 =1/6. Hence,
Cov(Z,W)=E(ZW)—-E(Z)E(W)=1/6 —(1/2)(1/3) = 0 and Corr(Z,W) =
Cov(Z,W)/+/Var(Z)Var(W) = 0.

3.3.14 Tt is known that E(X) = 1/2, E(Y) = 0, Var(X) = 1/4, and Var(Y) = 1.
Hence, E(Z) = E(X+Y) = E(X)+E(Y) =1/2, E(W) = B(X-Y) = BE(X)—
E(Y) =1/2, Var(Z) = Var(X +Y) = Var(X)+ Var(Y) = 5/4, Var(W) =
Var(X —Y) = Var(X)+ Var(Y) = 5/4, and E(ZW) = E(X? -Y?) = E(X)—
Var(Y) =1/2—1 = —1/2. Thus, Cov(Z,W) = E(ZW)—E(Z)E(W) = —-1/2—
(1/2)(0) = —1/2 and Corr(Z, W) = Cov(Z,W)/+/Var(Z)Var(W) = —2/5.
3.3.15 The joint probability P(X = z,Y = y) = (1/6) - (Z)(1/2)w for x =
1,..., 6, y=0,..., x, otherwise P(X = z,Y = y) = 0. The expectations are
B(X) = Y001 Yy (1/6) (5)27° = 30y /6 = T/2and E(Y) = 30, 3,
y(1/6)(9)27 = ¥, 0/12 = /4. B(XY) = Y0, 30 ay(1/6)(5)2 %
S0 22/12 = 91/12. Hence, Cov(X,Y) = E(XY) — E(X)E(Y) = 91/12 —
(7/2)(7/4) = 35/24.
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Problems

3.3.16 Here Cov(X,Y) = E(XY) — E(X)E(Y) = E(cX?) — E(X)E(cX) =
¢(1)—(0)(0) = ¢, and Corr(X,Y) = Cov(X,Y) / y/Var(X) Var(Y) = ¢/ /(1)(c?)
= ¢/ |c| = sgn(c), where sgn(c) = 1 for ¢ > 0, sgn(c) = 0 for ¢ = 0, and
sgn(c) = —1 for ¢ < 0. Hence,

(a) lim o Cov(X,Y) = limesoc = 0.

(b) lim, o Cov(X,Y) = lim,_»o ¢ = 0.

(¢) limen o Corr(X,Y) = lime o sign(c) = 1.

(d) lim, ~o Corr(X,Y) = lim. g sign(c) = —1.

(e) As ¢ passes from positive to negative, Corr(X,Y") is not continuous but
rather “jumps” from +1 to —1.

3.3.17 We have that £ (X) = py, Var(X) = 01, E(Y) = u2, Var(Y) = 03, and
using (2.7.1) we have that

E(XY)=F ((Ml +0124) <,U'2 + oo (,021 +v1- ,0222)))
papiz + o1p2Zy + poapn Zy + poio2 23

= E =

( +oopin/1 — p?Zs+ o1027\/1 — p*Z1Z> Hafiz o+ P10
where we have used E (Z21) = E (Z3) = E(Z122) = E(Z,) E(Z2) =0, E (Z3) =
1. So Cov(XY) = poios and Corr(X,Y) = Cov(X,Y) /+/Var(X) Var(Y) =
(0102p) / \/(01)(03) = p.
3.3.18 We have that

E(X (X —-1)) zeix(x_1)(1_9)w:9(1—9)2ix(x—1)(1—9)“2
=0 =2

:9(1—9)22%:9(1—9)2% (1-0)"

_9(1_9)2%(%—1—(1—9))_9(1_9)2%_(1‘9‘9).
Therefore
Var(X):Q(le—ZO) _(159)<(159)_1>
(1-6° (1-6) (1-6) [(1-0) (1-6)
:92+9:9<9+1):92'

3.3.19 We have that when Xj,..., X, are i.i.d. Geometric(f) then X = X; +
-+« + X, ~ Negative Binomial(r, §) . Therefore, Var(X) = (1 — 6) /6.

3.3.20 We have that

e’} aa—1 o0 Yo a1
E(XQ) :/ z? A e_)‘””dx:/ Nz e M dx
0 ['(a) 0 [(a)

oo \epatl 1 o0 MNa+2) al(a+1)
= ——e " (1/ N dt = —— totlo=t do = =
/o (¢ (Y A2r<a>/o ¢
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so Var(X) = a(a+1) /A% — a? /X2 = a/)\2.

3.3.21 We have that E (X?) = [[% 2?0z e " dz = [;° az®tle " dz, and

putting u = z%, z = u'/*, du = az® 'dz we have that E (X2) = fooo u?/ e~ dy
=T(2/a+1)and Var(X) = F (XZ) - (E(X))2 =T2/a+1)-T%2(1/a+1).

3.3.22 We have that

E ((X+ 1)2) = /Ooo(x+ 2a(l+z)" " de = /Oooa(l +2)" 0 dg

_ ,3+2(1+w)_“+2‘0 a#2 { 00 0<a<?2
aln (14 2)[5° a=2 o/ (a—2) ifa>2

Therefore, when a > 2,

Var(X) = B (X +1)°) = 2B(X) ~ 1 - (B (X))’

« 2 1
:a—2_a—1_1_(a—1)2
_a@-1)?-2@-D(@=-2) (@1’ (a—-2) — (@—2)

(a—=1)*(a—2)
T e-1(a-2)

3.3.23 We have that E (X?) = [F2?¢ "ds = T'(3) = 2 = Var(X) since
E(X) = 0.

3.3.24 We have that

E(X2) — /01 .1,2 IF(G‘ —IL_ b) .Ta71 (1 _ .T)b_l do = r (CL + b)) /(;1 xa+1 (1 _ .T,')b_l dx

(a) T (b) ['(a)T (b
_T(a+b) I'(a+2)T(b) a(a+1)
L(@T®) T(a+b+2)  (a+b)(a+bd+1)
Therefore
B N 2 a(a+1) B a \?
Var (X) = BE(X5) = (BX) = T o7 <a+b>
~ala+1)(a+b)—ala+b+1) ab
B (a+b)>(a+b+1) S (a+b)(a+b+1)

3.3.25 We have that X; ~ Binomial(n,0;) so that E(X;) = nb;, Var(X;) =
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n—ary

nb; (1 —6;). Also,
- c n 1 QT2 AN—T1 —I2
X1X2 Z: Z: 1T <.7,‘1 ToTt — T —.132)9 9 9

o35 1)

== —lazg—1n—-2—(r1-1)—
x9f1*19§2*19g 2—(z1-1)—(xz2-1)

n—2 n—2—x

= n9192 Z Z ( -2 >9f1 9;2 9?7273:1 T2 — TL9192

xr1x n—2—ﬂc —x
wl—O 1‘2_0 1 2 1 2

since the sum is the sum of all Multinomial(n — 2,01, 82, 83) probabilities. There-
fore, COV(Xl,XQ) =N (n - 1) 9192 - 7129192 = —719192.

3.3.26 We have that X; ~ Beta(a1, a0 + a3), so E(X1) = a1/ (a1 + a2 + a3)

and Var(X1) = oq (oo + a3) / (0q + a2 + a3)? (g + a2 + a3 + 1) by Problem
3.3.24. Also,

E (X1 Xo)
1— T2
(a1 + g + a: o o as—
/ / T1T2 1I‘ Z)F(;l)xll 1m22 1(1—x1—:r2) s~y day

1— T2
- (oq + fo%) + Ots / / 20252 (1 — 2y — 22)™ " day day
041

F(al—i-ag—l—ad) (041+1)F(0[2+1)F( )

I‘(al)F(ag)F(ag,) F(O&l —|—O¢2—|—Od3+2)
109

(041+042+043)(0[1+0[2+0[3—1)

SO

[05Ye%] [05)e%]
Cov (X1, X5) = -
(X1, X) (a1 4+ +az)(an+aataz+1)  (ay+as+ as)’
—Q1 0
(041 + as —|—O¢3)2 (041 +042+043+1).
3.3.27 We have that

min(n,M) (M) (N—M)
BEX(X-1)= Z w(x—1)2nz)
r=max(0, n+M—N) n)
min(n,M) M\ (N—M
r=max(2,n+M—N) n

e MOID TR () ()

1) ———~ Z z—2)\ n—2—(z-2)
NN =1) r=max(2, n+M—N) (]7\{722)
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min(n—2,M —2) M—2\ (N—-2—(M-2)
MM -1 © 2
BT 2 PO )
r=max(0, n—2+(M—-2)—(N-2)) (n 2)
M (M -1
=nln—1) NEN—l))

as we are summing all Hypergeometric(N — 2, M — 2, n — 2) probabilities. There-
fore,

Var(X) = n (n — 1) % nM <nM - 1)

)
M@n-1)(M-1)N-(N-1)(nM-N) %(1 M)(N—n)
N (N

N ) "N TN vy

3.3.28 In Exercise 3.3.15, we showed that (1) the joint probability P(X =
x,Y =y) = (1/6) - (;)(1/2)m forz=1,...,6,y =0,...,2, otherwise P(X =
z,Y =y) = 0and (2) E(X) = 7/2,E(Y) = 7/4, E(XY) = 91/12 and
Cov(X,Y) = 35/24. To compute Corr(X,Y'), the variances are required. F(X?) =
S om1 g0 (1/6) ()27 = 35 @/6 = 91/6 and E(Y?) = Y30, 3y
y2(1/6)(';)2_”” = Z?:1 z(z + 1)/24 = 14/3. Hence, Var(X) = E(X?) —
(F(X))? =35/12and Var(Y) = E(Y?)—(E(Y))? = 77/48. Therefore, Corr(X,Y)
= 35/24/./(35/12)(77/48) = v/55/11 = 0.6742.

Challenges

3.3.29 Assume Y is discrete, with Y > 0 and E(Y) =0. Then0=3" y P(Y =
y) = > ,>0y P(Y =y). But the only way a sum of non-negative terms can be
0 is if each term is 0, i.e., y P(Y = y) = 0 for all y € R'. This means that
P(Y =y)=0fory #0, so that P(Y =0) =

3.3.30 Let C = E(X), and let Y = (X — C)%2. Then Y > 0, and E(Y) =
Var(X) = 0. Hence, from the previous challenge, P(Y =0) = 1. But Y =0 if
and only if X = C. Hence, P(X =C) = 1.

3.3.31 Let C = Y32 1/k3. (Then C = ¢(3) = 1.202, but C cannot be ex-
pressed precisely in elementary terms.) Let P(Y = k) = 1/Ck3 for k =
1,2,3,.... Let X = Y +5-72/6. Then E(Y) = 0% k(1/k3) = 550 (1/k2) =
72/6,50 BE(X)=E(Y)+5—7%/6 =72/6+5—72/6 = 5. On the other hand,
E(Y?) =372 k2 (1/k3) = 5772 ,(1/k) = oo. It follows that E(X?) = oo and
that Var(X) = cc.

3.4 Generating Functions

Exercises

3.4.1
(a) r2(t) = B(7) = Y2, 12(1/2%) = (/2) /[1 — (1/2)) = /(2 — 1). Hence,
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i (t) = (2 —1)(1) — (1) (=1))/(2 - 1)* = 2/(2 - 1)?, s0 1,(0)
P(Z =1). Also, r}(t) = £[2/(2—t)% = —4/(t — 2)3, so }(0)
1/2=2(1/4) =2P(Z =2).

(b) Note that Z = X + 1, where X ~ Geometric(1/2). Hence, E(Z) = E(X) +
1= 141 =2, and Var(Z) = Var(X) = (1 — (1/2))/(1/2)% = 2, where E(Z2)
Var(Z) + E(Z)? = 2+ 22 = 6. On the other hand, mz(t) = E(e!?) = rz(e!) =
e'/(2—e?). Hence, m/,(t) = [(2 —e)(e?) — et (—€!)] /(2 —e')? = 2e! /(2 — et)
m',(0) =2 = E(Z). Also, m(t) = 2¢*(2 +€') /(2 — e')?, so m’%(0) = 2(3)/13 =
6 = E(22).

3.4.2 Here mx (s) = (%0 + 1 — 6)". Hence, mx (s) = e*0n(c0 + 1 — 6", 50
i (0) = nd. Then m (s) = c2*6°n(n—1)(c"0+1—0)" >+ e*On(c"0-+1—0)"
so m’%(0) = 6?n(n — 1) + On. Hence, Var(X) = E(X?) — E(X)? = m%(0) —
(m/x(0))% = 62n(n— 1) + On — (n0)? = nh(1 — ).

3.4.3 Here my(s) = e =D, Hence, mj (s) = Ae®eM¢ =D so mi(s) = A.
Also, my-(s) = (Ae® + A\2e?9)eMe =D 5o my.(s) = A+ A2, Hence, Var(Y) =
E(Y2) — B(Y)? = m§(0) — (mhy (0))2 = A+ A2~ ()2 = .

3.4.4 ry(t) = E(tY) = E(t3 ) = t*E((13)™) = t*rx ().

3.4.5 my(s) = E(e?Y) = B(esBXH)) = e B(e3X) = e**mx(3s).

3.4.6 We know m/% (s) = e*0?*n(n—1)(e*0+1—0)" "2 +e*0n(e®0+1—0)""1, so
m(s) = e*nf(1—(ef—1)0)" 31— (e*(3n—1)+2)0+(1—e*(3n—1) +e2*n?)6?],
so E(X3) =m¥%(0) =nl[l — 3(n—1)0 + (n® — 3n + 2)6?].

3.4.7 We know from previously that m4-(s) = (Ae®+A2e2*)ere" 1) so my/(s) =
M Des\(1 4+ 3e° A + €25X?), and E(Y3) = m{/(0) = A(1 + 3\ + \2).

3.4.8

(a) rx(t) = E(tY) = (t?)(1/2) + (£°)(1/3) + (t7)(1/6).

(b) ' (t) = (2t)(1/2) + (5t*)(1/3) + (7t°)(1/6). Hence, ¢ (0) =0 = P(X = 1).
Also, r” (1) = (2)(1/2) + (20t3)(1/3) + (42t°)(1/6). Hence, r’%(0) = (2)(1/2) =
1 _2P(X: 2).

(c) mx(s) = B(e® X)) = (e*)(1/2) + (e>*)(1/3) + (e™*)(1/6).

mly (s) = (2€*)(1/2) + (5¢>)(1/3) + (7e"*)(1/6). Hence, m/x(0) = (2)(1/2) +
(5)(1/3) + (T)(1/6) = E(X). Also, mlg(s) = (22)(1/2) + (5%€>)(1/3) +

(7%€7)(1/6). Hence, m’(0) = (2%)(1/2) + (5%)(1/3) + (7°)(1/6) = E(X?).
Problems

3.4.9

(a) mx(s) = B(e*X) = [, e5(1/10)dz = (1/10)(e'%5 —1) /s for s # 0, with (of
course) mx (0) = 1.

(b) For s # 0, m/y(s) = (1/10)(s(10e'%%) — (e'% —1))/s?>. We then compute
using L'Hopital’s Rule (twice) that m'y (0) = lim,_,. m'y(s) =5 = E(X).

3.4.10 We have that rx (£) = S50 (t(1—6))"0 = 6(1 —t(1—6))"", pro-
vided [t (1 —6)| < 1. Then v (£) =0 (1 —60) (1 —t(1—6)) >,
() =20(1—0)*(1—t(1—0))"> sor% (0)/2=60(1—6).
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3.4.11 We have that rx (¢ (@ -0yt =0"(1—t(1-0))"",
provided |t (1 — )|<1 Thean() rer(1— 0)(1—t(1—0)""" 7% (t) =
r(r—1)0"(1—0)>1—t(1—0)""2 s0r% (0)/2=r(+1)6" (1—0)/2

= ("3 (1-0)”.

3.4.12

(a) mx(s) = E(e’X) =322 je5(1-60)0 = 0/ (1 — e*(1 — 0)) , provided |e®(1—
0) <1, ie,s< —log(l —0).

(b) mX(s) = (9/ [1—e(1—-0)]) =01 —0)e*/[1 —e*(1—06)]> Hence,
B(X) = mh(0) = 0(1 - 6) / [1 - (1= 6))2 = (1~ 6)0.

;— e*(1-19))) /1 —e*(1—0)° Hence, E(X?) =

(c) mx(s ) = (e*0(1 - 0)(1
m(0) = (6(1 ~6)(2—6)) /[6]° = (1~ 6)(2 ~0)/6, so Var(X) = E(X?) ~
E(X)?=[1-0)(2-0)/6*] - [(1-0)/0 = (1-0)/6°.

3.4.13 We use the result of 3.4.12 and the fact that if Xy,..., X, is a sam-
ple from the Geometric(d) distribution, then X = X; + --- + X,. ~ Negative-
Binomial(r, 9) .

(a) mx(s) =mx,(s)---mx,(s) =0"/(1—e’(1-0))".

(b) mi(s) = re*(1 — 0)07/ (1 —e*(1 —9))T+1, so BE(X) = m(0) = r(1 —
0)0" /67Tt =r(1—0)/6.

(c) mk(s) = res(1—=0)6"/ (1 —e*(1—6))" " +
r(r+1)e2(1—0)207/(1—e*(1—0))"", so Var(X) = m%(0) — (r(1 — 6)/6)*
=7r(1—0)07/0" L +r(r+1)(1 —0)%0"/672 — (r(1 9)/9)2 r(1-6)/6 +
r(1—0)%/6% =r(1—0)/0°.

3.4.147y ( ( ) B (1000X) = B (16%) = 2B (12X) = 22 () )
tap (tb) and my (t) = ( ) _ E(eatertX) _ E(eateth) o) (eth) _

eE (e (b")X) = e%mx (bt).

3.4.15 Write Z = p1 + 0 X, where X ~ Normal(0,1). Then mz(s) = E(e?) =
E(es(quaX)) — eSH +E(€SUX) — eSH +mx(0'5) — eSH _|_€(US)2/2 — S _|_€o252/2_

3.4.16

(a) mY(S) = E(eSY) = ffo esY ely‘/2 dy — f esY ey/2 dy —+ f esY 67:‘//2 dy =
[ el dy 4 [0 e(+1/2y dy = 1/(1/2—5)+1/(1/2+s5), provided |s| < 1/2.
(b) mi(s) = (1/2—8)"2 = (1/2+s)"2, 80 E(Y) =m}(0) =4 —4=0.

(c) m{(s) =2(1/2 — s)™3 +2(1/2 — s)73, s0 E(Y?) = m{.(0) = 16 + 16 = 32,
where Var(Y) = E(Y?) — E(Y)? = 32.

3417 E(X*) = [[TaPaz*le ™ dz = [ az®t*"le7*" dz and putting
u = 2%z = u"? du = az* 'dx we have that E(X) = [ ul/®e " du =
I'k/a+1).
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3.4.18 Weput u=1/(1+x) so z = (1/u) — 1,dz = —du/u® so

[eS) /1= k
E(X*) = / dPa(l+z)"* " do = a/ ( u> u® ! du
0 0

u
= a/ w1 (1 — ) du
0

00 O<a<k 00 O<a<k
= D(a—k)D(k+1 = T(a—k)D(k+1
e kLk+1) F(OL_(l) ) a > k. Dlazk)T(k+1) F()a)( ) a > k.

3.4.19 Putting z = Inz so that = exp(z), dx = exp(z)dz, we have that

° 1 (Inz)*| 1 < g 1 (Inz)?
_ k _ Lo k—1 _
B /0 ! V2T P { 272 } z e /0 ! V2T P { 272 -

/ exp(kz) ! e { & } dx =e {T2k2}
= X —— expl ——5 =ex
0 P 2T P 272 P 2

since this is the moment-generating function of the N (0,72) distribution at k.

3.4.20

o a—1 oo a—1
_ xt (A'T) -z . / ()\.’E) —(A—t)z
m(s) = /0 e T () e MAdr =\ T e dx

{ 0o t> A

= AC{

3.4.21 The mgf of the Poisson(\;) equals m; (s) = exp {\; (¢ — 1)}. Then the
mgf of Y = X3 4+ --- + X, is given by (Theorem 3.4.5)

my (s) = Hmi (s) = Hexp {Ai(e’ = 1)} =exp {Z Ai(e” — 1)}

i=1 i=1

and we recognize this as the mgf of the Poisson(>_ ; ;) . Therefore, the unique-
ness theorem implies that this is the distribution of Y.

3.4.22 The mgf of the Geometric(6) distribution is given by 6/ (1 —e*(1 —0)).
Therefore, the Negative Binomial(r, #) distribution has mgf given by m(s) =
0"/ (1 —e*(1—0))" since it can be obtained as the sum of r independent
Geometric(f) random variables and we use Theorem 3.4.5. Then X; has mgf
given by m; (s) = 60"/ (1 — e*(1 — )" and, using Theorem 3.4.5 again, we have
that Y has mgf

n

my (s) = [Jmi (s) = [Jo/ (1 = e*(1 — 0))"

=1

=X /(1 —e5(1 — )i
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and we recognize this as the mgf of the Negative Binomial(r;, ) distribution.
Therefore, by the uniqueness theorem this is the distribution of Y.

3.4.23 The Gamma(a, \) distribution has mgf A%/ (A — ¢)* for t < X by Prob-
lem 3.4.20. Therefore, by Theorem 3.4.5, Y has mgf

my (8) = Hmi (s) = H)\%/ (A=) = AZim@i /() — t)ZZ;I o

and we recognize this as the mgf of the Gamma(} ", | a;, A) distribution so, by
the uniqueness theorem this must be the distribution of Y.

3.4.24 By Theorem 3.4.7 the mgf is given by (using mx, (s) = A/ (A —s) and
ry(t) =exp{A(t = 1)})

mse(s) = v, () =ep {2 (725 1) b =ew {25 ).

/
Then mi, (s) = exp {22} (2%) = exp {25} 47 (A= )7 and i, (0) = 1
is the mean.

3.4.25 By Theorem 3.4.7 the mgf is given by (using mx, (s) = A/ (A —s) and
v =001 -t(1-0)")

mse(s) = v, () =6/ (1= 3250-0))

Then

misN(S) = 5 (1-9)

0 1l (0) = (1-60) / (A0).

3.4.26 Here cx(s) = 1 —p+ pcoss +ipsins, so cx(s) = —psins + ipcoss,
iB(X) = dx(0) = ip, E(X) =p.

3.4.27

(a) We can write Y = X1+Xo+...+X,,, where the {X,} areii.d. ~ Bernoulli(p).
Hence, cy (s) = cx, (8)ex,(s)...cx, (s) = (1 —p+pcoss + ipsins)™.

(b) & (s) =n(1 —p+ pcoss+ipsins)*~!(—psins +ipcoss). Hence, iE(Y) =
- (s) =n1""Y(ip) = inp, so E(Y) = np.

3.4.28 The sample mean has characteristic function given by
o s n n s
cx(s)=FE(exp{isX})=F (exp {Zﬁ »2_1 Xl}) = 1:[10)(1 <E>
S\ 1\
fy —_ = _—— = —_ t
(CXI (n)) (eXp{ n }) exp{= It}
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and we recognize this as the cf of the Cauchy distribution. Then by the unique-
ness theorem we must have that X is also distributed Cauchy. This implies that
the sample mean in this case is just as variable as a single observation. So in-
creasing the sample size does not make the distribution of X more concentrated.
In fact, it does not change at all!

3.4.29 The cf of the N(0,1) distribution is given by

o 1 >~ 1 1
t) :/ e“‘/””\/—z_ﬂ_e*ﬁ/2 dz :eft2/2/ mexp{—ﬁ(ﬂc—it)Q} dx

2
=e /2

Therefore, if X = i+ 0Z, where Z ~ N(0,1), then X ~ N(u,0?) and X has
mgf

cx(t) = E (eitX) - (eit(,u+z7Z)> —GithE (eitaZ) — ¢t (to)

(7]
= exp ztu—T .

Then we have that In cx (t) = itu—o2t?/2so (Incx (t))" = ip—o?t, (Incx(0)) /i =
w and the first cumulant is p. Also, (Incx(t))” = —o2 and so (Incx(0))” /i? =
0?2 and the second cumulant is 02, Also, all higher order derivatives of Incx (t)
are 0, so all higher order cumulants are 0.

3.5 Conditional Expectation

Exercises

3.5.1

(a) E(X|Y =3) =) 2P(X =z|Y = 3) = (2)((1/5)/(1/5 + 1/5)) +
3)((1/5)/(1/5 +1/5)) = 5/2.
b) E(Y|X = 3) = ¥ yP(Y = y|X = 3) = @)(1/5)/(1/5 + 1/5)) +
((1/5)/(1/5+1/5))+ (17)((1/5)/(1/54+1/54+1/5)) = 22/3.
EX|Y =2) =3, 2P(X = z|Y = 2) = (2)((1/5)/(1/5 + 1/5)) +
((1/5)/(1/54+1/5)) = 5/2. Also E(X|Y =17) = Y 2 P(X = z|Y =
= (3)(1/1) = 3. Hence,

(
(
(
(
(

D

3
¢
3

1

N
~—

Il
— W N

3 7

5/2 Y

B(X|Y) = { 5/2 Y

Y

(d) EY[X =2) =X yPY =y[X =2) = (2)((1/5)/(1/5 + 1/5)) +
(3)((1/5)/(1/5 + 1/5)) = 5/2. Hence,

P < { s o

2
3
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352

(a) fx(z) = [T fxy(z,y)dy = f05[9(9cy+9c5y5)/16000900] dy = (92+1875x25)/
1280072.

b) frly) = [ fxv(@y)de = [39(zy + 25°)/16000900] de = (18y +
1536y5) /4000225.

(c) For 0 <y <5,

o

Bex|Y =y)- [ " 2 fxpy(aly) de = | ey s

= / ' z (9(zy + 2°y°)/16000900) /((18y + 1536y°) /4000225) dx
0
= [8(7 + 768y™)] / [7(3 + 256y™)].
Hence, E(X |Y) = [8(7 4 768Y%)] / [7(3 + 256Y*)] for 0 <Y < 5.
(d) For 0 <z <4,

o0

E(Y|X =)= / y fFyix(yle) dy = / Ty (P (@) fx (@) dy

5
= / y (9(zy + x59°)/16000900) /(9 + 187525) /1280072) dx
0
= [70 + 187502%] / [21 + 43752%].

Hence, E(Y | X) = [70 + 18750X%] / [21 + 4375 X ).
(e)

E(E(X|Y)) = B(8(7+768Y")] / [7(3 + 256Y*)])

-/ " I8(7 4 68y")] / [7(3 + 2564™)] fy (9) dy

= / i [8(7 + 768y™)] / [7(3 + 256y™)] [(18y + 1536y°),/4000225] dy

= 3840168/1120063 = 3.42852857

On the other hand, B(X) = [*°_x fx(z)dz = [,  [(92+18752)/1280072] dz =
3840168/1120063 = E(E(X |Y)).

3.5.3
() EY[X=6)=> yPY=y|X=6)=> yPY =y, X=6)/P(X =
6) = (2)((1/11)/(4/11)) + (3)((1/11)/(4/11)) + (7)((1/11)/(4/11))
F(13)((1/11)/(4/11)) = 25/4 = 6.24.

(b) B(Y | X = —4) 23 y P(Y = y, X = —4)/P(X = —4)

= (2)((1/10)/(7/11)) + (3)((2/11)/(7/11)) + (T)((4/11) /(7/11)) = 36/7 = 5.14,
(c) BE(Y | X) =25/4 whenever X =6 and E(Y | X) = 36/7 whenever X = —4.
3.5.4

(a) EX|Y =2)=) 2P(X=z|Y =2)=) 2PX =2 Y=2)/PY =
2) = (=4)((1/11)/(2/11)) + (6)((1/11)/(2/11)) = 1.
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(b) B(X|Y =3) =3, 2 P(X =2, Y =3)/P(Y = 3) = (=4)((2/11)/(3/11))+
(6)((1/11)/(3/11)) = =2/3.

() EX|Y =7)=3, e P(X =2 Y =7)/PY =7)=(-4)((4/11)/(5/11)) +
(6)((1/11)/(5/11)) = —2.

(d)EX|Y=13)=Y ,cP(X =2 Y =13)/P(Y =13) = (6)((1/11)/(1/11))
=6.

(e) E(X]Y) = 1 whenever Y = 2; E(X|Y) = —2/3 whenever Y = 3,
E(X|Y)=—2whenever Y =7, and E(X |Y) = 6 whenever Y = 13.

3.5.5 We have that F(earnings|Y = “takes course”) = $(1000(.1) + 2000(.3)
+3000(.4) 4+ 4000(.2)) = $2700, while E(X |Y = “doesn’t take course”) =
$ (1000(.3) + 2000(.4) + 3000(.2) + 4000(.1)) = $2100. Therefore, by TTE we
have that F(earnings) = $ (2700 (.4) 4+ 2100 (.6)) = $2340.

3.5.6 Let Y be the number showing on the second die. Then, X and Y are
independent and have the same distribution. Also Z = X +Y.

(a) B(X) =30_,2(1/6) = 7/2 as well as B(Y) = 7/2.

(b) B(ZIX =1) = EX+Y|X=1)=14+EY|X =1 =1+ EY) =
14 (7/2) =9/2. In the third equality, Theorem 2.8.4 (a) is used.

(©E(ZIX =6)=E(X+Y|X =6)=6+E(Y|X =6)=6+E(Y)=6+(7/2) =
19/2. For (d)-(h), note that P(Z = z) = (6 — |7 — 2|)/36 for z = 2,...,12. The
conditional probability is given by P(X = z|Z =2)=P(X =x,Z = z2)/P(Z =
2)=PX=ua,Y=z2z—2)/P(Z =2 =1/[36P(Z = 2)] = 1/(6 — |7 — 2|) for
x =max(l,z —6),...,min(6,z — 1) and z = 2,...,12. Hence,

min(6,z—1) "
EX|Z==2)= —_—
T
r=max(1,z—6)
(max(1,z — 6) + min(6,z — 1)) (min(6, z — 1) — max(1,z — 6) + 1) =z

2(6 — |7 — 2|) 2

(d) The event Z = 2 implies X =1 and Y = 1. Hence, E(X|Z =2) =1. It
is the same to z/2 = 2/2 = 1. (e) When Z = 4, P(X = z|Z = 4) = 1/3 for
x =1,2,3, otherwise 0. Hence, E(X|Z = 4) = (14+243)/3 =2 = 4/2. (f) When
Z=6,P(X=z|Z=6)=1/5forz=1,2,3,4,5, otherwise 0. Hence, F(X|Z =
6)=(1+--+5)/5=3=6/2 (g) When Z =7, P(X = 2|Z = 7) = 1/6 for
x =1,...,6, otherwise 0. Hence, E(X|Z=7)=(1+---46)/6=7/2="17/2.
(h) When Z =11, P(X = z|Z = 11) = 1/2 for © = 5,6, otherwise 0. Hence,
E(X|Z=11) = (5+6)/2=11/2 = 11/2. Hence, the theoretic result and the
real computation coincide.

3.5.7 Let X and Y be the numbers showing on the first and the second dice.
(a) The event (W = 4) occurs only when (X = 1,Y = 4), (X = 2,Y = 2),
(X =4,Y =1). Hence,

E(ZW =4) = (1+4)(1/3) + (2+2)(1/3) + (4 + 1)(1/3) = 14/3.
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(b) The event (Z = 4) occurs only when (X = 1,Y = 3), (X =2,Y = 2),
(X =3,Y =1). Hence,

E(WI|Z =4) = (1-3)(1/3) + (2-2)(1/3) + (3-1)(1/3) = 10/3.

3.5.8 The joint probability is given by P(X = z,Y = y) = (1/6) (‘;)2_”” for
z=1,...,6,y=0,...,x, otherwise 0.

(a) The marginal probability of X is P(X = z) = >/ _,(1/6) (;)2_“ = 1/6.
Hence, P(Y = ylX = 2) = P(X = 2,Y = y)/P(X = 1z) = (j)27° ~
Binomial(x, 1/2). Thus, we get E(Y|X =5)=5-(1/2) =5/2.

(b) P(Y =0) = 3°_,(1/6)(%)2~* = 21/128. Hence,

BE(XY =0) 21/128

= 40/21.

() P(Y =2)=35_,(1/6)(%)2~" = 33/128. Hence,

6 4 m/6

E(X[Y =2) = 130/33.
| Zl 33/128 /

3.5.9 Let X7, X5, X35 be the random variables showing the status of ith coin.
X7 = 1 means that the first coin shows head. Then, X = X; + X5 + X3 and
Y = X;. It is easy to check F(X;)=1/2 for i =1,2,3.

(a) The event Y = 0 implies X; = 0. E(X|Y = 0) E(X) + Xo + X3|X; =
0) = E(XQ +X3|X1 = 0) = (1/2) + (1/2) =1.

(b) The event Y = 1 implies X; = 1. E(X|Y =1) = E(X; + X2 + X;3|X; =
1)=14+E(Xo+ X3|X; =1)=1+(1/2) +(1/2) = 2. (c) The event (X =0)
implies X; = X3 = X3 = 0. Hence, E(Y|X =0) = E(X;1|X =0) =0.

(d) The event (X = 1) implies only one X; = 1 and the others are 0. Hence
P(X; =X =1) = 1/3 and EY|X = 1) = B(X1|X = 1) = (1)(1/3) +
(0)(2/3) =1/3.

(e) The event (X = 2) implies only one X; = 0 and the others are 1. Hence
P(X; = 1X = 1) = 2/3 and E(Y|X = 2) = B(X1|X = 1) = (1)(2/3) +
(0)(1/3) = 2/3.

(f) The event (X = 3) implies X3 = Xo = X3 = 1. Hence, E(Y|X = 3) =
E(X;|X =3)=1.

(g) From (c)-(f), E(Y|X) = X/3 is obtained.

(h) It is known that E(Y) = E(X;) = 1/2. From (g), F = F = E(X)/3 =
(3/2)/3 = 1/2. Hence, we get E[E(Y|X)] = E(Y).

3.5.10

(a) By Theorem 3.2.3, E(Z) = E(XY) = E(X)E(Y) = (7/2)(1/2) = 7/4.

(b) By Theorem 3.5.4, E(Z|X = 4) = E(XY|X = 4) = 4E(Y|X = 4) =
4E(Y) =4(1/2) = 2.

(c¢) By Theorem 2.84 (a), E(Y|X =4)=E(Y) =1/2.
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(d) The event (Z = 4) occurs only when X =4 and Y = 1. Hence, E(Y|Z =
4)=1.

(e) The event (Z = 4) occurs only when X =4 and Y = 1. Hence, E(X|Z =
4) = 4.

3.5.11

(a) The marginal density of X is

1
_ Y B I A L I R
fx@ = [ Ferady= [ 56+ oy = 356+ )
for 0 < z < 2, otherwise fx(x) = 0. Hence,
2 4 2 —
_ 6,6 5, 1 6z ToN\ P2 27
E(X)_/O T gl +4)dx_19<4 + 8) o0 10"

(b) The marginal density of Y is

2
fe) = [ txrleais = [ G +10)de = 5+ 307,

for 0 < y < 1, otherwise fy(y) = 0. Hence,
Loy . 4 3y°\ [v=1 52
EY)= -—(4 35d:—<22 —) = —.
()/0y19(+y)y AR | B

(c) The conditional density fx |y (x|y) = fx,y(z,y)/fy (y) = 3(z*+y?)/(8+6y?).
Hence,
2 2 3 4/4 3,2/9
E(X|Y)_/x3(w +y3) I {Cav +y§/) _ )
o 2(4+3y3) 2(4+ 3y3) e=0 4+ 3y

(d) The conditional density fy|x(ylz) = fx,y(z,y)/fx(x) = (z* + y*)/(2* +
1/4). Hence,

=2 3(2+y°)

1 2 3 2,2 5
x°+y 2 y? 2+ y° /5

E(Y|X) = do —
(¥1.X) /ny2+1/4 T T2y

(e) The expectation of E(X|Y) is

v=1  22/2+41/5
y:()_ :E2—|—1/4 ’

2 3 1
32+y°) 4 3 12 3
EE(Y|X)| = —_— —4 dy = —(2 d
povx) = [ et [ et
12 yiy =1 27
= — 2 —) = —.
19<y+4 y=0 19

Hence, we get E[E(Y|X)] = E(X).
(f) The expectation of E(Y|X) is
1,2
x?/2+1/5 6,45 1 6 /x 1
FIEY|X)| = - . — = = (4=
EWIX] /0 2 1" TP (F+3)%

,£<w_‘*+£)w:i2
T 19\6  5/le=0 95
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Hence, we get E[E(Y|X)] = E(Y).
Problems

3.5.12 We have that E(Y | X) isgiven by E(Y | X =1) = 1(.3)+2(4)+3(.3) =
20,E(Y | X =0)=1(.2) +2(.5) + 3(.3) = 2.1.

SoE(Y)=E(E(Y|X))=2(.75)+2.1(.25) = 2.025 and, of course, E(X) =
5.

The conditional distributions of X given Y are (using Bayes’ theorem):
XY =1~ Bernoulli(.3(.75) / (.3 (.75) + .2(.25))) = Bernoulli (0.81818),
X|Y =2~ Bernoulli(.4 (.75) / (.4 (.75) + 5( 5))) = Bernoulli(0.70588) , and
X |Y =3~ Bernoulli(.3(.75) / (.3(.75) + .3(.25))) = Bernoulli(0.75) .
Therefore, E(X |Y) is given by E(X|Y =1) = 081818, E(X|Y = 2) =
0.70588 and E(X |Y = 3) = .75.

3.5.13 We have that Y = X; + --- + X5 ~ Negative Binomial(5,6), and by
symmetry, each of the conditional distributions, X; given Y = 10, are the same.
Then E(X;|Y =10)=EY - Xo—---—X5|Y =10) = 10— 4E(X;1 | Y = 10),
so 5E(X1|Y = 10) = 10 and E(X1|Y = 10) = 2. Note that this does not
depend on 6.

3.5.14

(a) EY|X)isgiven by E(Y | X =1) = .97 and E(Y | X =2) = .98.

(b) E(Y|X,Z)isgiven by E(Y | X =1,Z=0)= .99, E(Y|X =2,Z=0) =
OLEY|X=1,Z=1)=.962,and E(Y | X =2,Z =1) = .960.

(c) The conditional expectations all correspond to the conditional probabilities
of having a successful treatment, so the higher this probability is the better.
The conditional expectations E(Y | X) indicate that hospital 2 is better than
hospital 1, while the conditional expectations E(Y | X, Z) uniformly indicate
that hospital 1 is better than hospital 2.

(d) We have that

pxy,z (%,y,2) px,z (,2)
pPx.z (z,2) px (x)

> pyvix.z (Yl 2) pzx (2] ) =
z z
s (z,9,2) _ pxy (2,9)

= px (7) =DPy|x (y|z)

and

E(E(Y|X,Z)|X) = ZE Y| X, Z)pz (2)

:ZzprIX,Z(ym:Z)pZ\X (z]x)
_ZZ pxv,z (2,9, 2) xy, _ZZ PXY.Z xy, px.y.z (@,y,2)
_Z By S0 Zpr\X (ylz)=EY | X).
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(e) We have that E(Y | X =1,Z =0) = .99, E(Y | X =2, Z = 0) = .987,
EY|X=1,2Z=1)=.962 and E(Y |X =2,Z =1) = .960.

E(Y|X =1)
=EY[X=1,Z=0pzxO0[)+EY|X=12=1)pzx (1|1)
= .99(.286) + .962(.714) = .97

E(Y|X =2)
=EY[X=22=0pzx(0[2)+EY|X=22=1)pzx (1|2)
— .987(.75) + .960(.25) = .98,

so the result is verified numerically.

The paradox is resolved by noting that the conditional distributions of Z
given X indicate that hospital 1 has a far greater proportion of seriously ill
patients than does hospital 2.

3.5.15 Let S = {1,2,3}, P(s) =1/3 and X(s) = s for s € S, and A = {1, 3}.
Then P(A) > 0. Also, E(X ) = (D(1/3)+(2)(1/3)+ (3)(1/8) = 2, and B(X?) =
)

(1)2(1/3) + (2)2(1/3) + (3)2(1/3) = 14/3, so Var(X) = (14/3) — (2)2 = 2/3.
On the other hand, E(X|A) = (1)(1/2) + (3)(1/2) = 2, and E(X?|A) =
(1)2(1/2) + (3)%(1/2) =5, 0 Var(X |A) =5 — (2)2 =1 > 2/3.

3.5.16 E(X) = E(E(X|Y)) = E(a/Y) = aB(1)Y) = a/A.
3.5.17 Using the analog of (2.7.1) we have that X = p3 +0121,Y = po +

o2(pZ1 + /1 — p?Z3), where Z1, Zy are i.i.d. N(0,1). Then X = x is equivalent
to Zy = (& — py1) /op and Zs is independent of Z; (and so of X), so

E(Y|X:x):E<u2+ag (le—i—MZg) |X=m>
_E(,LL2+0'2 (p(X;’“)erZQ) |X—x>

T — xr —
= [2 + 02 (p (—Ml) +4/1 —p2E(Z2)) = p2 + po2 ( m)
o1 g1

Var(Y | X =) = Var(oa\/1—p?Z2 | X =) =05 (1 — p°) Var(Z | X = )
_05( )Vangzg( )

and

Using (2.7.1) we have that E(X |Y =vy) = p1 + po1 (y — p2) /o2 and
Var(X |Y =y) =07 (1—p?).

3.5.18 We have that X5 ~ Binomial(n, 63), so the conditional probability func-
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tion of X, given Xy = x5 is given by

(o aann ) 0705 (1= 1 — 0)" "

()05 (1= 02)" "
- (n — .1‘2)'9%1 (1 — 91 — 92)11—11—12

B 901! (n — X1 — ZL‘Q)' (1 — 92)717902

- n— Ty 91 r 1— 91 nTrTE
a i) 1-— 92 1-— 92

and this is the Binomial(n — 22,61/ (1 — 63)) probability function. Therefore,
E(X1 |X2 = .7,‘2) = (TL — .’132)91/ (1 — 92) and

PXxi1x ('Tl |$2) =

6 0
Var(X; | Xo = x2) = (n — x2) 1_192 (1— 1_192).

3.5.19 We have that the conditional density of X7 given Xy = x5 is given by
(using Problem 2.7.17)

F(aitastas) a1—1, as—1

_ ToeoTeaeg?l 227 (1—21 -2

le‘XQ (.’131 |'T2) - I'aitas+as as—1 (1 _ )a1+a371

T(az)(artas) L2 T2
[(a;+az) 29711 —zy — xg)a?’*l
[(a)T(as) (1 —ap)™toe?

o F (041 + 043) X1 a1—1 1— X1 as—1 1
_F(al)F(ag,) 1—%2 1—!172 1—%2
and we see that X;/(1 —z3) given Xy = x5 is distributed Beta(aq, a3), so

(Problem 3222) E(X1 |X2 = .’132) = (1 —.’132)041/(041 —|-043), Var(X1 |X2 =
29) = (1 — x3)” aqas/ (ag + a3)” (a1 +as +1).

3.5.20
(a) B(X2) = [ 22 fx(z)de = [) 22 [(92 + 187527)/1280072] d=

— 1920072/160009. Hence, Var(X) = E(X2) — E(X)? = (1920072/160009) —
(3840168,/1120063)2 = 307320963528 /1254541123969 = 0.244967.

(b)

)(1371

E(E(X|Y)?) = B(([8(7 + 768Y")] / [7(3 4 256Y*)])?)

-/ (8T 4 76812/ (7(3 + 25651))° fi (v) dy

5
= / (8(7 + 768y™))%/(7(3 + 256y*))? ((18y + 15363°),/4000225) dy
0
= 11.754808401
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Hence,

Var(B(X |Y)) = B(E(X |Y)?) - E(B(X |Y))* = E(E(X |Y)?) - BE(X)?
— 11.754808401 — (3.42852857) = 0.0000002196

which is extremely small.
(c) For 0 <y <5,

oo

By —y) = [ T2 fapy (aly) de = | & Uxr o/ frw)ds

—00
4
= / 22 (9(zy + 2°y°)/16000900) /((18y + 1536y°) /4000225) dx
0
= (24 + 3072y") /(3 + 256y%).
Hence, E(X?|Y) = (24 + 3072Y%) /(3 + 256Y*), for 0 <Y < 5. Then

Var(X |Y) = E(X?|Y) - E(X|Y)?
= [(24 + 3072Y") /(3 + 256Y)] — [(8(7 + 768Y ™))/ (7(3 + 256Y1))]?
= (8/49)(49 + 8064Y* + 98304Y%) /(3 + 256Y*)2.

(d) From part (c) we have that
E(Var(X|Y))

= / h [(8/49)(49 + 8064y + 983041%)/(3 + 256y)%] fy () dy

5
= / [(8/49)(49 + 8064z* + 98304y%) /(3 + 256y)%] [(18y + 1536y),/4000225] dy
0
= 0.244967.

Then Var(E(X | Y)) + E(Var(X | Y)) = 0.0000002196 + 0.244967 = 0.244967 =
Var(X), as it should.
3.5.21 We have that E (g(X)h(Y)|Z)

|
= Zm,y 9(@)Y)pxz (x| 2) py|z (¥ | 2)
=E@g(X)[2)ENY)|Z).

Zw 9(@)h(y)px.y|z (v, y]2)
> . 9(@)px |z (] 2) Zy h(y)py |z (y | 2)

3.6 Inequalities

Exercises
3.6.1 Since Z >0, P(Z > 7) < E(2)]7 = 3/7.
3.6.2 Since X >0, P(X > 3) < E(X)/3 = (1/5)/3 = 1/15.

3.6.3
(a) Since X >0, P(X >9) < B(X)/9 = (1—1/2)/(1/2)/9 = 1/9.
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(b) Since X >0, P(X >2)< E(X)/2=(1-1/2)/(1/2)/2=1/2.

(c) Since E(X) = (1 -1/2)/(1/2) =1, P(|X — 1] > 1) < Var(X)/1%2 = (1 —
1/2)/(1/2)?/1%2 = 2.

(d) The upper bound in (b) is smaller and more useful than that in (c).

3.6.4 Since E(Z) = 5, P(|Z — 5| > 30) < Var(Z) /302 = 9/302 = 1/100.

3.6.5 Since E(W) = 50, P(|[W—50| > 10) < Var(W)/10% = 100(1/2)(1/2)/102
1/4.

3.6.6 We have Cov(Y, Z) =Corr(Y, Z)/Var(Y) Var(Z) =

Corr(Y, Z)4/(100)(80 - 1/4 - 3/4) = Corr(Y, Z)+/1500. This is largest when
Corr(Y,Z) = 41, where Cov(Y,Z) = /1500 = 38.73. This is smallest when
Corr(Y, Z) = —1, where Cov(Y, Z) = —/I500 = —38.73.

3.6.7

(a) By Jensen’s inequality, E(X?*) > E(X)* = [(1 — 1/11)/(1/11)]* = 10* =
10, 000.

(b) By Jensen’s inequality, E(X*) > F(X?)? = [(1 —1/11)/(1/11)%]2 = (10 -
11)% = 12,100, which is larger and hence a better lower bound.

3.6.8 It is known that E(X) = 7/2 and Var(X) = 35/12. Hence, P(X >
5or X <2)=P(|X—E(X)| >3/2) < Var(X)/(3/2)? = 35/27. Since 35/27 >
1, the Chebyshev’s inequality bound is meaningless for this problem.

3.6.9 Note that E(Y) =4(1/2) =2 and Var(Y) = 4(1/2)(1/2) = 1.

(a) P(Y >30rY < 1) = P([Y — E(Y)| > 1) < Var(Y)/1? = 1. Hence,
Chebyshev’s inequality bound gives no improvement.

(b) P(Y >4orY <0) = P(|Y — E(Y)| > 2) < Var(Y)/2? = 1/4. Hence,
Chebyshev’s inequality bound is 1/4.

3.6.10

(2) B(W) = [ wf(w)dw = [} w(Bw?)dw = 3w* /4"~ = 3/4.

(b) B(W?) = [, w?(3w?) = 3w’ /5|"_, = 3/5. Thus, Var(W) = 3/5— (3/4)? =
3/80. Hence, the Chebyshev’s inequality bound is 3/5 because P(|W — E(W)| >
1/4) < Var(W)/(1/4)2 = (3/80)/(1/16) = 3/5.

3.6.11 -

(2) E(Z) = [m 2f(2)dz = [ 2 2% /4dz = (7/20)|°_2 = 8/5.

(b) For Chebyshev’s inequality, we need the variance of Z. E(Z?) = 02 22

23 /4dz = (z6/24)|jj§ = 8/3. Thus, Var(Z) = E(Z?) — (E(Z))? = 8/3 —
(8/5)% = 8/75. By Chebychev’s inequality,

Var(Z) 32
P(Z~B(2) 2 1/2) < (e = 22,

Hence, the Chebyshev’s inequality bound is 32/75.
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3.6.12

(a) By Cauchy-Schwarz inequality, |Cov(X,Y")| < y/Var(X)Var(Y) = 6. Hence,
the largest possible value of Cov(X,Y) is 6.

(b) By Cauchy-Schwarz inequality, |Cov(X,Y")| < y/Var(X)Var(Y) = 6. Hence,
the smallest possible value of Cov(X,Y) is —6.

(c) The variance of Z is Var(Z) = (3/2)?Var(X) = 9. Cov(X, Z) = Cov(X,3X/2) =
(3/2)Var(X) = 6. Hence, the maximum covariance of X and Y is attained when
Y =3X/2 in part (a).

(d) The variance of W is Var(W) = (=3/2)?*Var(X) = 9. Cov(X,W) =
Cov(X,—3X/2) = (—3/2)Var(X) = —6. Hence, the smallest covariance of
X and Y is attained when ¥ = —3X/2 in part (b).

3.6.13 Let X be the length of a randomly-chosen beetle. We know X > 0 and
E(X) = 35. By Markov’s inequality,

EX) _ 3 il = 0.4375.

> < —— = — =
PX 280 = =57 = 5~ 16

Hence, 0.4375 is an upper bound of the probability P(X > 80).
Problems

3.6.14 Here X ~ Binomial(M, 1/2), so E(X) = M/2 and Var(X) = M(1/2)(1—
1/2) = M/. Hence, by Chebyshev’s inequality, since E(X/M) = 1/2, P(|(X/M)—
(1/2)| > ) < Var(X/M)/é2 Var(X)/M?6% = (M/4)/M?6% = 1/4M 2. This
is < € provided M > 1/45%.

3.6.15 Let a = o and let P(X

=pu—a) = P(X = p+a) =1/2. Then E(X) = p,
Var(X) = o0?, and P(|X —p| >a)=1

= o2/a2.
3.6.16
(a) and (b)

Therefore rxy is as stated.
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(c) Let z3,...,x". be the distinct values in z1,...,2, and let f; denote the
frequency of =} in z,,.. . Then
n* n* 1 n
(X) 2 (X =) ; - ;
n* n* 1 n
Var (X) = 3" (@7 = 2)’ P(X =) = Y (0] -2’ 2 = = 3 (- 0) = 5%
i=1 i=1 i=1

and, similarly, all the other expectations remain the same.

(d) Since rxy is a correlation coefficient we immediately have, from the corre-
lation inequality, that —1 < rxy < 1 and rxy = *1 if and only if x; — T =
Sxy (yi—7) /8% fori=1,...,n.

3.6.17 From Chebyshev’s inequality we have that

P(X ¢ (3 — 23,7 +28)) = P(IX — 7| > 28x) < —X_ =

so the largest possible proportion is 1/4.

3.6.18
(a) We have that [ (2/2%) dz = —x_2|(1>o =1, so fx is a density.

=[x (2/2%) do = [ (2/2?) dv = —2271| =2.
(c) Markov’s inequality says that P(X > k) < E(X)/k = 2/k, while the precise
value is P(X > k) = [ (2/2%) dv = —272|" = 1/k?, and we sce that the
tail probablhty dechnes quadratically, while Markov’s inequality only declines
linearly.
(d) We have that E(X?) = [ 2? (2/23) dz = [~ (2/2) do = —2Inz|{° = oo.
Therefore, Var(X) = oo and Chebyshev’s inequality does not provide a useful
bound in this case.

3.6.19
(a) For0 < A< 1land z <y, g(Az+ (1 — N)y) = max(—Az — (1 — A)y, —10).
If z,y > 10, then g(z) = g(y) = ghz + (1 — Ny) = —10. If z,y < 10,

then g(z) = —z, g(y) = —y, and gAz + (1 — Ny) = —(Az + (1 — Ny) =
Ag(z) — (1 —N)g ( ). Finally, if z < 10 < y, then g(x) = z and g(y) = —10, so
Ag(x)+(1=A)g(y) = AM—=2) = (1=X)(=10) = A(=z)+(1-)(=y)+(1-X)(y—10),
while g()\ﬂc+( ANy) < A=z)+ 1 =N (=y) + Az + (1 =Ny —10) < XM(—=z) +
(1 =) (=y) + (1 = N)(y — 10).

( 1)/5 9(2)) = E(max(—Z,—10)) > g(E(Z)) = ¢(1/5) = max(—1/5,—10) =
3.6.20

(a) f'(z) = pxP~ L f"(z) = p(p—1)aP=2 > 0 for all x > 0 since p > 1.
Therefore, f is convex on (0, 00).

(b) By Jensen’s inequality we have that E (f (X)) > f(E (X)), so E(|X[) >
(IE (X)) and (E (| X[")"" > |E(X)|.

/-\\_/
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(c) We have that Var(X) = E (X?) — (E(X))? and E (X?) — (E(X))* =0
if and only if £ (X?) = (E(X))? and this true (by Jensen’s inequality) if and
only if X2 = a4 bX for some constants ¢ and b. The only way this can happen
is if X is degenerate at a point, say ¢,a =0 and b = c.

Challenges

3.6.21 If f and —f are convex, then for all z < y and 0 < A < 1, f(Az + (1 —
Ny) > M (@) + (1= N f(y) and —fz -+ (1 - Ng) = —Af(z) — (1= ) (), 50
FOw+(T=A)g) < A (@)+(1-A)(y) and fOa-+(1-A)y) = Af(@)+(1-N) 1 (y)-
Hence, the graph of f from x to y is a straight line, so f must be a linear function,
i.e., f(z) = ax + b for some a and b.

3.7 General Expectations

Exercises
3.7.1 B(Xy) =3, E(X5) =0, and E(Y) = (1/5)E(X}) 4 (4/5)E(X,) = 3/5.
3.7.2 B(X) = (1/6)(7/2) + (5/6)(9/2) = 13/3.

3.7.3 Here P(X <t) =0 for ¢t < 0, while P(X >t) =1for 0 <t < C and
P(X >1)=0fort > C. Hence, E(X) = [[* P(X > t)dt — [*_P(X <t)dt =
Jordt+ [Fodt— [°_0dt=C+0-0=C.

3.7.4 Here P(Z > t) = 0 for ¢ > 100. Hence, E(Z) = [ P(Z > t)dt —
[P P(Z<tydt< [FP(Z>t)dt= [, P(Z>t)dt < [, 1dt = 100.

375Forz<0,P(X<z)<PX<z)=1-PX>z)=1-1=0. From
Definition 3.7.1,

E(X)_/OOOP(X>t)dt—/0 P(X<t)dt_/01P(X>t)dt+/100P(X>t)dt

— 00

11d 1qt=c0
-1 —dt=1 [——} —141=2
+/0 I e T

376For2<0,P(Z<z)<P(Z<z)=1-P(Z>z=1-1=0. From
Definition 3.7.1,

E(Z) = /OOO P(Z > t)dt—/o P(Z < t)dt

— 00

5 8 [e)
:/ P(Z>t)dt+/ P(Z>t)dt+/ P(Z > t)dt — 0
0 5 8

5 8q o0 _42/9t=8
:/ 1dt+/ ualz:+/ Odt:5+[u] +0
0 5 3 8 3 t=5

=5+3/2=13/2.
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3.7.7F0rw§0,P(W<w)<P(W<w)—1— P(W >w)=1-1=0. By
Definition 3.7.1, E(W fo (W > t)dt — [° P(W < t)dt = [;° e Ptdt —

5t |t=
ffoo 0dt = —¢ 55 B 1. The density of W at w is fw (w) = L P(W < w) =

L(1-P(W >w)) = dw(l —e7°%) = 5e~5 for w > 0, otherwise fy(w) = 0.
Hence, W ~ Exponential(5). We know the expectation of Exponential()) is

1/A. That coincides with the computation result.

378 Fory <0, PY <y) < PY <y =1-PY >y)=1-1=0. By
Definition 3.7.1,

o) 0 oo 0
E(Y):/ P(Y>t)dt—/ P(Y<t)dt:/ e—tzﬂdt—/ 0dt
0 0 —00

—0o0

= (2m)1/? /OOO(QTF)_l/Ze_tz/Zdt = (2m)Y2(1/2) = (7/2)Y/? = 1.2533.

3.79 For w < 0, PW < w) < PW < w) = Fy(w) = 0. For 0 < w < 10,
PW>w)=1—-PW <w)=1—-Fy(w)=1-0=1. For 10 < w < 11,
PW>w)=1-PW <w)=1-Fy(w)=1—(w—10) = 11 —w. For w > 11,
PW>w)=1-P(W <w)=1-Fy(w)=1-1=0. By Definition 3.7.1,

E(W)—/OOOP(W>t)dt—/O POW < t)dt

—00

10 11 oo 0
:/ 1dt+/ 11—tdt+/ Odt—/ 0dt
0 10 11 —oo

=10+ [11¢ —¢2/2]," 1, =10+ 1/2 = 21/2.

Challenges

3.7.10 If X > ¢, then since Y > X, we also have Y > X > ¢. Hence, {X >t} C
{Y" > ¢}, so, by monotonicity, P(X > t) < P(Y > t). Similarly, P(X < t) >
P(Y < t). Then E(X) = [°P(X > t)de — [°_P(X < t)dz < [{°P(Y >
tyde — [° _ P(Y < t)dx = E(Y), as claimed.



Chapter 4

Sampling Distributions and
Limits

4.1 Sampling Distributions

Exercises
4.1.1
P(Y;=1)=(1/2)(1/2)(1/2) =1/8

P(Y; =2)=(1/4)(1/4)(1/4) = 1/64
P(Y; =3)=(1/4)(1/4)(1/4) = 1/64
P(Ys = 2Y/3) = (1/2)(1/2)(1/4) + (1/2)(1/4)(1/2) + (1/4)(1/2)(1/2) = 3/16
P(Ys = 3Y3) = (1/2)(1/2)(1/4) + (1/2)(1/4)(1/2) + (1/4)(1/2)(1/2) = 3/16
P(Ys = 4'3) = (1/2)(1/4)(1/4) 4 (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/32
P(Ys =9'3) = (1/2)(1/4)(1/4) 4+ (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/32
P(Ys = 121/3) = (1/4)(1/4)(1/4) 4+ (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) = 3/64
P(Ys = 18Y/3) = (1/4)(1/4)(1/4) 4+ (1/4)(1/4)(1/4) + (1/4)(1/4)(1/4) = 3/64
P(Ys = 6Y/3) = (1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2)+

(1/2)(1/4)(1/4) + (1/4)(1/2)(1/4) + (1/4)(1/4)(1/2) = 3/16

4.1.2 If Z is the sample mean, then P(Z = 1) = 1/36, P(Z = 1.5) = 2/36,
P(Z =2)=3/36, P(Z =25)=4/36, P(Z = 3) =5/36, P(Z = 3.5) = 6/36,
P(Z =4)=5/36, P(Z =4.5) =4/36, P(Z =5) = 3/36, P(Z = 5.5) = 2/36,
and P(Z =6) =1/36.

4.1.3 If Z is the sample mean, then P(Z = 0) = p?, P(Z = 0.5) = 2p(1 — p),
and P(Z =1) = (1 —p)>

4.1.4 If Z is the sample mean, then

N N -1 N M
= ,P(Z=05)=2
PE=0=gmvra 1P =09 = N1
M M—-1
P(Z=1)=

N+MN+M-1

85
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4.1.5For 1 <j <6, Pmax=j) = (j/6)%" — (( —1)/6)%.

4.1.6 Let X1, X2, X3 be the numbers showing on the three dice. Then, Y =
It6y (X1) + 16y (X2) + L6y (X3). Since X;’s are independent, I;6y(X;)’s are i.i.d.
Bernoulli(1/6). It gives Y ~ Binomial(3,1/6).

4.1.7 Let X,Y be the two numbers showing on the two dice. Then, W = XY
and PW =w) = [{(z,y) : w==zy for 1 <z,y <6} because X and Y are a uni-
form distribution on {1,...,6}. Since, 1 < X, Y < 6, the range of W = XY is
[1,36]. However, not all values between 1 and 36 can be a value of w with positive
probability. For example, any number having prime factor greater than 6 can’t
be a possible value of W. Hence, the random variable W has a positive proba-
bility only at the values 1,2,3,4,5,6,8,9,10,12,15,16, 18,20, 24, 25, 30, and 36.

1/36 if w=1,9,16, 25, 36,
1/18 ifw=2,3,5,8,10,15, 18, 20, 24, 30,
PW=w)=¢ 1/12 if w=4,
1/9 if w=26,12,
0 otherwise.

4.1.8 Let X,Y be the numbers showing on the two dice. Then, Z = X — Y.
The range of Z is [-5,5]. Since X and Y are independent and have the same
distribution, X — Y and Y — X have the same distribution. Hence, P(Z =
—2)=PX-Y=-2)=PY-X=2=P(Z=%). For 2=0,...,5, P(Z =
z) = H(z,y) : z =2 —y}|/36 = {(1,1+2),...,(6 — 2,6)}|/36 = (6 — 2)/36.
Thus, pz(z) = P(Z = z) = (6 — |z|)/36 for |z| < 5 and otherwise pz(z) = 0.
4.1.9 Let X be the number of heads. If X =0 (or X = 4), then all four coins
show tails (or heads). Hence, Y = 2. If X =1 (or X = 3), then there is only
one pair of tails (or heads). Hence Y = 1. If X = 2, there are one pair of heads
and one pair of tails. Hence Y = 2. The other values can’t be a value of Y.
Hence, P(Y = 1) = P(X = lor X = 3) = (})(1/2)* + (3)(1/2)* = 1/2 and
P(Y =2) = P(X € {0,2,4}) = ())(1/2)" + () (1/2* + (})(1/2)' = 1/2. In
sum, py (y) = P(Y =y) = 1/2 for y = 1,2 otherwise py (y) = 0.

Computer Exercises

4.1.10 Using Minitab we place the values 1, 2, 3 in C1 and .5, .25, .25 in C2.
Then we replace the entries in C1 by their logs and generate 1000 samples of
size 50 (stored in C3-C52), calculate the mean of each of these samples, and
exponentiate this (stored in C54). The mean and standard deviation of the
values in C54 is what we want. We get the following results.
MTB > let cl=log(cl)
MTB > Random 1000 c3-c52;
SUBC> Discrete cl c2.
MTB > RMean c3 C4 C5 C6 C7 C8 C9 C10 Ci1l1 C12 C13 C14 Ci15

C16 C17 C18 C19 &
CONT> C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32

C33 C34 C35 &
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CONT> C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 CA7 C48
C49 C50 C51 &

CONT> C52 c53.

MTB > let c54=exp(c53)

MTB > let kl=mean(c54)

MTB > let k2=stdev(c54)

MTB > print k1 k2

Data Display

K1 1.57531

K2 0.103538

4.1.11 Using Minitab we get the following results.
MTB > Random 1000 c1-cl10;
SUBC> Normal 0.0 1.0.

MTB > let cll=rmax(cl-c10)

MTB > let cll=rmax(cl c2 c3 c4 c5 c6 c7 c8 c9 cl0)
MTB > RMaximum C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 cll.
MTB > let kl=mean(cll)

MTB > let k2=stdev(cll)

MTB > print k1 k2

Data Display

K1 1.54637

K2 0.617012

Problems

4.1.12 We know that my(s) = (mx,(s))" = (eMN7D)" = =D We
recognize this as the moment generating function of Poisson(n)). Hence, ¥ ~
Poisson(n\).

4.1.13 The density of Y, for 0 < y < 2, is given by fy(y) = ffooo Fx, (8) fx, (y—
t)dt = fr;n;;lg‘j_li 0y(1)(1) dt = min(y, 1) — max(y — 1,0), which is equal to y for
0<y<1,and to 2 —y for 1 <y < 2. Otherwise, fy(y) = 0.

41.14 InY = (InX; + In X3)/2. Since X3 ~ Uniform(0,1), then —InX; ~
Exponential(1) = Gamma(1,1). Hence, W = —In X; — In X5 ~ Gamma(2, 1),
so fw(w) = we™™ for w > 0 (otherwise 0). Then Y = e~"/2 = h(W) and
W =-2InY = h~}(Y), so the density of Y satisfies

Fr(w) = fiv(~2ny)/ |0 (h™ (@) = (~2Iny)e?0/| — e~
=(—2Iny)y* /| —y/2| = —4ylny

for 0 <y <1 (otherwise 0).
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4.2 Convergence in Probability

Exercises

4.2.1 Note that Z, = Z unless 7 < U < 7+ 1/n? Hence, for any ¢ > 0,
P(Z,—Z|>e) < P(T<U<T+1/n?) =1/5n*> - 0asn — 00,50 Z, — Z
in probability.

422 Forany € >0, P(|X, 0| >¢)=P(Y" >¢)=P(Y > /") =1—€'/" —
0 as n — 0o, so X,, — 0 in probability.

4.2.3 By the weak law of large numbers, since E(W;) = 1/3,

limp, oo P(|2(W1 + -+ W,) — 3] > 1/6) = 0, so there is n with P(|2(W; +
W) — 1] >1/6) < 0.001. But then P(Wy+--+ W, <n/2) =1 PW: +
W, >n/2) > 1= P12 (W) + -+ W,) — 3| > 1/6) > 1 —0.001 = 0.999.

4.2.4 By the weak law of large numbers, since E(Y;) = 2, lim,, oo P(|1 (Y1 +
.. 4+Y,)—2| > 1) =0, so there is n with P(|L(Y; +---+Y,,) —2| > 1) < 0.001.

But then P(Y1 +---+Y, >n)=1-PY; +---+Y, <n)>1-P(2(v1 +
S+ Y) —2[ > 1) >1—0.001 = 0.999.

4.2.5 By the weak law of large numbers, since E(X;) = 8,

limy, oo P(|2 (X7 4+ + X,,) =8 > 1) = 0, so there is n with P(|(X; + -

X,)/n — 8| > 1) < 0.001. But then P(X; + -+ X, > 9n) < P(|(X1 + - +

X,)/n — 8| > 1) < 0.001.

4.2.6 Fix e > 0. Then P(|Y,, — X| > ¢) = P(|%=1X — X| > ¢) = P(|X|/n >
€) = P(X > ne) = max(0,1 — ne). Hence, P(|Y;, — X| > €) — 0 as n — oo for
all € > 0, so the sequence {Y;,} converges in probability to X.

4.2.7 For all € > 0 and n > —2Ine, using Chebyshev’s inequality, we have

P(|X, —Y|>e)=Ple " >¢)= P(H, < —Ine) < P(|H, —n/2| > |n/2 + In¢|)
Var(H,) n

= |n/2+1ne2  (n+2Ine)?

as n — 00. So, {X,,} converges in probability to Y.
4.2.8 Fix e > 0.
P(W, —W|>¢e)=P(5—-5Z,/(Zn+1) >€)=P(5/(Z,+1) >¢)
= P(Z, < —-1+45/¢) =max(0,—1+5/¢)/n.

So, P(|W,, —W| >¢€) — 0 as n — oo for all € > 0. Hence, W, Zw.

4.2.9 By definition, H, — 1 < F,, < H,. For ¢ > 0 and n > 2/e, using

Chebyshev’s inequality,

P(|X, =Y, = Z| 2 €) = P(|H, — Fp|/(H, + 1) 2 €) < P(1/(H1 +1) Z €)
=P(H,<(1/e)—1)=P(H, —n/2<(1/e) —1—n/2)
< P(|H, —n/2| > |14+n/2—1/¢|) < Var(H,)/|1+n/2 —1/¢|?
=n/(n+2-2/€)?*—0
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P
as n — oo. Hence, X,, — Y, = Z.

4.2.10 Let X; be the numbers showing on ith rolling. Then, Z = X? +
-+« + X2. Since X;’s are independent and identically distributed and F(X?) =
Z?Zl j%% = 91/6, by the weak law of large numbers,

1 1 P 91

—Zp==(Xi 4+ +X]) > E(X}) = —.

- n( i+ X)) = E(XT) 6

Hence, m = 91/6.

4.2.11 Let Y,, and Z,, be the numbers of heads in nickel and dime flippings.
Then, X,, = 4Y,, + 5Z,. By the weak law of large numbers, Y,,/n LA 1/2 and
Zn/n L 1/2. It is easy to guess X, /n L 4(1/2) + 5(1/2) = 9/2. We will
show this using Chebyshev’s inequality. Note that F(X,/n) = 4E(Y,)/n +
S5E(Zy,)/n = 4(n/2)/n 4+ 5(n/2)/n = 9/2 and Var(X,/n) = Var(5Y,/n +
47, /n) = 25Var(Y,,)/n? +16Var(Z,)/n = 25(n/4) /n? +16(n/4) /n? = 41/(4n).
< Var(X,,/n) 41

fy — 0
- €2 4e2n

P(|X,/n—9/2| > ¢)

as n — oo. Hence, X,,/n L 9/2. Therefore r = 9/2.
Computer Exercises

4.2.12 The following results were generated using Minitab (k1 holds the pro-

portions).

MTB > Random 100000 cl1-c20;

SUBC> Exponential .2.

MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 Ci15
C16 C17 C18 &

CONT> C19 C20 c21.

MTB > let c22=c21 ge .19 and c21 le .21

MTB > let kl=mean(c22)

MTB > print k1

Data Display

K1 0.176500

Random 100000 c1-c50;

SUBC> Exponential .2.

MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 C14 Ci15
C16 C17 C18 &

CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32
C33 C34 &

CONT> C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48
C49 C50 &

CONT> c51.

MTB > let c52=c51 ge .19 and c51 le .21

MTB > let kl=mean(c52)
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MTB > print k1

Data Display

K1 0.276850

We see that about 18% of the My, values are between the limits, while about
28% of the Msoy values are between the limits. This reflects the increasing
concentration of the distributions of M,, as n increases.

4.2.13 The following results were generated using Minitab (k1 holds the pro-
portions).
MTB > Random 100000 c1-c20;
SUBC> Poisson 7.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 Cl14 Ci15
Cl6 C17 C18 &
CONT> C19 C20 c21.
MTB > let c22=c21 ge 6.99 and c21 le 7.01
MTB > let kl=mean(c22)
MTB > print k1
Data Display
K1 0.0328400
MTB > Random 100000 C1-c100;
SUBC> Poisson 7.
MTB > RMean C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 C13 Cl4 C15
Cl6 C17 C18 &
CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32
C33 C34 &
CONT> C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48
C49 C50 &
CONT> C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64
C65 C66 &
CONT> C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80
C81 C82 &
CONT> C83 C84 C85 C86 C87 C88 C89 C90 C91 C92 C93 C94 C95 (C96
C97 C98 &
CONT> C99 C100 clO01l.
MTB > let c102=c101 ge 6.99 and c101 le 7.01
MTB > let kl=mean(c102)
MTB > print k1
Data Display
K1 0.0463600
We see that about 3.2% of the Msg values are between the limits, while about
4.6% of the Msyy values are between the limits. This reflects the increasing
concentration of the distributions of M,, as n increases, although it is not highly
concentrated yet.
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Problems

4.2.14 Let P(X,, = n) = 1/n and P(X,, = 0) = 1 —1/n. Then E(X,) =
n(1/n) +0(1 —1/n) = 1. But for any ¢ > 0, P(|X,, — 0| > ¢) < P(X,, =n) =
1/n — 0 as n — oo, so X, — 0 in probability.

4.2.15 | X,,| £ 0if and only if, for any € > 0, P(||X,,| — 0] > €) — 0 as n — oo.
But P([|Xn| = 0] > €) = P(||Xnl| = €) = P(|Xn| > €) = P(|Xn = 0] > ¢), so
this holds if and only if X,, = 0.

4.2.16 This is false. For example, suppose X, = —5 for all n. Then for
0<e<10, P(|X,—5]>¢)=1+0asn— oo, so X,, /5 in probability. On
the other hand, |X,,| =5 for all n, so of course |X,,| — 5 in probability.

4217 If [X, — X| < ¢/2 and |Y;, — Y| < €/2, then |(X,, — X) + (Y, — Y)| <
| X, — X| 4+ |Yn — Y| < e. Hence, the event |(X,, — X) + (Y, —Y)| > €is
contained in the union of two events | X,, — X| > ¢/2 and |Y,, — Y| > ¢/2. From
the assumption, lim, . P(|X, — X| > €) = lim, . P(|Y,, = Y| > ¢) = 0 for
all e > 0.

lim P(|Z, —Z]| >¢€) < lim P(|X,— X|>¢€¢/20r |V, —-Y|>¢/2)

n—oo

< lim [P(|X, — X| > ¢/2) + P([Yy — Y| > ¢/2))]

T n—oo

lim P(|X, — X|>¢/2)+ lim P(|Y, —-Y|>¢/2)=0.

Hence, 7, LNy
Challenges

4.2.18 Fix e. For an arbitrary 1 > 0, there is a number My > 0 such that
P(|X] > Mp) < n. Since f is uniformly continuous on [—2My, 2M)], there is
a number 0 € (0, M) such that |f(z) — f(y)| < € for all z,y € [—2My, 2M))
satisfying |x — y| < 0. Then, the event A, = (|f(X,) — f(X)| > €) can be
separated into three parts AN B, AN B°NC, and AN B°N CS where B =
(|X| > Mp) and C,, = (|X,, — X| < d). It is easy to check AN B°NC, = 0.
Note that P(CS) — 0 as n — oo. Hence, we get

P(If(Xn) — f(X)| > €) = P(Ay N B) + P(A, N BN Cy) + P(A, N BN CE)
< P(B)+ 0+ P(C) < n+ P(C°).

Thus, lim,, 00 P(A4) < n+lim, . P(CS) = . Since we can take n > 0 arbitrar-

ily small, we get limy, oo P(|f(X,,)—f(X)| > €) = 0. Therefore, f(X,,) = f(X).
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4.3 Convergence with Probability 1

Exercises

4.3.1 Note that Z, = Z unless 7 < U < 7+ 1/n?. Hence, if U < 7 then
Z, = Z for all n, so of course Z,, — Z. Also, if U > 7, then Z,, = Z whenever
1/n? <7-U,ie,n>1/y/7T—U, so again Z, — Z. Hence, P(Z, — Z) >
PU#£7=1-PU=17)=1-0=1,1ie., Z, — Z with probability 1.

43210 <y <1 then lim, . y™ = 0. Hence, P(X,, — 0) = P(Y" — 0) >
P(0<Y <1)=1,ie.,Y, — 0 with probability 1.

4.3.3 Since E(W;) = 1/3, by the strong law of large numbers, P((W; + ..
Wyp)/n — 1/3) = 1. But {Wy +---+W,)/n — 1/3} C {In; (W1 + -
Wy)/n < 1/2} ={3n; W1 +---+ W, <n/2}, soalso P(In; Wi +---+ W, <
n/2) = 1.

4.3.4 Since E(Y;) = 2, by the strong law of large numbers, P(L(Y;+...4Y,) —
2) =1 But{"i+--+Y,)/n -2} C{3n; Vi1 +---+Y,)/n > 1} =
{3n; Yi+---+Y,>n}soalso PEn; Y1+ ---+Y,>n)=1.

4.3.5 By subadditivity, P(X,, > X and ¥,, - Y)=1-P(X, A X or Y, 4
Y)>1-P(X, £ X)—PY, AY)=1-0-0=1.

4.3.6

(a) False, e.g., if Z; are continuous, then P(M,, = a) = 0 for any a.

(b) True, by the strong law of large numbers.

(c) True, by the strong law of large numbers (the given property is implied by
the fact that lim, ., A, = m).

(d) False, e.g., if x < m —0.02 and M,, = m for all n, then this will not occur.

4.3.7 The expectation of X; is E(X;) = [p, - Ij37)(2)/4dx = 5. By the strong
law of large numbers,

A+
-+

1 a.s.

Hence, m = 5.

4.3.8 Let X; be the number showing on the ith dice. Then Z,, = X?+---+ X2.
Note that E(X?2) = 25:1 j2-(1/6) = 91/6. By the strong law of large numbers,
91

1 1
Ty =—(X? 4+ X)) B(X?) = —.
" n( 1+ +X5) = E(X7) 6

Hence, m = 91/6.

4.3.9 Let Y,, and Z,, be the number of nickels and dimes showing heads, respec-
tively. Then, X,, = 4Y,,4+5Z,,. By the strong law of large numbers, Y,,/n “3 1/2
and Z,/n “% 1/2. Let A be the event such that Y;,/n — 1/2 on A and B be
the event such that Z,/n — 1/2 on B. Then, P(A) = P(B) = 1. It is easy to
check that X, /n = (4Y,, + 5Z,)/n — 4(1/2) + 5(1/2) = 9/2 on AN B. The
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probability of ANBis P(ANB) =P(A)+P(B)—P(AUB)=1+1-1=1.
Hence, X,,/n “% 9/2. Therefore r = 9/2.

4.3.10 Suppose Y = Y1 =Y =Y3=0=Y; = Y5 = --- and Y5 = 1. Then,
lim, .00 ¥,y = 0 = Y. Hence, Y;, “3 Y. However, P(|Y5 — Y| > |V, - Y]|) =
P(]Ys| > 0) = 1. Hence, P(|]Y5 = Y| > |Ya — Y]|) = 0 doesn’t hold. Any
convergence deals with very large n’s. Hence, we can ignore a finite number of
Y1, ..., Y in convergence for fixed k.

4.3.11

(a) Suppose there is no such m. Then, there is a sequence ny, such that |Z,, —
1/2| > 0.001 and Z,, — c. Then, |c — 1/2| > 0.001. That means Z,, - 1/2.
It contradicts to the strong law of large numbers. Hence, there must exist a
number m such that |Z,, — 1/2| < 0.001 for all n > m.

(b) Suppose the flipping sequence starts with HT. Then Z; = 1/2. So, r = 2.
However, Z3 = 1/3 or Zs = 2/3. Thus, the statement that |Z, — 1/2| < 0.001
for all n > r is false. Usual limit theorems deal with large n. That means we
can ignore the first finite observations.

4.3.12

(a) Since X, =X foralln >1,Y,=(X;1+ -+ X,,)/n=(X+---+X)/n
nX/n = X. Thus lim, .- Y, = X. The probability P(lim, . Y, = y)
P(X =y)is P(X =y) =1/2 for y = 0,1 and otherwise P(X =y) =0.

(b) Suppose there is a number m such that P(lim,, .o Y, =m) =1, ie., P(X =
m) = 1. From part (a), m cannot be 1 because P(X =1) =1/2 < 1. Now m is
not 1. P(lim, oY, =m)=P(X=m)<PX#1)=1-PX=1)=1/2
Hence, there is no m satisfying P(lim, e Y, =m) = 1.

(c) In the law of large numbers, the independence of random variables X1,..., X,
is assumed. If the independence condition is dropped, then the law of large num-
bers may not hold even though each variable is identically distributed.

Computer Exercises

4.3.13 The sample means are converging to 1/5 = .2.

038 —f

08 —

sample means

018 —|

4.3.14 The sample means are converging (slowly) to 7.



94 CHAPTER 4. SAMPLING DISTRIBUTIONS AND LIMITS

sample means
*

sample means

Problems

4.3.16 By countable subadditivity, P(lim, oo Xnr = Wi for all k) = 1 —

4.3.17 Note that x,, — 0 if and only if for all € > 0, |z,, — 0] < € for all but
finitely many n. But “|z, — 0| < €” is the same as “|x,| < €’ is the same as
“||zn| — 0] < €.” Hence, z,, — 0 if and only if |x,| — 0. Thus, P(X,, — 0) =
P(]X,| — 0). Therefore, X,, — 0 with probability 1 if and only if |X,| — 0
with probability 1.

4.3.18 This is false. For example, if X,, = —5 for all n, then P(X,, — 5) =0
but P(|X,| —5)=1.

4.3.19 Let A be the event X,, — X and B be the event Y,, — Y. Then, X “3 X
and Y,, “% Y imply P(A) = P(B) = 1. Let C be the event Z,, — Z. On AN B,
X,—XandY, —»Y. Hence, Z, = X,,+Y, = X+Y =2. Thus, AnNB C C.
The probability of ANBis P(ANB) = P(A)+P(B)—P(AUB)=1+1-1=1.
Therefore, Z, “3 Z.

Challenges

4.3.20 This is false. For example, let U ~ Uniform[0,1]. Let W,. = 0 for all r
andlet X, =0if U #, with X, = 1ifU =r. Then P(X, — 0) = P(U #r) =1,
but P(X, — 0 for all ) = P(U ¢ [0,1]) = 0.

4.3.21 Let S = {1,2,3,...}, with P(s) = 27°. Let X, (s) = 2" for s = n,
otherwise X,,(s) = 0. Then E(X,) = (2")(27") = 1. However, X, (s) = 0
whenever n > s, so P(X,, — 0) = 1.

4.3.22 The continuity of the function f implies f(z,) — f(x) whenever x,, — .
Let A be the event f(X,,) — f(X) and B be the event X,, — X, ie., X,, = X
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on B. Hence, on B, X,, — X implies f(X,) — f(X). Thus, B C A. Then,
P(lim,, o f(X,) = f(X)) = P(A) > P(B) = 1. Therefore, f(X,) %% f(X).

4.4 Convergence in Distribution

Exercises

4.4.1 Herelim,,,o, P(X,, =1) =1/3=P(X =) fori =1,2,3, solim,_,o. P(X,
x) = P(X < z) for all z, so X,, — X in distribution.

4.4.2 We have that lim,, o, P(Y,, = k) = 1/2* 1 for k =0,1,...s0lim, .., P(Y; <
y) =P <y).

4.4.3 Here P(Z, <1)=1,and for 0 < z < 1, P(Z, < 2) = [;(n+ 1)a"dx =
2"t — 0 asn — oco. Also, P(Z < z)=1for z > 1, and 0 for z < 1. Hence,
lim,, o P(Z, < 2) = P(Z < z) for all 2, so Z, — Z in distribution.

444 For 0 < w < 1, PW, < w) = [, (1 +a/n)/(1 +1/2n)dz = (v +
w?/2n)/(1+1/2n) — wasn — oco. Also. P(W < w) = w. Hence, lim,,_,o P(W,,
w) = P(W < w) for all w, so W,, — W in distribution.

445 Let S =Y +Y2+ ...+ Yigoo. Then S has mean 1600/3 and variance
1600/9. Hence,

P(S < 540) = P((S — 1600/3)/1/1600/9 < (540 — 1600/3)/+/1600/9)
~ B((540 — 1600/3)/(40/3)) = ®(1/2) = 1 — ®(—1/2) = 1 — ®(—0.5)
~ 1 —0.3085 = 0.6915.

IN

IA

446 Let S=2Z14+ Zs+ ...+ Zgpp. Then S has mean 900(—5) = —4500 and
variance 900(302/12). Hence,

P(S > —4470) = P((S — (—4500))/+/900(30%/12)

> (—4470 — (—4500))/1/900(30?/12))

~ 1 — ®(—4470 — (—4500))/+/900(302/12))
~1—3(0.11547) = $(—0.11547) ~ &(—0.12) = 0.4522.

4.4.7 Let S = X1+ Xao+...+Xgpo. Then S has mean 800(1—1/4)/(1/4) = 2400
and variance 800(1 — 1/4)/(1/4)? = 9600. Hence,

P(S > 2450) = P((S — 2400)//9600 > (2450 — 2400) /+/9600)

~ 1 — B(2450 — 2400)//9600) ~ 1 — ®(0.51) = B(—0.51) = 0.3050.
4.4.8 Yes, {X,,} converges in distribution to 0, since for x < 0, P(X,, < z) =
®(\/nz) — 0, while for x > 0, P(X,, <z) =®(\/nz) — 1.

4.4.9 B
(a) For 0 <y <1, P(Z <y) = [ 2xde = xz}:g =92
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(b) For 1 <m <n, P(X,, <m/n)=>1", P(X, =1i/n) => 1", 2i/n(n+1) =
m(m +1)/[n(n +1)].

(c) For 0 < y < 1, let m = |ny], the biggest integer not greater than ny.
Since there is no integer in (m,ny), P(m/n < X, < y) < Pm/n < X,, <
(m+1)/n) =0. Thus, P(X, <y) = P(X, <m/n)+ Pim/n < X, <y) =
P(X, < |ny|/n) =m(m+1)/[n(n+1)] where m = |ny].

(d) Let m,, = |ny|. Then, m,/n < ny/n = y and m,/n > (ny — 1)/n =
y —1/n — y. Hence, m, /n — y as n — oo. In part (¢), P(X, <y)=P(X, <
M /1) = My (M, + 1) /[0(n+1)] = (mn /0)((mn/0) + (1/0)) /(1 +1/n) — y* as
n — oo. Therefore, X, Bz

4.4.10 Note that the cdf of Exponential(\) is F(z) = 1 — e * for 2 > 0
otherwise F'(z) = 0. For y > 0, the cdf of Y,, converges to Fy, (y) = P(Y, <
y) = 1 —e /() 1 — e ¥ as n — oo. Hence, Y, 2 Exponential(1).
Therefore, A = 1.

4.4.11 Note that the cdf of Exponential(\) is F(z) = 1 — e * for 2 > 0
otherwise F'(z) = 0. For z > 0, the cdf of Z,, converges to Fz (z) = P(Z, <
z) =1-— (1 — S—j)n — 1 —e73 as n — oo. Hence, Z, LA Exponential(3).
Therefore, A = 3.

4.4.12 The Exponential distribution has mean = 1/\ = 2 and variance =
1/A? = 4. So, if M is the sample mean of n customers, then M ~ N(2, 4/n), so
Z=(M-=2)/\/4/n=/n(M —2)/2~ N(0,1), so P(M < 2.5) = P(y/n(M —
2)/2 < \/n(2.5-2)/2) = P(Z < /n/4). Using Table D.2, we see that if n = 16,
this equals P(Z < 4/4) = P(Z < 1) = 1 - P(Z < —1) = 1 —0.1587 = 0.8413. If
n = 36, this equals P(Z < 6/4) = P(Z < 1.5) = 0.9332. If n = 100, this equals
P(Z <10/4) = P(Z < 2.5) = 0.9938. (It becomes more and more certain, as n
increases.)

4.4.13 The weekly output has mean (20 + 30)/2 = 25, and variance (30 —
20)%/12 = 8.33. So, the yearly output, Y, is approximately normally distributed
with mean 52 x 25 = 1300, and variance 52 x 8.33 = 433, and standard deviation
V433 = 20.8. So, P(Y < 1280) = P((Y — 1300)/20.8 < (1280 — 1300)/20.8) =
P((Y —1300)/20.8 < —0.96) = 0.1685 (using Table D.2), i.e. the probability is
about 17%.

4.4.14 The Gamma distribution has mean o/ = 50, and variance a/6? = 500.
So, the duration of 40 components, X, is approximately normally distributed
with mean 40 x 50 = 2000, and variance 40 x 500 = 20,000, and standard
deviation /20,000 = 141. So, the probability that 40 components will not last
for 6 years is P(X < 6 x 365.25) = P(X < 2191.5) = P((X — 2000)/141 <
(2191.5 — 2000)/141) = P((X —2000)/141 < 1.36) = 0.9131 (using Table D.2).
So, the probability that they will last for 6 years is 1 — 0.9131 = 0.0869, or
about 8.7%.

Computer Exercises
4.4.15 Using Minitab we obtain the following.
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MTB > Random 10000 cl-c20;

SUBC> Exponential .333333333.

MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Ci12 C13 Cl14 C15
Cl6 C17 C18 &

CONT> C19 C20 c21.

MTB > let k2=1/6

MTB > let k3=1/2

MTB > let c22 = c21 ge k2 and c21 le k3

MTB > let kl=mean(c22)

MTB > print k1

Data Display

K1 0.974600

And so we record 97.4% of the averages between 1/6 and 1/2. The central limit

theorem gives the approximation

P(1/6 < May < 1/2)

B (1/6-1/3) (Mo —1/3) _ —(1/21/3)
—P(\@T S VAR SmT)

Moy — 1
= P(—2.2361 < m% <22361)~ P(-2.2361 < Z < 2.2361)

= 3 (2.2361) — ® (—2.2361) = 0.9873 — 0.01270 = 0.9746

and this is close to the observed proportion.

4.4.16 Using Minitab we obtain the following.

MTB > Random 10000 c1-c30;

SUBC> Uniform -20 10.

MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Ci12 C13 Cl14 C15
Cl6 C17 C18 &

CONT> C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 c31.

MTB > let c32=c31 le -5

MTB > let kl=mean(c32)

MTB > print k1

Data Display

K1 0.500500

And so we record 50.0% of the averages less than —5. The central limit theorem

gives the approximation

(M2 +5) < /30 (=5+5)

P(Ms < —5) = P(v/30 )

304/1/12 304/1/12
_ (Mao +5) N _ _
= 13(%%730 i <0)~P(Z<0)=®(0)=.5

and this is close to the observed proportion.

4.4.17 Using Minitab we obtain the following.
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MTB > Random 10000 cl1l-c20;
SUBC> Uniform 0 1.

MTB > Let cl1 = CEIL(loge(cl)/loge(.75))
MTB > Let c2 = CEIL(loge(c2)/loge(.75))
MTB > Let c3 = CEIL(loge(c3)/loge(.75))
MTB > Let c4 = CEIL(loge(c4)/loge(.75))
MTB > Let c5 = CEIL(loge(c5)/l1oge(.75))
MTB > Let c6 = CEIL(loge(c6)/loge(.75))
MTB > Let c7 = CEIL(loge(c7)/loge(.75))
MTB > Let c8 = CEIL(loge(c8)/1oge(.75))
MTB > Let c9 = CEIL(loge(c9)/loge(.75))
MTB > Let c10 = CEIL(loge(cl0)/loge(-75))
MTB > Let cl11 = CEIL(loge(cll)/loge(.75))
MTB > Let c12 = CEIL(loge(cl2)/loge(.75))
MTB > Let cl13 = CEIL(loge(cl3)/loge(-75))
MTB > Let cl14 = CEIL(loge(cl4)/loge(.75))
MTB > Let c15 = CEIL(loge(cl5)/1oge(-75))
MTB > Let cl16 = CEIL(loge(cl6)/l1oge(-75))
MTB > Let c17 = CEIL(loge(cl7)/loge(.75))
MTB > Let c18 = CEIL(loge(cl18)/l1oge(-75))
MTB > Let c19 = CEIL(loge(cl19)/loge(-75))
MTB > Let c20 = CEIL(loge(c20)/1oge(-75))
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C17 C18 &

CONT> C19 C20 c21.

MTB > let c22= c21 ge 2.5 and c21 le 3.3

MTB > let kl=mean(c22)

MTB > print k1

Data Display

K1 0.183700

And so we record 18.4% of the averages between 2.5 and 3.3. The central limit
theorem gives the approximation (mean of Geometric(1/4) is (1 —.25)/.25 = 3
and variance is (1 —.25)/ (.25)% = 12.0

_ (25-3) (Ma —3) (3.3—3)
P(2.5 < My < 3.3) = P(vV20 N @7\@ < \@7@ )
M20 - 1/3)

= P(—0.64550 < \/2_0( < 0.38730) ~ P(—0.64550 < Z < 0.38730)

1/3
= @ (0.38730) — ® (—0.64550) = .6507 — 2593 = 0.3914

and this is not close to the observed proportion because the Geometric(1/4) is
a skewed distribution.

4.4.18 Using Minitab we obtain the following. Note that the histogram looks
a lot like a normal density.
MTB > Random 10000 cl1-c20;
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SUBC> Gamma 4 1.

MTB > Let cl = loge(cl)
MTB > Let c2 = loge(c2)
MTB > Let ¢3 = loge(c3)
MTB > Let c4 = loge(c4d)
MTB > Let c5 = loge(c5)
MTB > Let c6 = loge(c6)
MTB > Let c7 = loge(c7)
MTB > Let c8 = loge(c8)
MTB > Let c9 = loge(c9)
MTB > Let cl10 = loge(cl0)
MTB > Let cl1l = loge(cll)
MTB > Let c12 = loge(cl2)
MTB > Let cl13 = loge(cl3)
MTB > Let cl4 = loge(cl4)
MTB > Let c15 = loge(cl5)
MTB > Let c16 = loge(cl6)
MTB > Let c17 = loge(cl7)
MTB > Let c18 = loge(cl8)
MTB > Let c19 = loge(cl9)
MTB > Let c20 = loge(c20)
MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Cl11 Cl12 C13 C14 C15 Clé
C17 C18 &

CONT> C19 C20 c21.
MTB > Histogram C21;
SUBC> Density;
SUBC> CutPoint;
SUBC> Bar;

SUBC> ScFrame;
SUBC> ScAnnotation.

35 —

30 —|

25 —|

20 —|

Density

15 —f

10 —f

05 —|

00 —|

4.4.19 Using Minitab we obtain the following. Note that the histogram does
not look a lot like a normal density. So a larger sample size is required for the
CLT approximation to apply.

MTB > Random 10000 cl-c20;

SUBC> Binomial 10 .01.

MTB > RMean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Ci6
Cl17 C18 &
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CONT> C19 C20 c21.
MTB > Histogram C21;
SUBC> Density;
SUBC> CutPoint;
SUBC> Bar;

SUBC> ScFrame;
SUBC> ScAnnotation.

Problems

4.4.20 For example, let Z;, ~ Normal(j,1/n), and let P(Y = i) = a; for
positive integers ¢, with Y independent of the {Z;}. Then let X,, = Zy,,, i.e.,
X, = Zjn whenever Y = j. Then X, is absolutely continuous since each Z; ,
is. Also, if P(X =) =0, then P(X,, <) =) ,a; P(Zjn <) — >, ,0a;as
n — o0, so X,, — X in distribution.

4.4.21 Here P(X,, <) = {>,_,.. f(i/n)} / {3, f(i/n)}. We recognize this
as a Riemann sum (from Calculus) for the integral [ f(x)dz. Hence, since f is
continuous, P(X,, < z) — [ f(x)dx = P(X <), so X,, — X in distribution.

4.4.22 We have that E (X?) = 0, so (putting y = 2?/2,2 = /2y, dov =
dy/v/2y)

Var (XS) :E(XG) :/Zﬂcﬁ ;Wer/de:2/owx6meI2/2dx
- [ (V) = I [Tpreray - Zrap
:%gg%ra/z):ls

Therefore,
P(M, < m) :P(\/E(Mn—o) < ﬁ(m—o)) ~ P(Z < \/ﬁ(m—o))

where Z ~ N(0,1).
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4.4.23 We have that

E(Y)_/Olcos(QTru) dy = —— 1

Var(Y) = E (Y?) = /01 cos? (27u) du

"1 4
:/ +cos(7ru)du_
0

1 |
2 4

1 sin (47w
‘ sin {47

47

Therefore,

P(M, <m):P(ﬁ(M"_O) Yy
" 1/4 1/4 1/4

where Z ~ N(0,1).
Computer Problems

4.4.24 Using Minitab we obtain the following results.

MTB > Random 10000 c1;

SUBC> Normal 0.0 1.0.

MTB let c2=c1**3

MTB let c3=c2 le 1

MTB let kl=mean(c3)

MTB let k2=3*sqrt(kl1*(1-k1)/10000)

MTB let k3=k1-k2

MTB let k4=k1+k2

MTB print k1 k3 k4

Data Display

K1 0.837500

K3 0.826433

K4 0.848567

So our estimate of P(Y < 1) is 0.837500, and the true value of this quantity
lies in the interval (0.826433,0.848567) with virtual certainty. So we know the
value of P(Y < 1) with considerable accuracy. This probability can be evaluated
exactly as P(Y <1)=P(X3<1)=P(X <1)=®(1) = 0.8413.

VVVVVVYV

4.4.25 Using Minitab we obtain the following results.
MTB > Random 10000 c1;

SUBC> Normal 0.0 1.0.

MTB > let c2=cos(cl**3)

MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(10000)

MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display
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K1 0.588037
K3 0.569203
K4 0.606872

So our estimate of E(Y) is 0.588037 and the true value of this quantity lies in
the interval (0.569203,0.606872) with virtual certainty.

Challenges

4.4.26 If X,, — C in distribution, then P(X, < z) — 0 for z < C, and
P(X, <z) — 1for x > C. Then for all e > 0, P(|X,, — C| > €¢) = P(X,, >
C+e)+P(X,<C-¢)=1-P(X, <C+e)+P(X, <C—-¢) —-1-140=0
as n — 0o. Hence, X,, — C in probability.

4.5 Monte Carlo Approximations

Exercises

4.5.1 This integral equals v/27E(cos?(Z)), where Z ~ N(0,1). Hence, let {U;}
be i.i.d. ~ Uniform[(), 1] for 1 < ) < 2n. Let Zl = 21H(1/U21‘,1) COS(QTFUQi), SO
that Z; ~ N(0,1). Then let I = (v2r/n)Y 1 cos?(Z;). For large n, I is a
good approximation to the integral.

4.5.2 Note that this sum equals E(Z%), where Z ~ Bernoulli(2/3). Hence, let
{Ui;} be iid. Uniform[0,1] for 1 < i <nand 1 < j < m. Let B;; = 1 if
Ui; < 2/3, otherwise B;; = 0, so that B;; ~ Bernoulli(2/3). Let Z; = B;; +
Bis+ ...+ Bjm, so that Z; ~ Binomial(m,2/3). Then let S = (1/n) Y (Z;)°.
For large n, S is a good approximation to the sum.

4.5.3 This integral equals (1/5)E(e~44"), where Z ~ Exponential(5). Hence,
let {U;} be i.i.d. ~ Uniform[0,1] for 1 < ¢ < n. Let Z; = In(1/U;) /5, so that
Z; ~ Exponential(5). Then let I = (1/5n) Y 1, e~ 1427 For large n, I is a good
approximation to the integral.

4.5.4 M,, has mean A and variance A/n. So the interval M, £3,/A/n will contain
the true value of A with virtual certainty. But this implies that M,, +3,/10/n

will contain the true value of A with virtual certainty. Therefore, the error
criterion will be satisfied whenever 3,/10/n < .1 or n > 9(10) /(.1)? = 9000.0.

4.5.5 This sum is approximately equal to €>E(sin(Z?)), where Z ~ Poisson(5).
Hence, let Z1,Zs,. .., Zy, be ii.d. with distribution Poisson(5) (perhaps gener-
ated using computer software). Then let S = (e5/n) Y1, sin(Z?2). For large n,
S is a good approximation to the sum.

4.5.6 This integral is equal to 10E(e=2"), where Z ~ Uniform[0, 10]. Hence,
let {U;} be iid. ~ Uniform[0,1] for 1 < ¢ < n. Let Z; = 10U;, so that
Z; ~ Uniform[0,10]. Then let I = (10/n) ", e~%!. For large n, I is a good
approximation to the integral.
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4.5.7 We treat (M, — 3S,,/v/n, M, + 3S,,/y/n) as a virtually certain interval.
Hence, (—5—3-17/4/2000, —5+43-17/+4/2000) = (—6.1404, —3.8596) is a virtually
certain interval to contain the true mean p.

4.5.8
N\ 1/2
(a) The standard error is o, = (L(Z?:l(Xi - X)2)> = ((15400 — 62 x

n—1
400)/399)'/? = 1.5831.
(b) Since M,, = 6 and S,, = 1.5831, a virtually certain interval to contain the
true mean p is given by (M,, — 3S,,/v/n, M,, + 35, /+/n) = (5.7625,6.2375).

4.5.9 The computation is similar to Example 4.5.7. Since M,, = 400/1000 = 0.4,
the interval

(M, — 3v/M, (1 — My,)/n, M, + 3y/M,(1 — M,)/n) = (0.3535,0.4465)

is a virtually certain interval to contain 6.

4.5.10

(a) Since each experiment follows Bernoulli(#) distribution, the total number of
successes among the n experiments has a Binomial(n, §) distribution. Thus, T' =
nY ~ Binomial(n, ). By noting that Var(T) = nf(1 — ), we have Var(Y) =
Var(T/n) = Var(T)/n? = 6(1 — ) /n.

(b) Since Var(Y) =n="1(0 — 6?) = n=1(1/4 — (6 — 1/2)?), the variance of Y has
the maximum 1/(4n) at 6 = 1/2.

(¢) In part (b), 1/(4n) is the largest possible value of Var(Y') when 6 = 1/2.
(d) We find the smallest n such that maxg<p<1 Var(Y) < 0.01. Since
maxg<g<1Var(Y) = 1/(4n), the inequality becomes 1/(4n) < 0.01. It solves
n > 1/(0.04) = 25. Hence, n = 26 is the smallest integer satisfying Var(Y) <
0.01 for all 0 < 0 < 1.

4511
(a) The constant C' must satisfy [p, [p, f(2,y)dzdy = 1 to make f a density.
This equation gives

1 1 1 1
1=/ / Cg(w,y)dwdy=0/ / g(z,y)dxdy.
0 0 0 0

Thus, C = [fol fol g(x,y)da:dy]_l. Hence, the expectation of X is

I Iy wg(w,y)dﬂcdy’
I3 Jo g, y)dzdy

(b) We approximate denominator and numerator at the same time. We generate
X,’s from a density proportional to 22 and Y;’s from a density proportional to
y3. Since [juP"ldu = zP/p for 0 < < 1 and p > 1, the densities are
fx(z) =3z%for 0 < = < 1, otherwise fx(z) =0, and fy(y) = 4y> for 0 <y < 1
and otherwise fy(y) = 0. Using the inverse cdf functions F5'(u) = u!/3 and
Fy ' (v) = v/4, random variables X,’s and Y;’s are generated. A Monte Carlo
algorithm to approximate E(X) is described below.

EX) = /01 /01 zfxy(z,y)dedy = 0/01 /01 g(z,y)dzdy =
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1. Select a large positive integer n.
2. Obtain U;,V; ~ Uniform(0,1], independently for i=1,...,n
Set X; = (U;)Y/3 and Y; = (V;)V/* for i=1,...,n

- W

Set D; = sm(X Y;) cos(vX;Y;) exp(X2 +Y;)/12 and N; = X; - D; for
i=1,...,n

5. Estimate E(X) by M, = N/D= (N1 +---+ N,)/(D1 +---+ Dy,)-

4512
(a) The density function of X and Y™ are Ijg5(x)/5 and Ijg 4(y)/4. Hence,

I—// ﬂcydydﬂc—//QOgﬂcy 04]() [05]()dﬂc

= E[209(X,Y)).

(b) A Monte Carlo algorithm to approximate I = 20E[20g(X,Y)] is described
below.

1. Select a large positive integer n.
2. Obtain U;,V; ~ Uniform(0,1], independently for i=1,...,n
3. Set X;=5U; and Y; =4V, for i=1,...,n
4. Set T; = g(X;,Y;) for i=1,...,n
5. Estimate I by M, = 20T =20(T, +---+T,)/n.
45.13

(a) The density of X and Y are Ijg 1)(z) and Ijg o)(y)e™¥. The integration J
becomes

// xydyda:—// e¥ h(x,y) Ij0,00)(y)e ¥ dy Ijo 11 () da

= Ele"h(X,Y)].
(b) A Monte Carlo algorithm to approximate J is given below.
1. Select a large positive integer n.
2. Obtain U;,V; ~ Uniform|0,1], independently for i=1,...,n
3.8t X;=U; and V;=—InV; for i=1,...,n
4. Set T; =¥  h(X;,Y;) for i=1,...,n
5. Estimate J by M, =T = (Ty +---+T,)/n-
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(c) The density of Exponential(5) is Ij,c)(y)5e %Y. The integration J becomes

/ | e hlen) T )5 dy ) d
= E[¢*Yh(X,Y))].
(d) A Monte Carlo algorithm to approximate J is given below.
1. Select a large positive integer n.
2. Obtain U;, V; ~ Uniform[0,1], independently for i=1,...,n
Set X;=U; and ¥V; =—5"'InV; for i=1,...,n
Set W; =eYih(X,,Y;) for i=1,...,n

oo W

Estimate J by M, =W = (W +---+W,,)/n.

(e) Both Monte Carlo algorithms in parts (b) and (d) converge to J. Between
them, we would prefer the algorithm that converges faster than the other.
Hence, the algorithm having smaller variance is better. Thus, compute the
sample variances 6% and &%,V of T,..., T, and Wi, ..., W,. Then, compare 6%

and 63, .
Computer Exercises

4.5.14 Using Minitab we obtain the following results.
MTB > Random 100000 c1;

SUBC> Uniform 0.0 1.0.

MTB > let c2=cos(cl**3)*sin(cl**4)

MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(100000)

MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 0.147770

K3 0.146163

K4 0.149378

So the estimate is 0.147770, and the true value of the integral lies in
(0.146163,0.149378) with virtual certainty.

4.5.15 Using Minitab we obtain the following results.
MTB > Random 100000 c1;

SUBC> Exponential .25.

MTB > let c2=cos(cl**4)

MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(100000)

MTB > let k3=k1-3*k2
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MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 0.973201

K3 0.971596

K4 0.974806

So the estimate is 0.973201, and the true value of the integral lies in
(0.971596, 0.974806) with virtual certainty.

4.5.16 Using Minitab we obtain the following results.
MTB > Random 100000 c1;
SUBC> Uniform 0.0 1.0.

MTB > let c2=Floor(loge(cl)/loge(4/5))
MTB > let c2=(5/4)*(c2**2 +3)**(-5)
MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(100000)
MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 0.00124565

K3 0.00122658

K4 0.00126473

So the estimate is 0.00124565, and the true value of the integral lies in
(0.00122658,0.00126473) with virtual certainty.

4.5.17 Using Minitab we obtain the following results.
MTB > Random 100000 c1;

SUBC> Normal 0.0 1.0.

MTB let c2=c1**2-3*cl+2

MTB let c3=c2ge O

MTB let kl=mean(c3)

MTB let k2=sqrt(k1*(1-k1))/sqrt(100000)
MTB let k3=k1-3*k2

MTB let k4=k1+3*k2

MTB print k1 k3 k4

Data Display

K1 0.863930

K3 0.860677

K4 0.867183

So the estimate is 0.863930, and the true value of the integral lies in
(0.860677,0.867183) with virtual certainty.

Problems

4.5.18 This requires that we determine n so that 3./M, (1 — M,)/n < 0.

We have that 3\/M, (1 — M,)/n < 3,/(1/2)(1—1/2) /n < § if and only if
n>9/ (4(52) )

VVVVVYVYV
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4.5.19 This requires that we determine n so that 300//n < J or n > 903 /5.
4.5.20

(a) Here for 0 < z <0, P(Z, < z) = (2/6)". Hence, X(;) has density function
f(z) =nz""10~". Then

(% 6 —non+1
E(Xm)) = / 2" 0" dz = nﬁ_”/ 2dz = nt—"0 = nf
0 0

n+1 n+1
and so F(Z,) = 0. Then

2 .0
Var(Z,) = E(Z2) — 0* = <n + 1> / 22nz" 197" dz — 62
0

n

2 6 2
—nh" (nl‘l) / Zn+1dz_92: nj_2 <n;L|'1> 9—n9n+2_92
0

_ (7’L + 1)2 1 92 . 92

S \n(n+2) n(n+2)
(b) By Chebyshev’s inequality we have that P(|Z, — 0] > €) < 62/ (€n (n +2))
— 0 as n — oo.
(c) We have that E(2M,) = 6 and Var(2M,,) = 46*/(12n) = 6%/(3n). Now
n(n+2) > 3n for every n, so Var(2M,,) > Var(Z,). This implies that the
estimator Z, will be more accurate as the intervals given by the estimator
plus/minus three standard deviations will be shorter.

4.5.21
When X ~ f we have that E (232 b glz) ¢ z)dr = > g(z) dz, so
f(X) a

o 7!
(b) When X ~ f then E (; §§; e

M g
/bg; dx—(lbg(x)dx>}

(d) Put ¢(x) |/f |g(z)| dx. We have that

Var(Mn(f)):%{ f(( ))dx—</ g(m)dm) }
b 2 b ’

2 BB @) do = [} 48 da, so

—
=y
QU
5
~
—
o
)
=
G
QU
8
—
—
%b
QS | v
—
K
- S~—
U
U
8 \H_/
~
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dx = f: W dx + 1, and this is minimized by taking f =

¢q and the minimum variance is ( f: lg(x)] da:) ( f g(z da:) ’ . This is 0 when
g is nonnegative.

The optimum importance sampler is not feasible because it requires that we
be able to compute f: |g(x)| dz, which is typically at least as hard to evaluate
as the original 1ntegral

(¢) We have that J2 (P (@) f(2)) do < [7 (|g(x)] cf (x)/f(x)) dz =

cfa lg(z)| dz < oco.
(f) The standard error of M, (f) is given by

o\ Y 1/2
_) L —~ g% (Xi) 1 ¢ 9(Xi)
) {”—1 2 pm " \n e rm)
divided by /n. The CLT then implies that the true value of the integral is in
the interval M, (f) = 3S/y/n with virtual certainty when n is large.

Computer Problems

4.5.22 Using Minitab we obtain the following results.
MTB > Random 100000 c1;

SUBC> Normal 1 2.

MTB > Random 100000 c2;

SUBC> Gamma 1 1.

MTB > let cl=cl**3
MTB > let c2=c2**3
MTB > let c3=cl+c2
MTB > let c4=c3 le 3
MTB > let kl=mean(c4)
MTB > let k2=sqrt(kl1*(1-k1))/sqrt(100000)
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k1 k3 k4
Data Display

K1 0.451620

K3 0.446899

K4 0.456341

So the estimate is 0.451620, and the true value of the probability lies in
(0.446899, 0.456341) with virtual certainty.

By Problem 4.5.18 we must have n > 9/ (4 (.01)2) = 22500.0.

4.5.23 Using Minitab we obtain the following results.
MTB > Random 100000 c1;

SUBC> Normal 1 2.

MTB > Random 100000 c2;
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SUBC> Gamma 1 1.

MTB > let cl=cl1**3

MTB > let c2=c2**3

MTB > let c3=cl+c2

MTB > let kl=mean(c3)

MTB > let k2=stdev(c3)/sqrt(100000)
MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 18.9665

K3 18.5143

K4 19.4186

So the estimate is 18.9665, and the true value of the expectation lies in
(18.5143,19.4186) with virtual certainty.

4.5.24 Using Minitab we obtain the following results for the algorithm based
on generating from the Exponential(5) distribution.
MTB > Random 100000 c1;
SUBC> Exponential .2.
MTB > let c2=(exp(-14*cl*cl))/4
MTB > let kl=mean(c2)
MTB > let k2=stdev(c2)/sqrt(100000)
MTB > print k1 k2
Data Display
K1 0.159487
K2 0.000274517
Using Minitab we obtain the following results for the algorithm based on
generating from the N(0,1/7) distribution.
MTB > let kl=sqrt(1/7)
MTB > print k1
Data Display
K1 0.377964
MTB > let k2=kl*sqrt(2*3.1415926)
MTB > Random 100000 c1;
SUBC> Normal 0 .377964.

MTB > let c2=k2*exp(-5*cl)

MTB > let c3=cl1>0

MTB > let c2=c2*c3

MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(100000)
MTB > print k1 k2

Data Display

K1 0.165965

K2 0.000788127
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Notice that while the estimates 0.159487 and 0.165965 are similar, the stan-
dard error for the Exponential(5) algorithm is 0.000274517 and the standard
error for the N(0,1/7) algorithm is 0.000788127. So the Exponential(5) algo-
rithm is substantially more accurate.

Challenges

4.5.25

(a) Let D and A be as in the hint, and let L be the distance between the lines.
Then D ~ Uniform[0, L], and A ~ Uniform[0, 7]. Also, the needle will touch
the line just below it if and only if Lsin(A) > D. This happens with probability

(1/L) /OL(l/W) /OﬂILsin(A)ZD dAdD = (1/x) /Oﬂ(l/L) /OLIDgLsin(A) dDdA

— (1/7) /Oﬂ(l/L)(Lsin(A)) dA = (1/7) /Oﬂ sin(A) dA
= (1/7m)[— cos(m) + cos(0)] = 2/7.

(b) Repeat the experiment a large number N of times. Let M be the number
of times the needle is touching a line. Then by the strong law of large numbers,
for large N, we should have M/N = 2/x, so that m ~ 2N/M. Hence, for large
N, the quantity 2N/M is a good Monte Carlo estimate of 7.

4.5.26 Let I = f:g(ﬂc)d:r and J = fab lg(z)|dz.
(a) In Problem 4.5.21, we have shown that Var(M,,(f)) =n~! [f x)dr—

I?]. Hence, the minimizer of the variance Var(M,, (f )) also minimizes fa g*(z)/f()
dz. Define a density h by h(z) = |g(z)|/J. Then, g*(z) = J? h*(z) and

") [P R) s [P h(e) N 2
’ ?f(x) dﬂc—/a Tx)dx—J /a (m— )f(:r)dﬂc—i-J.

Hence, the variance of M,,(f) is minimized when f(z) = ( ( )| / f lg(v)|dy.

If g(z) > 0 on (a,b) or g(z) <0 on (a,b), then |I| = |f g(z f x)dr =
J. Hence, the minimum variance of M,,(f) becomes Var( ( ) = _1(J2 —
?) =0,

(b) Suppose g(z) > 0 on (a,b). Since it contains the target value, the optimal

importance sampler given by f(z) = g(x)/I is unrealistic where I = f: g(x)dx
is the target value.

4.6 Normal Distribution Theory

Exercises
4.6.1

(a) U ~ N(1(3) — 5(=8), 12(22) + 52(5%)) = N(44, 629). V ~ N(—6(3) +
C(-8), 62(22) + C2%(5%)) = N(—18 — 8C, 144 + 25C?).
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(b) Cov(U,V) = (1)(—6)(2?) + (—5)(C)(5%) = —24 — 125C. Hence, U and V
are independent if and only if Cov(U, V) = 0 if and only if C' = —24/125.

4.6.2
(a) Z ~ Normal(4(3) — (1/3)(=7), 4%(5) + (1/3)%(2)) = Normal(43/3, 722/9).
(a) Cov(X,Z) =4 Var(X) = 20.

4630, =1/V5. Co=-3.C3=1//2. C4=17. C5=2.

4.6.4 Since X ~ x?%(n), we can find Z1,...,Z, ~ N(0,1), which are i.i.d., with
X =(Z1)*+...4(Z,)% Then X +Y? = (Z1)>+ ...+ (Z,)* + Y2 ~ X*(n+1)
since it is the sum of squares of n + 1 independent standard normal random
variables.

4.6.5 Since X ~ x?(n) and Y ~ x%(m), we can find Z1,..., Z,, We,..., Wy, ~
N(0,1), which are i.i.d., with X = (Z1)? + ...+ (Zp)? and Y = (W1)? +... +
(Wo)2 Then X +Y = (Z1)2 + ...+ (Z)2 + (W1)? + ...+ (Wi)? ~ x3(n+m)
since it is the sum of squares of n + m independent standard normal random
variables.

4.6.6 C = (1/n)/(1/3n) = 3.

4.6.7 C=1/(1/y/n) = /n.

468 C1=./2/5. Co=-3.C3=1.0C,=T7. C5=1. Cg = 1.
4690, =2/5.0y=-3.C3=2.Cy=7.05=2 Csg=1. Cr=1.

4.6.10
(a) Since X; has a standard normal distribution, (X7)? has a chi-squared dis-
tribution with 1 degree of freedom.
(b) Here (X3)? and (X5)? each have a chi-squared distribution with 1 degree of
freedom, and they are independent, so their sum has a chi-squared distribution
with 2 degrees of freedom.
(c) Here (X20)? + (X30)? + (X40)? has a chi-squared distribution with 3 de-
grees of freedom, and Xi( is standard normal, and they are independent, so
X10/+/[(X20)2 + (X30)2 + (X40)2]/3 has a ¢t distribution with 3 degrees of free-
dom.
(d) Here (X10)? has a chi-squared distribution with 1 degree of freedom, and
(X20)? + (X30)% + (X40)? has a chi-squared distribution with 3 degrees of free-
dom, and they are independent, so (X10)?/[((X20)? + (X30)? + (X40)?)/3] =
3(X10)? /[(X20)? 4 (X30)% 4 (X40)?] has an F distribution with 1 and 3 degrees
of freedom. (e) Here (X1)%+ (X2)?+-- -+ (X70)? has a chi-squared distribution
with 70 degrees of freedom, and (X71)? + (X72)2 + -+ + (X100)? has a chi-
squared distribution with 30 degrees of freedom, and they are independent, so
[(X1)°+(X2)?+-4+(X70)%]/70  _ 30 _(X1)°+(X2)>+-+(X70)?

(X717 (Xra )7 F - (X100)71/30 = 70 (X71) 7+ (Xra) 7 F—F(Xagg)? 128 an I7 distribution

with 70 and 30 degrees of freedom.

4.6.11

(a) We know that (n —1)S?/0? has a chi-squared distribution with n — 1 de-
grees of freedom. Also, X — p has a normal distribution with mean 0 and
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variance o2/n, so \/n/a2(X — p) has a standard normal distribution. Hence,

[Vn/o?(X — p)] /\/(n —1)5%/0%*(n—1) = [yn(X — p)]/V/S? has a t dis-
tribution with n — 1 degrees of freedom. Hence, m = n — 1 = 60, and
K =\/n=+61=781.

(b) According to text Table D.4, since Y has a ¢ distribution with 60 degrees of
freedom, P(Y < 1.671) = 0.95, so P(Y > 1.671) = 0.05, so y = 1.671.

(c) Here y/n/02(X — p) has a standard normal distribution, and (n — 1)52/0?
has a chi-squared distribution with n — 1 degrees of freedom, and they are

- b
independent. Hence, the quantity W = ([n_nl/){;i(/); /’(31]_/11) = n(X — u)?/S?% has

an F distribution with 1 and n — 1 degrees of freedom. Hence, a = n = 61, and
b=1,and c=n—1=060.

(d) According to text Table D.5, P(W < 4.00) = 0.95, so P(W > 4.00) = 0.05,
so w = 4.00.

4.6.12

(a) Since D; ~ N(40,5%), D ~ N(40,52/20) = N(40,1.25), a normal distribu-
tion with mean 40 and variance 1.25.

(b) Since C; ~ N(45,8%), C ~ N(45,8%/30) = N(45,2.13), a normal distribu-
tion with mean 45 and variance 2.13.

(c) Since C' ~ N(45,2.13) and D ~ N(40,1.25), independent, it follows that
Z=C—D ~ N(45—40, 2.13 + 1.25) = N(5, 3.38). (d) P(C < D) = P(Z <
0)=P(Z-5)/v3.38 < (0—-5)//3.38) = P((Z—5)/v/3.38 < —2.72) = 0.0033
(using text Table D.2). (e) Here D; ~ N(40,5%), so (n — 1)5?/0? = U/5? has
a chi-squared distribution with n — 1 = 19 degrees of freedom. Hence, P(U >
633.25) = P((U/5%) > (633.25/5%)) = P((U/5%) > 25.33) = 1 — P((U/5%) <
25.33) =1 —0.85 = 0.15, using text Table D.3.

Problems

4.6.13

(a) Note that P(X < z) = P(X > —2) = P(—X < z) = ®(z). Hence,
P(Z<2)=P(XY <2)=P(XY <2 Y=1)4+PXY <2z Y=-1) =
PX<2 Y=1)+P(X<zY=-1)=PX<2)PY =1)+P(—X <
DP(Y = —1) = 3(2)P(Y = 1) + ®(2)P(Y = —1) = &(2), s0 Z ~ N(0,1)

(b) Cov(X,Z) = E(XZ) = E(X(XY)) = E(X?)E(Y) = (1)(0) = 0.

(c) For example, P(X < —10, Z < —10) = P(X < —10, Y =1) = &(-10)/2,

)
while P(X < —10)P(Z < —10) = ®(-10)
independent.

(d) Here X and Z do not arise as linear combinations of the same collection of
independent normal random variables.

4.6.14 We see that fz(—2) = T((n+1)/2)(1+(—2)%/n)~"+tD/2/T(n/2)/mn =
D((n+1)/2)(1 + 22/n)~(*tV/2)T(n/2)\/7n = fz(z). Then using the substi-
tution s = —¢, we have P(Z < —x) = [ fz(t)dt = — [ fz(—s)(—ds) =
[Z fz(s)ds = P(Z > x).
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4.6.15 If X,, ~ F(n,2n), then we can find X3,..., X3, i.i.d. ~ N(0,1), with
Xo=((X1)?2+ ...+ (X)?)/n)/((Xpnt1)? + ...+ (X32)%)/2n). But asn —
o0, by the strong law of large numbers, since E((X;)?) = 1, (X1)> +... +
(X)?)/n — 1 ((Xps1)? + ...+ (X3,)%)/2n — 1 with probability 1. Hence,
X, — 1/1 =1 with probability 1, and hence also in probability.

4.6.16 The Gamma(c/2, 1/2) distribution has density function

g(x) = (1/2)*/2x*/2=1e=%/2 /T (a/2). By inspection, g(z) = f(z), i.e., the x*(a)
distribution corresponds to the Gamma(a/2, 1/2) distribution and is thus a
well-defined probability distribution on (0, 00).

4.6.17 Just replace n by a throughout in the proof of Theorem 4.6.7.
4.6.18 Just replace n by a throughout in the proof of Theorem 4.6.9.

4.6.19 When « > 1, we have that

a+1

o ANER 200 x? —e |

—00

=0.

When a > 2 we can write (using X ~ ¢ («) implies that Y = X? ~ F (1, «))

2y _ F(L‘Z—_a) o OO% w ofl w

i o A
CT(HR) e s
“rye ), e
T e s NP s N
_r(é)r(%)o‘/o <a—2v) ( oz—QU) .
() TETER) 11 e
T8 (55 Zap- 1t a3

4.6.20 Making the transformation v = (a (8 — 2) /8 (o + 2)) u, we have that

F—ﬁ < fq \ T a\ % a
- it (6 () g
efe > - ! % 4
b [ (55T () g
() prCeRIT () s ap s
rgr(s) e r(=r)  oUmAR e
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=57 2% g \ T a\ 7 a
st oy G [ 3™ (5
(=) (@)2”“74)?(%4)_(@)2 (0/2) ((0/2)+1)
rgr(4) \e r(=2) a) ((B-2)/2)(B-4)/2)
Therefore,

_(BY (@(a+2)
Vo= (2) 5255 527

= i ! -2)—a(f— =
S w270 {(@+2)(B-2)—a(B-4)}
Challenges

4.6.21 Suppose that 0 < v < 1. We have that

a+1
S 2\ 2 oo 2\ 1 2
/x(l—i—x—) de/ x(l—l—x—) dx_gln(1+x—>
0 o 0 o 2 o

_atl
2

and, similarly, ffooﬂc (1 + %) dx = —oo, which implies that the mean

26 (@+5-2)
a(B—2)"(B—4)

00
=0
0

does not exist.
Consider now the second moment. Since X ~ ¢ (a) implies that ¥ = X2 ~
F (1,a), we have that

Now if 0 < a < 2, we have that

/ u® (1+ u)_% du > / u? (1+ u)_% du.
0 0

1 _1
2 2

Since lim, oo u? (1 +u)” 2 = 1, we have that u? (1 4 u)
fied € > 0 whenever u > c.. Therefore,

> 1 — e for a speci-

/ u? (1—|—u)_%du2/ u? (1—|—u)_%du
0 ce

> (1—6)/00(1+u)1du:(1—6) n (14 )| = oo.
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Obviously, the variance is undefined when the mean does not exist, as when
0 < a <1, and the above shows that it is infinite when 1 < o < 2.

4.6.22 We use induction on n. For n = 1 both sides are 0, so the equation
holds. Assume now that it holds for some Value of n. We shall prove that
it holds for n + 1. Multiplying through by o2, it suffices to take o = 1. Let
Xm = (1/m)(X1+...+X,,) for any m. Then Xn+1 (nXp+Xni1)/(n+1), s
that X, 41 — X, = (Xn+1 X )/(n+1) Hence, for 1 <i <n, (X; — Xp11)? =
(Xi_Xn‘F(Xn_anl)) (X -X ) (X Xn+1) +2(X -X )(X Xn+1)
Now, > (X; — X,,)? equals the right-hand side of (4.7.1) by the induction
assumption. Also, > 7" (X, — Xny1)? = n(Xn — Xny1)? = (n/(n+1)%)(X,, —
K1) Also, S0 (X~ Xa) (X — Kn) = (K — K1) D0y (X = Xp) = 0
by definition of X,,. Hence, Z”H(X —X, ) equals the right-hand side of (4.7.1)
plus (X, — Xy, 41)? plus (X1 — Xpg1)?. But (n/(n+1)%)(X,, — Xpp1)? +
(Xnt1 = Xng1)? = (n/(n + D*)((A/n) (X1 + ... + Xn) = Xnp1)? + (Xnga —
1/ (n+ 1)) X1+ + Xor1)?2 = U/n(n+ DH((X1 + ...+ Xp) —nXni1)? +
(1/(n+1))2(X1+...+ Xpp1—(n+ D) Xp1)? = 1 /nn+ D)) (X1 +. ..+ X)) —
nXa (14 DR+ o+ X = nXin)? = (1/n(n+ 1) + (10 +
1))?)(X; + + X, —nXni1)? = (l/n(n +I)(X1+ .+ X, X)) =
(X1 +. —nXyt1)//n(n+1)% Hence, Y Jrl(X X, )2 equals the
right- hand 51de of (4.7.1) plus (X1+...+ X, —nX,41)/+/n(n + 1)2. The result
follows by induction.






Chapter 5

Statistical Inference

5.1 Why Do We Need Statistics?

Exercises

5.1.1 The mean survival times for the control group and the treatment group
are 93.2 days and 356.2 days respectively. As we can see, there is a big difference
between the two means, which might suggest that the treatment is indeed effec-
tive, but we cannot base our conclusions about the effectiveness of the treatment
based only on these numbers. We have to consider sampling variability as well.

5.1.2 In the control group there are two unusual observations, namely, obser-
vations 11 and 30, and these tend to make the mean for this group much larger.
In the treatment group there would not appear to be any unusual observations.

5.1.3 For those who are still alive, their survival times will be longer than the
recorded values, so these data values are incomplete.

5.1.4 We could construct a probability distribution based on the database
of marks. For example, recording the proportion of students receiving marks
greater than 80, etc. Then for a student randomly selected from the database,
this proportion is the probability that the student will have a mark greater than
80.

5.1.5 We use the sample average £ = —0.1375. We base this on the weak law
of large numbers because we know that Z will be close to g when n is large.

5.1.6 We could get ages of all male students at the college from the database.
Since we can then compute the average age exactly, there are no uncertainties.
This means we don’t need any statistical methodology.

5.1.7 We use the difference T — 3 of the sample averages Z and . We know
that z and y will be close to p1 and e as m and n are large based on the weak
law of large numbers. But if m or n is small, the values of Z or § may not be
close to w1 or s respectively.
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5.1.8 We estimate A by 1/Z. The weak law of large numbers guarantees Z is
close to the expected value of X, E(X) = 1/A. Hence, the reciprocal of Z is
also close to A. If A is very large, or 1/) is very small, then Z is also very small
value. So a small change of T could make large difference in the result. That
means if A is very large, then a huge number of observations are required to
determine .

Problems

5.1.9 We note that patients who didn’t receive transplants could have been
much unhealthier than those that did. It is not clear what factors influenced
which group a patient wound up in and these factors could have a profound
impact on the survival times.

5.1.10 We get an approximate value of P(C') by dividing the number of sample
values lying in the set C' by the sample size, i.e., P(C) is determined by Ic =
n~t 3" Io(X;) for a sample X1, ..., X,. The weak law of large numbers (see
Theorem 4.2.1) guarantees that I¢ is close to P(C) when the sample size is big.
However, the accuracy depends on the size of P(C). Consider the central limit
theorem (see Theorem 4.4.3), (I — P(C))/(P(C)(1 — P(C))/n)'/? 5 N(0,1).
When P(C) is very close to 0 or 1, a small change of I could lead to a large
difference from the value P(C).

Computer Problems

5.1.11 A good method would be to generate a large sample (say n = 1000) from
the N(0,1) distribution, calculate the values of Y, and then record the empirical
distribution function of Y. This allows us to estimate the probability P (Y € A)
for any interval A. For example, the following Minitab commands do this and
record the estimate .021 for P (Y € (1,2)). As we know from the weak law of
large numbers, the proportion of Y values in this interval will converge to this
probability as n — oo.

MTB > random 1000 cl;

SUBC> normal 0 1.

MTB > let c2=cl1**4+2*c1**3-3
MTB > let c3=c2>1 and c2<2
MTB > let kl=mean(c3)

MTB > print k1

Data Display

K1 0.0210000

Statistical methodology is relevant to determine if n is large enough to ac-
curately estimate the probability and how accurate this estimate is.



5.2 Inference Using a Probability Model

Exercises

5.2.1 In Example 5.2.1 the lifelength in years of a machine was known to be
X ~ Exponential(1), so the mode is given by 0. In Example 5.2.2 the conditional
density is given by e~ ®=1 for z > 1. The mode of this density is 1.

In both cases the mode is at the extreme left end of the distribution and so
does not seem like a very good predictor.

5.2.2 Using the mean of a distribution to predict a future response, the mean
squared error of this predictor is E (X —1)* = Var (X) = 1, where X is the
future response and 1 is the mean of the distribution.

5.2.3 The density of the distribution obtained as a mixture of a N(—4,1) and a
. . e . . €T 2
N(4,1) with mixture probability .5 has density given by \/% exp {—%} +

\/'—Z_ﬂ exp {— (w;4)2 } for —oo < x < oo. This is plotted below.

ni

5.2.4 First, if X ~Uniform(0,1), then the density of ¥ = 10X is given by
fy (y) =1/10 for 0 <y < 10, i.e., Y ~ Uniform(0, 10), so E(Y) = 5 years.

The smallest interval containing 95% of the probability for Y is an interval
(a,b), where a and b satisfy 0 < a < b < 10 and 0.95 = f; %dy = 1—10 (b—a) or
b —a = 9.5. We thus see that any subinterval of (0, 10) of length 9.5 will work,
e.g., (.5,10).

Next, if we want to assess whether or not x¢y = 5 is a plausible lifelength for a
new machine, we need to compute the tail probability P (Y > 5) = f510 %Ody =
1% = (0.5, which in this case is quite high and therefore indicates that zg = 5 is
a plausible lifelength for that new machine.

Now, the density of the conditional distribution of Y, given Y > 1, is given
by fy(y|Y >1) = § for 1 < y < 10. So the predicted lifelength is now
EY|Yy>1)=["4dy=1(120_1)=55

The tail probability measuring the plausibility of the value o = 5 is given
by P(Y >5|Y > 1) = [,° $dy = 3 = 0.555555, which indicates that 2o = 5 is
slightly more plausible now.

Finally, the shortest interval containing 0.95 of the conditional probability
is of the form (¢, d), where ¢ and d satisfy 1 < ¢ < d <10 and 0.95 = fcd %dy =
3(d—c) or d—c=(.95)9 = 8.55. We thus see that any subinterval of (1,10)
of length 8.5 will work, e.g., (1.45,10).



5.2.5 We consider the mode of a density as a predictor for a future value. The
density (1/v/4m)exp(—(z — 10)?/4) is maximized at = = 10. Thus, z = 10 is
recorded as a prediction value of a future value of X.

5.2.6 To get the smallest interval containing 0.95 of the probability for a future
response, the density at any point in the interval must be higher than the density
at points outside of the interval. As we can see in the density plot, the density
is unimodal and symmetric at * = 10. Hence, the shortest interval must be
I = (10— ¢,10 + ¢). From the requirement the probability of I is 0.95, we have
P(I)=P(10—c < X < 10+c) = ®(c/v2) — ®(—c/V/2) = 2®(c/v/2) —1 = 0.95.
The solution of ¢ is ¢ = v2®71((0.95 +1)/2) = v/2- 1.96 = 2.7719.

5.2.7 The mode of a density is a possibility. The density of Gamma(3,6) is
(63/T(3))x? exp(—6x). The first and second derivative of the logarithm of the
density are —6 + 2/z and —2/z2. Hence, the density has the maximum value
at x = 1/3. In other words, z = 1/3 is the most probable value. So x = 1/3 is
recorded as a future response.

5.2.8 The value having highest probability is considered. Since P(X = z +
1)/P(X =z) =[e 55" /(z+ 1)1]/[e 5% /z!] =5/(z + 1), p(x) = P(X = z) is
increasing when x < 4 and is decreasing when x > 5. Also p(4) = p(5) is the
maximum value. Both 4 and 5 can be a prediction of a future value.

5.2.9 The probability function p(z) = (1/3)(2/3)" is decreasing. Hence, z = 0
is the most probable.

5.2.10

(a) Answer I: The value 2 = 1 has the highest probability. So =1 is the most
probable future value.

Answer II: Since F(X) = (1/2)-1+(1/4) -2+ (1/8) -3+ (1/8) -4 = 15/8, the
value x = 2 has the smallest MSE.

(b) The conditional probability P(X = z|X > 2) is given by

T 2 3 4
PX=z|X>2)|1/2]|1/2 | 1/2

Answer I: Among X > 2, the value X = 2 has the highest probability. So z = 2
is the most probable future value.

Answer II: The conditional expectation is E(X|X > 2) = (1/2) -2+ (1/4) -
34 (1/4) -4 = 11/4. Hence, the value z = 3 has the smallest conditional
mean-squared error.

Problems

5.2.11 Let X be the number of heads in 10 tosses of a fair coin. Then
s ~Binomial(10, 0.5)

(a) The expected value of the response is F(X) =10-0.5 = 5.

(b) The probability function of X looks like the graph below.
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From this we can see that the shortest interval containing 0.95 of the probabil-
ity is symmetric about 5. So ¢ satisfying 2(P(X =0)+---+ P(X =¢)) < .05
and 2(P(X =0)+---+P(X =c+1)) > .05 gives the shortest interval as
(¢,m—c¢). In this case ¢ = 2 since 2(P(X =0)+---+ P(X =2)) = 0.02148
and 2 (P(X =0) +---+ P(X =3)) = 0.10937.

(c) As we can see, the probability function of X is symmetric, so to assess
whether or not a value z is a possible future value we would use the probability
of obtaining a value whose probability of occurrence was as small or smaller
than that of . In this case it is the probability

2(P(X=0)+---+ P(X = min (z,n — ))).

When = = 8 this probability is given by 2(P(X =0)+ - -+ P(X =2)) =
0.02148. It seems small, so we have evidence against the coin being fair. Note
that it is also plausible to use the left or right tail alone, but the two-tailed
approach seems more sensible.

5.2.12 We have that the probability of an interval (a,b) is given by =@ — e~?,
and we want a and b such that e=® —e™® = .95 and b — a is smallest. From the
graph of the density e™*, we see that for two intervals of the same length the
one closest to 0 has the most probability. So taking a = 0 means that choosing
b appropriately will give the shortest interval.

5.2.13
(a) The condition implies that X € C = {0,2,4,6,8,10} and this has probability

rer={(5)+ (2)+ (V) () (3)+ ()} G) -3

The conditional distribution of X, given C| is

P(X_0|C)_2<100>

P(X_2|C)_2<10>

1 10
(§> =1.9531 x 103

11(]
=) =87891x107?
) (2> 8.7891 x 10



P(X =4|C) = (4) (%) = 0.41016

P(X=6|C)= (160) 6)10 — 041016

P(X =8|0)= (180) (%)10 =8.7891 x 1072
P(X=10|C) = Gg) (%)10 =1.9531 x 1073

so the conditional expectation of X is 4 =10 (1.9531 X 1073) +

2 (8.7891 x 1072) + 4(0.41016) + 6 (0.41016) + 8 (8.7891 x 10~2) +

10 (1.9531 x 107?) = 5.0.

(b) The shortest interval containing at least 0.95 of the probability for X is
(2,8).

(c) We assess © = 8 by computing 2 (P(X = 0) + P(X = 2)) = 2(1.9531x 1073+
8.7891 x 1072) = 0.17969, and we see that we now do not have any evidence
against 8 as a plausible value.

5.2.14 Suppose that X ~ Beta(a,b). We have that

_ [t T(a+b) . b1, T(a+b) (', b1
R A A T AR
_T(a+b) T'(a+1)T'(B) «a

I(@)T(b) T(a+b+1) a+b

and the mean-squared error of this predictor is just

a \? ab
E<<X_a+b) )ZV&T(X): (@a+b+1)(a+b)?

We have that
L, T(a+0) _
E(X? :/ e L Y P Ll
)=, “Fwre 1Y

T(a+b) [t .., b-1 ,_ D(a+b) I'(a+2)T(b)
)/0 2 (1-2) dx_l“(a)l“(b) T(a+tb+2)

- T(a)T (b
B ala+1)
(a+b)(a+b+1)

so Var(X) = ab/ (a+b+1) (a+b)>.

To obtain the mode, we need to maximize %=1 (1 — x)bil or equivalently
(a—1)Inz+(b—1)In(1—=z), which has derivative (a—1)/z—(b—1)/(1—z), and
setting this equal to 0 yields the solution & = (a — 1) /(a + b — 2). The second



derivative is given by —(a — 1)/2% — (b —1)/(1 — x)?, which is always less than
or equal to 0 so Z is the mode. Then

a—1 2 a a a—1 2
Fl(X—-—— =F|(X - -
(( a+b—2)> (( a+b+a+b a+b—2>>

a a—1 2
_VaT(X)+<a+b_a+b—2)

2 2
_ ab 2+< a  a-—1 > > B (X— a ) .
(a+b4+1)(a+0) a+b a+b-2 a+b

Therefore, the mean is a better predictor.

5.2.15 Suppose X ~ N(0,1) and that we use the mean of the distribution to
predict a future value. Then:

(a) E(X) =0is a prediction for a future X.

(b) If Y = X2 then Y ~ X%D and E(Y) =1.

(c) We notice that we predict X by 0 but do not predict X2 by 02.

5.2.16 As in the graph, the probability function is decreasing as = increases.
Hence, the shortest interval containing 95% probability of a future value X is
[0,c] for some ¢ such that P(X < ¢) > 0.95. Since P(X < z) =0 +0(1 —
0)+---+60(1—0)*=1—(1—0)""" for § = 1/3, the solution ¢ must satisfy
1—(2/3)¢"!t > 0.95. The solution is ¢ > —1+1n(0.05)/In(2/3) = 6.3884. Hence,
the interval [0, 7] is the solution.

5.2.17 The conditional probability P(X = z|X > 5) = (1 —60)*~% where z > 6
and 6 = 1/3. The conditional probability function is decreasing and the value
x = 6 is the most probable.

Again the shortest interval containing 95% probability of a future X is [6, (]
satisfying P(6 < X < ¢[X > 5) > 0.95. Since P(X < z|X >5)=1—(1-0)*"5,
the solution is ¢ > 5 4 In(0.05)/1n(2/3) = 12.3884. Finally, the interval [6, 13]
is the solution.

5.3 Statistical Models

Exercises

5.3.1 Let 0 denote the type of coin being selected, then § € Q = {1,2,3},
where coin 1 is the fair one, coin 2 has probability 1/3 of yielding a head, and
coin 3 has probability 2/3 of yielding a head. So the statistical model for a
single response consists of three probability functions {f1, fa, f3}, where f; is
the probability function for the Bernoulli(1/2) distribution, f; is the probability
function for the Bernoulli(1/3) distribution, and f3 is the probability function
for the Bernoulli(2/3) distribution. Then (z1,x2,. %5) is a sample from one of
these Bernoulli() distributions.



5.3.2 There are 6 possible distributions in the model as given in the following
table. Here p; denotes the distribution relevant when the face with 7 pips is
duplicated.

1 2 3 4 5 6

m 1/3 0 1/6 1/6 1/6 1/6
p» 0 13 1/6 1/6 1/6 1/6
ps O 1/6 1/3 1/6 1/6 1/6
pe O 1/6 1/6 1/3 1/6 1/6
ps 0 1/6 1/6 1/6 1/3 1/6
pe O 1/6 1/6 1/6 1/6 1/3

5.3.3 The sample (X X,) is a sample from N(u,o?) distribution, where
0 = (p,0%) € Q = {(10,2),(8,3)}. We could parameterize this model by
the population mean or by the population variance as both of these quanti-
ties uniquely identify the two populations. For example, if we know the mean
of the distribution is 10, then we know that we are sampling from population I
(and similarly if we know the variance is 2).

5.3.4 We cannot parameterize the model by the population mean since the two
populations have the same mean, but we can parameterize by the population
variance, as this is unique.

5.3.5 A single observation is from an Exponential(d) distribution, where 6 €
Q = [0,00). We can parameterize this model by the mean 1/ since the mean
is a 1-1 function of #. We can also parameterize this model by the variance,
since it is a 1-1 transformation of 8 > 0. The coefficient of variation is given by
Iy v6—2 = 1. This quantity is free of 6, and so we cannot use this quantity to
parameterize the model.

5.3.6 The first quartile ¢ of the Uniform[0, 8] distribution satisfies 0.25 =
foc %dﬂc = £ s0 ¢ = 0.2543. Since c¢ is a 1-1 transformation of 3, we can pa-
rameterize this model by the first quartile.

5.3.7

(a) The parameter space is comprised of the possible values of §. Hence, the
parameter space is Q = {4, B}.

(b) The value X = 1 is observable only when § = A. Hence, § = A is the true
parameter. The distribution of X is

. [12 ifzx=1lorz=2,
P(X =g)= { 0 otherwise.

(c) Both @ = A and 6 = B are possible because P4(X = 2), Pg(X =2) > 0.

5.3.8 Assume the observed value x is contained in C, that is, x € C. Since
x € Cand z ¢ C°, the value x could come from P; but not come from P,. That
means the true probability measure is P;. If x ¢ C, then the value z could
come from P, but not from P;. Hence, the true probability measure is P,. In



sum, if the probability measures are constructed on disjoint sets, then the true
probability measure is easily determined by the observed value.

5.3.9 The probabilities of the event X = 1 with respect to the probability
measures P; and P are Pi(X = 1) = 0.75 and P»(X = 1) = 0.001. If the
true probability measure were Pj, the event (X = 1) would be very probable to
have happened. But the event X = 1 would be very rare if the true probability
measure were Ps.

5.3.10

(a) The model is the set of all possible distributions, class 1 and class 2. That
is Q@ = {P1, P»}. The probability measure P; corresponds to class 1 and P,
corresponds to class 2. The parameter space is {1,2}. The random variable
considered in this problem is the number of female students when a sample of
size 1 is taken. Hence, the observed data is X = 1. The distribution of X is
Hypergeometric(100,65, 1) from P; and Hypergeometric(100,55,1) from Ps.
(b) The probabilities of the event (X = 1) is (X = 1) = (615) (305)/(1(1)0) =
13/20 and Py(X =1) = () (405)/(1(1)0) = 11/20. Since both classes give similar
probabilities for the observed data, it is hard to determine from which class the
female student came.

(c) Since P (X = 1) = 0.65 > 0.55 = P»(X = 1), the probability measure P;
would appear to be more likely.

Problems

5.3.11 We have that exp (¢) = 0/(1—0), so 1+exp (¢) = 14+60/(1-0) = 1/(1-6),
giving that 0 = exp (¢0) / (1 + exp (1)) . Then the probability function for X; is

given by ) .
(o) (Fremm)

for z; € {0,1} with ¢ € [0,00] (note 1 = oo when 6 = 1). The probability
function for the sample (X1,...,X,) is given by the product of these individ-
ual probability functions, and the parameter is v, which takes values in the
parameter space [0, 00| .

5.3.12 We have that ) = Ino, so 0 = exp (¢) . The density function for X; is
then given by

epr(%%) exp{exp (2 ) ., _M)Q}

and (u,1) € R? so that the parameter space is now R2. The density function for
the sample (X1, ..., X,,) is given by the product of these individual probability
functions and the parameter is (u, 1) , which takes values in the parameter space
R2.

531327 .

m) + (p— )
21:1(331 -z

(i —pp)® = 3 i (=24 T —p0)® = B, (2~ 2)° 4 2(e; —2)(T —
)2) Sima(wi — 1) = 20— 2) 3L (i — )+Zi:1( z)? =

n(p—x)? since Y (z; — ) =Y 1y x; —nT = 0.



5.3.14 We know that T' ~ Binomial(n, #), where 6 € [0, 1] is unknown. There-
fore, the probability function for T is given by fa(t) = (7)6"(1 — )" for
t € {0,...,n}. The parameter is 6 and the parameter space is [0, 1].

5.3.15 The first quartile ¢, of a N(u,0?) distribution satisfies

[ (x—p?\ , o (c—n
0.25 = / oz exp{ 557 de = . .

Therefore, ¢ = p + 0z.25, where z.95 is the first quartile of the N(0,1) distri-
bution, i.e., ®(z25) = .25. But we see from this that several different values
of (u,0?) can give the same first quartile, e.g., (u,0%) = (0,1) and (pu,0?) =
(z.25/2,1/4) both give rise to normal distributions whose first quartile equals
z.05. Therefore, we cannot parameterize this model by the first quartile.

5.3.16 The statistical model for (X,Y") is given by the densities
fla,y|o®,6%) = f(z]o®y)f(y|8?)
I S (O C et 7l G SEpRY G T
- \2no P 202 V2mé P 2827
1 o 1 [z n 2zy 1 n 1 9
= X —_— —_— _ = —_— —_
2106 P12\ 02 T 52 o2 52)Y
1 1 (z? 22y 6407,
- 2706 exp{—§ <§ + oz o202 Y
1 52 4+ o2 x? 2xy 1,
P U 7207 \Ero2 T @ro2 &Y
where the parameter (02, 52) ranges in the parameter space (02, 52) X (02, 52) .
From Example 2.7.8 we see that this is the density of a Bivariate Normal(0, 0, 6%+

02,62, p) distribution, where p = ,/%. Using Problem 2.7.13 we have im-

mediately that X ~ N(0,02 + §2). Therefore, the statistical model for X alone
is given by the collection of all N(0,72) distributions, where the parameter
72 is any value greater than 0. Alternatively, this result can be obtained by
integrating out y in the joint density to obtain

270 x

T 2 2wy 11
2 2\ _ 2 T ,2
fz]o®, o) = / 277056Xp{ 202+202 (202+262)y }dy
1 { x? }
= exXpy————— /.
2m(0? 4 §2) P 2(6% +0?)

5.3.17

(a) It is possible to distinguish P; and P, with small error. Note that P (X >
5)=1— ®(—5) = 1 — 2.8665 x 10~7 and P3y(X > 5) = &(—5) = 2.8665 x 10~".
Hence, we conclude the observed value x came from P; if x > 5 and came from



P, if < 5. The probability of making any error is 2.8665 x 10~7. Therefore,
this inference is very reliable.

(b) A similar inference could make even when P; is a N(1,1). We conclude the
observed value z came from P; if z > 1/2 and came from P if x < 1/2. But
the probability of making any error given by P;(X < 1/2) = ®(—1/2) =0.3085
is very big. Hence, this inference is not reliable.

5.3.18 If P, is the true probability measure, the sample mean X = (X +---+
X,,)/n has a N(1,1/100) distribution. And X has a N(0,1/100) distribution if
P, is true. Hence, we conclude the true probability measure is Py if X > 1/2
and is P if X < 1/2. The probability of making an error is P;(X < 1/2) =
Pi((X — 1)//1/100 < (1/2 — 1)/,/1/100) = ®(—5) = 2.8665 x 10~7. Thus,

this inference is very reliable.

5.4 Data Collection

Exercises
5.4.1 We have that

0 <1 n 1
5 l<w<? oo,

Fx(z) = P 2<2<3 [ fx(x)=4q ¥ x;3
1 1<z 10

and px = S0 wfx(z) =2,0% = (Zi:l foX(x)> —-22=1.

5.4.2

(a) We cannot consider this as an approximate i.i.d. sample from the population
distribution since the size of the population is small and the sample size is large
relative to the population size.

(b) Place ten chips in a bowl. Each chip should have a unique number on it from
1 to 10. Thoroughly mix the chips and draw three of them without replacement.
The numbers on the selected chips correspond to the individuals to be selected
from the population. Alternatively, we can use Table D.1 by selecting a row
and reading off the first three single numbers (treat 0 in the table as a 10).

(c) Using row 108 of Table D.1 (treating 0 as 10)we get:

First sample — we obtain random numbers 6,0,9 and so compute (X (7g) +
X (m10) + X (m9))/3 = (3+4+2)/3=3.0

Second sample — we obtain random numbers 4,0,7 and so compute (1 + 4 +
3)/3 =2.6667

Third sample — we obtain random numbers 2,0,4 (note we had to skip the
second 2) and so compute (1+4+1) /3 = 2.0.



5.4.3

(a) We can consider this as an exact i.i.d. sample from the population distri-
bution since it is a sample with replacement, so each individual has the same
chance to be chosen on each draw.

(b) Place ten chips in a bowl. Each chip should have a unique number on it from
1 to 10. Thoroughly mix the chips and draw three of them with replacement.
The numbers on the selected chips correspond to the individuals to be selected
from the population. Alternatively, we can use Table D.1 by selecting a row
and reading off the first three single numbers (treat 0 in the table as a 10).

(c) Using row 108 of Table D.1 (treating 0 as 10) we get:

First sample — we obtain random numbers 6,0,9 and so compute (X (7g) +
X (m0) + X (m9))/3=(3+4+2)/3=3.0

Second sample — we obtain random numbers 4,0,7 and so compute (1 +4 +
3)/3 =2.6667

Third sample — we obtain random numbers 2,0,2 (note we do not skip the
second 2) and so compute (1+4+1) /3 =2.0.
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(a) fx(0) =a/N, fx(1) = (N —a) /N. This is a Bernoulli((N — a) /N) distrib-

ution.

(b) P (fx(0) = fx(0)) = P (nfx(0) = nfx(0)) = P(mumber of 0's in the sam-

ple equals n.fx (0)) = (,, % o)) (nj}’;(%))/(g) since nfx (0) ~ Hypergeometric(N,
a,n).

(¢) We have that nfx (0) ~ Binomial(n,a/N) , so P(fx(0) = fx(0)) = P(nfx(0)
=nfx(0)) = P(number of 0’s in the sample equals nfx (0)) = (nf;:((])) (1)nfx ©

N
R

5.4.5
(a)

02 — —

0.1 — —

Density

0.0 —

T T T T T
10 45 55 65 10.0

Sample



025 — —

020 —

0.15 —

Density

0.10 —

0.05 —

0.00 —

T T T T T
1.0 35 45 6.5 10.0

Sample

(¢) The shape of a histogram depends on the intervals being used.

5.4.6

(a) Through a census of the population.

(b) We cannot represent the population distribution of X by Fx since X is a
categorical variable.

()

0.35 x=A
fx(x)=1<¢ 0.55 =B
0.1 r=C

(d) We can select a simple random sample from the population, record the
political opinion of each student, and compute the sample proportions for each

party.
(e) Tt does not allow for those who do not have a preference.

5.4.7 The file extension of a file indicates the type of the file. That means
the file extension is a base distinguishing the type of the file. Hence, it is a
categorical variable.

5.4.8

(a) The population IT is the set of all 15,000 students. The variable X () is 1
if the student 7 intended to work during the summer and is 0 otherwise. So X
is a categorical variable. The function fx is the distribution of X, i.e., fx (1) is
the proportion of students who intend to work during summer and fx (0) is the
proportion of students who do not intend to work during summer.

(b) After asking all students whether they intend to work during summer or
not, count the number of students who intend to work, say M. Then, fx(1) =
M /15,000 and fx(0) = (15,000 — M)/15,000 = 1 — fx(1).

(c) Sometimes it is impossible to collect data from some students. If the budget
for this research is limited, some of the data cannot be collected. If it is impos-
sible to collect all data, then we need to collect data as much as possible. Say n



data values are collected. Let m be the number of students who intend to work
during summer among these n students. Then, the estimator is fx (1) = m/n,
fx(0) = (n—m)/n, and fx(z) =0if z # 0 and z # 1.

(d) Now the population IT; is reduced to the students who intend to work during
summer. Hence, the size of new population is M. The variable Y indicates 1 if
the student m who could not find a job and is 0 otherwise. Still Y is a categorical
variable. After taking a census, let L be the number of students who intended
to work during summer but could not find a job. Then, the exact distribution is
fy(1)=L/M and fy(0) = (M —L)/M =1— fy(1). To estimate fy, sample m
students who intended to work during summer and count the number of students
who could not find a job, say I students. Then, the estimate fy (1) = [/m and

0 =(m—1/m=1-1/m=1- fy(1).

5.4.9

(a) Students are more likely to lie if they have illegally downloaded music, so
the results of the study will be flawed.

(b) Under anonymity, students are more likely to tell the truth so there will be
less error.

(c) The probability of obtaining two heads among three tosses is (3)(1/2)(1/2)*
= 3/8 = 0.375. The probability that a student tells the truth is 1 — 0.375 =
0.625. This can be modelled in statistically as follows. Let Y; be the answer of
the question from student 7, X; be the true answer of student 7 and T; be the
truth of the answer X;. Then, X; ~ Bernoulli(d) and T; ~ Bernoulli(p) where
6 € [0,1] is unknown and p = 0.625 is known. The answer ¥; = X; if T; = 1
and Y; = 1—X; if T; = 0. Only Y;’s are observed. In other words, X;’s and T;’s
are not observed. The expectation of Y; is

EolYi] = Eo[Xi]P(T; = 1) + Ep[1 = X;]P(T; =0) =0 -p+ (1 —0) - (1 —p)
=02p—-1)+1—np.

Hence, 6 = (Y — (1 —p))/(2p—1) is recorded as an estimated proportion of the
students who have ever downloaded music illegally.

5.4.10

(a) The population IT is the set of all purchasers of a new car in the last 6 months.
The random variable X is the satisfaction level indicating one of {1, ...,7}. Each
fx(x) for x = 1,...,7 is the proportion of buyers at the satisfaction level x.
Hence, fx(z) > 0and fx(1)+---+ fx(7) = 1.

(b) A categorical variable has no relationship among categories. The value x
indicates the level of a person’s satisfaction. The bigger value of x means the
more satisfaction. Thus,  might be treated as a quantitative variable but this
is not completely correct either as there is no clear meaning to the size of the
steps between categories. So this variable possesses features of both categorical
and quantitative variables.

(c) The difficulty arises from the subjectivity of the answer. This definitely adds
some ambiguity to any interpretation of the results.



Computer Exercises

54.11
(a) After generating the sample (1, ...,Z1000) , you need to sort it to obtain the
order statistics (z(1),...,%(n)) and then record the proportion of data values

less than or equal to each value. Then Fx(z) equals the largest value i/n, such
that z;) < z.

(b)

(d) The histogram in (c) is much more erratic than that in (b). Some of this is
due to sampling error.

(e) If we make the lengths of the intervals too short, then there will inevitably
only be one or a few data points per interval, and the histogram will not have
any kind of recognizable shape. This is sometimes called over-fitting, as the
erratic shape is caused by making the intervals too small.

5.4.12 Using Minitab this can be carried out by placing the numbers 1 through
10,000 in a column and then using the Sample from columns command, with
the subcommand to carry out sampling with replacement.

Problems

5.4.13
(a) fx(0) =a/N, fx(1) =b/N, fx(2) = (N —a—0b)/N.
(b) Assuming f1, f2, and f3 are nonnegative integers summing to n (otherwise

probability is 0), the probability is (}’0) (;’1) (N _f’z”_b) / (17\[ ).



(¢) The probability that fx (0) = fo, fx(1) = fiand fx(2) = fs is

(ops) G ()" ()

since each sequence of f; zeros, f1 ones, and fo twos has probability

(g)h ﬁ f1 N—a—b f2
N N N
of occurring, and there are ( o h fz) such sequences.

5.4.14

(a) The population mean is given by ux = Zfil X (m;) =, xfx (x) since
fx(x) = (the number of population elements with X (m;) = z)/N.

(b) The population variance is given by

N N
— Z ZX2 ) Z px + ik

=1

:Z *fx (z —2ux+ux—zxfx z) — M%ZZ(QJ—MX) fx(z).

5.4.15
(a) First, note that fx(0) = 1 ;I{O}(X(ﬂ'i)), S0

E(&@D—%E(Xﬁ@mxm»>—%zyuamawm)

_1 ZP(X(m) =0) = %fo(O) = fx(0).

(b) We have that

Var (fX(0)> = %Var (i Iy (X(Wi))>

= = Varllgo) (X(m) + = 3 Cov (Igoy (X(m), Iy (X ()
— %Var(l{o}(X(m))) + 7122 n(n — )Cov (I{o}( (1), I{o}(X(ﬂ'g))
01— fx(0)  n

- + T_LlCov (Zg0y (X (1), I {0y (X (m2))




and
Cov(Tioy (X (7)), Igop (X (72))) = B (Ipop (X (7)) g0 (X (= >)> (fx(0
— P(X(my) = 0, X(m2) = 0) — (Jx(0))* = fx(0) (NfX -1

_fX(O){NfX(O)—lj—VJile(O)—I—fX(O)} _fx(0 )(1—fX 0))

N —
Therefore,
Var (fX(O)) _ fx(0) (1n— fx(0)) n; 1 fX(O)](\}__ifX(o))
_/xO)(A-fx(0)N—-n
n N-1

(c) If we take a sample with replacement, then we can assume this is an i.i.d.
sample, so nfx(0) ~ Binomial(n, fx(0)) . Therefore,

B (7x(0)) = =B (nfx(0)) = 2nfx(0) = fx(0)

Var (fx(o)) = %Var (n fX(0)> _ nfx(0) (12— fx(0) _ fx(0) (1n— fx(0))

n

(d) The reason is that this factor is the only difference with the variance for
sampling with and without replacement. Note that when n is small relative to
N, then this factor is approximately 1.

5.4.16 When fx(0) = a/N is unknown, then we estimate it by fx(0). Now
N =a/fx(0), so we can estimate N by setting N = a/fx(0), provided fx(0) #
0.

5.4.17 If we knew N but not T, then, based on a sample X (71),..., X (m,),

we would estimate T/N by X = L3> | X (7;). Therefore, when we know T
and do not know N, we can estimate N by T/X provided X # 0.

5.4.18 We have that X = 23" | X (m;),s0 B (X) =+ 31" | E(X (m;)) . Since
each X (m;) ~ fx, we have that E (X (m;)) = ZTxfx( ) = pux, so B (X) =

BX-
Under the assumption of i.i.d. sampling, each X (7;) has the same variance

ok =>,(x— px)? fx (z). So we get Var(X)] = 0% /n.

5.4.19 Note that fx(z) = LS Iy (X (m)), so it is an average of i.i.d.
terms and E(I{;}(X (7;))) = fx (x). Then by the weak law of large numbers

fx(z) il fx (z) as n — oo.



Challenges

5.4.20
(a)
fx (@)
_ {rell: X (n) =z} _ Hrelly : X (m) =z} +{r eIl : X (1) =z}
| I
:@HﬂEHl 1 X (m) =a}| | o {m €y : X (7) = a}|
I 14| || Iz |
=pfix(x) + (1 —p)fox(z)
(b)
1
px = fox |H| Z m ; X (m)
|H2| 1
MTEEP IRy
= ppax + (1= p)uax
(c) Using

Yo (X (m)—mx)= Y (X (m) — pax) =0

melly welly

we have that

oizﬁme)—uX)Z
mell
|H1| 1 | 1
S S
|H| ] 2; T ] 2
—(1—
|H | ; —puax — (1= p)uax)’ +
m€ll;

a —p>|H—12| S™ (X () — priax + (1 — plpax)?

wells
|H | Z — pix) + (1= p) (pix — pax))’ +
welly
(1‘p)|n—12| S (X () — pax) — p (i — o))’
wells

=poty +p(1 —p)? (mx — pox)’ + (1= p)ozx + (1 —p)p* (pix — pax)’
=poix + (1 - p)odx +p(1 —p) (pix — pox)?.



(d) Under the assumption of i.i.d. sampling and using Problem 5.4.15
E (pX1 4 (1 —p)X2) =pE (X1) + (1 —p)E (X2) = ppax + (1 = p)uax = pix

and

2 2
Var (pX1 + (1 - p)X2) = p*Var (X1)+(1-p)*Var (X2) = pQ%ﬂl—p)Z%

(e) Again, under the assumption of i.i.d. sampling and by Problem 5.4.15, part
(¢), and using n1 = pn,ny = (1 — p)n we have
_ 2 2 2 1— _ 2
Var (X) = 2X = p71X | (1 _p)%2x 4 p(1 —p)(pix — pax)
n n n n
)Qﬁ + p(1 —p)(pax — pax)
o n

2

2

=2 4 (1-p
n

so Var (p)_(l +(1 —p))_(g) <Var (X) )

(f) If p1x = pox, then there are no benefits as the two estimators have the same

variances. When the means 1y and psx are quite different, then there will be

a big improvement through the use of stratified sampling. This indicates that

the populations IT; and Ily are quite different with respect to the measurement
X.

5.5 Some Basic Inferences

Exercises

551

(a) fx(0) =.2667, fx (1) = .2, fx(2) = .2667, fx(3) = fx(4) = .1333.

(b) Fx(0) = .2667, Fx (1) = 4667, Fx(2) = .7333, Fx(3) = .8667, Fx (4) =
1.000

(c) A plot of fx is given below.

proportion

(d) The mean Z = 15 and the variance s> = 1.952.
(e) The median is 2 and the IQR = 3. The boxplot is plotted below. According
to the 1.5 IQR rule, there are no outliers.



55.2

(a) The empirical distribution function is given by

0 zz<0

1

16 0<z<1

% 1<z<?2
Fx(z) = 1 3<zr<4

E 5<z<10

1 15 <.

(b) A plot of fx is given below.

020 —

015 —

proportion

010 —|

. .

T T T T T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f

(c) The mean is T = 4.188, the variance is s? = 13.63.

(d) The median is 3.5 and the JQR = 3. A boxplot is provided as follows.



Boxplot of Waiting time

Waiting time

According to the 1.5 IQR rule, there are two outliers, namely 10 and 15.

553

(a) fx(1) =25/82, fx(2) = 35/82, fx(3) = 22/82.

(b) It does not make sense to estimate F'x () since this is a categorical variable.
(¢) A bar chart is given below.

043 —J

038 —|

Proportion

033 —|

028 —|
—

5.5.4 Tt means that 90% of all students got a score equal to his or lower and
only 10% got a higher score.

5.5.5 A plot of the empirical distribution function is given below (we have joined
consecutive points by line segments).

Cum. %
a
3
|

The sample median is 0, first quartile is —1.150, third quartile is 0.975, and the
IQR = 2.125. We estimate Fx (1) by Fx (1) = 17/20 = 0.85.



5.5.6 Since the shape of the distribution is asymmetric, we should choose the
median as a measure of location and the IQR as a measure of spread. This is
because the distribution is skewed to the right.

5.5.7 We have that ¢ (1) = zg.25 = it + 0020.25, Where zg 25 satisfies ® (zp.25) =
.25.

5.5.8 First, recall that the third moment of the distribution is E,(X?). So 9 ()
is given by
U(n) = Bu(X?) = Bu((X — p+ p)°)
= Eu((X = 1)) + 3uB, (X — 1)*) + 30° B, (X — p)) + p°
=04 3uocs +0+ p® = 3uch + u®.
5.5.9 We have that ¢(u) = F,,(3) = P,(X < (3—p) Joo) = ®((3 — ) /00).
5.5.10 We have that (i, 0?) = z0.25 = it + 020.25, where ® (z0.25) = .25.

5.5.11 We have that ¢(u,0?) = F,,2)(3) = P2 (X < 3) = P(Z
B—mn) /o) =2(B—n) /o)

5.5.12 We have that (0) = (1 — 0)* + 62,

5.5.13 We have that ¥(6) = 20(1 — 6).

IN

5.5.14 First, recall that the coefficient of variation is given by ox/ux. So
V() = \/02/12/(6/2) = 1/4/3. So we know (6) exactly and do not require

data to make inference about this quantity.
5.5.15 We have that 9(0) = an/3°.
Computer Exercises

5.5.16

(a) The order statistics are given by z(1) = 1.2, z(2) = 1.8, 3y = 2.3, x(4) = 2.5,
1‘(5) = 3.1, 1‘(6) = 3.4, :E(7) = 3.7, :E(g) = 3.9, 1‘(9) = 4.3, 1‘(10) = 4.4, x(ll) = 4.5,
T(12) = 48, T13) = 56, T(14) = 58, T(15) = 69, T(16) = 72, and Tar) = 8.5.
(b) Fx (z(i)) = i/n (there are no ties).

(c) The sample mean & = 4.345 and the sample variance s? = 3.345.

(d) The sample median is 4.350 and the IQR = 2.225.

(e) Since the distribution looks somewhat skewed, the descriptive statistics in
part (¢) are appropriate for measuring location and spread.

(f) The sample mean Z = 4.845 and the sample variance s? = 7.874, while the
sample median is 4.450 and the IQR = 2.575. As we can see, the sample mean
and sample variance changed quite a lot, while the sample median and the ITQR
have hardly changed. This suggests that the median and the IQR are more
resistant to extreme observations.

5.5.17
(a) The order statistics are given by x(1y = 59.8, 2y = 60.9, x5 = 614,
Ty = 61.5, Z(5) = 61.6, Ze) = 61.9, T = 62.5, @ = 63.1, Ty = 63.4,



Z0) = 63.6, Za1) = 64.0, T2) = 64.2, Ta3) = 64.3, T(14)
T(16) = 64.9, T(17) = 64.9, T(18) = 65.0, x(19) = 65.0, T (20)
T(22) = 65.8, w(23) = 66.3, T(24) = 66.3, x(95) = 66.4, T (26)
T28) = 668, T(29) = 678, and T(30) = 71.4.

(b) The graph empirical distribution function is plotted as follows. Note that
there are two values at 64.3, two values at 64.9, two values at 65.0, two values
at 65.8, and two values at 66.3, so the empirical cdf jumps by 2/30 at these
points. Otherwise, the jump is 1/30 at a data point.

643, 1’(15) = 644,
651, Z21) = 658,
66.5, z(27) = 66.6,

(¢) The sample median is 64.650 and the sample IQR = 66.300 — 62.950 = 3.35.
The boxplot is given below and there is one outlier, namely 71.4.

data

60

(d) Since the shape of the distribution is somewhat skewed to the left, the
median and the IQR are the appropriate descriptive statistics for the location
and spread.

(e) The sample median is still 64.650 and the sample IQR = 66.325 — 62.950 =
3.375, so these values barely change. The boxplot is given below and identifies
two outliers, 71.4 and 84.9.




5.5.18

(a)
MTB > let kl=sqrt(2)
MTB > random 30 cl;
SUBC> normal 10 k1.
MTB > random 1 c2;
SUBC> normal 30 k1.
MTB > let c1(31)=c2(1)
MTB > Boxplot C1;

30

25+

204

c1

154

*®

(b) There is an outlier above the whisker.

(c) The median is an appropriate measure of location and the interquartile range
is an appropriate measure of the spread of the data distribution. These measures
are somewhat unaffected by outliers

5.5.19

(a)
MTB > random 50 c1;
SUBC> chisquare 1.
MTB > boxplot cl




(b) There is an outlier in this plot and it is clear that it is skewed to the right.
(c) The median is an appropriate measure of location and the interquartile range
is an appropriate measure of the spread of the data distribution. These measures
are somewhat unaffected by outliers and the skewness.

5.5.20
(a) The estimate of the 90-th percentile is obtained as follows.

MTB > random 50 c1;

SUBC> normal 4 1.

MTB > sort cl c2

MTB > set c3

DATA> 1:50

DATA> end

MTB > let c3=c3/50
Then reading off the cell in ¢2 corresponding to the cell with the entry .9 in ¢3
we get the estimate g = 5.20725.
(b) We estimate the mean p by Z and the standard deviation o by s so the
estimate of the 90-th percentile is obtained as follows.

MTB > invcdf .9 k1

MTB > let k2=mean(cl)

MTB > let k3=stdev(cl)

MTB > let k4=k2+k3*kl

MTB > print k4

Data Display

K4 5.37781
(¢) Under the normal distribution assumption, (b) is more appropriate because
all given information should be used. Note that the true 90th percentile of
N(4,1) distribution is 5.28155.

Problems
5.5.21 Using (5.5.3), we have that Z5 = z(;_1) +n (m(i) — ﬂc(i_l)) (.5 — %) ,

where (i — 1) /n < 1/2 <i/n. Now i — 1 < n/2 < ¢ implies that ¢ = n/2 when
n is even and ¢ = [n/2] when n is odd. So we have that

- { T(n/2) n even
5 — 71—
T(Tny21-1) + 1 (T (fj2)) = T(py21-1) (5= 51)  nodd.

5.5.22
(a) We have that F(z(;)) = F(z) = i/n, F(zit1) = F(z@4)) = ((+1) /n,
and

F(zy1)) — F(z@)) -0
T(i+1) — T(i) B

shows that~}~7'(a:) is an increasing function from 0 to 1.
(b) Since F is linear on each interval (z(;), z(;+1)] it is continuous there. There-

fore, I is continuous on (z(1, 00). It is also continuous on (—o0,z(;)) and right-
continuous at x(q). Therefore, Fis right-continuous everywhere.



(c) From (a) there is an ¢ such that (i — 1) /n < p < i/n and then

7 Z:ﬁ(x(z‘)) - F(x(iq)) -
=F(x;_1) + Tp — T(i—
p=Flegn)+ = == (@~ a-n)

1—1 1 1

= " + Ex(l) — {L‘(,L-_l) (i'p - x(i_l))

SO

i i—1
Zp = 21 + 1 (2) —26-n) (P —— ) -



Chapter 6

Likelihood Inference

6.1 The Likelihood Function

Exercises

6.1.1 The appropriate statistical model is the Binomial(n, ), where § € Q =
[0, 1] is the probability of having this antibody in the blood. (We can also think
of # as the unknown proportion of the population who have this antibody in their
blood.) The likelihood function is given by L(6|s) = (7)0%(1 — )%, where s
is the number of people whose result was positive. The likelihood function for
n = 10 people and s = 3 is given by L(#|3) = (130)93(1 —6)7, and the graph of
this function is given below.

likelihiood
02 1
0l 1
0 —r—
0 0.5 thety

6.1.2 The likelihood function for p when we observe 22 suicides with N = 30, 345
is given by L(p|22) = (30345p)** exp (—30345p) .

6.1.3 The likelihood function is given by L(0|z1, ...., z29) = 0% exp(— (20Z) 6).
By the factorization theorem (Theorem 6.1.1) Z is a sufficient statistic, so we
only need to observe its value to obtain a representative likelihood. The likeli-
hood function when Z = 5.2 is given by L(0|z1, ...., z20) = 0*° exp(—20 (5.2) 9).

6.1.4 Since the sample size of 100 is small relative to the total population
size, we can think of the counts as a sample from the Multinomial(1, 61, 02, 63)

143
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distribution. The likelihood function is then given by L(61, 62,03 | 34, 44,22)
= 0310540%2.

6.1.5 If we denote the likelihood in Example 6.1.2 by L;(0]4) and the likelihood
in Example 6.1.3 by Ly(6|4), then L1 (0|4) = cL2(0|4), where ¢ = (') /(3).

6.1.6 The likelihood function is given by

n

L(O |21,y mn) = [[ 67 (1= 0)' 7% = 627 (1 — )"~ 2% = g7 (1 — §)"( 7).

=1

By the factorization theorem Z is a sufficient statistic. If we differentiate
InL(f|z1,...,2,) =nZInf + n(l — ) In(l — ), we get

;_nz n(l-2)
(InLO|z1,....zn)) = 0 1—0

and setting this equal to 0 gives the solution # = Z. Therefore, we can obtain %
from the likelihood and we conclude that it is a minimal sufficient statistic.

6.1.7 The likelihood function is given by

n 93:1-679 _ eniefne
g |

e BL [1z:!

By the factorization theorem Z is a sufficient statistic. If we differentiate
InL(0|z1,...,xn) = —In]Jx;! + nZIn 0 — nb, we get

L(9|m17 wrn) =

(InLO|zy1,....2,)) = — —n

and setting this equal to 0 gives the solution § = z. Therefore, we can obtain Z
from the likelihood and we conclude that it is a minimal sufficient statistic.

6.1.8
(a) The three likelihood functions are as follows.

Variable
0.7+ . ® =1
n =2
s=3
0.6
0.59
T
o
o
£ 04
&
034 e
0.24
014 = L]
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(b) Since L(1|1)/L(2]1) = 0.3/0.1 = 3 = L(1|3)/L(2|3) and L(1]2)/L(2|2) =
0.1/0.7 = 1/7 # 3, a statistic T : S — {1,2} given by T(1) = T'(3) = 1 and
T(2) = 2 is a sufficient statistic.

6.1.9 Since the density function fi(s) = (27)~'/2 exp(—(s —1)?/2) for i = 1,2,
the likelihood ratio is

L(1]0) _ exp(—(0—1)%/2)
L(2]0)  exp(—=(0—2)%/2)

= e3/2 = 4.4817.

When s = 0 is observed, the distribution f; is 4.4817 times more likely than fs.

6.1.10 A likelihood function L is defined by L(f|s) = fo(s). A probability
density function or a probability function cannot take negative values. Thus any
likelihood function cannot take negative values. However, a likelihood function
may be equal to 0 in some cases. Consider X ~ Uniform[0,6] and § € R.
Suppose that X = 1 is observed. The density function is fg(x) = 1/0 if = € [0, 6]
and 0 otherwise. This implies L(f]1) = 1/ if # > 1 and 0 if § < 1. Hence L
can be 0 at some parameter values.

6.1.11 The integral fol L(6]z0)df cannot be 1 in general because a likelihood
function is not a density function with respect to 6. Consider X ~ Uniform]0, 6]
and 6 € [0,1]. The likelihood function at X = xz¢ is L(0|zg) = fo(zo) =
(1/0)I10,61(w0) = (1/0)1[3,,1)(0). The integral of the likelihood function is

1 1 1
/ L(9|x0)d9:/ L6 = —n(a).
0 xo 0

This is not 1 unless zp = 1/e.

6.1.12 The joint density function is given by fo(s) = fo(z1) - fo(zn) = 0" (1 —
§)*1+%n  Hence the likelihood function is L(f|s) = fy(s) = 07(1—6)*1F+2n,
Let h(s) =1, go(t) = 0™"(1—0)t and T'(s) = z1+ - -+x,,. Then, the joint density
function can be factorized as fo(s) = h(s)-go(T(s)). Hence, T = X1 +---+ X,,
is a sufficient statistic. Then, find a maximizer of the logarithm of the likelihood
function. The likelihood function is given by

OL(Ols) D (
0 00

nin(@) +T(s)In(1 —0)) =

Setting this equal to 0 yields the solution 6 = n/(n+T(s)) which is 1—1 function
of T'(s). Hence, the sufficient statistic T is a minimal sufficient statistic.

6.1.13 The likelihood at a parameter value does not have any particular mean-
ing. Suppose L(6;|s) = 10° and L(0|s) = 10°" for k > 1. Even though 10 is
a very big number, the ratio of 109 to 109" = 108! is almost zero (10772). In
other words, a big likelihood value does not have any meaning. However, a very
big value of the likelihood ratio of two parameter points, say 6 to 6, indicates
05 is more likely than 6.
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6.1.14 As we have seen in Exercise 6.1.13, a ratio of likelihood values has to be
considered to have a meaningful interpretation. Let L1(6) = 6%, Lo(0) = 10062,
#, and 0 be two parameter values. The likelihood ratios at two points 6; and
0, are

Li(61) (ﬂ)Q _ 1006 La(61)

Li(62)  \By/ 10003  La(fo)
Thus, the ratios of likelihood functions at any two points are the same. There-
fore, any inferences based on two likelihood functions L1, Lo are effectively the
same.

Problems

6.1.15 Example 6.1.6 showed that T : S — {0,1} given by T(1) = 0 and
T(2) =T(3) = T(4) = 11is a sufficient statistic. Now given the likelihood
L(-]s), we know whether or not the likelihood ratio of a to b is 2 or 4/6, and so
can identify whether or not 7'(s) takes the value 0 or 1. Therefore, T is minimal
sufficient.
6.1.16 We see that L(-|2) = L(- | 3), so the data values in {2, 3} all give the same
likelihood ratios. Therefore, T : S — {0,1} given by T(1) = 0,7'(2) = T(3) =1,
and T'(4) = 3 is a sufficient statistic. We also see that once we know the
likelihood function L(-|s), we can determine all the likelihood ratios and so
determine if s =1, s € {2,3} or s = 4 has occurred.

The minimal sufficient statistic in Example 6.1.6 is not sufficient for this
model since the data value s = 4 does not give the same likelihood ratios when
s=2ors=3.

6.1.17 The likelihood function is given by L(p |21, ...,2,) =
exp (—n(Z — p)?/203). A likelihood interval has the form

{p:exp (—n(z — p)?/203) > ¢} = {p: —n(z — p)*/205 > Inc}

i1nc</¢<90—i—ﬂlnc}= (m—ﬂlnc,m—i—ilnc).

:{’““‘”‘m Von Von Van

So for any constant a, the interval (Z — a,T + a) is a likelihood interval for this
model.

6.1.18 We have that the likelihood function is given by L(0|z1,...,z,) =
Hfg (z;) = Hfg (m(i)), so once we know the order statistics, we know the
i=1 i=1

likelihood function and so they are sufficient.

6.1.19 The likelihood function is given by

n

L@ |zy1,...,xn) = H T(ag) (0z:)*° " exp {0z} 0

=1

=T""(a) ([Tws)* " 67 exp (—6nz) .
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By the factorization theorem Z is a sufficient statistic. The logarithm of the
likelihood is given by InL(0 | z1, ..., x,) = In{0""(ag) ([Jz:)** '} + nalnb —
OnZ. Differentiating this and setting it equal to 0, we obtain § = a/Z. So given
a likelihood function, we can determine Z and this proves that Z is minimal
sufficient.

6.1.20 The likelihood function is given by L(0|x1,...,x,) = 9*”1[%1) ) 9)
when 6 > 0. By the factorization theorem x(,) is a sufficient statistic. Now

notice that the likelihood function is 0 to the left of z(,) and positive to the
right. So given the likelihood, we can determine z(,,) and it is minimal sufficient.

6.1.21 The likelihood function is given by

1 n
el <92 = el> T my) (O [, o) (02)

By the factorization theorem (x(l), ﬂc(n)) is a sufficient statistic. Now given the
likelihood function, we see that the likelihood becomes 0 at z(;) on the left and
at x(n) on the right. So given the likelihood, we can determine these points.
This implies that (z(1),#(,)) is a minimal sufficient statistic.

6.1.22 From the argument in Example 6.1.8 we have that L(z,0? |2, ..., 2,) >
L(p, 02|21, ...,x,) for every u. Further, the argument there shows that, as a
function of o2, the function In L(Z, 02 | 21, ..., ¥,,) has a critical point at 62. The
second derivative of this function at 62 is given by

_ 9 (. n  nol,
~ do? 202 204

1 /n
=5 (3—n) <0

9*InL ((z,0%) |x)

0(0?)* 25

1 /n n-1,
—ala T

\so L(%,6? | x1, ..., wn) > L(p, 02| 21, ..., ,,) for every pu and o2.

6.1.23 The likelihood function is given by L(6|x1,...,z,) = 0"%(1 — §)"(1-2)
for 6 € [0,.5]. The factorization theorem establishes that Z is sufficient. Just
as with the full Bernoulli(f) model, we can determine Z as the point where this
function is maximized — provided that Z € [0, .5] — otherwise we do not know
the form of this function outside of [0,.5]. In general, the maximum value of
this likelihood function is attained at min {.5,Z}. When the maximum occurs
at .5, we only know that .5 < Z < 1. But the second derivative of the log of the
likelihood is given by

B Ay S R W
2 (1-6) (1—0?* 02) (1-6)°
so we can determine Z from this value at any specified 6 € (0, .5) (since specifying

9 allows us to compute n/ (1 —0)*,n/6% and then knowing the value of the
right-hand side allows us to compute Z). Therefore, Z is minimal sufficient.

02=52

02=52

&Kl
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6.1.24 The likelihood function is given by
L(O|z1, 2, 23) = 671 (20)"2(1 — 30)** = 229"1772 (1 — 3¢)"~(w1t2)

for 6 € [0,1/3]. By the factorization theorem x; + z2 is sufficient. To show
1 + a2 is minimal, suppose

L(O|z1, 20, 23) 272" F72(1 — g)n—(z1ta2) w27y2< 0 >m1+mz—(y1+yz)

LOly1,y2,y3)  2v20u1+v2(1 — g)n—(vr+v2) 10

is a constant when x1,x2,z3,y1,y2 and ys are fixed. The likelihood ratio is
constant if and only if x1 + x5 = y; + y2. Hence, x1 + x5 is a minimal sufficient
statistic.

6.1.25 The likelihood is given by L(i|s) = f; (s) for ¢ € {1,2} . Now note that
when T'(s1) = f1(s1) /f2 (s1) = f1(s2) [ f2 (s2) = T'(s2)

_ fa(s1) _ fa(s1)

L(1]s1) = fi(s1) = T, (32)f1 (52) = T (52)L(1|52)
L@|s1) = fa (s1) = %f (s2) = %L@ |52)

and to T is sufficient. Once we know L(i|s), we can certainly compute T'(s)
and so T is minimal sufficient.

Challenges
6.1.26 The likelihood function is given by

L(p, o | w1,y zy) = (ﬁ (2 —/i))ao_lexp{_nm;“} <%)nao

i=1

for p > x(1),0 > 0 and is 0 otherwise.
Now observe that the logarithm of the likelihood function is given by

InL(p,0|21,....xn) = (ap — 1) Zln (z@y —p) — nZ
i=1

H —naglno

ag

and
0 - 1 n
—InL(p,o|z,....2n) = — (g — 1 + —p.
5 L )=o)+

(a) When ag = 1 the likelihood function is determined by (z(1), %) , so (z(1), Z)
is sufficient. Given the likelihood, we can determine z(;) (this is the point
where the likelihood becomes 0), and Z is the point where the derivative of the
log of the likelihood becomes 0. Therefore, we can determine (:E(l), E) from the
likelihood and it is minimal sufficient.

(b) When aq # 1 this derivative is infinite at each order statistic and nowhere
else. So when ag # 1 we can calculate the order statistic from the likelihood by
determining every point where the log of the likelihood has an infinite derivative.
Also, by Problem 6.1.18 the order statistic is sufficient. Therefore, the order
statistic is minimal sufficient in this case.
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6.2 Maximum Likelihood Estimation

Exercises
6.2.1 The MLEs are 6(1) = a,0(2) = b, 6(3) = b,0(4) = a.
6.2.2 The likelihood function is given by L(0 | x1, ..., z,) = 6"%(1—0)"1=%), The

log-likelihood function is given by (0| z1,...,x,) =nZIné+n(l —z)In(1 —6).
The score function is given by

- nz  n(l-x)
SOz, .y y) = T T 1 9
Solving the score equation gives é(xl, ..eyZn) = Z. Note that since 0 <z < 1 we
have that
05(0 | x1, ..., xy) _ nz n(l-2) n n
o s 02 (1-02|,_, T 1-z

So 7 is indeed the MLE.

6.2.3 Since 1(0) = 62 is a 1-1 transformation of 6§ when 6 is restricted to [0, 1],
we can apply Theorem 6.2.1, so the MLE is ¢(0(z1, ..., x,)) = Z°.

6.2.4 The likelihood function is given by L(6|x1,...,z,) = e 90" the log-
likelihood function is given by (0] x1,...,2n) = —nf + nZ1n6, and the score
function is given by

SOz, .ccypn) = —n+ %x
Solving the score equation gives 9(3:1, .,Zn) = & . Note that since z > 0, we
have
0S50 | x1, ..., xp)

o0

0—7 92 ’9:52 N i
so Z is the MLE.

6.2.5 The likelihood function is given by L( | x1, ..., 2,,) = ™ exp (—nZh), the
log-likelihood function is given by 1(6 | z1, ..., ;) = napIn 8 —nzf, and the score
function is given by S(0|z1,...,2,) = nag/0 — nZ. Solving the score equation
gives 0(z1, ..., x,,) = ap/Z. Note that since Z > 0 we have that

0S(0|x1,...,xy)
o0

=20 o 02 f==0 o (o 7))
xT

s0 6 = ap /T is the MLE.
6.2.6 First, note that each z; comes from a Geometric(f) distribution. The
likelihood function is then given by L(0|z1,...,x,) = 0" (1 —60)"", the log-
likelihood function is given by (8|21, ...,z,) = nln€ + nZln (1 —0), and the
score function is given by

B nT

n
0 1-06

S(0|z1, ..., xn) =
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Solving the score equation gives 0(z1,...,x,) = 1/(1+Z). Note that since

0 <z <1, we have that
2
no__nz _ -2, 1+2)°
90 é:%_ 92 (1_9)2 o = n<(1+x) + = )

+z Trs

0S(0|x1, ..., xp) n nx

< 0.

So 6 =1/ (1+ ) is the MLE.
6.2.7 The likelihood function is given by

L(alxl,...,xn):< a+1)”ﬁx L <ﬁxi>a_1

i=1

The log-likelihood function is given by
la|zy,ehzy) =nln (T (a+1)) —nIn(T (o)) + (= 1) Zlnﬂci

The score function is given by

n(T(a+ 1)) nF’ Zlnﬂcl

S(OZ|{L‘1,...,{L‘n): F(O&+1)

n (I (a) + ol (a0 nF'
- - +Zlnx7__+;mi'

Then the solution to the score equation is given by
n

B Z?:l In €Z; )

The second derivative of the score at & is given by

o =

n

a?

so & is the MLE.
6.2.8 The likelihood function is given by

n B-1 n
L(B |21, ey n) = A7 (Hm) exp (—Zw?)
=1 i

the log-likelihood function is given by

1(B|x1y.yzn) =nIns+ (B (Zlnmz) —i 1.57
i=1
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and the score equation is given by

S(Blx1y .y Tn :% inxi—ixflnxi:O
i=1 i=1

6.2.9 The likelihood function is given by

n n —(a+1)
Lar] @1, e wa) = [[ o (14 0) " (H 1+xz) ,
i=1 i=1

the log-likelihood function is given by

n

la|z1,y.yxn) =nlna — (a—i—l)Zln(l—i—xi),

=1

and the score function is given by
Sla| 1y ey y) = zo iln (1+z;).
R

Solving the score equation gives

n

Q@1 ) = S

Note also that 6%5(04 | 21,...,2,) = —2% < 0 for every a, so & is the MLE.
6.2.10 The likelihood function is given by

r\" " (lnz;)?\ o 1
L(t|x1, .y Tpn) = < 27r7-> exp (—Z 572 o
i=1""

i=1

the log-likelihood function is given by

1
T |z, ) :——1n(27r)—nln7'— 53 Z Inz;) +Zln_

=1 Li

and the score function is given by
n 1 «
S(T]x1,y ey Tp) = - —SZ 1nxl

Solving the score equation gives
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and since 7 > 0, we take the positive root. Now

OS(7 |21, ..., Tn)

or

n 3 — 2n?
= —= - — Inx; = < 0.
T ;( ) S (Inay)?

T="7 A
T=7

So 7 is the MLE.

6.2.11 The parameter of the interest is changed to the volume 1 = p? from the
length of a side p. Then the likelihood function is also changed to

Lo(nls) = Lu(i’|s) = Li(uls)

where L, is the likelihood function when the volume parameter 7 = ;3 is of the
interest and L; is the likelihood function of the length of a side parameter pu.
The maximizer 7 of L,(n|s) is also a maximizer of L;(n'/3|s). In other words,
the MLE is invariant under 1-1 smooth parameter transformations. Hence, the
MLE of 7 is equal to ? = (3.2cm)? = 32.768cm?.

6.2.12 The likelihood function is given by
Lo, an) = (03 2 exp(~ > (w 20?)).
i=1

The derivative of the log-likelihood function with respect to o? is

1TL

Hence, the maximum likelihood estimator is 62 = n=t>"" | (z; — po)?. If the
location parameter 1 is also unknown, then the estimator for o2 is 62 = (n —
1)25°"  (z; — Z)? as in Example 6.2.6. The difference of two estimators is

Q>
N
|
Qe
M)
Il
S|
g)
|
=
=)
e
|
3
| =
—
(-
)
|
5]
e

In the second equality, the expansion (z; — uo)? = (v; — z)? + (Z — po)? +
2(Z — po)(z; — &) is used. Thus, the summation becomes Y 1 | (z; — po)? =
S (@ — )+ (T — po)? + 2(Z — po) Yoy (z; — Z). The last term is zero
because the summation in the last term is zero. By the law of large numbers,

2

_ P P . N -5 P
T — po and s> — o2. Hence, the difference 6% — 62 — 0 as n — oc.

6.2.13 A likelihood function must have non-negative values but 63 exp(—(0 —
5.3)2) < 0 for all # < 0. Hence, 6% exp(—(6 — 5.3)) for § € R! cannot be a
likelihood function.
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6.2.14 Suppose the likelihood function has only three local maxima. The MLE
is the point having the maximum likelihood. Hence, the point among —2.2, 4.6
and 9.2 having the biggest likelihood is the MLE.

6.2.15 We have that L;(0|s) = cL2(0|s) for some ¢ > 0, if and only if In L (0]s) =
Inc+1In Ly(0]s). So, two equivalent log-likelihood functions differ by an additive
constant.

6.2.16 A function that is proportional to the density as a function of parameter
is a likelihood function. So any likelihood function L can be written as L(0|s) =
c(8) fo(s) for some function ¢. Hence, L(f|s) = 1/4 does not imply fy(s) = 1/4.

Computer Exercises

6.2.17 The approximate MLE is 6 = 1.80000 (obtained from the values in C1
and C2) and the maximum likelihood is 3.66675. The following code was used.

MTB > set cl;

DATA > 1:1000

DATA > end.

MTB > let cl=c1/1000*20-10

MTB > let c2=exp(-(cl-1)**2/2) +3*exp(-(cl-2)**2/2)
MTB > plot c2*cl;

SUBC >connect.

likelihood
o

theta

6.2.18 The approximate MLE is 6 = 5.00000 and the maximum likelihood is
3.00034. The following code was used.

MTB > set cl;

DATA > 1:1000

DATA > end.

MTB > let cl=c1/1000*20-10

MTB > let c2=exp(-(cl-1)**2/2) +3*exp(-(cl-5)**2/2)
MTB > plot c2*cl;

SUBC >connect.
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likelihood
= = na ~ ot
o n =] in o

=
wn

2
o

-10 -3 o S 10
theta

Note that the likelihood graph is bimodal. If -y is big enough, then the likelihood
region will be just one interval. However, if 7y is small, then the likelihood region
will be the union of two disjoint intervals.

Problems

6.2.19
(a) The counts are distributed Multinomial (92, 20(1—-6),(1— 9)2> .

(b) The likelihood function is given by

L(0] 51,00y 8n) = 07" (20 (1 — 0))"2 (1 — 0)** = 2721+ (1 — g)r=+2

)

the log-likelihood function is given by
1O0]s1,.y8n) =222+ (221 + 22) In0 + (22 + 223) In (1 —0),
and the score function is given by

2x1 +x2 T2+ 273
S(9|517"',8n): 0 - 1—0

(¢) Solving the score equation gives

é( ) 2x1 + 22
8140y Sp) = —88 .
b 2 (z1 + z2 + 3)

Since

0S(0] 81y ..es 8n) 2T + 1Ty To + 213

a0 E (1-6)°
for every 6 € [0, 1] this is the MLE for 6.

6.2.20 First, recall that the MLE for p is Z (Example 6.2.2). The parameter of
interest now is ¢ () = P, (X < 1) = ® (1 — p), where ® is the cdf of a N(0,1).
Since ® (1 — u) is a strictly decreasing function p, then ) is a 1-1 function of
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. Hence, we can apply Theorem 6.2.1 and conclude that 1[1 =®(1—1z) is the
MLE.

6.2.21 The log-likelihood function is I(st| 21, ..., xn) = —n (% — p)* /2, and, as
a function of u, its graph is a concave parabola and its maximum value occurs
at Z. So if £ > 0, this is the MLE. If T < 0, however, the maximum occurs at 0
and this is the MLE.

6.2.22 By the factorization theorem L (0|s) = fo(s) = h(s)ge (T(s)). The
probability function for T is given by

for@) =Y fols)= >, h()ge(T(s))=g0(t) Y h(s).
{s:T(s)=t} {s:T(s)=t} {s:T(s)=t}

So the likelihood based on the observed value T'(s) = t is given byL (0 ]t) =
go (t), and this is positive multiple times the likelihood based on the observed
s. Therefore, the MLE based on s is the same as the MLE based on T.

6.2.23

(a) First, note that f3 = 1 —0; — 65, so the likelihood function is only a function
of 91 and 92 and is given by L(91,92 |.7,‘1,.1‘2,.1‘3) = 9%1952 (1 — 91 — 92)273 . The
log-likelihood function is then given by (01,02 | x1, 22, 23) = 110601 +z2In 6y +
z31n (1 — 601 — 63) . Using the methods discussed in Section 6.2.1 we obtain the
score function as

_( @ 1—6,—6
S(01,02| w1, 22, 23) = ( o e >
92 1791792
The score equation is given by

1 z3 _ T2 x3 —
01 1—61—0y O 1—61—0y

so 21 = (21 + 23) 01 + 2162, and x5 = 2261 + (z2 + x3) O2. The solution to this
system of linear equations is given by

0, 0

A T z1 A €2 €2
=—— =22 fp=— "2 2
xr1 + 2o+ a3 n 1+ 22 + 23 n

Also note that the matrix of second partial derivatives is given by

0S(0r,02 | w1, x0,3) [ —8F ~ {6, ) o)
20 = s, o m
(1—61—02) 02 (1—61—62)

and evaluated at (él, ég) this equals

1 1 1
3 1 1 1 .
( —_ _+_

xrs3 xr2 xr3
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Now the negative of this matrix has (1,1) entry greater than 0 and its determi-

nant equals
o) (G )-(5)
— + — —+—=]—-|1—=—)] >0
z1 o x3) \T1 fs T3

so the matrix is positive definite. This implies that the matrix of second par-
tial derivatives of the log-likelihood evaluated at (él,t%) is negative definite.

Therefore,
(917é2793> = (ﬂv ﬂ71 - ﬂ - ﬂ) = <ﬂv ﬂv E)
n
is the MLE for (91, 92, 93)
(b) The plug-in MLE of 6; + 63 — 62 is @1 /n + (z2/n)* — (x3/n)>.
6.2.24 The likelihood function is given by

L(01,02 | w1, o wn) = (92 igl) I aoiwiy) O [ o) (02)

Fixing 6o, we see that L(-, 05| x1, ..., x,) is largest when 05 — 6 is smallest, and
this occurs when 6y = x(;). Now L(z(y),- |1, ...,2,) is largest when 0y — (y)
is smallest, and this occurs when 6, = z(,). Therefore, L(601,02 |21, ...rmyn) <
L(z(),02 | @1, ...,20) < L(@(1), T(n) | @1, ..., 2n) and (x(1), T(n)) is the MLE.

Computer Problems

6.2.25

(a) Assuming that the individuals are independent (sample size small relative to
the population size), the log-likelihood function is given by 4ln6+161n (1 — 6).
The plot of this function is provided here (note that it goes to —oo at 0 and 1).
We can determine the MLE exactly in this case as 6 = 4/16 = 0.25.

x
nn n3 ot 0. 03 1n
t } ) t |
v
50T
=100 1
=150 -

(b) The sample size is not small relative to the population size, so the number of
left-handed individuals in the sample is distributed Hypergeometric(50, 506, 20) .
Note that 6 is no longer a continuous variable but must take a value in 0, 1/50, 2/50,



6.2. MAXIMUM LIKELIHOOD ESTIMATION 157

...,49/50,1}. The log-likelihood is then given by (ignoring the denominator in
the hypergeometric)

500 50 (1 — )
1 1
() (")
= InT (500 +1) — InT (500 — 4 +1) — InT (4 +1) +
InT (50 (1 —60) +1) — InT (50 (1 — 0) — 16 + 1) — InT (16 + 1)
for 2000 = 4,5,...,34. Ignoring the InT' (4 + 1) and InT' (16 + 1) (as they do

not involve 6), we plot the log-likelihood below. From the tabulation required
for this plot we obtain the MLE as 6§ = .22.

P

*******

. *x
*x

log-likelihood

Challenges

6.2.26 First we write the density as

Lex -z
w@={ 10200

IV IA

xZ.

The log-likelihood function is then given by

L1, mmn) = D> (0—zp)) + > (2 —0)-

o<z 02

When 0 < x¢1), 1 (0|21,...,xn) = nb — Y | x(¢;), and this is maximized by
taking 6 = x(y), giving the value nx ;) — Dy ) < 0.

When 0 > z(,), 1 (0] z1,...,2n) = > 1y @(;) — nb, and this is maximized by
taking 6 = x(,), giving the value S Ty — NTp) < 0.
When T(4) <f< T(i+1)s

7 n

LOlar,mmn) =Y (2 = 0) + Y (0-2(;)
j=1 j=it+1
=n—200+) g - Y oy =0-200+2) g -y 10
=

j=1 j=i+1 j=1
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and this is maximized (provided n # 2i) by taking 6 = x(;4.1) when i < n/2
and by 6 = x;) when i > n/2. When n = 2i all values in z(;) < 0 < x(;41) are
maximizers. A

When n = 1, then 6 = x(;). Now suppose n > 1. We have that i = 1 < n/2
and

1 n n n
(n =2z +2) ag) — ) TG =nTE) — Y TG) 20Ty~ Y ().
=1 i=1 i=1 =1
Now suppose i < i+ 1 < n/2. Then
(n — 27;)1‘(1'4_1) + 2 Z:E(j) — Zx(j)
j=1 j=1
1+1 n
=M —=2(i+1))zg42 +2 Zl“(j) - Zﬂf(j) + (n — 2i) ($(i+1) - x(i+2))
j=1 j=1
1+1 n
< (n -2 (’L + 1))1‘(“_2) +2 Zx(j) — Zx(j).
j=1 j=1
Ifn/2 <i<i+1, then
(n — 27;)1‘(1-) +2 Z:E(j) — Zx(j)
j=1 j=1
1+1 n
= (0 =20+ 1)agen) +2)_w() — Y _wg) + (0= 20) (36) — T(i+1))
j=1 j=1
1+1 n
>(n—20G+ 1))1‘(“_2) + 2 Z:E(j) — Zx(j)
j=1 j=1

and finally when i = n, then (n—2n)x () +2 327, T(j) =2 j—1 T(j) = 2 j—1 T(j)—
NT () -

(V%fhen n is odd this argument shows that [ (6 | z1, ..., z,) increases in
(—oo, m(m/gj)) and decreases in [z(|,/2]), 00), SO 6= T(|n/2)) (the middle value).
When n is even this argument shows that [ (8| z1,...,x,) increases in
(—oo, m(n/g)) , is constant in [x(|n/2)), T(|n/2)+1)), and decreases in [x(|,, /2], 00),
so any value é S [m(Ln/2J),x(Ln/2J+1)) is a maximizer.

6.3 Inferences Based on the MLE

Exercises

6.3.1 This is a two-sided z-test with the z statistic equal to —0.54 and the
P-value equal to 0.592, which is very high. So we conclude that we do not
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have any evidence against Hy. A .95-confidence interval for the unknown gy is
(4.442,5.318). Note that the confidence interval contains the value 5, which
confirms our conclusion using the above test.

6.3.2 This is a two-sided t-test with the ¢ statistic equal to —0.55 and the P-
value equal to 0.599, which is very high. We conclude that we do not have
enough evidence against Hy. A .95-confidence interval for the unknown p is
(4.382,5.378). Note that the confidence interval contains the value 5, which
confirms our conclusion using the above test.

6.3.3 This is a two-sided z-test with the z statistic equal to 5.14 and the P-
value equal to 0.000. So we conclude that we have enough evidence against H
being true. A .95-confidence interval for the unknown p is (63.56,67.94). Note
that the confidence interval does not contain the value 60, which confirms our
conclusion using the above test.

6.3.4 This is a two-sided t-test with the ¢ statistic equal to 9.12 and (using the
Student(3) distribution) the P-value equals 0.452, which is not small and so we
do not reject the null hypothesis. A .95-confidence interval for the unknown p
is (44.55,86.95). Note that the confidence interval contains the value 60.

6.3.5 If we assume that the population variance is known then under Hy we
have Z = X—;OENN (0,1) and the P-value then is given by

)= (2= 5 =2 (o557

=2(1 — .99983) = .00034

o — Mo
go

P<ZZ

and a .95 confidence interval for p is given by
[0 — 20.97500, To + 20.97500] = [52 ~1.96v/5,52 + 1.96%5} — [47.617,56.383]

Note that both the P-value and the .95 confidence interval indicate that there
is evidence against Hy being true.

If we don’t assume that the population variance is known, then, since we
only have a single observation the sample variance is 0, and we do not have a
sensible estimate of the population variance. So we cannot use the ¢ procedures
to compute the P-value and construct a confidence interval. The minimum
sample size n for which inference is possible, without the assumption that the
population variance is known, is 2.

6.3.6 A .99 confidence interval for y is given by (22.70,29.72). The P-value for
testing Hy : p = 24 is 0.099, so we conclude that there is not much evidence
against Hy being true. Note also that the .99 confidence interval for p contains
the value 24.

6.3.7 To detect if these results are statistically significant or not we need to
perform a z-test for testing Hy : i = 1. The P-value is given by

P(IZIZ

1.06 -1

/0.1/100

> =2[1—-®(1.5811)] =2(1 —0.9431) = 0.1138.
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So these results are not statistically significant at the 5% level, and so we have
no evidence against Hy : ;= 1. Also, the observed difference of 1.05—1 = .05 is
well within the range that the manufacturer thinks is of practical significance.
So the test has detected a small difference that is not practically significant.

6.3.8 Based on a two-sided z-test, the z-statistic (using standard error

.65(.32)/250) equals —0.994490 and the P-value equals 0.32. So we conclude
that there is no evidence against Hy being true. A .90-confidence interval for
0 is given by (0.559832,0.680168), which includes the value 0.65, and so agrees
with the result of the above test.

6.3.9 Based on a two-sided z-test to assess Hy : 8 = 0.5, the z-statistic is
equal to 0.63 and the P-value is equal to 0.527. So we conclude that there is no
evidence against Hy being true; in other words, there is not enough evidence to
conclude that the coin is unfair.

6.3.10 Let 0 be the probability of head on a single toss. The sample sizes
required so that the margin of error (half of the length) of a v = 0.95 confidence
interval for 6 is less than 0.05, 0.025, 0.005 are given by

1 /712>
> Z
021 ()
So for § = 0.1 n > 384.15,8 = 0.05 n > 1536.6 and & = 0.01 n > 38415.

6.3.11 Based on a two-sided z-test to assess Hy : 0 = %, the z-statistic is equal
to 2.45 and the P-value is equal to 0.014. So we can conclude that at the 5%
significance level, there is evidence to conclude that the die is biased.

6.3.12 The sample size that will guarantee that a 0.95-confidence interval for p
is no longer than 1 is given by

2140\ 2 1.96\°
nzag< 7 > :2<ﬁ) =30.732

So the minimum sample size is 31.

6.3.13
(a) Simple expansion is given by

n

Z(wz —7)? = zn:(xf — 2Tz + 3°) = zn:xf — %ixi + nz?
i=1 i=1 i=1

=1

T — 2@29@ +nZ? = ni — 22nT + nz? = nz(1 — 7).
=1

Il

Il
-

(2

(b) The MLE of 0 is § = & as in Example 6.3.2. The plug-in estimator for
02is 62 =0(1—-0) = z(1 —z). Using (a), s> = (n— 1) Y3" (2, —2)% =
(n—1)"'nz(1 — z). Thus, 62 =

3
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(c) The bias of the plug-in estimator 62 for o2 = (1 — 0) is

bias(6?%) = Ey(6%) — 02 = Ey(6* — 5%) + Ep(s?) — o?

= Ey(—s*/n) = —0?/n — 0 as  n — oo.

6.3.14 Since the value ¥(0) = 2 is in the 0.95-confidence interval (1.23,2.45),
we find no evidence against Hy : 1(0) = 2 at significance level 0.05 =1 — 0.95.

6.3.15

(a) To check unbiasedness, the expectation must be computed. Ey(z1) =1-0+
0-(1—6)=40. Hence, x1 is an unbiased estimator of 6.

(b) Since the value of x7 is only 0 or 1, the equation z? = z; always holds.
Thus, Ep(z3) = Eg(x1) = 6. Hence, 7 is not an unbiased estimator of 2. In
this exercise, we showed an unbiased estimator is not transformation invariant.

6.3.16 The P-value indicates that the true value of 1 (0) is not equal to 5. The
estimate 1(0) = 5.3 suggests that the true difference from 5 is less than .5. This
suggests that the statistically significant result is not practically significant. If
instead we adopt the cutoff of .25 for a practical difference then the statistically
significant result from the P-value suggests that a meaningful difference from 5

exists.

6.3.17 Statistically, the P-value 0.22 shows no evidence against the null hypoth-
esis. However, it does not imply that the null hypothesis is correct. It may be
that we have just not taken a large enough sample size to detect a difference.

6.3.18 We need to compute the power at 0.5 = 1 — 0.5 and 1.5 = 1+ 0.5. If
these values are high, then we have a large probability of detecting a difference
of magnitude .5 but not otherwise. If the power is low then more data needs to
be collected to get a reliable result.

Computer Exercises

6.3.19 The sample size that will guarantee that a 0.95-confidence interval for
1 is no longer than 1 is given by

n> 25 (L% (6” - 1))2.

When n is large, then tg.g75 (n — 1) & 29,975 = 1.96, and in that case
25
n > 5—2(1.96)2 = 384.16

So the minimum sample size is 385. Now when n = 400 we have that tg.975 (400) =
1.9659 and

25
400 > '5—2(1.9659)2 = 386.48
so n = 400 suffices.

6.3.20 The power function is given by (z.975 = 1.96)
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b 5
1 @(ﬁ/\/ﬁ+1.96> +<I>(\/§/\/ﬁ 1.96).

A partial tabulation of the power function (as a function of n) is given below.
We see that n = 63 is the appropriate sample size.
60 0.78190
61 0.78853
62 0.79500
63 0.80129
64 0.80742
65 0.81339
66 0.81919
67 0.82484

6.3.21 We expect to observe approximately 950 confidence intervals containing
the true value of . In practice, we do not observe exactly this number. The
number covering will be less for sample size n = 5 than for sample size n = 20.

6.3.22 As n increases, you should observe that the proportion of intervals that
actually contains 0 increases as s becomes a better estimate of o = 1.

Problems

6.3.23
(a) First of all, (n—1)s? = Y"1 | (z; — )% =Y [27 —2Za; + 2% =Y 27 —
nz2. The expectation of the first summation term is

E[ m?} = nE[XY?] = n(u? + o?).

i=1
Since nz? =n~t Y1 @i Y5 @,
i=1 j=1 i=1 j=1 i=1
J#i
1 1
= -n(n—l)-;ﬁ—i—ﬁ n- (U +0%) = np? + o?

Hence, E[(n—1)s?] = n(u?+02%)— (nu?+0?) = (n—1)o?. Therefore E[s?] = o2

and s? is an unbiased estimator of the variance o2.

(b) Let 62 = (n — 1)s%/n. The bias of 62 is

bias(6?) = E[6°] — 0% = ((n — 1)/n)E[s*] — 0* = [(n — 1)/n]o?* — o

= —o?/n.

Hence, the bias —o2/n converges to 0 as n — oo.

6.3.24
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(a) Since Ty and T are unbiased estimators of ¢(0), E[T1] = E[Ts] = ().
Hence, E[aT1+(1—a)Ts] = aE[Th]+(1—a)E[T:] = ap(0)+(1—a)(8) = ¥(h).
Therefore, T} + (1 — a)T5 is also an unbiased estimator of 1(8).

(b) From Theorem 3.3.4, 3.3.1 (b) and 3.3.2, Varg(aT1+(1—a)T>) =Varg(aT1)+
Varg((1—a)Tz)+2Covg(aTh, (1—a)Ty) = a2 Var(Ty)+(1—a)2Varg (T2) +2a(1—
a)Covy(T1,T>). The independence between T and T5 implies Covy(T1,T2) =0
and Varg(aTy + (1 — a)T2) = a2Var(T1) + (1 — a)2Var(T3). (c) The variance of
oT) + (1 — a)T; can be written as

o?(Varg(Ty) + Varg(T3)) — 2aVarg(Ty) + Varg(T5)
B Varg(T5) ) 2 Varg(T1) Varg(Tz)
Varg(T1) + Varg(T2) Varg(Ty) + Varg (1)

= (Varg (Tl) + Varg (T2 )) (Ot

Hence, it is minimized when o =Vary(Ts)/(Varg(T1)+Varg(T5)). If Varg(Ty) is
very large relative to Varg(75), then o will be very small. Hence, the estimator
oT) + (1 — a)T; is almost similar to Ty. (d) In part (b), the variance of a7 +
(1 — )T is given by a2 Var(T1) + (1 — a)3Var(T%) + 2a(1 — a)Covy (T4, T»). By
rearranging terms, we get

o?(Varg(Ty) + Varg(Ty) — 2Covy(Ty, T3))
— 204(\/&1“.9 (TQ) + Covg (Tl, TQ)) + Varg (Tg).

If Ty = Ty, then o771 + (1 — «)Ty = Ty = Ty and there is nothing to do.
So P(Ty = Ts) < 1 is assumed. Thus, Varg(T1)+Varg(Ts) — 2Covy(T1,T2) =
Varg(T) — T) > 0. Therefore, the variance of a7} + (1 — )73 is maximized
when a = (Varg(Th)+Covy(T1,Ts))/Vare(Th — T»). If Varg(Ty) is very large
relative to Varg(T%), then « is very small again. Hence, the linear combination
estimator a1} + (1 — «)T, highly depends on T5.

6.3.25 Using ¢ (1, ....,2n) = T + k (00/+/n), we have that k satisfies

P(u<z+k(00/vn)) —P((:;/_\//%

So k = —z1_ = 2, L.e., the y-percentile of a N(0,1) distribution.

z—k)—P(zz—k)m

6.3.26 The P-value for testing Hy : p < pg is given by

X_M To — 1 = max P

e (wﬁ ] oo/ﬁ> ety <Z ’ fjf/%)
= e (12 (o 4))

Since (1 — @ ((Z, — p) / (00/+/n))) is an increasing function of u, its maximum
is at = po.
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6.3.27 The form of the power function associated with the above hypothesis
assessment procedure is given by

(o () ) - (5812
() -n (g Bk
_1—©(Z§/\/_+z1 a)

6.3.28 Using ¢ (1, ....,xn) = T + k (09/y/n) we have that k satisfies

P(u2i+k(ao/\/ﬁ))_P<i/\/_< k> P(Z < —k)>~

So k = —zy = z1_-, i.e., the 1 — v percentile of a N(0, 1) distribution.
The P-value for testing Hg : p > pg is given by

X —u — —
P, = PlZ< d
e (rurc < sor) — e P (7 < o) = e (o)
Since ® ((Z, — ) / (00/+/n)) is a decreasing function of u, its maximum is at
K= Ho-
6.3.29 Using ¢ (21, ....,xy) = T + ks/+/n, we have that k satisfies

P(ﬂ§X+ks/ﬁ)=P< /\F> k>

Sok=—ti_y(n—1)=t,(n—1),ie., they percentile of a t(n—1) distribution.
The P-value for testing Hy : pu < g is given by

X H — To— [
P, = 1-G jn—1 .
pety (UO/\/— 00/\/—) “Hé%< <UO/ W >)
Since (1 — G ((Z, — i) / (60/+/n) ;n — 1)) is an increasing function of y, its max-
imum is at p = po.

6.3.30 Using c(z1,....,2n) = Ks? we have that k satisfies P (0% < kS?) =
P (B8 > 2) > 9 S0 k= (n—1) b, (n—1).

6.3.31 The P-value for testing Hy : 0% < 03 is given by

(=S _ (n— 1)52)

ma; P,(8?>5*)= ma P
(11702)()5(Ho M( ) (/L,GQ)(}E(HO H(

_ 2 _ 2
= max (1—H<%;n—l>)—(I—H(M;n—l)>
(,02)€Ho o g
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since (1 — H ((n—1)s§/0%n —1)) is an increasing function of o2.
6.3.32 We have that

ﬁ (,LL, 0'2) = P(%Uz) <1 - H (m;n— 1) < Oé>

99
—1)S2
= P(Mgz) (H (M,n - 1> >1-— a)
99
n—1)52
= Plu.o?) (—( 02) > Xioa(n = 1)>
0

n—1)S? o3 o2
~ Py (P25 > Bt - 0)) =11 (B - Din1).

6.3.33 To detect if these results are statistically significant or not we need to
perform a t-test for testing Hy : 4 = 1. The P-value is given by
1.05 -1

Pl >|——==
/0.083/100

Since the P-value is greater then 5%, these result are not statistically significant
at the 5% level, so we have no evidence against Hy : = 1.

The P-value for testing Hy : 02 < o3 is given by (1 — H ((n — 1)s?/o3;n — 1))
Using 02 = 0.01, s> = 0.083,n = 100 we obtain P-value equal to 0. So we have
enough evidence against Hy, i.e., the result is statistically significant and we
have evidence that the process is not under control.

Challenges
6.3.34 Equation (6.3.11) is given by

(h o) o) 22

Put z = /n(po —p) /oo. fx <0, then 2 — 21 o <z +21-9 < —x+21-g =
—(z—2z1_g).Since p (zr—21-a) = ¢ (— (r—21-2)) and ¢ (2) increases to
the left of 0 and decreases to the right, this implies that (6.3.11) is nonnegative.
If x > 0, then — (m—l—zl_%) <z—2z-2 <x+2_g and again (6.3.11) is
nonnegative.

6.3.35 Equation (6.3.12) is given by

(o) o) 2

Put x = /n (4o — 1) /oo. Then if z < 0, we have that  — 21 g <z +21-g <
—T+z1-g =— (x — zl_%) . Since ¢ (w — zl_%) = (— (w — zl_%)) and ¢ (z)
increases to the left of 0 and decreases to the right, this implies that (6.3.12) is
positive when p > pg. When 2 = 0, clearly (6.3.12) equals 0. When « > 0 then
— (:r + zl,%) <T—z1-g <T+2z-g,and this implies that (6.3.12) is less than
0 when g < pp.

) =2[1 — G (1.7355;99)] = 2 (1 — .95712) = 0.08576.
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6.4 Distribution-free Methods

Exercises

6.4.1 An approximate .95-confidence interval for pg is given by

m & 1 5 (26.027,151.373)

Vn
since mg = 88.7, z.975 = 1.96, and s3 = 143.0.

6.4.2 Recall that, the variance of a random variable can be expressed in terms
of the moments as 0% = po — p3. Hence, the method of moments estimator of
the population variance is given by 6% = ma — m3. To check if this estimator
is unbiased we compute

E (mz —mi) = pa — (Var (m1) + E* (m1)) = po — <1 (k2 — 17) +M%)

n
1
=(1—-—=)¢2
(1-5)

Hence, this estimator is not unbiased.

6.4.3 The method of moments estimator of the coefficient of variation of a
random variable X is \/ma —m?/m. Now let Y = c¢X. The E(Y) = cE(X)
and Var(Y) = ¢ Var(X) . Therefore, the coefficient of variation of Y is

¢Sd (X) JeE(X) = Sd (X) /E(X)

which is the coefficient of variation of X.

6.4.4 Let ¢ (1) = exp (1) then ' (1) = exp (1) . By the delta theorem (6.4.1),
an approximate y-confidence interval for ¢ (u) is given by

sexp (Z) 2.997 exp (2.9)

i 4 - 9.9) — ZZT 72T
va T (29) V20

6.4.5 Recall from Problem 3.4.15 that the moment generating function of a

X ~ N(u,0?) is given by mx(s) = exp(us + 02s%/2). Then, by Theorem 3.4.3
the third moment in given by

exp + 1.96 = (—5.697 5,42.046) .

mX(O) —_ 30_2 (/~L+U2S) €MS+%U252 T (p+028)36“5+%0252

=30+ u?
s=0
The plug-in estimator of u3 is given by fi3 = 3 (mg —m?) my 4+ m3, while the
method of moments estimator of p3 is mg = 23" 23, So these estimators are
different.

6.4.6 The t-statistic for testing Hy : p = 3 is 0.47 and the P-value (based on 9
df) is 0.650. Hence, we do not have evidence against Hy .
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To test the hypothesis Hy : 2 5(6) = 3 using the sign test statistic, we have
S =3 I—oog (%) = 5. The P-value is given by P ({i:|i — 5] >0}) = 1.
Therefore, we do not have evidence against Hy .

The following boxplot of the data indicates that the normal assumption is
a problem, as it is strongly skewed to the right. Under these circumstances we
prefer the sign test.

80 —

70 —

60 —|

50 —|
x 40 —
30 —

20 —|

10 —

0 —

6.4.7 The empirical cdf is given by the following table. The sample median is
estimated by —.03 and the first quartile is —1.28, while the third quartile is .98.
The value F(2) is estimated by F (2) = F'(1.36) = .90.

iww  Fleg) iz F(zp)
1 —142 006 11 000 055
2 —135 010 12 038 0.0
3 —134 015 13 040 065
4 -129 020 14 044 0.70
5-1.28 025 15 098 0.7
6 —1.02 030 16 106  0.80
7 -058 035 17 106 085
§ 035 040 18 136  0.90
9 —024 045 19 205 095
10 —003 050 20 213 1.00

6.4.8

(a) Bootstrap samples are resamples from {1,2,3} with replacement. Hence,
{1,2,3}3 is all the possible bootstrap samples.

(b) Since the sample size n = 3 is an odd number, the sample median is a
number in the resample. Hence, all the possible sample medians are 1, 2, and
3.

(c) Let T be the sum of the resampled numbers. The smallest 7" is 3 when (1,1, 1)
is sampled and the maximum is obtained if (3,3, 3) is resampled. Besides, all
integer values between 3 and 9 are obtainable (consider (1, 1,2), (1,1, 3), (1,2, 3),
(1,3,3) and (2, 3,3)). Hence, the possible resample means are the values of T'/3,
ie,t/3fort=3,...,9.

(d) The sample median has only 3 possible values and the sample mean has
7 possible values. Neither of them is large enough to have an asymptotic nor-
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mality. Any estimate or confidence interval based on asymptotic normality of
bootstrap samples is not acceptable for this problem.

6.4.9 When n is large then the distribution of the sample mean is approximately
normal. When n and m are both large then the bootstrap procedure is sampling
from a discrete distribution and by the CLT the distribution of the bootstrap
mean is approximately normal.

The delta theorem justifies the approximate normality of functions of the
sample or bootstrap mean.

6.4.10 If the distribution is symmetric, then the median is exactly the same
as the mean, i.e., ¥(0) = median(Fy) = Ey(X). By the central limit theorem,
Vn(z — (0)) 5 N(0,02) as n — oo. Thus, an approximate ~y-confidence
interval is given by (T — z(144)/25/V/1: T + Z(144)/25/y/n) where s* = (n —
1)~ 3" (z; — 7). From the data in Exercise 6.4.1, z = 2.9 and s* = 8.9839.
From the table D.2, zp.975 = 1.96. Hence, the approximate 0.95-confidence
interval is (1.5864,4.2136).

6.4.11 Let y1,...,y, be a random sample from Uniform({z1,...,2,}). The
number of values that can arise from bootstrap samples is equal to the number
of values |z; — z;| for 1 < ¢,j < n. Hence, the maximum number of possible
values is 1+ () = 1+ n(n —1)/2. Here, 0 is obtained when i = j. The sample
range y(,) — Y(1) has the largest value z(,) — z(1) when x(y), () are sampled,
in other words, y; = x(1) and y; = x(,,) for some 7 and j. The smallest sample
range value of 0 is obtained when y; = z(;) and y; = x () for some 4, j and k.

If there are many repeated x; values in the bootstrap sample, then the value
0 will occur with high probability for y(,) —y(1) and so the bootstrap distribution
of the sample range will not be approximately normal.

6.4.12 Every bootstrap sample is a subset of {x1,...,z,}". Hence, the number
of distinct bootstrap samples is |{z1,...,2,}|" in general. Thus,

[{1.1,-1.0,1.1,3.1,2.2,3.1}|¢ = 4% = 4096
samples are possible.
Computer Exercises

6.4.13 To test the hypothesis Hy : x 5(0) = 0 the sign test statistic is given by
S =3 1 I(—00,) (i) = 10. The P-value is given by P ({i: i —10] > 0}) = 1.
Hence, we do not have any evidence against Hy.
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We have that

L 20\ /1\* e
P({i:fi—10>10) = (") (5) =1.9073x10
92 1 20 92 1 20
P({i:]i—10] = 9}) = 2(00) 5) 2( 10) <§> = 4.0054 x 1077

|
e =o(2) () o 3) () o2) ()
0

2
=4.0245 x 107*
2720\ /1\*
P({i:li—101>7)=>Y 2(" ) (=] =25768x1073
(isli- 1027 =3 () ()
4 20
2 1
P({i:]i—10] >6}) 2< 0) <—> =1.1818 x 102
‘ 7 2
Jj=0
5 20
2 1
P({i:]i—10] >5}) = 2< 0) <—> =4.1389 x 1072
- 7 2
Jj=0
6 20
P({i:|i—10] >4}) = 2<29) G) =0.11532.
; J
Jj=0

Therefore, j = 15 and a .95-confidence interval is given by [x(g),Z(15)) =
[—1.02,0.98). The exact coverage probability of this interval is 1 — 4.1389 x
1072 = 0.95861.

6.4.14 To test the hypothesis Hy : x.25(f) = —1.0 the sign test statistic is
given by Sy = 31" | I(oo,—1.0] (x;) = 6. The P-value, using (6.4.6), is given

P({i = (%) (0.25)" (0.75)*°7" < (29)(0.25)° (0.75)"*}), and a tabulation of
the Binomial(20, .25) probability function reveals that this set is given by all
the points except {5,4}, so the P-value is given by 1 — (250) (0.25)° (0.75)"° —
(%) (0.25)* (0.75)"° = 0.60798 and we have no evidence against Ho.

6.4.15 The characteristic of the distribution we are interested in is ¢(0) =
T (Fy) = ps, which we estimate by T'(F') = ms = 88.7442. We want to estimate
the MSE of the plug-in MLE of ug, which is given by ’(/AJ = m$ + 3mys? =
(2.9) + 3(2.9) (2.997)> = 102.53. First, the squared bias in this estimator is
given by (¢ — T(F))? = (mf + 3m6% — m3)2 = (102.53 — 88.7442)* = 190.05.
Next, based on 103 samples, we obtained Var F(l[)) = 956.598. Hence,
MEE,(¢) = 102.53 + 956.598 = 1059.1. Note that, based on 10* samples, we

obtained Var F(¢) = 981.057 and, based on 10° samples, we obtained Var I (1)) =
973.434. Hence, m = 1000 is a large enough sample for accurate results.
The Minitab code for carrying out these simulations is given below.
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gmacro
bootstrapping

base 34256734

note - original sample is stored in cl

note - bootstrap sample is placed in c2 (each one overwritten)

note - third moments of bootstrap samples are stored in c4 for more
analysis

note - k1 = size of data set (and bootstrap samples)

let k1=15

do k2=1:1000

sample 20 cl c2;

replace.

let c3=c2**3

let c4(k2)=mean(c3)

enddo

note - k3 equals (6.4.5)

let k3=(stdev(c4))**2

print k3

endmacro

6.4.16 The characteristic of the N(u,0?) distribution that we are interested
in is (0) = T (Fy) = x(0.25)(0) = p + 020.25, which we estimate by T(F) =
Zo.25 = 0.15, i.e., the sample first quartile. We want to estimate the MSE
of the plug-in MLE of x(g.25)(¢), which is given by ¢ = m1 + s20.05 = 2.9 +
(2.997) (—0.6745) = 0.87852. The squared bias in this estimator is given by
(1) — t(F))? = (0.87852 — 0.15)* = 0.53074.

Based on a 10% samples, the variance of this estimator is estimated as
Var (1) = 1.85568. Hence, MEE,(¢)) = 0.53074 + 1.85568 = 2.386 4. Based on
a 10* samples, the variance of this estimator is estimated as \Eﬁ (1[}) = 1.89582.

Hence, MBEy (¢)) = 0.53074 + 1.89582 = 2.4266.
The Minitab code for this simulation is given below.

gmacro
bootstrapping
base 34256734

note - original sample is stored in cl
note - bootstrap sample is placed in c2 (each one overwritten)
note - first quartiles of bootstrap samples are stored in

c4 for more analysis
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:20000
sample 20 cl1 c2;
replace.
sort c2 c3
let c4(k2)=c3(5)
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enddo

note - k3 equals (6.4.5)
let k3=(stdev(c4))**2
print k3

endmacro

6.4.17 The characteristic of the N(u,o?)distribution that we are interested

in is Y(p,0%) = t(F02) = Fluo)(3) = @ (2£) ,where ®is the cdf of the
N(0, 1)distribution. The plug-in estimator of ¢(6)is

- 3-29 9
V(xy,..p) =P ( 5997 ) = (3.3367 x 10 ) =0.5133.
The bias squared in this estimator is given by (¢ — t(F))? = (0.5133 — 0.4)> =
0.01284.Based on 103samples the variance of this estimator is estimated as
Var (1)) = 0.0117605.Hence, MEEq(y)) = 0.01284 + 0.0117605 = 2.4601 x
10~2.Based on 10*samples, the variance of this estimator is estimated as Var P (1/3)

= 0.0118861.Hence, MEE, (1)) = 0.01284 + 0.0118861 = 2.4726 x 102
The Minitab code for these simulations is given below.

gmacro
bootstrapping
base 34256734

note - original sample is stored in cl
note - bootstrap sample is placed in c2 (each one overwritten)
note - value of the ecdf at 3 of bootstrap samples are stored in

c5 for more analysis
note - k1l = size of data set (and bootstrap samples)
let k1=15
do k2=1:10000
sample 20 cl c2;
replace.
sort c2 c3
let c4= c3 le 3
let c5(k2)=mean(c4)
enddo
note - k3 equals (6.4.5)
let k3=(stdev(c5))**2
print k3
endmacro

6.4.18 The sampling model X; ~ N(u,0?)is assumed. The characteristic
¥(0) = pis of interest. It is known that /n(Z — p)/s ~ t(n — 1). Thus, an
exact y-confidence interval is (Z —t(14+)/2(n —1)8, T +t(144)/2(n —1)). For the
confidence interval based on the sign statistic, the median of F{, ,2)is exactly
the same as the mean of F{,, ,2),because a normal distribution is symmetric, so
a sign confidence interval for the mean is also a confidence interval for the mean.
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The other intervals are described in the text very clearly. The four confidence
intervals are given in the following table.

method | lower bound upper bound
t Confidence interval 1.49721 4.30279
Bootstrap ¢ 1.58097 4.21903
Sign statistic 1.42000 4.55000
Bootstrap quantile 1.68400 4.07550

The Minitab code for this simulation is given below.

set cl
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end

%bootstraping c1 0.95 1000

# the macro file

macro

bootstraping X G M

mcolumn X ¢l c2 c3

mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.18.
# X iIs the data.

# G is the confidence level gamma.
# M is the bootstrap length.

# k1 is the length of the data (X).
let kl=count(X)

# resampling

do k2=1:M

sample k1 X c1;

replace.

let c2(k2) = mean(cl)

enddo

sort c2 c3

name k2 "Summary" k3 "Lower bound" k4 "Upper bound" k5 "Estimate"

k6 "Estimated MSE"

# Confidence interval

let k2=(1+6)/2

let k8=k1-1

invedf k2 K7;

t k8.

let k5=mean(X)

let k6=stdev(X)/sqrt(X)

let k3=k5-k7*k6

let k4=k5+k7*k6

let k2="Confidence interval”
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print k2 k3 k4 k5
#bootstrap t confidence interval.

let k2=(1+6)/2

let k8=k1-1

invedf k2 k7;

t k8.

let k3=k5-k7*stdev(c2)

let k4=k5+k7*stdev(c2)

let k2="Bootstrap t confidence interval"
print k2 k3 k4 k5 k6
#sign statistic confidence interval
sort X cl

let k7=0
while k7 <= k1/2

cdf k7 k8;

binomial k1 .5.

if k8 >= (1-6)/2

break

endif

let k7=k7+1
endwhile

ifk7=0

let k3=c1(1)

let k4=c1(kl)
else

let k3=c1(k7)

let k4=c1(k1l+1-k7)
endif

let k2="Sign statistic confidence interval"
print k2 k3 k4
# bootstrap percentile confidence interval
let k7=Ffloor((1-G)/2*\)

ifk7<1

let k3=c3(1)
else

let k3=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1-G)/2-k7)
endif

let k7=Floor((1+G)/2*M)

if k7 >= M

let k4=c3(M)
else

let k4=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1+G)/2-k7)
endif

let k5=mean(X)

let k6=(mean(c2)-mean(X))**2 + stdev(c2)**2
#note bootstrap confidence interval.
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let k2="Bootstrap confidence interval"
print k2 k3 k4 k5 k6
endmacro

6.4.19 The characteristic 1(6)of interest, i.e., the first quintile of N(u,0?) is
given by ¥(6) = u + ozg.awhere zgois 0.2-quantile of a standard normal. The
maximum likelihood estimator is given by i = Zand 6% =n~! 3" | (z; —7)% =
(n—1)s?/n. The plug-in estimate of the quantile is 292 = + ((n —1)s?/n)'/2.
202 = 2.94 (19-8.9839/20)1/2 . (—0.894162) = 0.44127. According to the graph,
it seems there exist a few clusters. Thus, the bootstrap ¢ confidence interval is
not applicable for this problem. The Minitab code for this simulation is given
below.

104

084

Density

0.4 4

02z H
ol e
“ = ' quintilg x_0.2 : : :
set cl
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end

let k3=mean(cl)

let kl=count(cl)

let k4=stdev(cl)*sqrt(1-1/kl)

invedf .2 k2;

normal 0 1.

let k2=k3+k2*k4

name k2 "Plug-in the first quintile estimate
print k2

%boostraping cl1 .2 1000

# corresponding macro file

macro

bootstraping X G M

#bootstraping

mcolumn X cl c2 c3 c4

mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.19.
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s the data.
s the confidence level gamma.
is the bootstrap length.
# k1 is the length of the data (X).
let kl=count(X)
# resampling
let k3=Floor(.2*kl)
do k2=1:M
sample k1 X c3;
replace.
sort c3 c4
if k3 <kl
let c2(k2) = c4(k3) + (c4(k3+1)-c4(k3))*(-2*k1-k3)
else
let c2(k2) = c4(kl)
endif
enddo
name c2 "quintile x_0.2"
# drawing a histogram
histogram c2;
density;
bar;
color 23;
nodtitle;
graph;
color 23.
endmacro

# X i
#G i
# M

6.4.20 The characteristic of interest is 1(6) = u3 = Eg(X?) = u® + 3uc?. The
maximum likelihood estimator is given by i = zand 62 =n~! >  (z; — )% =
(n —1)s%/n. The plug-in estimate of usis fis3 = #° + 3z(n — 1)s?/n =293 + 3 -
2.9 - (19 - 8.9839/20) = 98.6410.

0.016

0.014 "

0.0z

0.010

0.008

Density

0,006

0.004

0.002

0.000

32 64 96 128 180 192
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The graph indicates that bootstrap inference is applicable for this problem. The
bootstrap percentile 0.95-confidence interval is given by (34.539,158.801). The
Minitab code for this simulation is given below.

set cl
3.27 -1.24 3.97 2.25 3.47 -0.09 7.45 6.20 3.74 4.12
1.42 2.75 -1.48 4.97 8.00 3.26 0.15 -3.64 4.88 4.55

end

let kl=count(cl)

let k3=mean(cl)

let k4=stdev(cl)**2*(1-1/k1)

let k2=k3**3+3*k3*k4

name k2 "Plug-in estimator of mu_3"
print k2

Y%bootstraping cl .95 1000

# corresponding macro file ”bootstraping.mac’
macro

bootstraping X G M

mcolumn X cl c2 c3 c4

mconstant G M k1 k2 k3 k4 k5 k6 k7 k8
# note - Computer Exercise 6.4.19.

# X 1s the data.

# G is the confidence level gamma.

# M is the bootstrap length.

# k1 is the length of the data (X).
let kl=count(X)

# resampling

do k2=1:M

sample k1 X c3;

replace.

let c2(k2) = mean(c3**3)
enddo

name c2 "mu_3"
# drawing a histogram

histogram c2;

density;

bar;

color 23;

nodtitle;

graph;

color 23.

sort c2 c3

name k2 *"Summary" k3 "Lower bound"™ k4 "Upper bound"
# bootstrap percentile confidence interval
let k7=Floor((1-G)/2*M)

ifk7i<1
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let k3=c3(1)

else

let k3=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1-G)/2-k7)
endif

let k7=Ffloor((1+G)/2*\)

if k7 >= M

let k4=c3(M)
else

let k4=c3(k7)+(c3(k7+1)-c3(k7))*(M*(1+G)/2-k7)
endif

let k2="Bootstrap percentile CI"
print k2 k3 k4
endmacro

Problems

6.4.21 For a random variable with this distribution, we have that K} (X 7) =
Z?’Zl xéj) (F (ﬂc(j)) —F (ﬂc(j_l))) ,where we take z(g) = —co. Now F (x(j)) —
F (z(j_1)) = 1/nsince all the z; are distinct. This implies the result.

6.4.22 We have that E; (X') = Z;’;(x’{j))l(ﬁ(x’{j)) - F(x?j))),where n*is
the number of distinct values, z7,...,z}.are the distinct values in the sam-

ple, xa), . ,x’(“n*)are the ordered distinct values in the sample, and F(x’(“j)) —

F‘(x’{j))equals the relative frequency of 2{;in the original sample.

6.4.23
(a) First, note that for the Poisson distribution we have ;3 = A = o2,i.e., the
mean and the variance are the same. Now using v(z) = y/zas a transformation,

by the delta theorem, we have ¢¥(M;) = +/Mis asymptotically normal with

mean tp(pu1) = y/firand variance given by (¢’ (,ul))Z%2 = 4—1)\% = 4= ,which is free

of p1,and hence this transformation is variance stabilizing.

(b) Using t(x) = arcsiny/zas a transformation, by the delta theorem, we have
¥ (M) = arcsin /My is asymptotically normal with mean ¢ (1) = arcsin \/firand
variance given by

1-6) 1

2
’ 2 0'2 1 9 (
(v'(m) == -,
n 2./(1—0)v6 n 4n
which is free of #,and hence this transformation is variance stabilizing.

(c) First, we have 0? = au?. Next, the mean of 1(M;) = In (M;)is approxi-
mately ¥ (1) = In (uq)and the variance is approximately

(1#,(#1))2 o _Lug_s

=— ,
noouyn n

which is free of u;,and hence this transformation is variance stabilizing.
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Challenges
6.4.24 Let Y = | X|, then Yhas a distribution on R* = (0, co)given by

Fy(y)=P(Y <y)=P(X|<y)=P(-y< X <y)=Fx(y) — Fx (~y)
=2Fx (y)—1

where the last equality follows by symmetry of the distribution of X. Therefore,
the density of Y is 2f, where f is the density of .

Next, let Z = sgn(X), then P(Z=-1) = P(X <0) =05, P(Z=1) =
P(X >0)=0.5,and P(Z =0) = P(X =0) = 0. Therefore, Z is uniform on
{-1,1}.

To show that Y and Z are independent we proceed as follows.

1
PY<yZ=1)=P(y<X<yX>0)=P0<X<y) =Fx(y -3
which is the same as P(Y <y)P(Z=1) = 2Fx (y)—1)/2 = Fx (y) — 1/2.
Hence, we have established that Y and Z are independent.

6.4.25

(a) We have that |z; — xo| sgn(z; — z0) = z; — g, 50 ST =n (T — x0) .

(b) Note that, under Hy, Y = X — xq is distributed from an absolutely con-
tinuous distribution that is symmetric about 0. Therefore, by Challenge 6.4.24
we have that |Y] and sgn(Y) = sgn(X — zp) are independent and sgn(Y’) is
uniform on {—1,1} . The conditional distribution of S, given the values |Y;| =
|1 — zol, ..., |Yn| = |zn — x0|, is therefore determined by (sgn(Y1),. .., sgn(Yy))
and, because of independence, this is uniform on {—1,1}". This implies that
the conditional distribution of S* is the same no matter which absolutely con-
tinuous distribution, symmetric about its median, that we are sampling from.
The conditional mean of ST is then

E(S+| |ﬂc1—x0|,...,|xn—ﬂc0|) :Z|mi—x0|E(sgn(Xi—m0)):0

since E (sgn (X; — xo)) = 0 for each i. Further, it is clear that this conditional
distribution is symmetric about 0 since the distribution of each sgn (X; — xo)
is symmetric about 0.

(c) We have that

Z |z — x| sgn (z; —x) = 2— 5 +1.4—16+334+23+.1=52.

Now each possible value of (sgn(X; — o), ..., sgn(X, — xg)) occurs with prob-
ability (1/2)° = 1.5625 x 1072 and 4 (1.562 5 x 10~2) = 0.0625, while

2 (1.5625 X 1072) = 0.03125. So to determine if 5.2 yields a P-value less than
.05, we need to evaluate the 4 extreme points (2 on each tail) of the conditional
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distribution of S*. Starting from the most extreme values and moving towards
the center 0 we have that ST takes the values

24+5+14+16+33+23+.1=94
2+5+14+16+33+23-.1=92

-2-5-14-16-33-23+.1=-92
—-2-5-14-16-33-23-.1=-94

so the P-value is greater than .05 and we have no evidence against Hy.
(d) We have that t = n(Z — zo)/s and

n

(n—-1)s* = (2; -2 =Y (2 — 20+ 10— 7)°
=1 i=1
= w27 +2) (@i — 0) (w0 — T) + 1 (T - T)°
i=1 i=1
= | —z[* = 2n(z — 20)* + 1 (z — 3)°
1=1

lzi — > —n(z — 7)*

HM:

and note that Y7, |z; — ic|2 is fixed under the conditional distribution. There-
fore,

. n(T — xg) _ n(Z — o)

S T S P

Then we see that ¢ is an increasing function of n(z — x¢) for — > | |z; — z)* <

n(T—x0) < Yoi @i — Z|? so that t is large whenever S;f is large and conversely.

6.5 Large Sample Behavior of the MLE

Exercises

6.5.1 The score function for the N (g, 0%) family is given by S (02| 21, ..., z,,) =
—5s + 5 > (@ — 110)>. The Fisher information is then given by

n

0 n 1 2
TLI(O‘2) = —EUQ <ﬁ5 (U2|X1,...,Xn)) = —Ls2 <T.’4 — ; Z(X’L — /,L()) >

i=1
B + E i . no’ n
o 204 - T 204 g6 T 2047

=1
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6.5.2 The score function for Gamma(ayg, #), where «q is known, is given by
S(0] ml, vy Xy ) = na /0 —nZ. The Fisher information is then given by nI(6) =
—E@( (9|X1, o Xn)) = —Eg (—Z30) = 290,

6.5.3 The score function for Pareto(«) is given by S(a|x1,...,2,) = n/a —
S In(1+ ;). The Fisher information is then given by nl(a) =

—Eo (ZS(a| X1, Xn)) = —Eo (—%) = 5.
6.5.4 An approximate .95-confidence for A in a Poisson model is given by (Exam-

ple 6.5.5) QE:I:(Q’c/n)l/2 Z(14+)/2- The average number of calls per day is z = 9.650.
Therefore, the confidence interval is given by (8.2885,11.011) . This contains the
value \g = 11, and therefore we don’t have enough evidence against Hy : A\g = 11

at the 5% level.
An approximate power for this procedure when A = 10 is given by

el (E )} <o)
SN L RN (PN
~ Py ((X S11) < _\/%20,975 or (X —11) > %20,975>
(5o E B )

(5B B )

~ P(Z < —.64145) + P (Z > 3.4699) = .26062 + .000 26 = .26088.

6.5.5 The score function for Gamma(2,0) is given by S (0| z1,...,z,) = 2n/0 —
nZ, so the MLE is 6 = 2/7 = 2/1627 = 1.2293 x 10~3. The Fisher information
is then given by,

0 2 2
nI(@)_—E9<69 (9|X1,...,Xn)> __Eg( 9”> :9—7;.

By corollary 6.5.2 we have that

\/Z? (é - 9) D N0, 1).

Hence, an approximate .90-confidence interval is given by

+ L
+

2 2 1
z z = (1.2293 x 1073) + —— (1.2293 x 1073) (1.6449
2e o () e ) 7 ) (16149

= (9.5413 x 107*,1.5045 x 107%) .
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6.5.6 The score function for Gamma(1, 6) is given by S (0 | z1, ..., z,,) = n/0—nZ,
so the MLE is § = 1/z = 1/1627 = 6.1463 x 10~*. The Fisher information is
then given by

0 n n
nl(6) = —Ey (%s 0., ...,Xn)> —m(-2) =

By Corollary 6.5.2 we have that

\/912 (é —9) DN, 1).

Hence, an approximate .90-confidence interval is given by
1
V27

= (4.2006 x 107*,8.0920 x 10~*) .

% + L e) 295 = (6.1463 x 107*) + (6.1463 x 10™*) (1.6449)

Jn

Note that this interval is shorter than the one in Exercise 6.5.5 and is shifted to
the left.

6.5.7 The score function for Pareto(«) is given by S(a|x1,....,z,) = n/a —
o In(1+ ), so the MLE for « is

. n
DY)

Using the result of Exercise 6.5.3 the Fisher information is n/a?. Note this is a

continuous function of o € (0,00) . Hence, by Corollary 6.5.2 an approximate

.95-confidence interval is given by & =+ (&/+/n)z EEY Substituting & = 0.322631,

z.975 = 1.96, we obtain (0.18123,0.46403) as a .95-confidence interval.

The mean of the Pareto(«) distribution is 1/ (a — 1) . Hence, assessing that
the mean income in this population is $25K is equivalent to assessing o =
1+ 2%.) = 1.04. Since the .95-confidence interval does not contain this value, we
have enough evidence against Hy at the 5% level to conclude that the mean
income of this population is not $25K.

6.5.8 The score function for a sample from Exponential(6) is given by
S@O|z1,...,xn) =n/0 —nZ, so the MLE is § = 1/z. The Fisher information is
given by nl(#) = —Ey (—4%) = 5. By Corollary 6.5.2 we have that

\/9—72 (é - 9) D N(0,1).

A left-sided v-confidence interval for 6 should satisfy Py (8 < ¢ (z1,...25)) > ¥
for every 6 > 0. Using the same method as Problem 6.3.25 we obtain the interval

(<04 (ur (8)) "5 ) = (- 4122
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6.5.9 The likelihood function for the Geometric(0) is L (0| x) = 8(1 — 6)*. The

score function is then given by S(f|z) = 4 — ;. The Fisher information is

then

1=t <%S(9|X)> mh <_9_12 e faf) Bz (11— 0)
since Ep (X) = (1—0) /0.

The score function for a sample is then

n —

n T; n nT
S(9|m177xn):§_zl_9:§_ 1_97

=1

so the MLE for # in this model is § = 1/1 4+ Z and the Fisher information is
given by n/ (6% (1 —0)). A left-sided v-confidence interval for 6 should satisfy
the Py (0 < ¢(X1,...,Xp)) >« for every 6 € [0,1]. Using the same method as
in Exercise 6.3.17 we obtain the interval

[O,min(é+ (nI(é))_1/2 27,1)] - [O,min (1}% + %1 ii\/zzvlﬂ .

6.5.10 The likelihood function for the Negative-Binomial(r,0) family is given
by (from example 2.3.5) L (0|z) = (T_i""r)GT (1 —0)". The score function is

given by S(0|z) = § — 1% and the Fisher information is given by

1(6) = —Ey <%S(9|X)> =—Fo <—9—2 " i)y) G (17«_ 0)

since Eg (X) =r (1 — ) /6. The score function for a sample is given by

m nT
6 1-6’
so the MLE for 6 in this model is = /(1 + Z).
A left-sided ~y-confidence interval for 0 should satisfy Py (0 < ¢ (X1,...X,,)) >

~ for every 6. Using the same method as in Problem 6.3.25 we obtain the
following interval

(ot ( 0)) " 5) = (o Gmrbaf )

S(0| 1, ..., zn) =

Problems
6.5.11 (6.5.2) ,(6.5.3), (6.5.4), and (6.5.5) require that
2
alnaigs(x)exists for each z, Ep (S(0]s)) =0,

B, (321nfe (X)

507 +S2(9|X)) =0, Ee(

821n fo (X
ATV B
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‘We have )
Plinfpe() 1 (z—p)
Oo? T 204 o6

and this exists for each x. Also,

B 1 (X -m)?\ Lo
Ea2(S(9|X>>—Ea2<—202+ ot | = 5,5 T, =0

and

E,» <M + 5%(o? |X)>

Oo?

=it
since E (Z*) = 3 for Z ~ N(0,1). Finally, by the triangular inequality and

monotonicity of expected values we have

P f,e (X)[\ 1 (X =)’
Eﬂ<__53_+)_& S
1 (X — po)? 1 o? 3
< — |4 =) = = .
< Ey ( 204 ' 56 2 (02)? + (62)° 20" =

= —%% and this exists for each z.

6.5.12 In Exercise 6.5.2 we have %
Also, Eg (S(0| X)) =FEp (%2 —X) =% —% =0and

o (25200 1 si010) -y (52) < 20 (5 - )

62
2 2
ay ag o  apag+1)
= gt (X)) =g gt — =0

Finally we have that

|

6.5.13 In Exercise 6.5.3 we have Z12/g ()
Also, since In (1 + X') ~ Exponential(a) we have

EA&MXD=&<é—mu+X0:

PL) g, (-2 -2

= —-L and this exists for each z.

= o2

:07

QI
QI
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and

E, (% +52(a|x)) =E, <_$ + (é —1n(1—|—X))2>

2 2 9
= —— + E ((ln(1+X))2) -4+ = =0

@ o
Finally, we have

1 1
& )= (l) - <

6.5.14 Under i.i.d. sampling from fy, where the model {fp : 8 € Q} satisfies the
appropriate conditions, we have

91n fo (s)
062

P
I(xy,...,0n) =g_s= ) Zlnfo (z:)
i=1

=6  i=1

By the strong law of large numbers (Theorem 4.3.2) we have

I(!L‘l, ,.',Un) a.s 62 1nf9 ($7) _
— — Fy (—T) =1(9).

6.5.15 Recall that the likelihood function is given by L(61,602 |21, x2,23) =
671652 (1 — 01 — 02)™* . The log-likelihood function is then given by

l(91,92|$1,1‘2,1‘3) =T 11191 +$21n92 +m3ln(1 — 91 — 92) .

Using the methods discussed in Section 6.2.1 we obtain the score function as

5(91,92 |!L‘) = ( g . 1_0;13_92 ) .

62 1—61—02

The Fisher information is then given by

_X_21 _ X3 . _ X3 §
I (9) =—Fy 07 (%{-91—92) X (1—91—9)%)
e A 7 Sl ey

Now X; ~ Binomial(n,6;) and so E(g, g,) (X;) = nb;. Therefore,

%+ 03 . 03 . 1 + 1 1

7 2 (1—01—62) (1—61—6-) _ 61 T 03 03
I@)=n| " Y o LR =n( T %)
(1-61—02) 03 (1—61—62)* 03 62

6.5.16 The likelihood function is given by L(61,...,0k—1|x1,...,2) =
071052 (1 =6y — -+ — 0x_1)"" . The log-likelihood function is then given by
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l(91,...,9k_1 |$1,...,{L‘k) =1 1n91+$21n92+"'+$k1n(1 —91 — —Qk_l) .
Using the methods discussed in Section 6.2.1 we obtain the score function as
01 10— 01
5(91,...,9;@,1|m1,...,mk)=
LTk—1 _ Tk
Ok 1 1-601—-—0k_1
The Fisher information is then given by
E X
I () = — o) (i) ~ when i # j,
(1—=0;—- —0k1)
L (6) = E(ol,...,eg_n (Xi) LB e (X&) N
01 (1—0;—-—0k_1)
Now X; ~ Binomial(n,6;) and so Eg, .. g, ,)(X;) = nb;. Therefore
n non
I;;(0)=— wheni#j, I;(0)=—+—.
(0) =5 wheni 7] O)=3 *g

6.5.17 The likelihood function is given by (see Example 2.7.8) L(u1, p2 | 1, 22) =
% exp {—% ((xl - ,u1)2 + (22 — u2)2>} . The log-likelihood function is then given

by (g1, p2 | 21, 32) = —In (27) — 3 {(xl — 1)+ (22 — ,LLQ)Q} . Using the meth-
ods discussed in section 6.2.1 we obtain the score function as
Al (pa,p2 | z1,22) T —
_ ) _ -
S(ﬂl?ﬂ? |f17171'2) - al(pl,ggixl,xg) - ( T — fin ) .

The Fisher information matrix is then given by

82[{#1,#2 z1,T2) 62“#1,#2 1,T2)
E(lilvlm) - ou3 E(Iilylm) - Op1Oun
1(0)= 2% 921
E _ (p1,p2 | 1,22) E _ [(p1, 2 | 21,22)
(B1,p2) Op10p2 (k1,pm2) o3

_<(1) (1’>_1.

6.5.18 The likelihood function is given by (see Example 2.7.8) L(u1, p2, 0% | 21, z2)
= 51z exp {—# ((:rl — 1)+ (g — u2)2>} . The log-likelihood function is

then given by I(p1, g, 0° | 1, 22) = —In (27)—In (02)—2%2 {(331 - M1)2 + (22 — M2)2} .
Using the methods discussed in Section 6.2.1 we obtain the score function as
Ay, p12,0° | @1,22)
2 Ol(yis iz 0 [ 01.0)
— [(p1,p2,0° | 1,22
S(p, p2, 07 |21, 22) = e
Al(p1,pi2,0° | @1,22)
Oo2
L1— M1
0-2
T2 — 2
= o2

- - {(901 — 1)+ (2 — M2)2}
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The Fisher information matrix is then given by

O, pro, 02 | 1, 2)
I1(0 = E(u; 11,02 2 !
( ())11 (p1,p2, ( 3,“1

Wpa, po, 0% | 21, 22)
Op10pz

DU, p2, 0% | 21, 32)
(I (9))13 /L17IL27 8#1802

)
(-* )
(- )
(1 O0)os = By (-2 I I) e (2) =%
=
.

(I (9))12 lll7li27f72

(I (9))23 /ll7li270'2

3,“2 2
DU, p2, 02 | 21, 22) Xo — 2
= E(lihlm,ffz) v =0

200
821 M17M27 |$1,$2)
)2
1 2 2 1
:E(H17M270'2) __4+_6{(X1—M1) (XQ—MQ) } =—
o o
and the remaining elements follow by symmetry.

6.5.19 Since VU is a 1-1 function of 6, for each ¥ € ¥ there is a unique 6 € 2
such that W (0) = 1. Therefore, we can write the model as {g,, : 1) € ¥}, where
9 = fo-1(p)-
Now, using the chain rule, we have that
Olngy (X) O foi (X)  Olnfoi(y) (X) 00U (4)
o o o0 oY
gy (X) _ I fury) (X) (00 ()\* | Onfur (X) T (1)
o? 062 oY 00 o2

Therefore, the Fisher information in the new parameterization is given by

O%In fo—104,)(X) [0w1(y) )2
I* (¢) —E _82 lngdi (X) — Ea 1 - %920‘1) < oY )
¥ W=t (eh) Oy, (X)az
00

(I (9))33 H17M27

o2 ! (1/1)

0?1
= By (R ) (Y
Oln
—Ew—w)( fw )6\11
5 O*Info (X)\ (09! (¥) > dln fo (X)\ 9*0~! (¢)
‘9<_ 00° )< ) )‘9< 06 ) 9y?

(2 e (2522)

since Ey <alngz(x)> =0.

~—




Chapter 7

Bayesian Inference

7.1 The Prior and Posterior Distributions
Exercises

7.1.1 First, we compute m(s) as follows.

The posterior distribution of # is then given by

0 1 2 3
m(@|s=1) 3/16 1/4 9/16
m0]s=2) 3/14 4/7 3/14

7.1.2 Since the posterior distribution of 6 is Beta(nz + a, n(1 — z) + 5) we have
that

E(9|.’131,...,.7)n)
— 1 F(n—FOé"'B) nT—+o— n(1—z)+p—1
_/0 T(ni—ka)I‘(n(l_@_‘_ﬁ)Q +a=1(1 _g) "

_ L(n+a+p5) ! ni+a (1 _ gyn(l—z)+p—-1
T i ) A “
I'(n+a+p) I'nz+a+1)T(n(l—2)+pP) nt + o

['(nz+a)l (n(l—2)+p) F(n+a+B+1) Cnta+j

187
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and
E(92|m1,...,xn)
e I'(n+a+p) nita—1 n(1—&)+B—1
_/OQF(nE—l-a)F(n(l—:f)—l-ﬂ)e (1-6) d0
_ I'(n+a+p) ! nitat+l (1 pyn(l—z)+B—1
T TR T, 0 v
B I'(n+a+p) I'nz+a+2)T(n(l —2)+P)
CT(nz+a)T (n(1—2z)+pB) F'n+a+p5+2)
 (nz4a)(nT+a+1)
S (nta+pf)(ntatpf+1)

$0

___(mzt+to)(nta+l) [ nZta 2

Varw'xl"“’mn)_(n—l—a—i—ﬁ)(n—l—a—i—ﬁ—l—l) (n—i—a—l—ﬁ)

(nz+a)(n(l—12)+p)
n+a+pB)’n+a+B-+1)

7.1.3 First, the prior distribution of 8 is N (0, 10), therefore, the prior proba-
bility that 6 is positive is 0.5. Next, the posterior distribution of 6 is

110\ ' /10 1 10\ " 9
N<<T0+T) <T>’<1_0+T> >—N(0.99010,9.9010><10 ).

Therefore, the posterior probability that 8 > 0 is

1-® ((0 — 0.99010) /v/9.9010 x 10-2) = 1— (~3.1466) = 1—0.0008 = 0.9992.
7.1.4 The likelihood function is given by L (\|x1,...w,) = e "\ / ] (z;!).
The prior distribution has density given by f*A\*~1e=#*/T" (o). The posterior
density of \ is then proportional to 3*A"# e~ Le=An+8) /T (o) [] (x;!), and we
recognize this as being proportional to the density of a Gamma(nZ + a,n + )
distribution.

7.1.5 The likelihood function is given by L (8] z1,...2,) = Q%I[ ) (0). The

prior distribution is the same as in the previous exercise. The posterior distri-
bution of 6 is then given by

w(n>,oo

mOlar, ) o< 0O, B/ | 607N b,

T(n)
7.1.6 From Problem 3.2.23 the posterior mean of 6; is
fi +a; fi+ o

fita+fator+fs+as nto+ox+ag
and the posterior variance of 6, is given by

(fita) (itar+fotar+fs+az—fi—a)
(n+o1+as+a3)® (n+ay + o+ as + 1)
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7.1.7 From the sample, we have Z = 5.567. Also, uo = 3, 78 = 4 and
ag = By = 1 Hence, the posterior distributions are given by u|o?, 21, .2, ~
N(5.5353, &02) and 1/0? |1, ..., z, ~ Gamma(11,41.737).

7.1.8

(a) The belief of 8 being in A was 0.25 before observing data, and is increased
to 0.80 after observing data. Hence, the belief ratio of # being A after observing
data to before observing data is 0.80/0.25 = 3.2. In other words, the posterior
belief of A to the prior belief is increased 3.2 times.

(b) A prior distribution is determined based on the background knowledge.
Thus, a prior probability is not based on the data observed. Given the joint
probability model for the parameter and data, the principle of conditional prob-
ability requires that any probabilities that we quote after observing the data
must be posterior probabilities.

7.1.9

(a) The prior predictive density is m(n fo (MO (1—0)"""-5I19.4,0.6)(0)dO =
5f069" do = 5(0.6"T — 0.4"*1) /(n —|— 1). The posterior density is 7(fn) =
0™ -51(0.4 <0 <0.6)/m(n) = (n+1)0"Ijg.4,0.6(0)/(0.6" —0.47F1).

(b) For any € € (0,0.01),

0.99+€
11([0.99 — €,0.99 +€]|n) = / (n+1)0"Ij9.4,0.6)(6)/(0.6"T" —0.4"T1)df = 0.
0.99—e¢

Hence, the posterior will not put any probability mass around 6 = 0.99.

(¢) If you exclude a parameter value by forcing the prior to be 0 at that value,
the posterior can never be positive no matter what data is obtained. To avoid
this the prior must be greater than 0 on any parameter values that we believe
are possible.

7.1.10
(a) Let W/(9) = 42
always positive. By Theorem 2.6.2,

Ty (1) = m(U7H(0) /197 ()] = 7 (T (1)) /T ().

(b) Let mg(z) be the prior predictive density with respect to the ¢ parame-
trization.

U is

D)= [ fars @@ @) @
/ fol@)(x(6)/7'(6)) %(9))619
= [ @) o) @)
. fo(x)m(6)do

=m(x).
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Hence, the prior predictive distribution is independent of any reparameteriza-
tion.

7.1.11

(a) Since 6 is uniformly distributed on Q = {-2,-1,0,1,2,3}, II(|f| = 0) =
e =0)=1/6,1(J8| =1) = =1or§ = —1) =1/3, II(|8]| =2) =T(0 =
2orf = —2) = 1/3 and II(|0] = 3) = II(A = 3) = 1/6. Hence, |0] is not
uniformly distributed on {0, 1,2, 3}.

(b) If ¥ is not 1-1 then logically we may have greater prior belief in some values
of 1 = ¥U(#) than others. For example, in part (a) it makes sense that we have
less prior belief in ¥(#) = 0 because only one value of 6 is mapped to 0 while
two values are mapped to each of the other possible values for .

7.1.12

(a) Let U(#) = 62. Then, ¥'(0) = 20 and ¥~ (3p) = 1'/2. By Theorem 2.6.2,
Ty () = 7(T (1)) /¥~ (2h) = 0.5¢~ /2. Thus, 7y is not uniform on [0, 1].
(b) As we can see in part (a), complete ignorance is not achieved for an ar-
bitrary function of a parameter, at least when we demand that a distribution
be uniform to reflect ignorance. Notice, however, that ¥ is 1-1 and the change
from a uniform distribution for § to a nonuniform distribution for v is caused
by the change of variable factor 1)~/ which reflects how the transformation ¥
is changing lengths (¥ shortens lengths more severely for intervals near 0.)

Computer Exercises
7.1.13 The posterior distribution is

1 n\ ! b n 1 n\ "
0 _
N<<§+;) (ﬁ+pw>v<ﬁ+p) )
0 0 0 0 0 0

1 20\ '/2 2 1 20\ !
_N<(I+TO> <I+T08'2)’(I+TO> >—N(7.9048,4.7619><10‘2).

Then using Minitab the simulation proceeds as follows.
MTB > Random 10000 c1;
SUBC> Normal 7.90480 .218218.

MTB > let c2=1/cl

MTB > let c3=c2>.125

MTB > let kl=mean(c3)

MTB > let k2=sqrt(kl*(1-k1))/sqrt(10000)
MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 0.683900

K3 0.669951

K4 0.697849
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So the estimate of the posterior probability that the coefficient of variation is
greater than .125 is 0.683900, and the true value is in the interval (0.669951,
0.697849) with virtual certainty.

7.1.14 The posterior distribution is

1 n\ " Ho M 1 n\ "
NI[=4+2 Ll — 4

1 20\ "'/2 20 1 20\"" .
=N ((I + T> <I + T8.2) : (I + T> ) — N(7.9048,4.7619 x 1072).

Then using Minitab the simulation proceeds as follows.

MTB > Random 10000 c1;

SUBC> Normal 7.90480 .218218.

MTB let c2=1/cl

MTB let kl=mean(c2)

MTB let k2=stdev(c2)/sqrt(10000)

MTB let k3=k1-3*k2

MTB let k4=k1+3*k2

MTB print k1 k3 k4

Data Display

K1 0.126677

K3 0.126572

K4 0.126783

So the estimate of the posterior expectation of the coefficient of variation is
0.126677, and the true value is in the interval (0.126572,0.126783) with virtual
certainty.

vV VVVVYV

7.1.15 The prior density is given by

I'(a+p) 5!

TG 0 (10" = pre T (3)92 (1-6)" = 6% (1-6)°
and is plotted below (thick line). The posterior density is given by
_ F(n+04+5)7 gnata=1(q _ gyr(-2)+6-1
I'nz+a)T(n(l—2)+P)
B I'30+3+3) (30(.73)+3-1 (1- 9)30(1—.73)4—3—1

T T (30(.73) +3)T(30(1 — .73) + 3)
— r (36) 23.9 10.1
T T(249)T (11.1)9 (1-9)

and is plotted below (thin line). The posterior density has shifted to the right
and is more concentrated.
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theta

Problems

7.1.16 Suppose that X, ~ N (p,7%) . Then P(X; < z) = ® ((x — po) /7) —
® (0) = 1/2 for every = and this is not a distribution function.

7.1.17 First, observe that the posterior density of 0 given x1, ...z, is

7 (0| z1,...xn) < 7 (0) [T;—, fo (z;) . Using this as the prior density to obtain the
posterior density of 8 given 11, ...Tpn1m, we get m (0,1, ... T | Trt1s - Lrpm) X
m(0) [Ty fo (z:) [1750" 1 fo (i), and this is the same as the posterior density
of 0 given x1, .2y, Trnt1, . Tntm-

7.1.18 The joint density of (6,1, ...zy,) is given by

F(O‘_’_ﬁ) nT+a—1 _ p\n(1-2)+p-1
twre’ 0

and integrating out 6 gives the marginal probability function for (xi,...x,) as

m(z1,...2n) = FF(SSEBB)) F("iJ}O&Figg;)iHﬁ) for (x1,...z,) € {0,1}".

To generate from this distribution we can first generate § ~ Beta(«, 3) and
then generate x1, ...z, i.i.d. from the Bernoulli(d) distribution.

7.1.19 First, note that if T' is a sufficient statistic, then, by the factorization
theorem (Theorem 6.1.1), the density (or probability function) for the model
factors as fp (s) = h(s) go (T (s)). The posterior density of 6 is then given by

O TE)  _ w@)e (T (s)
Jom 0V h () g0 (T () dB ~ [ (0)go (T (s)) dB

and this depends on the data only through the value of T (s).

w(0]s)

Computer Problems

7.1.20 The prior Gamma(1,1) density of z = 1/0? is ﬁxl_le_“ = e " for
x > 0. Making the transformation z — y = 1/z, the prior density of o2 is
x=2e 17 for x > 0.

The posterior density of 1/0? is

41.737
T (11)

41.737

10' (41737:1:)10 6—41.7371‘

(41.7372) 117 41T —
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for > 0. Making the transformation x — y = 1/, the posterior density of o2

11 o
is % —12—41.737/2  Plotting these we see that the posterior of o2 (thin

line) is much more diffuse than the prior (thick line).

density

LI s B T T T T T T T T
10 15 20 2530 35 40 45 50 55 so 65 7.0 7.5 80 85 9.0 95100105
X

7.1.21 We have that |0, a1,... @, ~ N (7.8095, (4.7619 x 10-2) 02) and
1/0?|z1,...,, ~Gamma(12,52.969) since

1\' 1\ !
<n—|——2) = <20+—) =4.7619 x 102
T 1

1\ !
fo = (n+ §> (% +m:) (4.7619 x 1072) (% +20 (8.2)) = 7.8095
0

20— 1 1
:1+—(8.2)2+9+0—(2.1)——<20+ > <9 82) = 52.969.

Using Minitab we obtained the following results.
MTB > let k1=1/52.969
MTB > print k1
Data Display
K1 0.0188790
MTB > Random 10000 c1;
SUBC> Gamma 12 0.0188790.

MTB > let c2=1/sqrt(cl)

MTB > let c3=c2>2

MTB > let kl=mean(c3)

MTB > let k2=sqrt(kl1*(1-k1))/sqrt(10000)
MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display
K1 0.671800
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K3 0.657713

K4 0.685887

So the estimate of the posterior probability that o > 2 is 0.671800, and the true
value is in the interval (0.657713,0.685887) with virtual certainty.

7.1.22 We use the distribution determined in 7.1.16. Using Minitab we obtained
the following results.

MTB > let k1=1/52.969

MTB > print k1

Data Display

K1 0.0188790

MTB > Random 10000 c1;

SUBC> Gamma 12 0.0188790.

MTB let c2=1/sqrt(cl)

MTB let kl=mean(c2)

MTB let k2=stdev(c2)/sqrt(10000)

MTB let k3=k1-3*k2

MTB let k4=k1+3*k2

MTB print k1 k3 k4

Data Display

K1 2.17083

K3 2.16107

K4 2.18059

So the estimate of the posterior expectation of ¢ is 2.17083 and the true value
is in the interval (2.16107,2.18059) with virtual certainty.

vV VVVVYV

7.2 Inferences Based on the Posterior

Exercises

7.2.1 Recall that for the model discussed in Example 7.1.1, the posterior distri-
bution of § was Beta(nZ + a,n (1 — Z) 4+ 8). The posterior density is then given
by

_ r (a +58+ TL) nz+a—1 (1 _ pg\n(l-2)+B-1
T6lws,wn = I'(nz+a)T (n(1 —f)—i—ﬁ)a (1-6)

The posterior mean is given by

E0™|x1,...,Tn)

_ ! F(a—i—ﬂ—i—n) nr+oat+m— n(l—i‘)-ﬁ-ﬁ—l
_/0 I Y LA d0
_T(a+B+n)T (nT +a+m)
CT(nz+a)T(a+B+n+m)
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7.2.2 Recall that for the model discussed in Example 7.1.2 the posterior distri-
bution of p is

1 n\ " n n 1 n\ "
N 0 _
0 0 0 0 0 0

By exercise 2.6.3, the posterior distribution of the third quartile ¥ = p+o0¢z9.75

1S
N 1+n_1 o, o\ L 1+n_1
-+ = — + =2 00% — + =
Tg 0_(2) Tg O_% 0<0.75, Tg 0_(2)

Since the normal distribution is symmetric about its mode and the mean exists,
the posterior mode and mean agree and given by

5 1 n\ " n _
Y= (—2 + —2) (M—g + —23:) + 00%0.75-

T 09 To %o

7.2.3 Recall that the posterior distribution of o2 in Example 7.2.1 is inverse
Gamma(ag +n/2, 5;), where B, is given by (7.1.8). The posterior mean is
then given by E (1/6? | z1,...,25) = (ag +n/2) /B, To find the posterior mode
we need only maximize In (yo‘0+”/2*1 exp (—Bey)) = (w0 +n/2 —1)Iny — Bey.
This has first derivative given by (oo +n/2 — 1) /y — 5, and second derivative
— (g +n/2 — 1) /y%. Setting the first derivative equal to 0 and solving gives
the solution 1/62 = (ap +n/2 — 1) /Bz. The second derivative at this value is
negative so this is the unique mode.

7.2.4 Recall that the posterior distribution of o2 in Example 7.2.1 is
inverse Gamma(ao + /2, 8;) , where (5, is given by (7.1.8). The posterior mean
is then given by

) % q 6a0+n/2 tn/2-1 5
E ) = | et _yeotn/2=1e=Bey g
(P o1em) = [

ap+n/2 00 / 5
_ €T ap+n 27267 myd
T (ap +1/2) / / Y
_ o tn/2 T (g +n/2 — 1) /oo 1 ootn/224u g
I'(ag +m/2) 53””/2—1 o I'(ag+n/2-1)
B
apg+n/2—1

By Theorem 2.6.2 the posterior density of o2 is given by 7 (62 |21, ..,2n) =
(T (g + n/2)) 7 (By) 0 ™/2 (02)_(a°+n/2+1) exp (—Bs/0?). Then to find the
posterior mode we need only maximize In (y~(®0+"/2+D exp (-3, /y)) =
—(ap +n/2+ 1)Iny — B, /y. This has first derivative given by

— (g +n/2+1) /y+B:/y? and second derivative (ag +n/2 + 1) /y? —26./y>.
Setting the first derivative equal to 0 and solving gives the solution 2 =
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B2/ (g +n/2+1) . The second derivative at this value is (ag +n/2 +1)* /82—
2(ap+n/2+1)° /B2 = (ap +n/2+1)* (=1 — 209 — n) /B2 < 0, so this is the
unique mode.

7.2.5 Recall that in Example 7.2.4 the marginal posterior distribution of 6
is Beta(f1 + a1, fo + ... + fr + a2 + ... + i) . The posterior mean is then given
by

E(91 |{L‘1, ,mn)

r W .
_ /1 91 (TL + szl « ) (91)f1+a1_1 (1 _ el)zizz(fi-i-ai)—l d91
o I'(A ‘|'041)F(Zi:2 (fi+04i)>
k
_ r (n * 27]:1 ai) /1 (91)f1+a1 (1 _ 91)25":2(fi+0¢7:)—1 do,
I'(fito)l (Z;:g (fz'+04i)) 0

F(”+Zf:1@i>r(f1+a1+1)  A+to

F(f1+041)r<n+25€:10[1+1) n+zi€:1ai'

To find the posterior mode we need to maximize

k )
ln((el)fl+a1—1 (1 . 91)Z¢=2(f7,+ ) 1)

k

=(fitar—1)In(6h) + (Z(fi+ai) - 1) In(1-61).

=2

This has first derivative given by (f; + a1 — 1) /6 — (Z::C:z (fi +ai))—1/(1—61)
and second derivative — (fy + a1 — 1) /02— (35, (fi + o) —1)/ (1 — 6;). Note
that this is always negative when a; > 1. Setting the first derivative equal to 0
and solving gives the solution 61 = (f1 + a1 — 1) /(n + Z§:1 a; — 2). Since the
second derivative at this value is negative, #; is the unique posterior mode.
7.2.6 Recall that the posterior distribution of € in Example 7.2.2 is

Beta(nZ + a,n (1 — z) + 8). To find the posterior variance we need only to find
the second moment as follows.

E (92 | z1, ,xn)

! F'(n+a+p) Tto— n(1—z)+8—1
_ 2 nT-+a—1 _
_/0 Tt Tma-2 108 (1-6) e
_ L'(n+a+p) ! nztatl (g pyn(l—2)+B—1
_r(nma)r(n(l—:z)w)/o o (1-96) d9
B I'(n+a+p) Fnz+a+2)T'(n(1—-2)+p)
T(nz+a)T(n(l1—-2)+p) Fn+a+p+2)

(T +a+1)(nz+a)
a m+a+pB+1)(n+a+p)




7.2. INFERENCES BASED ON THE POSTERIOR 197

The posterior variance is then given by

Var (0| 21, ., 2n) = E (02 |21, 0oy 2y) — (B (0] 21, 00y ))?

_ (nZ+a+1)(nz+a) _( nT + « >2
(mta+p+l)(nta+p) \n+a+p
(nz+a)(n(l—2z)+783)

T tatBrl)(ntatp)’

1,

Now 0 <z <

(nz+a)(n(l—2)+78)
(n+a+pB+1)(n+a+p)?
(1+a/n)(1+8/n)
n(14+a/n+B/n+1/n) (1+a/n+ B/n)’

Var (0| z1, ..., Tp) =

—0

as n — oQ.

7.2.7 Recall that the posterior distribution of 6; in Example 7.2.2 is
Beta(f1 + a1, fo+ ... + fx + a2 + ... + ax). To find the posterior variance we
need only find the second moment as follows.

(9% |21, ... xn)

+ i
/ 92 n 21 1% ) (91)f1+a1—1 (1 _ 91)21 o (fitau)— d@
T (fi+a) <Zi:2 (fi +Oéz‘)>

I <n+2§:1 O‘i)
L(fi+a)l (Zf:z (fi + Ozi))
P(n+Si,a)  Plhit+a+20 (T, (fi+a)
I'(f1 +041)F(Zf:2 (fi—l—ai)) F(n—i—Zf:l ai+2)
(fi+tar+1)(fi +ai)
(n+ Syt 1) (n+ Ty o)
The posterior variance is then given by
Var (01 |21,y @n) = E (03|21, ey 2) — (B (01 |21, ey 7))
_ (fitar+1)(fr +o) _( fitoen )2
<n+2f:1ai+1> (n—l—Z 1%) n+ 0 a
(f1+ 1) (S0 (i + o)
<n+2?:10‘i+1> (”+Z 10%)2.

' k
/ (91)f1+a1+1 (1 . el)zizz(fﬂra,;)fl a0,
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Now 0 < f1/n <1, so

(u/n -+ an) (S (fifn + o)

Var (01 | 21, ..., xpn) = —0

n (14X a/n+1/n) (1455, ai/n)

as n — oQ.

7.2.8 The posterior mode always takes a value in the set {0,1}, and the value
we are predicting also is in this set. On the other hand, the posterior expectation
can take a value anywhere in the interval (0,1). Accordingly, the mode seems
like a more sensible predictor.

7.2.9 We have @41 | g, @1, ..., 2 ~ N (Z,(1/7§ +n/0d)"'03) and this is in-
dependent of p. Therefore, since the posterior predictive density of x4 is ob-
tained by averaging the N (z, (1/7§ +n/o3)*0d) density with respect to the
posterior density of p, we must have that this is also the posterior predictive
distribution.

7.2.10 The likelihood function is given by L (A|z1,...t,,) = A"e "%}, The
prior distribution has density given by B5°A*~1e=5* /T (ag). The posterior
density of X is then given by 7 (\|z1,..x,) oc APFe0—le=Ana+5) " and we
recognize this as being the density of a Gamma(n + ag,nZ + 8y) distribution.
The posterior mean and variance of A are then given by E (A\|z1,...2,) =

(n+ag) / (nZ + Bo) , Var (M| z1, ..2) = (n+ o) / (nZ + Bo)* .

To find the posterior mode we need to maximize In (A" Feo=le=Ane+5)) —
(g +n—1)In A=\ (nZ + Bp) . This has first derivative given by (g +n — 1) /A
— (nZ + By) and second derivative — (ag +n — 1) /A2, Setting the first deriva-
tive equal to 0 and solving gives the solution A = (ag +n — 1) / (nZ + fo) . The
second derivative at this value is — (n@ + 80)° / (ao +n — 1), which is clearly
negative, so \ is the unique posterior mode.

7.2.11 First we find the posterior predictive density of t = x,,41 as follows.

_ [~ _xt (Bo + nz)" T ntao—1,—A(nz+Bo)
q(t|x1,..,xn)—/ e Tlatn) A e d\

(Bo + nf)mrao /OO a0 o —A(n@+Bo+t) g\
C(ao+n) Jo

~ (Bo+ nz)" " T(n+ag+1)

~ Tlaog+n) (nz+fo+t)"T™!

_ (n4ag) Bo+n®)"  (n+ap) (Bo+nE)"

S4B+ )T (Lt (nz+ )T

which is a rescaled Pareto(n + ag) distribution where the rescaling equals (nZ + ).
To find the posterior mode we need to maximize In ((m‘c + Bo + t)_("+a°+1)>
= —(ap+n+1)In(nZ + By +t). This has first derivative (with respect to t)
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given by — (a9 +n + 1) / (nZ + S + t) . Since the first derivative is negative for
all t and ¢t > 0, the posterior mode is £ = 0.

Now the posterior distribution of t/ (nz + o) is Pareto(n + o) . By Problem
3.2.19 the posterior expectation of ¢ is therefore (nZ + fp) / (n + ap — 1) and,
by Problem 3.3.22, the posterior variance of ¢ is

(nT + Bo)* (n+ ) / (n+ o — 1)* (n+ ag — 2).

7.2.12
(a) As in Example 7.2.1, we have that the posterior distribution of y is given
by the

10\ " 10 10\ ' 9
N<<1+ 9) (65+ < 9>63.20> , <1+ 9) > —N<64.053, 19).
The posterior mode is then i = 64.053. A .95-credible interval for pu is given by
64.053 £ /9/1920.975 = (62.704,65.402) . Since this interval has length equal
to 2.698 and the margin of error is less then 1.5 marks (which is quite small) we
conclude that the estimate is quite accurate.
(b) Based on the .95-credible interval, we cannot reject Hy : p = 65, at the 5%

level since 65 falls inside the interval.
(¢) The posterior probability of the null hypothesis above is given by

B 0.5mq (s)
~0.5mq () + 0.5mq (s)
0.5m1 (s)
0.5my (s) + 0.5ma2; (s)

I (p=65|x1,..,2,) I (u=65|21,..,2,) +

Iy (u =651, .., 2p)

where TIs (- | 21, .., 2,) is as given in part (a) and Iy (- | 21, .., 2,) is degenerate
at p = 65.
The prior predictive under II; is given by

my (21, .., 2,) = (187) % exp (—W) exp (—1—2 (63.20 — 65)2)

=3.981 x 10~%

while the prior predictive under Il is given by

- 10 — 1) 252.622
ma ('T17 ~'7:1:n) - (1871') 5exp (—M)

(2)9

exp (13 (135. 22)2) exp (—18663.()) (. 68825)
219 2

=6.2662 x 107%

The posterior probability of the null is then equal to

0.5m (s) 3.981 x 10~

- — .3885.
0.5my (s) + 0.5ma (s)  3.981 x 10-65 + 6.2662 x 10—65
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(d) The Bayes factor in favor of Hy : p = 65 is given by

exp (42 (63.20 - 65)°)
BF, — — .6353.
° exp (%1—?9 (135. 22)2> exp (—18663.0) x . 68825

7.2.13
(a) The likelihood function is given by L (02 |21, ...x,) =

(02)771/2 exp (— n) 52) exp (—2—’;2 (z — u0)2> . The prior distribution has den-

o

sity given by S5§° (02)7(%71) 6*50/"2/11 (ap) . The posterior density of 1/02 is
then proportional to

(02)_”/2 exp <—%‘2 ((n —1)s?+n(z— M0)2>> (02)—(%—1) exp <_%)
= (02)—(n/2+ao—1> exp <_Ti2 ((n —1)?+n (T — ) + 250))

which we recognize as being proportional to the Gamma(n/2 + ag, 8;) density,
where 8, = (n — 1) s2/2 4+ n.(Z — po)? /2 + Bo. Therefore, the posterior distrib-
ution of 2 is inverse Gamma(n/2 + g, ;) -

(b) The posterior mean of o2 is given by E (02 | #1,...an) = B2/ (n/2 4+ ag — 1).

(c) To assess the hypothesis Hy : 0? < o2, which is equivalent to assessing

Hy:1/0% > 1/0} , we compute
II(1/0® > 1/05 |21, .., xn) = I (2B:/0° > 28B4 /05 | 1, .., Tn)
=1-G (26m/a§;20¢0 + n)
where G (-;2ap + n) is the x? (2ag + n) distribution function.
7.2.14
(a) In Exercise 7.1.1, the posterior distribution is given by

|6=1 6=2 6=3
m@ls=1)| 3/16 1/4 9/16

Hence, the posterior mode is § = 3 and the posterior mean is 1-3/164+2-1/4+
3-9/16 = 2.375. The mode is an actual parameter value while the mean is not
so we would prefer to use the mode.

(b) First of all, TI(¢ = 3]s = 1) = 9/16 = 0.5625 < 0.8. The second highest
posterior probability is obtained at § = 2. II({2,3}|s = 1) = 13/16 = 0.8125 >
0.8. Thus, 0.8-HPD region is {2, 3}.

(c) Since (1) = ¥(2) = 1 and ¢(3) = 0, the prior probability of ¢ is II(¢) =
0) =T1I(¢0 = 3) = 2/5 and (¢ = 1) = II({1,2}) = 3/5. The posterior prob-
ability is II(¢p = 0]s = 1) = II(0 = 3]s = 1) = 9/16 and II(¢p = 1|s = 1) =
II({1,2}|s = 1) = 7/16.

prior|z/J:0 =1 posterior |1/J:0 =1
() | 2/5 3/5 w(¢Yls =1) | 9/16  7/16
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Thus, the posterior mode is ¢ = 0. Besides, II(¢) = 0]s = 1) = 9/16 = 0.5625 >
0.5 implies 0.5-HPD region is {0}.

7.2.15
(a) The odds in favor of A is defined by P(A)/P(A°). Hence,
P(A) P(A)

1— P(A9) P(A°) .
= = = 1 = 1 f f AC.
P45~ 1= P(A) P(A7) /1—P(AC) /odds in favor o
(b) The Bayes factor in favor of A is given by BF(A) = posterior odds of A /
prior odds of A.

1I(Als) s II(A) T1(A%]s) 11(A)

H(AC|5)/H(AC) 1- H(Ac|s)/l —II(A°) /BE(A)
7.2.16 The fact that the odds of A is 3 implies P(A)/(1 — P(A)) = 3. This im-
plies that P(A) = 3/4. If II(A) = 1/2, then the prior odds of A is II(A)/II(A€) =
(1/2)/(1/2) = 1. The Bayes factor in favor of A is BF(A) = posterior odds of A/
prior odds of A = (II(A|s)/(1 —II(A]s)))/1 = 10. This implies that II(A|s) =
10/11.

7.2.17 From the equation BF(A) = [II(Als)/(1 —TI(4]s))]/[I1(A)/(1 —TII(A))],
we get TI(A|s) = 1/[1 + BF(A)/[II(A)/(1 — TI(A))]]. Both statisticians’ Bayes
factor equals BF(A) = 100. The prior odds of Statistician I is II(Hp)/(1 —
II(Hy)) = (1/2)/(1/2) = 1. Thus Statistician I’s posterior probability is II( Hy|s)
= 1/[1 + (1)100] = 1/101 = 0.0099. The prior odds of Statistician II is
II(Ho)/(1 — II(Hy)) = (1/4)/(3/4) = 1/3 and the posterior probability is
II(Hpls) = 1/[1 + (1/3)100] = 3/103 = 0.0292. Hence, Statistician II has
the bigger posterior belief in Hy.

BF(A) =

7.2.18 Note that a credible set is an acceptance region and the compliment of
~-credible set is a (1 — 7) rejection region. Since ¥(f) = 0 € (—3.3,2.6), the
P-value must be greater than 1 — 0.95 = 0.05.

7.2.19 Since the posterior probability II(Al|s) is in [0,1], the posterior odds
ranges in [0,00) as does the prior odds. Hence, the range of a Bayes factor in
favor of A also ranges in [0, 00). The smallest Bayes factor is obtained when the
posterior probability II(A|s) is the smallest. If A has posterior probability equal
to 0, then the Bayes factor will be 0.

Problems

7.2.20 The likelihood function is given by L (0|1, ...x,) = 9*”1[96( J50) ).
The posterior distribution of 6 is then given by 7 (0] x4, ...x,) X
Ha_”_le_ﬁel[w(nwo) () . Note that this is not differentiable at z(,). The maxi-

mum of %=~ 1e=P? occurs at the same point as the maximum of In (90‘*”*16*59)
= (e —n —1)Inf — B, which has first derivative (¢ —n — 1) /6 — 3 and second

derivative — (o — n — 1) /6%. Setting the first derivative equal to 0 and solving

we have that the maximum occurs at 6 = (o —n — 1) / whenever a—n—1 > 0.

Therefore, the posterior mode is given by max { (o —n — 1) /B, z(n) } -
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7.2.21 The likelihood function is given by L (6 |z1,..,2,) = 9*”I(m( J0) (9)
and the prior is g 1) (¢), so the posterior is

9—"](96(71)71) (9) _ H_nj(“wwl) (9)

[Dgmde (-1 (el —1)

T(n) (n)

Since this density strictly increases in (x(n), 1) and HPD interval is of the form
(¢, 1), ¢ is determined by

- /1 9*”[(‘%(")71) (9) & — Cl—n —1
B —n - 1l-n_ 17
c (n—1) (x%n) - 1) Ty — 1

. 1/(1-n)
soc={1+7<x(n) —1)} .

7.2.22 The posterior distribution of y given o2 is the N(ug, (n+ 1/7‘3)71 a?)
distribution where . is given by (7.1.7). The posterior distribution of o2 is the
Gamma(ag + n/2, 5,) distribution, where 3, is given by (7.1.8). Therefore, the
integral (7.2.2) is given by

o0 /2
L [ AN o (22 (e L) (miad - )
¢0 /O \/ﬁ n"—Tg €xp 2 n+ Tg <¢0 )‘ ,u’1‘> X

(6¢)a0+n/2 )\a0+n/271
T'(ap +mn/2)

7.2.23 Let 9 (u,UQ) =u+ozs=p+ (1/02)71/2 2075 and A = \ (;1,,(72) =
1/02, so

exp (—fBzA) dA.

ey 1 b0 (&)

w 1 —_2 .

TO @) =|det | = |det 320,75 (77) =1
g 0 0 1
)

Therefore, the posterior density of 1 is given by

> 1\'? A 1 2
(e ) e (4 (e ) (-3 ) )
/0 Nor <n + 7'3) s = Yo 20.75 | — M
(ﬁz)aﬁn/? \o+n/2-1
T'(ap +mn/2)
which is a difficult integral to evaluate.

7.2.24
(a) We can write

-1
= 1+n -t M0+n_+ 1+n 71/22

=og(a+b2)""

exp (—fBzA) dA.

(8
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where Z ~ N(0,1),

1 n\ ! Lo no_ 1 n\ /2
o=\|—=+—= S +t=T),b=|=5+—= .
To %o To 90 To %o

The posterior mean of ¢ is E (¢ | 21, ...,xn) = ffooo ﬁ;\/%—ﬂe*fﬂ dz, and this
integral does not exist because, noting that the integrand becomes infinite at

z=—a/b, for e >0

oo —a/b+e
/ L epy / SaNE D
—ajb @+ bz T Joap atbz

2 —a/b+e 1
Zmin{e*z /2:—a/b§z§—a/b+€}/ dz
—a/b a+bZ
1 b —a/b+e
:min{e*z2/2:—a/bgzg—a/b—l—e}M =00
b —a/b
while
—a/b —a/b
/ ! e 24 </ 1 e 2z
o Q-+ bz T Joap—eatbz
< min{e‘zz/2 c—a/b<z<-—a/b+ e} o 1 dz
N - —a/b—e a+bz
-1 b —a/b+e
= min{e*‘z2/2 c—a/b<z<-—a/b+ e} w = —00.
—a/b

Therefore, E (| 21, ..., ) = 00 — 00, which is not defined.
(b) The posterior density of y is given by

1 1 )
m(plxy, .. Tn) = Wexp % (L—a)’].

Using Theorem 2.6.2 we can find the posterior density of 1 = o¢/u (since this
is a differentiable and strictly decreasing function of x4 and excluding the 0 line
from the parameter space) as

(¢) To find the posterior mode we need to maximize

2 2
In | exp ~ L % _q L :_L N _q —2lny
262 \ 2 262 \ '

This has first derivative given by
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Setting the first derivative equal to 0 gives the quadratic equation

2 4% ~_ %0 _
RIS T R
Solving this gives the solutions
. aco | 1 [a?03  4daoy aog 1 [a203
= - — — —_  — J— —J 2
ST N T T w2\ e e

and these are real numbers since b > 0. Since the posterior density is finite
everywhere, goes to 0 at +o00, and is 0 at ¢ = 0, we know that these must both
correspond to peaks. Therefore, we can determine the mode by evaluating the
posterior density at these values, and the mode is the one that gives the largest
value.

7.2.25
(a) The marginal density of (61, ...,0,_2) is given by
f(el,...,ek,z) (Zlv ey Zk:72)
_ /1—21—"'—Zk2 T (a4 -+ ag) c1-1 051 an—a-1 ar1-1
0

z - Z
F(@l)r(ak) 1 2 k—2 k—1

X (1 2 Zkfl)akil dzk,1

T (041 +-- ak) a;—1_as—1 ag—2—1 /1ZIWZI“_2 ag—1—1
— z z e 2y 2

T(a)---C(ay) + 7 k2 e

X (1 — 21— Zk_l)ak_l dzk_l
o F(a1+"'+ak) a1—1_az—1 ap_2—1

- .. 1 gy e gy )R TAR—2
T ()T (o) 21 % 2ly (== Zk—2)

l—z1——2p— ap—1—1
/ 1 k—2 Zk‘—l
X
0 l—21— =252

z akfl

k—1

x[1— dzp—1
=z — =22

F (al + e + ak) a1—1_asz—1 ap—2—1
= z z ez
F(al)---F(ak) 1 2 k—2

1
X / w1 — )™ dzy
0

_ D+ Hop) Dlaw-0)T(@k) a1-1,0-1 Loxa-1
I'(ag) - T(ag) T (g—1+ ax) 1 2 k=2

)ak—1+ak—1

agp_1+ap—1

(1—21—"'—2k—2)

X(l—Z1—"'—Zk_2

r (al +-F ak) ar1—1 _as—1 _Zak—2*1

- z z. .
T(ar) - Tlag—2)T (g1 + o)’ 2 k—2

)ak—1+ak—1

X(l—Z1—"'—Zk_2

and this establishes the result.
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(b) Tterating the part (a) gives the result.

(c) The Jacobian matrix of this transformation has a 1 in the 41-th position of the
first row, a 1 in the io-th position of the second row, etc. The absolute value of
the determinant of this transformation is therefore equal to 1. By the change of
variable theorem this implies that (6;,,...,6;,_,) ~ Dirichlet(cy,, ai,, ..., o, ) .
(d) This is immediate from parts (c) and (b) as we just choose a permutation
that puts 6; as the first coordinate.

7.2.26 The likelihood function is given by 84102 ... (1 —6; — - — 6;_1)™, so

the log-likelihood is given by fiInfy + folnfy 4+ -+ -+ frln(1—0; — - - — 6 _1).

Then vector of partial derivatives has ith element equal to f;/0; — fi/(1 — 61 —
-+ — 0k_1). Setting these equal to 0 we get the system of equations

frbh=fi(l =61 —-- —0p_1)
Jibi—1 = foo1(1 =61 — - —0r—1)
and summing both sides we obtain fi (01 + -+ + 0x_1) =
m—fe)(1—6; — - —6_1) or n(6y +---+6k_1) = (n — fr), which implies
that (1—60; —---—0k_1) = fi/n. From this we deduce that the unique so-

lution is (él, e ék_1> = (fi/n,..., fx—1/n). Now since the log-likelihood is

bounded above, continuously differentiable, and goes to —oo whenever 6; — 0,
this establishes that (f1/n,..., fx—1/n) is the MLE, so f;/n is the plug-in MLE.

7.2.27 In Exercise 7.2.3 we showed that E (1/0? |21, ...,2) = (a0 +n/2) /B,
while in Exercise 7.2.4 we showed that E (02 |21, ...,xn) = 82/ (0 +1/2 —1).
So the estimate of o2 is not equal to one over the estimate of 1/02.

In Exercise 7.2.3 we showed that the posterior mode of 1/0? is 1/62 =
(g +n/2 —1) /B, while in Exercise 7.2.4 we showed that the posterior mode
of 02 is 62 = 8,/ (ag +n/2 + 1) . So the estimate of o2 is not equal to one over
the estimate of 1/02.

These differences indicate that these estimation procedures do not have the
invariance property possessed by the MLE.

7.2.28 Since the variance of a t(\) distribution is A/ (A — 2), the posterior vari-
ance of y is given by

1 203,
\% - —t 2
a <#'+Vn+2ao \/714—1/7'02 s a0)>
26 n+2ap 2B 1
\/n—|—2a0 n+1/12) n+200—-2 \n+1/7 n+2a9—2)"

7.2.29 The joint density of (0, s,t) is given by qg (t|5s) fo (s) 7 (8). The prior
predictive density for ¢ is then the marginal density of ¢ and is given by ¢ (t) =

I [ a0 (] 5) fo (s) 7 (6) dsdb.
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7.2.30 The posterior predictive distribution for ¢ = (241, %n12) is given by

q (t | T1yeees .Tn)
! T'(n+a+p) ]
_ 9t1+tz 1-6 2—t1—12 9nm+a71
/0 ( ) F'nz+a)T(n(1—2)+p5)
x (1 — )"~ gp
L'(n+a+p) /1 t1+ta+nit+a—1 2—t1—to+n(1-2)+B—1
—_ gtrttatnata 1—-6 1—12 do
I'(n+a+p)

T T+ (n(1-2) +4)
y (i +te+nz+a)T(2—t;—ta+n(l—2)+p)

I'in+a+p+2)
S e R
_ At t1=0t=1
(ifjfg%)l(;i);f%) t1=11%=0
(n(JTrLZiZIBgZiZi)B) t1 =t =0.

7.2.31 Put

1 n\ " I n 1 n\ Y2
a:<—2+—2> <—§+—2x), b:<—2+—2) .
To 90 To 90 To %o

We can write X, 11 = p + 09Z, where i ~ N(a,b?) is independent of Z ~

N(0,1). Therefore, the posterior predictive of X,, 1 is given by X,, 11 ~ N(a, b*+

ad).

7.2.32 We can write X,,11 = pu + oU, where U ~ N(0,1) independent of

Xi,...,Xn, p,0. We also have that p = p, + (n+ 1/7‘3)71/2 0/, where Z ~
N(0,1) is independent of X1,...,X,,o. Therefore, we can write

X1 = o + (n+ 1/7'02)_1/20Z—|—0U

_ _ 1/2
=um+a{(n+1/73) 1/ZZ+U}:Mm+{(n+1/T3) 1+1} oW

where

[ty 1) e )™ 240}

Xn+1 — Mz
- —— ~ N(0,1)

{(n—i— /)" + 1} / o

S
I
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is independent of X1, ..., X,,,c. Therefore, just as in Example 7.2.1,
w

(25) / Gaa )

Xn - Mx
= e ~t(2a0+n).

{m+ym) ™+ 1}1/2 ((262) / (200 +m)"/?

7.2.33 Using the result in Problem 7.2.32 and the fact that the ¢ (2ag + n)
distribution is unimodal with mode at 0 and is symmetric about this mode, we
have that a y-prediction interval for X, 1, is given by (following Example 7.2.8)

T:

- J 26, {(n +1/) 7+ 1} e G

(2a0 +n)

7.2.34 The prior predictive probability measure for the data s with a mixture
of IT; and II, prior distributions is given by

m (s) = Eu (fo (s Zfe I ({6})
—Zfe (PIL1({6}) + (1 — p) TI2({0}))
—pie )T ({0}) (1 p Zfe s) 11 ({60})
= pfon (5)+ (L=p) D fo () T2 ({6}) = pma () + (L = p)ma (s).

0
The posterior probability measure is given by

fe {9} fo (s) (pITy {9}) (1-p 1z ({6}))
Z Z pmy () + (1 — p) ma (s)

e A A
pmy (s) Jo (s) 1 ({6})
_pm1(5)+(1— ) %ZA my ()
(1— fo (s H2 {9})
pmy (s )+ Z
pml() I (A|s) + (1_1’)"‘2(5) I (Als).

i (s) + (1= p)ma (s) pma (s) + (1 = p)ma (s)

7.2.35 The posterior density of 6 is 7 (0]s). Now make the transformation
0 — h(0) = (¢ (), (0)). Then following Section 2.9.2, we have that putting

OY(01,02)  O0Y(01,02)
T(01,02) = | onaron)  or{8r o)

891 892



208 CHAPTER 7. BAYESIAN INFERENCE

and an application of Theorem 2.9. 2 establishes that the joint density of (¢, \)
is given by m (h=1 (¢, A) | s) [J (A7 (¢, ) )|_1 . Then the marginal density of 1
is given by w (¢ | s) = [ m (B (@, A) [ s) | (4, 2)] 7" d.

Challenges

7.2.36 First, let t = h (1)) be a 1-1 continuously differentiable transformation ).
The null hypothesis that we want to test is Hy : h (¢) = h (1g) = to. By Theorem
2.6.2 the prior density of ¢ is given by ¢ (t) = w (™" (¢ )) /IR (h™ ( ) |. Simi-
larly, the posterior density of ¢ is given by ¢ (t| z) = w (h=1 () |z) /|h' (h~' (1)) |.
Hence, since h=1 (t) = 1, the ratio of the two is given by w (¢t|z) /w (t)

w (h_1 (t) |z) /w (b7 (t)) = w (¢ |z) /w (¥), which is the ratio given in (7.2.9).
The observed ratio is given by ¢ (to |z) /q (to) = w (b= (to) |z) /w (h7" (o)) =
w (Yo | ) /w (¢g) . Therefore, the P-value computed by (7.2.9) would give the
same result, and therefore it is invariant.

7.3 Bayesian Computations

Exercises
7.3.1 The likelihood function is given by

L(p| @1, zn) = (A7) Cexp (—5 (z — u)2> exp (—17?52> .

The prior distribution has density given by 71'( ) = %I 2,6 (1) . The posterior
density is then proportional to (47) ™" exp ( 2) exp (—12s?) 116 (1) -

To find the posterior mode we need only maximize exp (—5 (z — u)2> 2,6] (14) 5
which is clearly maximized at i = Z when Z € [2,6], at 4 = 2 when T < 2, and
at 1 = 6 when T > 6. In this case the posterior mode is then i =z = 3.825. It
has variance, estimated by

—1

.2 a?m( ><eXlO(—rg() iz (1 )> ) 1

o ('T17"'7'Tn) = |~ 6#2 = 10

pn=3.825

A .95 credible interval for p base on the large sample result is then given by

N 1
76 (01,0 0n) 2075 = 3825+ —=1.96 = (32052, 4.4445).
7.3.2 Let Xq,...,X, be a random sample from Bernoulli(d). Then, T =

X1+ - -+ X, is a minimal sufficient statistic having a distribution Binomial(n, ).
The likelihood function is L(f|xy,...,2z,) = L(0Jt) = 6'(1 — 6)"~*. Note
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L(O|t)m(0) o 0+a—1(1 — g)»~t+5F~1 Hence, the posterior mode is 6 = (t + o —
1)/(n+a—2). Then, we get a% In L(0|t)7(0) = (t+a—1)/0—(n—t+5—-1)/(1-0),
2 L(@[t)m(8) = —(t +a—1)/6% — (n—t +  — 1)/(1 — 6)%. The asymptotic
variance of the posterior mode is

_W) >_1_(t+?z—l n—t+5—1>—1.
6=0 62 (1— )2

&2($1,...,$n): ( 962

Hence, the asymptotic v-credible interval is

(0 = 2(114)/26, 0 + 2(114)/20)-

7.3.3 Let X1,..., X, be arandom sample from N(y,v3). Then, T = X = (X;+
-+++X,,)/ is a minimal sufficient statistic having a distribution N(u,v3/n). The
likelihood function is L(ju|z1,...,7,) = L(plt) = exp(—(u —t)%/(2v3/n)). Note

L(p[t)m(p) o< exp(—(pn—p1)?/(207)) where pu1 = (nt/vg+po/05)/(n/vg+1/05)
and 0? = (n/v3 + 1/02)~ 1. Hence, the posterior mode estimator is i = 3 =

(nt/vg + po/og)/(n/vg +1/05). We get 5 InL(uft)r(n) = —(u — p) /o and
6‘9—; In L(p|t)m(u) = —1/0%. The variance estimate is
Oln L(ult -1
&Q(th,xn):(_w‘ ) 2
op w=p
Hence, the asymptotic v-credible interval is
(/0 = 2(14~) /20, b + 2(14~) /20 )-

7.3.4 The posterior density is proportional to fa(z) - 7(0) = 01j9 1 /¢ () - €7 =
T0,1/2(0)0e?. Hence, the posterior distribution is a Gamma(2, 1) distribution
restricted to (0,1/x]. A simple Monte Carlo algorithm is

1: Generate n from Gamma(2,1)
2: Accept 7 if it is in (0,1/z]. Return to step 1 otherwise.

In general, the posterior density is proportional to fy(z1,...,2,) - 7(0) =
L0,1/2() (0)6™e~Y that is proportional to Gamma(n+1, 1) restricted on (0, 1/zy,)].
Also we have a simple Monte Carlo algorithm is

1: Generate n from Gamma(n + 1,1)
2: Accept 7 if it is in (0, 1/ (,)]. Return to step 1 otherwise.

Note that the mean of a Gamma(n + 1,1) distribution is n+ 1. That means
the Gamma(n + 1, 1) distribution shifts to the right as n — co. So the rejection
rate will increase to 1 as n — oo. Hence, this algorithm cannot be used for large
n.

7.3.5 The posterior density when X = x is observed is proportional to exp(—(z—
0)?/2)I1,17(0). Hence, the posterior distribution is N(x,1) restricted to [0,1].
Hence, a very simple Monte Carlo algorithm is given by
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1: Generate 7 from N(x,1)
2: Accept n if it is in [0, 1]. Return to step 1 otherwise.

In general, when a sample (z1,...,x,) is observed, the posterior density is
proportional to exp(— Y7 (z; — 0)?/2) - Ijg 17(0) o exp(—n(0 — Z)*/2)I}p,1)(6).
Thus, the posterior distribution is N(Z, 1/n) restricted to [0, 1]. A simple Monte
Carlo algorithm for the posterior distribution is

1: Generate n from N(Z,1/n)
2: Accept n if it is in [0, 1]. Return to step 1 otherwise.

If the true parameter 6, is not in [0, 1], then the acceptance rate is extremely
small. For example, suppose 6, > 1 and n is sufficiently large enough to z > 1.
Then the acceptance rate given by

_ ; L esp(en(@ = 1%/2)
Pln € [0,1) = (—v(z ~1)) = ®(~vnz) < = - m

converges to 0 exponentially. Hence, the Monte Carlo algorithm is not appro-
priate when n is big.

7.3.6 The posterior density is proportional to (exp(—(6 — z)?/2) + exp(—( —
2)%/4)/v/22)Ijp 1)(6). Hence, the posterior distribution given X = x is the mix-
ture of normals 0.5N (z,1) +0.5N (x, 2) restricted to [0, 1]. A crude Monte Carlo
algorithm is obtained as follows.

1: Generate 7 from 0.5N(z,1) + 0.5N (z,2)

2: Accept 7 if it is in [0, 1]. Return to step 1 otherwise.

Suppose n = 2. The likelihood function is proportional to

(exp(— (w1 — 0)*/2) + exp(—(z1 — 0)>/4)/V2) x

(exp(—(w2 — 0)%/2) + exp(— (w2 — 0)* /4)/V2)

(—(z1 —352) /4) ex (0 — (1 +$2)/2)2)

exp(—(z1 — 22)%/6) exp(—(0 — (221 + 22)/3)?/(4/3))//(2)
(= (21— 22)°/6) exp(—(0 — (1 + 222)/3)*/(4/3))/\/(2)
(= (21— 22)*/8) exp(—(0 — (21 +22)/2)%/2) /2.

Hence, the posterior distribution given X; = 1, X5 = x5 is a mixture normal
restricted on [0,1]. A crude Monte Carlo algorithm can be devised easily.

= exp

+ exp

p(—
(
(=
(=

+ exp

1: Generate n from py N ((x14x2)/2,1/2)4+p2N((221+22)/3,2/3)+psN ((z1+
222)/3,2/3) + paN (21 + 72)/2,1) where p; = ¢i/(q1 + - + 1), @1 =
exp(—(z1 — 22)*/4)/V2, @2 = ¢3 = exp(—(z1 — 22)/6)/V/3 and ¢4 =
exp(—(x1 — x2)?%/8)/2.
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2: Accept 7 if it is in [0, 1]. Return to step 1 otherwise.

Computer Exercises

7.3.7 Below is the Minitab program (modifying the one in Appendix B for
Example 7.3.1) used to generate the sample of size N = 10* from the posterior
distribution of ¥ = p 4 0zg.25.

gmacro

normalpost

note - the base command sets the seed for the random number
generator (so you can repeat a simulation)

base 34256734
note - the parameters of the posterior

note - k1 = first parameter of the gamma distribution = (alpha 0 +
n/2)

let k1=9.5

note - k2 = 1 / beta

let k2=1/77.578

note - k3 = posterior mean

let k3=5.161

note - k4 = (n + 1/(tau_0 squared) )"(-1)
let k4=1/15.5

note - z .25 = -0.6745

note - main loop

note - c3 contains generated value of sigma**2
note - c4 contains generated value of mu
note - c5 contains generated value of first quartile
do k5=1:10000

random 1 cl;

gamma k1 k2.

let c3(k5)=1/cl1(1)

let k6=sqrt(k4/cl(1))

random 1 c2;

normal k3 k6.

let c4(k5)=c2(1)

let c5(k5)=c4(k5)-(0.6745)*sqrt(c3(k5))
enddo

endmacro

Below are the density histograms based on samples of N = 5 x 103 and
N = 104, respectively.



212 CHAPTER 7. BAYESIAN INFERENCE

05 —]

04 —|

03 —f

Density

02 —|

01 —f

00 —|

Density

For N =5 x 103 we obtained the following estimates.

MTB > let kl=mean(c5)

MTB > let k2=stdev(c5)/sqrt(5000)

MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 3.17641

K3 3.14068

K4 3.21214

So the estimate of the posterior mean of the first quartile is 3.17641, and the

exact value lies in the interval (3.14068, 3.21214) with virtual certainty.
For N = 10* we obtained the following estimates.

MTB > let kl=mean(c5)

MTB > let k2=stdev(c5)/sqrt(10000)

MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 3.15800

K3 3.13253

K4 3.18346

So the estimate of the posterior mean of the first quartile is 3.15800 and the

exact value lies in the interval (3.13253,3.18346) with virtual certainty.
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7.3.8 Recall that from Example 7.1.1 we have that the posterior distribution of
6 is Beta(5.5,105) . Below is the Minitab code for doing this problem.

MTB > Random 1000 c1;

SUBC> Beta 5.5 105.

MTB let c2=cl < .1

MTB let kl=mean(c2)

MTB let k2=sqrt(kl1*(1-k1))/sqrt(1000)

MTB let k3=k1-3*k2

MTB let k4=k1+3*k2

MTB print k1 k3 k4

Data Display

K1 0.980000

K3 0.966718

K4 0.993282

The estimate of the posterior probability that 6 < 0.1 based on a sample of
1000 from the posterior is 0.980000, and the exact value lies in the interval
(0.966718, 0.993282) with virtual certainty.

7.3.9 Recall that from Exercise 7.2.10 we have that the posterior distribution
of \, withn =7, 2 =5.9, is Gamma(17,43.3).

(a) The estimate of the posterior probability that 1/A € [3, 6] based on a sample
of N = 1000 from the posterior of 1/A is obtained via the following Minitab
program.

MTB > let k1=17

MTB > let k2=1/43.3

MTB > Random 1000 cl;

SUBC> Gamma k1 k2.

MTB let c2=1/cl

MTB let c3=c2 ge 3 and c2 le 6

MTB let k3=mean(c3)

MTB let k4=sqrt(k3*(1-k3)/1000)

MTB let k5=k3-3*k4

MTB let k6=k3+3*k4

MTB print k3 k5 k6

Data Display

K3 0.296000

K5 0.252693

K6 0.339307

The estimate of the posterior probability that 1/\ € [3,6] is 0.296000, and the
exact value of the posterior probability lies in the interval (0.252693,0.339307)
with virtual certainty.

>
>
>
>
>
>

VVVVYVVYV

(b) The probability function of [1/A] is estimated as follows.
MTB > let c4=floor(c2)

MTB > Tally C4;

SUBC> Counts;

SUBC> Percents.
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Tally for Discrete Variables: C4

C4 Count Percent

130 13.00

572 57.20

247 24.70

42 4.20

7 0.70

10.10

10.10

N= 1000

So, for example, we estimate the posterior probability that |1/A] equals 0 by 0
and the posterior probability that [1/\]| equals 1 by .13, etc.

(c) The estimate of the posterior expectation of |1/A] based on a Monte Carlo
sample of size N = 103 is given below.

MTB > let kl=mean(c2)

MTB > let k2=stdev(c2)/sqrt(1000)

MTB > let k3=k1-3*k2

MTB > let k4=k1+3*k2

MTB > print k1 k3 k4

Data Display

K1 2.72523

K3 2.65789

K4 2.79257

The estimate of the posterior mean of |[1/A] is 2.725230 and the true value
of the posterior expectation lies in the interval (2.65789,2.79257) with virtual
certainty.

~NOoO ok~ WN P

7.3.10 The inverse cdf of a Pareto(a) distribution is given by x = F~1(u) =
(1-— u)_l/ “ — 1. Therefore, the following Minitab code generates a sample of
100 from the Pareto(2) distribution.
MTB > Random 10 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=(1-c1)**(-1/2) - 1
MTB > Random 100 c1;
SUBC> Uniform 0.0 1.0.
MTB > let c2=(1-c1)**(-1/2) - 1

The likelihood function is given by L (a|z1,...,zn) = o[ (1 + a;
The prior distribution has density given by 7 (o) = ae™. The posterior density
is proportional to a"Tle ™[] (1 + z;)”* = a" e ¥exp (—aln ([T (1 + z;)))
= a"exp[—a(In([T(1+z;)) +1)], and we recognize this as being propor-
tional to the Gamma(n + 1,In ([] (1 + z;)) + 1) density. The following Minitab
code estimates the posterior expectation of 1/ (aw+1).
MTB > let c3=loge(1+c2)
MTB > let k1=101
MTB > let k2=1/(sum(c3)+1)
MTB > print k1 k2

)—a—l.



7.3. BAYESIAN COMPUTATIONS 215

Data Display

K1 101.000

K2 0.0190936

MTB > Random 10000 c4;
SUBC> Gamma k1 k2.

MTB > let c4=1/(c4+1)
MTB > let kb5=mean(c4)
MTB > let k6=stdev(c4)/sqrt(10000)
MTB > let k7=k5-3*k6
MTB > let k8=k5+3*k6
MTB > print k5 k7 k8

Data Display

K5 0.343067

K7 0.342392

K8 0.343741

The estimate of the posterior mean of 1/ (e + 1) is 0.343067, and the exact value
of the posterior expectation lies in the interval (0.342392,0.343741) with virtual
certainty.

The true value of 1/ (a+ 1), however, is .33333, so note that it is not con-
tained in the above interval. Note that the above interval is in essence a confi-
dence interval for the exact value of the posterior expectation and not the true
value of 1/ (a+1).

Problems

7.3.11 R R .

(a) We have that 1 In (L (9|£E1,...,:L‘n) 7 (9)) =15 InL <9|mi) +
ilnw (é) ¥ FBp(InL (6] X)) = I(#) by the strong law of large numbers.

(b) Then from the results of part (a) we have that, denoting the true value of 6
by o,
9_9(X1,...,Xn) a.s
= —
6 (X1,...,Xn) /\/n

when 6 ~ TI(-| Xy,...,X,). This implies that when the sample size is large
then inferences will be independent of the prior.

nl(6o) (6 — 0o)

7.3.12 As we increase the Monte Carlo sample size N, the interval that con-
tains the exact value of the posterior expectation with virtual certainty becomes
shorter and shorter. But for a given sample size n for the data, the posterior
expectation will not be equal to the true value of 1/ (o + 1), so this interval will
inevitably exclude the true value.

7.3.13 From Problem 2.8.27 we have that Y given X = z is distributed

N(pz + poz (x — p1) /o1, (1 — p?) 03) and similarly X given Y = y is distrib-
uted N(py + poy (y — p2) /o2, (1 — p*) of). Therefore, a Gibbs sampling algo-
rithm for this problem is given by the following. Select xg, then generate
Y1 ~ N(pz 4 poz (zo — p1) /o1, (1 — p?) 03) obtaining y1, then generate X; ~
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N(p1 + poy (y — p2) /o2, (1 — p?) 07) obtaining 21, then generate Y5 ~ N (uz +

90> (0 — i) /o1, (1 — p?) 03) obtaining g, etc. The sampleis (z1,1) , (22, 32)
.... Since this method is not exact, a better method for generating from the
bivariate normal is to use (2.7.1), which is exact.

7.3.14 The marginal density of X is given by fwl 8rydy = 4z (1 — x2) and the
marginal density of Y is given by foy 8zydr = 4y>. Therefore, fx|y (z|y) =
8xy/4y® = 2z/y* for 0 < z < y and fy|x (y|z) = Bay/ (4 (1—-2?)) =
2y/ (1 —a?) forz <y < 1.

The distribution function associated with fy | x is given by
Fyx(y) = y*/ (1 —a?) for & < y < 1. Therefore, the inverse cdf is given by

F;llX(u) = ((1 — x2) u) Y2 for 0 < u < 1. Therefore, we can generate Y given

X =z by generating U ~ Uniform|0, 1] and putting ¥ = ((1 — m2) U) 12
The distribution function associated with fx|y is given by Fx|y (z) = 22 /y?

for 0 < x < y. Therefore the inverse cdf is given by F)glly(u) = (yzu) 12 _ yul/?

for 0 < u < 1. Therefore we can generate X given Y = y by generating U ~
Uniform|[0, 1] and putting X = yU'/2.

So we select 9. Then we generate Y ~ fyx (-|zo), using the above al-
gorithm, obtaining y;. Next we generate X ~ fx|y (-|y1), using the above
algorithm, obtaining x1. Then we generate Y ~ fy|x (-|21), using the above
algorithm, obtaining y», etc.

We can generate exactly from this distribution as follows. The marginal cdf
of Vis Fy (y) = y* for 0 < y < 1. Then the inverse cdf is given by Fy,* (u) = u'/*
for 0 < uw < 1. So we can generate Y ~ Fy by generating U ~ Uniform[0, 1] and
putting y = U'/%. Then we use the above algorithm to generate X ~ Ixiy (1Y)
Then we have that (X,Y) ~ Fx y by the theorem of total probability.

7.3.15 Suppose that the posterior expectation of 1) exists. Then by the theorem
of total expectation we have that

g
E(1/J|$1,...,{L‘n):E<;|(L‘1,...,{En)

g
- E (; (I(=o0,0) (1) + T(0,00) (1)) 1, xn>

g g
_ B (;1(00,0) () |21, x> +E (;I@,m) W) |21, x)

g
=F (E <;I(Oo’0) (1) |a,x1,...,xn> |x1,...,xn>
g
+E<E <;I(O,oo) (/“L) |0',$1,...,!L‘n> |$1,,{L'n>

and reasoning as in Problem 7.2.24, we have that F (%I(—OO,()) (B) |o,x1,... ,xn)

= —00 andE(%I(_OQO) (1) |0,m1,...,mn> =o00,80 E(¢¥]x1,...,2,) = 00—00
which is undefined.
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7.3.16
(a) Suppose the posterior expectation of g(#) is

[ 9(8) fa(s)n(9)d  Em [g(e)fe(s)}

FErislg(0)] = = .
Hence, generate 61, ...,0,, from II and estimate the posterior expectation of
g(6) by -
o Die1 9(0i) fo. (s)
i fo.(s)

(b) Whenever the posterior density is quite different then the prior density then
we can expect that this estimator will perform very badly, even though the
estimator in (a) will converge with probability 1 to the correct answer.

Computer Problems

7.3.17 We use the program in Appendix B for Example 7.3.2 to generate a
sample of 10* from the joint posterior distribution of (p, 02) .

The values of p are stored in C21 and the values of o2 are stored in C20.

The values of p + 0z .25 are stored in C22.

MTB > invcdf .25;

SUBC> normal 0 1.

Inverse Cumulative Distribution Function

Normal with mean = 0 and standard deviation = 1.00000
P( X <=x) X

0.2500 -0.6745

MTB > let c22= c21 - (sqrt(c20))*(0.6745)

MTB > let kl=mean(c22)

MTB > print k1

Data Display

K1 3.30113

The estimate of the posterior mean of y + 0z 95 is then 3.30113.

To estimate the error in this approximation we use the batching method
and for this we used the Minitab code given in Appendix B. For a batch size of
m = 10, we obtained the following standard error.

MTB > let kl=stdev(c2)/sqrt(1000)

MTB > print k1

Data Display

K1 0.0147612

For a batch size of m = 20 we obtained the following standard error.
MTB > let kl=stdev(c2)/sqrt(500)

MTB > print k1

Data Display

K1 0.0150728

For a batch size of m = 40 we obtained the following standard error.



218 CHAPTER 7. BAYESIAN INFERENCE

MTB > let kl=stdev(c2)/sqrt(250)

MTB > print k1

Data Display

K1 0.0151834

This leads to the interval 3.30113 4+ 3 (0.0151834) = (3.2556, 3.3467) that con-
tains the true value of the posterior mean with virtual certainty.

7.4 Choosing Priors

Exercises

7.4.1 The likelihood function is given by L (A| @y, ..., 2z,) = A" (1 +2;) "
The prior distribution has density given by m()\) = B*A*"1e="2/T' (). The
posterior density is then proportional to AT~ (1 + xi)f)‘ e PN =

X exp (<A (TT(1 + ) e = A" Lexp [=A (In ([T (1 + 1)) + B)],
and so the posterior is a Gamma(n + a, In ([] (1 + ;)) + ) distribution. Hence,
this is a conjugate family.

7.4.2 The likelihood function is given by L (0[z1,....;25) = 07" [z, o) (6).
The prior distribution has density given by 7 (6) = 0~“Ij5 ) (0) / (. — 1) 371,
where > 1 and 8 > 0. The posterior density is then proportional to

07" [, 00) (0) I[5,00) (0) = 9‘"‘“I[max{m(n)76}yoo), which is of the same form

as the family of priors and so this is a conjugate family for this problem.

7.4.3
(a) First, we compute the prior predictive for the data as follows.

w

2 1(1 1(1\21 _ 59 —
+(1,1,3) :ZW )V fo(1,1,3) = { %(?)3_’_%(%)2613_1138 T
=1 3(3) +3(3) 5= 1208 =

The maximum value of the prior predictive is obtained when 7 = 1, therefore
we choose the first prior.
(b) The posterior of 6 given 7 =1 is

%%)3 32 0
771(9“-7173): 1{1?821_E -
5? 8 :2—7 9:
1755 5
7.4.4 The posterior of 8 given 7 = 2 is
i1(3)° _ 16
T — 13 0=a
T2 (9|17173): 2 (3%
s\a) 5 _ 21 9 —
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Therefore, by the theorem of total probability the unconditional posterior of 6
is given by

1 1
7r(9|1,1,3):§771(9|1 1,3) + 772(9|1,1,3)
132 , 116 1160
o —_—— + —_—— I ———— 9 = Qa
(e o)
7.4.5 The prior predictive for the model described in Example 7.1.1 is given by

1 —
Ma,p (.'1:1, ,.Z'n) = /0 I}—‘((Oéi_‘_ﬁ)andﬁ‘ral (1 _ 9)11(1—1:)+B—1 d@

a)I'(8)
_ IF'a+pB) T(a+nz)T(B+n(l—1))
I'(e) T (B) T'(a+B+n) '

When n =10,nZ =7, = 1,5 =1 then

T2 r@®rE my 1
e i) S EOEE () 1 1890

When o = 5,5 =5 then

( j_ D00 TATE) ot 1
TS L I S T (5 T (22) 4l 211 403104°

Therefore, using the prior predictive we would select the prior given by a =
1,8 =1 for further inferences about 6.

7.4.6 First, for ¢ > 0, [ fo(s)7(0) df < oo if and only if [ fo(s)cm (6) df <
oo Then assumlng thls the posterlor den51ty under 7r is given by w(0]s) =

0)/ [ fo(s ) dO = fo(s 0)/ [ fo(s ) df, and the result is
estabhshed

7.4.7 The likelihood function is given by L (0| z1,...z,) = 6% (1 — )"0 =%
By Example 6.5.4, the Fisher information function for this model is given by
n/ {0 (1 — 6)}. Therefore, Jeffreys’ prior for this model is \/nf=1/2 (1 — ) /2.
The posterior density of 6 is then proportional to g7/ (1 — )"~ =1/2 4
the posterior is a Beta(nz + 1/2,n (1 — Z) 4+ 1/2) distribution.

7.4.8
(a) The likelihood function is given by 67 "I; | o) (f). The posterior exists

B B 97n+1 (e’ —n+1
whenever [* 0 "z, .00) (0) dO = ff;) 07"do = —%— T(n) - Jn_L < 00,
and this is the case whenever n > 1. Therefore, the posterior exists except when
n=1.

(b) From Example 6.5.1 we have that the Fisher information does not exist and

so Jeffrey’s prior cannot exist.

7.4.9 Suppose the prior distribution is # ~ N(66,02). We choose a o? for
the prior to satisfy P(6 € (40,92)) > 0.99. Since P(# € (40,92)) = ®(26/0) —
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O(—26/0) =29(26/0)—1 > 0.99, the standard deviation o must satisfy 26/0 >
20.995 = 2.576. Hence we get o < 26/2.576 = 10.09. Equivalently, 02 < 101.86.

7.4.10 According to the description, we will find a prior § ~ N(u, 0?) satisfying
P < 53) =05 and P(# < 7.3) = 0.95. From P(f < z) = ®((x — u)/0),
(5.3 —p)/o =205 =0 and (7.3 —p)/o = 29.95 = 1.645. Hence, u = 5.3 and
0 = zp.95/2 = 1.216 is good if it also satisfies P(f > 0) > 0.999. Note that when
p=>53and o =1216, P(0 >0)=1—-P(0 <0) =1—P(—pu/o) = 0.9999935 so
this prior places little mass on negative values which we know are impossible.
7.4.11 Let the prior be 8 ~ Exponential(\). The prior also satisfies P(6 >
50) = 0.01. The probability P(6 > 50) = fov Aedf = — 2|02 = ¢=30A,
From e~°%* ~ 0.01, we have A = 0.092103.

7.4.12 The values g and «q are fixed after an elicitation. Then, the prior can
be specified as follows.

plog ~ N(uo, o5)
1/o3 ~ Gamma(ayg, 1).

Hence, the prior density of p can be obtained by marginalizing the joint density.
0 1 (u—u0)2> 1 (1)%—1 ( 1) 1
— - — . il — —\d—
0= [ G () T () e (- )i

I S i S S S S SO (hr T AR S
_(27r)1/2f(a0)/0 (ag> exp ( 2+ )>dag

_ (e +1/2) (1 — po)®\~0=1/2
= 2 2T () (1++557) :

Hence, (@ — po)y/@o has a general ¢ distribution with parameter 2c which is
discussed in Problem 4.6.17.

Computer Exercises

7.4.13

(a) The prior predictive, as a function of « is given by mg, (21, ..., 2,) =
(Egi(;))z F((;EEE(I%TJ). Thenlnm, (z1,...,2,) = InT (20)—2InT (@)+InT (a + 7)+
InT (o + 3) — InT (2 + 10) . The plot of this function is given below.

log prior predictive
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Note that this graph does not discriminate amongst large values of a. Ac-
tually from the numbers used to compute the plot the maximum occurs around
7.4, but it is difficult to detect this on the graph.

(b) When nZ = 9 the log prior predictive is plotted below. This is much more
discriminating.

log prior predictive

7.4.14 Using the equation in Example 7.4.3, a graph of the prior predictive
distribution is drawn below. The maximum is 0.0000035 at A = 2.32.

(0.000004

0.000003

(0.000002

prior predictive

0.000001

(0.000000

T T T T T
0 5 10 15 20
lambda

The Minitab code for the computation is given below.

# set the constants
let k1=20
let k2=5
name k1 "N" k2 "NXBAR"
# computation
set cl
1:2001
end
let c1=(cl1-1)/2000*20
# to prevent the computation of gamma(0)
let c1(1)=cl(2)
# let c2=exponentiate(Ingamma(2*cl)-2*Ingamma(cl)+Ingamma(NXBAR+c1)+
Ingamma(N-NXBAR+c1)-Ingamma(N+2*cl)
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let c2=Ingamma(2*cl)-2*Ingamma(cl)+Ingamma(NXBAR+c1)
let c2=exponentiate(c2+Ingamma(N-NXBAR+c1)-Ingamma(N+2*cl))
let c2(1)=0
let c1(1)=0
name cl "lambda™ c2 "prior predictive”
plot c2*cl;
connected;
nodtitle;
graph;
color 23.
%Findmax cl c2
# the related macro "findmax"
macro
findmax X Y
mcolumn X Y ¢l c2
mconstant k1 k2 k3 k4
# find maximum in Y and print the maximum Y at X
let kd4=count(Y)
sort Y X cl c2
let kl=c2(k4)
let k2=c1(k4)
name k1 "at" k2 "maximum"
print k2 k1
endmacro

Problems

7.4.15 First, if X ~ N (po,73) , then the p quantile of this distribution satisfies
Tp = po +Tozp , Where 2, is the pth quantile of the N (0, 1) distribution. There-
fore, once we specify two quantiles of the distribution, say z,, and z,,, we can
solve Ty, = po+T0%p,, Tp, = Ho+T0%p, to Obtain 79 = (xp, — xp,) / (2p, — 2ps)
and Ho = Tp, — ((xpl - mpz) / (Zp1 - sz)) Zp; -

7.4.16 From Exercise 6.5.1 the Fisher information is n/20*. Therefore, Jeffreys’
prior is given by 1/02.

7.4.17 We use the prior 1/02. The posterior distribution is proportional to
1\? ( n (@ )2> (n—1)s%\ 1
— ] e —— (T — e e el
o2 PA\To02 a P 202 o2
n+1

() g (-2537) (7)

So the posterior distribution of (1, 0?) is given by p|o?, 21, ...,z ~ N(Z,0%/n)
and 1/0?%| x4, ...x, ~Gamma (252, 251s%) .
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7.4.18
(a) The joint density of (i, X1,...,X,) is given by

—1/2 1
(2rr3) Y exp( 5 (M—M0)2> x
0

—n/2 n 1 n _
o) By
0 0

To calculate m(z1, . .., x,) we need to integrate out u. Using (7.1.2) we see that
this integral equals

o\ —1/2 on-ns2 (1 n\ V2 n—1,
(2777'0) (27r00) (—2 + —2> exp <— 552 s ) X

7o 90 0
1/1 n\ " Lo N o_ 2 13  nz?
exp(é(?g*?a) (v ) oo (3 (8%

(b) We have that (Xi,...,X,) given p is a sample from the N (u,03) and
p~ N (1,73) . So we can generate a value (X1,...,X,) from m by generating
i~ N (po,7¢) and then generating X1, ..., X, i.id. N (u,03).

(¢) No, they are not mutually independent, for we can write X; = pu + 00Z;,
where Z3,...,7, are iid. N(0,1) and p = po + 70Z where Z ~ N(0,1)
independent of Z1,...,7,. Therefore, E(X;) = E(po+ 702 + 00Z;) = po +
10E (Z) 4+ 00E (Z;) = po, and when i # j,

Cov (Xi, Xj) = E (1o + 70Z + 00Zi — po) (o + 70Z + 0025 — 1))
=E((10Z + 00Z:) (102 + 00Z;)) = E (152> + 0010 Z Z; + 00102 Z; + 043 Z: Z;)
=1E(Z°) + 00r0E (2) E(Zj) + 00noE (Z) E (Zi) + 00 E (Z;) E(Z;) = 15 # 0

and so they are not independent.

7.4.19 The joint posterior distribution of (Xl, vy X, 1t 1/02) is proportional
a4t

to (?)n/ZH [1—|— (—E)Q} ’ 4> Following Example 7.3.2, we intro-

duce the n latent or hidden variables (V3,...,V;,), which are i.i.d. x?()\) and

suppose X;|v; ~ N (u,0%\/v;) . With the same prior structure as before, we

have that the joint density of (X1,V1),...,(Xn,Vs),u,1/0? is proportional
n A_l
to ()2 [T/, exp (—ﬁ (x; — ,u)2> v? Zexp (—%) (i) From this we have

that the conditional density of yu is proportlonal to exp{ s > % (s — 1)’}
which is proportional to exp{ 202 (27 15 ) p? + 202 (Zl 1 /\xl) } From

this we immediately deduce that
" -1
U; 2

2 Sk B
/~L|x17"'71‘n7U17"',Un70- ~ N <ZX) <

i=1

HM:
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The conditional density of 1/0? is proportional to
(%)EJrl exp{—3 (Z?’:l L (2 — u)2> L} and we immediately deduce that

Vs

1/0?|@1,..., @y, U1,...,Up, b ~ Gamma(Z +2, 1 37" S (2 — 1)?). The con-
A1
ditional density of V; is proportional tov? 2 exp{— [(xl —u)? /202X +1/ 2} vit,

SO Vi |1y ey Ty ULy ey V1, Vg1 - e Upy fly T2~ Gamma(%—i—%, %((9@ — p)Q /oA
+1)).

Computer Problems

7.4.20 First, note that the posterior distribution of (u,0?) is pu | 02,1, ..., T, ~

N (3.825, g—;) wlo?zy, ez, ~N (3.825, ‘;—;) and 1/0? | 21, ...wp, ~

Gamma(11.5,10.75) . We modified the Minitab program in Appendix B for Ex-

ample 7.3.1 as follows.

gmacro

normalpost

note - the base command sets the seed for the random number
generator (so you can repeat a simulation)

base 34256734

note - the parameters of the posterior

note - k1 = first parameter of the gamma distribution = (n+3)/2

let k1=11.5

note - k2 = 2/(n-1)s**2

let k2=1/10.75

note - k3 = posterior mean of mu

let k3=3.825

note - k4 = 1/n

let k4=1/20

note - main loop

note - c3 contains generated value of sigma**2

note - c4 contains generated value of mu

note - c5 contains generated value of coefficient of variation

do k5=1:10000

random 1 cl;

gamma k1 k2.

let c3(k5)=1/c1(1)

let k6=sqrt(k4/cl(1))

random 1 c2;

normal k3 k6.

let c4(kb)=c2(1)

let c5(k5)=sqrt(c3(k5))/c4(k5)

enddo

endmacro

A density histogram of the sample of 10* from the posterior distribution of

¥ = o/u is given below.
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Challenges
7.4.21 The likelihood function is given by

(2%02)_n/2 exp <_T7:2 (z — u)2> exp (— 572 52) .

L(p, 02 | xq,...p) =

The log-likelihood function is then given by
_ 2
— -1
n (T — p) n-1,

2 n n 2
) = =2 2n) — Zno? - -
W, 0% |z, ...ty) 5 n (2m) 5 no 52 572

Using the methods discussed in Section 6.2.1 we obtain the score function as

follows P
S(w,0?|x) = i o .
(M | ) ( 02+204 (x_/”b)2+ 204182 >
The Fisher information matrix is then given by
2y _ _% —o1 (T —p)
I(/‘Lva ) - _E(IL,o'Q) ( _H_’n21 (f _ 2 _ 16 f ) (n 1) 2 >

(= % 0
0 204+ 0 % .

Jeffreys’ prior is then given by

anl/2 _(mn n\Y2 n
(et 1u )" = (G57) = 75

Note that this is different then the prior used in 7.4.12.






Chapter

8

Optimal Inferences

8.1 Optimal Unbiased Estimation

Exercises
8.1.1 We have that

following table.

L(1] ) =

(3/2)

L(2]-) and so by Section 6.1.1 T'is a sufficient
statistic. Given T' = 1, then the conditional distributions of s are given by the

s=1 s=2 s=3 s=4
— /3 _ 2 /6 _ 1
Ja(s|T =1) 1/3—}-1/6 =3 1/1i+i/6 =3 0 0
_ _ 2 _ 1
fo(s|T=1) 1/211/4 3 1/211/4 _ 3 0

We see that these are the same (i.e., independent of ). When T = 3 the

conditional distributions of s are given by

s=1 s=2 s=3 s=4
fa(s|T =3) 0 0 1 0
fr(s|T =3) 0 0 1 0
and when 7" = 4 the conditional distributions are given by
s=1 s=2 s=3 s=4
fa(s|T =4) 0 0 0 1
fo(s|T =4) 0 0 0 1
and these are also independent of 6.
8.1.2 Using Var(z) = E (2?) — (E(z))?, Var(z) = Var(z)/n we have that

E(i(w ) (Zx —nx)-i ) —nE (z?)
— nEB (22) = nB (22) = n (% + 12) %2 ;ﬁ) (n—1)o?

227



228 CHAPTER 8. OPTIMAL INFERENCES

and the result follows. This estimator will be UMVU whenever (f,s2) is a
complete sufficient statistic for the class of possible distributions that we are
sampling from.

8.1.3 From Example 8.1.3 we know that Z is a complete sufficient statistic.

Therefore, any function of = is a UMVU estimator of its mean. We have that

E(z?) = p? + 03/n and so 7% — 03 /n + 03 = 22 + (1 — 1/n) 6% is UMVU for
2, 2

w +og.

8.1.4 We have that E (T 4+ 09z.25) = E(Z) + 09z.a5 = 1 + 0pz.25. Since T is

complete this implies that T 4+ 0gz.25 is UMVU.

8.1.5 This is a UMVU estimator of 5 + 2.

8.1.6 We have that E (Z) = 6 and since Z is complete it is UMVU for 6.

8 1.7 We have that the mean of a Gamma(ao, B) random variable is given by

= o e e B e = gty o~ (Ba) e B de = Siged = %
Therefore z/ ao 1s an unbiased estimator of 7!, and since Z is complete, this
implies that Z/ag is UMVU.

8.1.8 The likelihood function is given by L (wl, ey X | 02) =
02" exp {—2—;2 S (wi— uO)Z} . By factorization (Theorem 6.1.1),

m is sufficient. Further, E - = no?, so
Sy (@i = o)’  Epr (X0 (i = p0)*) = no?,

n=1 S (i — po)? is unbiased for 0. Since this sufficient statistic is complete,
we have that =1 27, (2; — o) is UMVU for o2

8.1.9 The parameter of the interest is ) = P((—1,1)). The statistic I(_y1)(X1)
is unbiased because E[l(_1 1)(X1)] = P(X; € (—1,1)) = 1. Example 8.1.5 says

U= (Xauy,..., X)) is a complete minimal sufficient for the model. Hence,
T = E[l(—1,1)(X1)|U] is the UMVU estimator by Theorem 8.1.5. By sym-
metry E[I(_171)(X1)|U] = ... = E[I(_171)(Xn)|U]. Since Z?:l I(—l,l)(X(i)) =

B Iy (Xap)lUl = B2, L-10)(X)|U] = nE[I11)(X1)|U] = nT,
the UMVU estimator T is n™t Y"1 | I_y 1)(X;).

8.1.10 Let X3,...,X,, be a random sample. The parameter of the interest is
Y = p? and E[X1X,] = E[X1]E[X3] = pu?. Hence, X; X5 is an unbiased esti-
mator of 1) = p?. As in Example 8.1.5, the order statistic U = (X1, ..., X))
is complete and sufficient. By the Lehman-Scheffé theorem, T' = E[X; X5|U] is
UMVU. Then via symmetry

—1 —1 -1 n
n 1/n 1/n =
T = X; X, == X; X, == X;(nX — X;
(2> ; 1<) j 2<2) Z i<\ j 2(2> ; z(n 1)

1 2 (2 ... 2
_m[(xl+...+xn) (X7 + -+ X))

is the UMVU estimator.
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8.1.11 Yes, T will still be UMVU because it is the only unbiased estimator, due
to completeness of the order statistic in the family of all continuous distributions
with first moment.

Problems

8.1.12 The likelihood function is given by L (z1,...,z,|0) = 6" whenever
6 > x(,) and 0 otherwise. Therefore, when we know z(,,) we know the likelihood
function and so @y, is sufficient. Then z(, has density given by 6~ "nz""! for

0<a<0and E (z(,) = foe 0 "nx"dr = % x"“}g = 140. So bl is
UMVU for 6.

8.1.13 We have that the joint conditional probability function of (z1,...,xz,)
given nx is

ilmw1—ef‘“/{Q%)mwu—er7”}=1/cg)

This is the uniform distribution on the set of all sequences of 0’s and 1’s of
length n that have nz 1’s.

8.1.14 We have that
0 —aa — (1 —a)az)® = 0% — 20 (aay + (1 — @) az) + (aar + (1 — a) ap)?

—

=a@—a)’+(1—a)@—a)’ —ad®—(1—a)d + (ea + (1 —a)az)’
—al@-a)’+(1-a)l—a)’—a(l—a)ad—a(l—a)a?+a(l—a)aa
=a(@—a)’+(1-a)@—a)®—a(l—a)la —a)’
<a(@-a)’+(1-a)(—a)’.

Then by Jensen’s inequality we have that MSEq (T) = Eo((T — ¢ (0))?) =
2

Eg(Ep(. vy (T =¥ (0))%) > Eo((Ep(. v) (T) — ¢ (6))") = MSEq (Ty) .

8.1.15 We have that

- Tty z+y=>0 <
ersl={ _LTY, STYZ0 <kl
for any x,y. Therefore,
|0 —aa; — (1 —a)ag| =|a(@—a)+ (1 —a) (0 —as)
<la(@—a)+ |1 —a) (0 —az)| = ald —a|+ (1 - a) |0 —asl.

Then by Jensen’s inequality Ey ([T — 1 (0)]) = Eo (Ep. vy (T — v (0)])) >

Ey (|Ep( 0y (T) = (0)]) = Eo (1Tt — 4 (6)]). -
8.1.16 We have that

2
2 c
MSE(y,02) (e5%) = Eu,0) ((652 - o) ) = 0" Ey00) ((ﬁX - 1> )

2
4 c 2c
=0 {(n_ 1) E(Mgz) (XZ) e 1E(,L702) (X)+ 1}
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where X = (n — 1) s?/0? ~ x*(n—1). So E(,, »2) (X) = n—1 and Var, ,2) (X) =
2(n — 1), which implies E(,, ,2) (X?) = 2(n — 1) + (n — 1)*. Differentiating the
above expression with respect to ¢, and setting the derivative equal to 0, gives
that the optimal value satisfies

1
n—1

c
————F, 2 (X?) —
(n _ 1)2 (15 2) ( )
E([L,O'Q)(X) :(n_ ) (n—l) :n—l'
Euo2) (X?) 2n—1)+(n—-1)> n+l
We have that the bias equals

Eu02) (X) =0

or

c=(n-1)

n—l_l o2 = —20202.
n+1 n—+1

Eu,02) (032) —o? = (c—1) o? = (

8.1.17 Suppose that ¢ is a function such that Fy (c(U)) = 0 for every 6.
Then Ey (¢ (h(T))) = 0 for every 6, and the completeness of T implies that
Py ({s:c(h(T(s))) =0}) =1 for every 6. Now suppose u is such that ¢ (u) # 0.
Then Py (U=u) =Py (h(T)=u) =P (T =h""'(u)) =

Py ({s:T(s) =h™ (u)}) = 0 since c(h(T'(s)) = c(u) for s in
{s:T(s)=h""(u)}. This implies that U is complete.

8.1.18 We have that X = (n — 1) s*/o? ~ x*(n—1) = Gamma((n — 1) /2,1/2)

and so
0 n—1__
E<X1/2>: ; / x1/2<£> ’ 16_%1d.’13
(=) J, 2 2

2

= —21/_2 /OO (Ef_l et do = 27T (5) '
ey >

Therefore, (n — 1)1/2 I (251) s/21/2T (Z) is an unbiased estimator of o. Since
it is a function of the complete sufficient statistic, it is UMV U.

8.1.19 From Problem 8.1.18 we have that Z+(n — 1)/ T (251) 5 2.05/21/2T (2)
is an unbiased estimator of the first quartile. Since it is a function of a complete
sufficient statistic, it is UMVU.

8.1.20 The likelihood function is given by L (x1,...,z, |p) =

exp {—n (Z — p)° /208} for pu € {u1, po} . Clearly, given T we can determine the

likelihood function so  is sufficient. Now the log-likelihood function takes the
values —n (Z — p1)* /202 and —n (Z — p2)? /202, which give

—n(@—m)®  n@—p)’ _ n@(m —pe)  n(ef - p3)
203 203 o8 208

so we can determine T from the likelihood, and Z is a minimal sufficient statistic.
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Now supposing p; < pe, we have that

P,(n <% <ps)=P, </UL1/\/E (i/_\//% < gj/%)
o (5 h) -

v(LF)- o) -20)  p-p
and, since ® (M) 1-@ (M) , we see that this probability is inde-

oo/v/n ®(0) — @ (”—L) = pi
/v /v

o0/vn
pendent of p € {1, p2} . Now I(,, ., (T) is unbiased for P, (11 < Z < pz) and
therefore I, ,1,) (Z) — P, (11 < T < pp) is an unbiased estimator of 0 that is
not 0 with probability 1. Therefore, Z is not complete.

8.1.21 The log-likelihood function is given by —n (z — 1) /202, so

S ()1, 20) = 1@ = ) oF. Then 8" (|, ...a,) = —n/o, 50 1 (1) =
n/ogd. Since ¥ (u) = p* + o3, then ¢/ (p) = 2u and the information lower bound
for an unbiased estimator is given by 4/¢ o2 /n. The estimator that obtains this
lower bound is given by p? + 0§ — 2u%0 M = —2uZ + 3u? + o, which is
not equal to the UMVU estimator obtalned in Exercise 8.1.3. Therefore, the
UMVU estimator cannot obtain the lower bound.

8.1.22 The log-likelihood function is given by I (8| 1, . .., Z,) = nagIn §—BnZ,
so S (B|x1,...,2n) =nag/B—nz, S (B|z1,...,7,) = —nag/B?, which implies
I(B) =nag/B?. Since ¥ (8) = 871,94 (B) = —3~2 the information lower bound
for unbiased estimators is given by (1/8%) (8%/nag) = 1/naoB? Note that
by Exercise 8.1.7 Z/ap is UMVU for 37! and this has variance ag/nag3? =
1/na/3?, which is the Cramer-Rao lower bound.

8.1.23 The log-likelihood function is given by I (0| z1,...,z,) =

nng+ (0 —1)>" Inz;,soSO|z1,...,2,) =

n/0+>" Inx;, S (B|x1,...,z,) = —n/6% which implies I (3) = n/6?. Since
¥ (0) = 6,4’ (8) = 1 the information lower bound for unbiased estimators is
given by 62 /n. This is attained by the estimator 6 + 9—: (Z+>0  Inz;) =20+
& > Inz;. Since this depends on 6, this implies that any UMVU estimator,

n
if it exists, cannot have variance at the lower bound.

8.1.24 The definition of completeness is Fg[g(T)] = 0 for all § € Q implies
Py(g(T) = 0) = 1 for all # € Q. To be a complete statistic for a submodel
Qo C Q, T must satisfy that Ey[g(T)] = 0 for all § € Q¢ implies Py(g(T) =
0) = 1 for all § € Q. Hence, the restriction is shrunken from  to Q. This
smaller restriction may cause incompleteness of 7. For example T = (X, 5?)
is complete for N(u,0?) model as in Example 8.1.4. If we consider the model
Qo = {N(0,6%): 6 > 0} C Q, the statistic T is not complete because Eg[nX? —
(n +1)8?] = 0 even though Py(nX? — (n+1)5% =0) = 0.

8.1.25 Let Qg be a submodel of Q. Assume that for a Borel set B, Py(B) =0
for 6 € Q if Py(B) = 0 for § € Qy. Suppose T is a complete statistic for the
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submodel . Suppose there is a function g such that Ey[g(T")] = 0 for all § € Q.
Since Qg C Q, Ep[g(T)] = 0 for all § € Q. The completeness of T" in Q implies
Py(g(T) =0) =1 for all 0 € Qy. Let B = {g(T) # 0}. Then Pyp(B) = 0 for
all 0 € Qy. Thus, Py(B) = 0 for all § € Q by the assumption. Therefore T' is
complete for the model €2 as well.

Challenges

8.1.26 We can assume that ¢ = 0 (or else replace X by Y = X —c). We have that
X(8) = X(5) o1y (X(8)) + X(s)I_11) (X(8)) + X(5)]1.00) (X(s)) . Then
E(X) = B (XI—oo—1) (X)) + E (XI 1.0 (X)) + B (XI(1.00) (X)) and —1 <
E (X111 (X)) € 1. Also, E(X?) = E (X2(—co,—1) (X))+E (X2_117 (X)) +
E (X?I(1,50) (X)) , and each term in this sum is nonnegative (possibly infinite).
Now suppose E (XI(1,0) (X)) = oo. Then, when X > 1, we have X? > X
and so F (XZI(LOO) (X)) > E (XI(l,oo) (X)) =oc0. If F (XI(foo,fl) (X)) = —00
then, when X < —1, we have —X? < X, s0 E (—X?I(1 ) (X)) <
E (XI(1,00) (X)) = —00, which implies E (X?I(1 o) (X)) = co. In both cases,
we have that E(X?) = oo.

8.1.27 The log-likelihood function is given by I (8| 1, ..., Zn) = nag In S—BnZ,
so Z determines the likelihood and as such is sufficient. Now S (8] x1,...,2,)
= nagp/S — nZ, and, setting the score function equal to 0, we obtain the MLE
of 5 as ap/Z, so we can also obtain Z from the likelihood. This implies that Z
is minimal sufficient.

We know that Z ~ Gamma(nag,nS). We will present the argument when
n = 1 and the proof is the same for n > 1.

Now suppose h is such that Eg (h (X)) = 0 for every 8 > 0.

Suppose that A > 0. Then this implies that fooo h(z)z® te=P* dz = 0 for any
B, but since the integrand is nonnegative, this can only happen when h(x) = 0.
Similarly if A < 0.

Now write h = hT™—h™ where h™ (z) = max{0, h(x)}, h~ (x) = max{0, —h(z)},
and we must have [ h¥(z)a* e P dx = [ h™(x)a* 'e P* dx. This im-
plies [ ht(z)z*"te ™ dax = [J° h™(z)z* ‘e " dz. Now suppose h™ > 0 and
h~ > 0 on subintervals of (0,00). Note they cannot both be nonzero on the
same subinterval. Then we have that

Jo e et (e tem de [T e BTV ()2 e da

IS bt (z)ze e da B IS b (z)ze e da

ormy (8—1)=m_ (8 —1) for every 8 > 1, where m is the mgf of the distri-
bution on (0,00) with density given by h*(z)z* le=/ [[* bt (z)z* le " dx,
and m_ is the mgf of the distribution on (0, c0) with density given by
h(z)z®~ e/ [0 h™(x)z* e~ dz. But the equality of the mgf’s implies the
equality of the distributions (Theorem 3.4.6), and these distributions are con-
centrated on disjoint subsets, so we have a contradiction to the supposition that
h*™ > 0 and A~ > 0 on subintervals of (0,00). This implies that AT = h~ = 0
and so h = 0.
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8.2 Optimal Hypothesis Testing

Exercises

8.2.1 The ratio f(8)/fa(s) has the following distribution when § = a :

Pu (Fo(3)/ Fals) = 3/2) = Pu (11,2}) = 1/2, Pu (fols)/ fuls) = 2) = Pa ({3}) =

1/12, and P, (fo(s)/fa(s) =1/5) = P, ({4}) = 5/12.When « = .1, using (8.2.4)

and (8.2.5), we have that ¢p = 3/2 and v = ((1/10) — (1/12)) / (1/2) = 1/30.

The power of the test is P, ({3}) + Py ({1,2}) /30 =1/6 + (3/4)/30 = 23/120.
When a = .05 we have that ¢ =2 and v = ((1/20) — 0) /(1/12) = 3/5.The

power of the test is P, ({3}) (3/5) = (1/6) (3/5) = 1/10.

8.2.2 Such a test completely ignores the data and so makes no use of any
information that this provides about the true value of #. The power of such a
test is clearly 1/20, and this is smaller than the power 1/10 of the optimal size
.05 test derived in Exercise 8.2.1.

8.2.3 By (8.2.6) the optimal .01 test is of the form (using z.g9 = 2.3263)

1 > 1+ 223263 1 7> 2.0404
vo () = =
0 <1+ %2.3263 0 T < 2.0404.
8.2.4

(a) Let C' be the 0.975-confidence interval for p. Then, P,(C) = 0.975. The
size of the test is the rejecting probability of Hy. Hence, the size is a = Py(0 &
C)=1-Py(C) =1—0.975 = 0.025.

(b) The confidence interval C is [Z — 2o.9875/v/20, T + 20.0875/v/20]. Since Z ~
N(6,1/20) if € is true, the power function is given by

5(9) = PQ(O Q C) = P@(i‘ < —20,9375/\/% or xr > 20.9875/\/%)
= &(—(20.9875 +0)/v20) + 1 — ®((20.9875 — 0)/V/20).
8.2.5
(a) Since Py(X > 1) =0 for all § <1, the size a = supge gy, Po(X > 1) = 0.
(b) Suppose § > 1. The power function is 5(f) = Py(X > 1) = ff(l/@)dm =
1-1/6.
8.2.6 The power is too low to confidently say that Hy is true. A small power

indicates that we have a low probability of detecting practically significant de-
viations from 0 with this test.

8.2.7 The test is Hy : p = 0 versus H, : p = 2. Hence, the UMP size « test has
the rejection region ¢y /,, (T — 2)/¢1/, (%) = exp(2n(z — 1)) > k,. The rejection
region is equivalent to T > k[, for some k!, > 0. Since @ = Py(T > ki) =
1—®(y/nkl) =1 — ®(21_,), the critical point is k!, = z1_4/1/n. The power
function is given by
ﬁ(2) = PQ(.T > k(/l) = PQ(.’E > Zlfa/ﬁ) =1- @(Zlfa — 2\/5) > 0.99
=1- @(20,01).
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The solution is
n > (210 — 20.01)%/4 = (20.05 — 20.01)%/4 = (1.6449 — (—2.3263))* /4 = 3.9426.

Hence, we need at least n = 4 samples.

8.2.8 What we care in optimal hypothesis testing theory is type I and II errors,
i.e., significance level and power function. Hence, we must ignore the difference
of two test procedures whenever two tests have the same significance level and
the same power function.

8.2.9 Suppose we have two size « test functions ¢ and ¢’ for this testing prob-
lem, with corresponding power functions 3, and §,/. Since ¢ is UMP we must
have that (,(0) > S, for all > 0. This implies that the graph of /3, lies above
the graph of ..

Computer Exercises
8.2.10 The power ((0) is given by
B16) = Ea(100) = P € 1) = 3 (7)o -0y
TER

The result is given by the following table.

9| o 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
51000 0.639 0248 0.101 0.172 0384 0.532 0.334 0.000

The Minitab macro for the computation is given below.

macro
solution
mcolumn c7 c8 c9 cl0
mconstant k1 k2
set c7
0178
end
set c8
1:9
end
let c8=(c8-1)/8
do k1=2:8
let k2=c8(kl)
pdf c7 c10;
binomial 10 k2.
let c9(kl) = sum(cl0)

enddo
let c9(1) =1
let c9(9) =0
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name c8 "theta" c9 "power"
print c8 c9
endmacro

8.2.11 We use notations in Example 8.2.1 with 03 = 1. The choice of o does
not make any difference except the scale of pu, i.e., 60‘3 (u) = Pr(oop). The

rejection region is given by R = {(x1,...,2n) : [T — po| > 21-a/2/+/n} where
to = 0. The power function is
80) = Byl (X1, ., X)) = Pa(R)
=Pu(X > z1_qpp/Vnor X < —z1_n2/V/n)
=1—®(21_a/2 — /1) + P(=21_a/2 — V1)
=®(—21_qa/2 + V1) + O(=21_a/2 — p/n).

The graph of the power functions is drawn below.

A

The Minitab code for this graph is as below.

%solution 0.05

# the corresponding macro "'solution.mac"
macro

solution ALPHA

mcolumn c1 ¢c2 ¢3 c4 ¢c5 c6 c7 c8 c9
mconstant ALPHA k1 k2 k3 k4 k5 k6 k7 k8
# ALPHA is the significance level alpha
set cl

1:2001
end

let c1=(c1-1001)/1000*7

let k2=1-ALPHA/2

invedf k2 ki1;
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normal 0 1.
# n=1
name k2 "N"
let N=1
let c7=-kl+cl*sqrt(N)
cdf c7 c8;
normal 0 1.
let c7=-kl-cl*sqrt(N)
cdf c7 c9;
normal 0 1.
let c2=c8+c9
# n=4
name k2 "N"
let N=4
let c7=-kl+cl*sqrt(N)
cdf c7 c8;
normal 0 1.
let c7=-kl-cl*sqrt(N)
cdf c7 c9;
normal 0 1.
let c3=c8+c9
# n=10
name k2 "N"
let N=10
let c7=-kl+cl*sqrt(N)
cdf c7 c8;
normal 0 1.
let c7=-kl-cl*sqrt(N)
cdf c7 c9;
normal 0 1.
let c4=c8+c9
# n=20
name k2 "N"
let N=20
let c7=-kl+cl*sqrt(N)
cdf c7 c8;
normal 0 1.
let c7=-kl-cl*sqrt(N)
cdf c7 c9;
normal 0 1.
let c5=c8+c9
# n=100
name k2 "N"
let N=100
let c7=-kl+cl*sqrt(N)
cdf c7 c8;

CHAPTER 8. OPTIMAL INFERENCES
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normal 0 1.
let c7=-kl1l-cl*sgrt(N)
cdf c7 c9;
normal 0 1.
let c6=c8+c9
name cl "mu"™ c2 "n=1" c3 "n=4" c4 "n=10" c5 "n=20" c6 "n=100"
plot (c2-c6) * cl;
nodtitle;
connect;
graph;
color 23;
overlay.
endmacro

(a) The power is increasing at any fixed parameter p as the sample size n is
increasing.

(b) A test ¢ is unbiased if 3(0) > « for all € H,. Since all power functions
are above 0.05, all tests are unbiased.

Problems

8.2.12 From the argument in the text we have that (8.2.7) is UMP size « for
Hy : = pg versus Hy : p = py for some p; < pp. Since the test does not
depend on i, this says that (8.2.7) is UMP size a for Hy : 1 = po versus H,, :

p < po. Now the power function is given by B, (1) = P, (a‘c < po + %za> =

P, (% < ;7’207?/“—5 + za> = (% + za) . Note that this is decreasing in p.
This implies that g is a size « test function for Hy : p > pg versus Hy @ < po.
Observe that, if ¢ is a size « test function for Hy : p > pg versus Hy : p < o,
then it is also a size « test for Hy : p = pg versus H, : p < po. From this we
conclude that ¢ is UMP size a for Hy : p < pg versus Hy @ > pig.

8.2.13 We have that Ep (¢) = «a for every 6, so it is of exact size . For this
test, no matter what data is obtained, we randomly decide to reject Hy with
probability a.

8.2.14 Suppose that ¢q is a size @« UMP test for a specific problem and let ¢
be the test function of Problem 8.2.13. Then for # such that the alternative is
true we have that Fy (©9) > Ep (¢) = «, 80 ¢ is unbiased.

8.2.15 The likelihood function is given by L (8 | 21, . .., x,) = B"* exp {—PnZ} .
Therefore, we reject Hy : 8 = By versus H, : § = 31 whenever
B exp {—p1nz} /By exp {—LonZ} > ¢y or, equivalently, whenever
(Bo — B1)nT > nag (Bo — 1) + Incg or, since By < f1, whenever nZ <
(nag (Bo — B1) +1ncp) / (Bo — 1) - When Hy is true we have that nX ~
Gamma(nag, Bo), so with z1_ (By) denoting the (1 — a)th quantile of this dis-
tribution, the UMP size « test is to reject whenever nZ < z, (8o) -

Since this test does not depend on (i, it is also UMP size « for Hy : 8 =
Bo versus H, : B > fy. Now observe that when X ~ Gamma(a,S), Z =



238 CHAPTER 8. OPTIMAL INFERENCES

BX ~ Gamma(a,1). Therefore, Ps (nz < z1_4 (80)) = Ps (nz < fzqo (o)) =
Py (Z < Bz (Bo)) , where Z ~ Gamma(a, 1) . The above implies that the power
function is increasing in . Therefore, the above test is size a for Hy : 8 < By
versus H, : B > [y. Now suppose ¢ is also size « for Hy : § < [y versus
H, : B8 > Bo. Then ¢ is also size « for Hy : 8 = By versus H, : 8 > [y and so
must have its power function uniformly less than or equal to the power function
for the above test when 8 > fy. This implies that the above test is UMP size «
for Hy : B < By versus H, : 8 > (.

8.2.16 Without loss of generality, assume pg = 0. Then for Hy : 02 = 03 versus
H, : 0% = 02, the UMP size « test rejects Hy whenever

-2 1
L(o}|zy,...,z,) 71 ”exp{—T,fZ?zle}
L (o? - 2 1 n > o
(0'0|!L'1,...,.’En) g'a nexp{——z. 1;132}

2 — P
200 1 7

or, equivalently, whenever n (o3 — 0}) + 3 (i - %) S, x? > Incg or, using
1

03 < 0%, whenever

1 & 2 /1 1\ !
_Zx?>—2<—2——2> (lnco—n(ag—af)).

0y = o5 \o§g o7

N

Under Hy we have that % St x? ~ x%(n), so the test is to reject when-
z 2

ever aig S x? > zy_q, where x1_, is the (1 — a)th quantile of the x? (n)

distribution. Since the test does not involve 0%, it is UMP size o for Hy :

02 = o versus H, : 0® > 03. The power function of this test is given by
2 2
P (H 50 2?2 01a) = P (H X022 2 Hara) = P (22 Bara)

where Z = (31, 2?) /o ~ x?(n), so the power function is increasing in o2,

This implies that the above test is of size a for Hy : 0% < 03 versus H,, : 02 > 03.
Now suppose ¢ is also size o for Hy : 02 < 03 versus H, : 02 > 03. Then ¢ is
also size o for Hy : 0% = 03 versus H, : 0 > 0} and so must have its power
function uniformly less than or equal to the power function for the above test
when o2 > ¢2. This implies that the above test is UMP size a for Hy : 02 < 03

versus H, : 0% > 03.

8.2.17 For Hy : 0 = 6 versus H, : 0 = 01, the UMP size « test rejects Hy when-
ever L (91 | Tlye-- ,xn) /L (90 | T1ye-- ,.7,‘”) = 91_71](0791) (x(n)) /9()_”[(0’90) (a:(n)) >
co or, equivalently, whenever o,y (2(n)) /1(0,00) (:E(n)) > 0y "co/07". So we
reject categorically whenever x(,) > 6y because the likelihood ratio equals oo.
When 0 < z(,) <1 the likelihood ratio equals 6;"/6;™. This implies that the
UMP size « rejects whenever the likelihood ratio is greater than 67"/65™ (i.e.,
equals co) and otherwise we randomly reject with probability « (i.e., when the
likelihood ratio does not equal o).

Note that the above test does not depend on #; and so is UMP size « for Hy :

0 = 0y versus H, : 0 > 0y. Further, if § < 0y we have that Py (% < oo)
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=1, so the above test has size a for Hy : 0 < 6y versus H, : 8 > 0y. Now sup-
pose ¢ is size « for Hg : 0 < 6y versus H, : 0 > 6y. Then ¢ is also size « for
Hy : 0 = 0y versus H, : 0 > 6y and so must have its power function uniformly
less than or equal to the power function for the above test when 6 > 6y. This
implies that the above test is UMP size « for Hy : 6 < 0y versus H, : 6 > 6.

8.2.18 Suppose X ~ Binomial(n, §) and put

I'(n+1) vt n—a—1
F(m+1)F(n—m)/9 y (=) ay-

So F(0) = rmiig Jo v° (1—9)" "y =n [y 1—y)" " dy=(1-6)"

= P(X = 0). Using integration by parts we put u = y%, giving du = xy*~! and
dv=(1—y)" " givingv=—(1—9)""" /(n— ), so that

F(z) =

— F(n+1) ! x n—xr—1
F(x)_F(ﬂc+1)F(n—ﬂc)/9 vy (1=y) dy
1
B F'(n+1) L=y x v S
TTE+DT(h-2)) 7 n-z n—x/e y Ay dy

= <Z> 0 (1 - e)n_m + T (x)l;(gltlx) + 1) /9 wal (1 - y)n_m dy

=PX=2z)+F(z-1).
Continuing this recursively establishes the result.

8.2.19 Let X ~ Poisson()\) and put F(z) = & [“y"e ¥ dy. Then F(0) =

T I
& f;o e Ydy = eV = P(X = 0). Using integration by parts with v = y*,
giving du = zy* 1, dv = e Y, giving v = —e Y, we have that

1 —r— o0 o1y ATe— A
Fz) = —q —y"e"|; T oy dy o =——+F(@-1)

=PX=z)+F(z—-1).
Continuing this recursively establishes the result.

8.2.20 The UMP size « test for Hg : A = Ao versus Hy : A = A\ is of the form

L ()\1 |{L‘1, . ,mn) _ ()\1)719:0 e~ M
L()\()|.7,‘1,...,.’13n) ()\O)nwe*)\o

> Co

or, equivalently, whenever nZ (InA; —In\g) > (A — Ag) Incg, and since Ay >
Ao, this is equivalent to rejecting whenever nz > (A; — Ag) Inco/ (In Ay —1In Ag).
Now recall that nZ ~ Poisson(n\g) under Hy so we must determine the smallest
k such that Py, (nZ > k) < a and then put vy = (o — Py, (nZT > k)) /Py, (nZ = k).
Since this test does not involve A1, it is UMP size o for Hy : A = Ag versus Hy :
A > \g. From Problem 8.2.19 we have that Py (nz > k) <1— L [ y%e Y dy,

z! A
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and we see that this is increasing in A. Therefore, this test is UMP size « for
Hy: A< Xy versus Hy : A > \g.

8.2.21 When Hy : 4 = pg holds, the log-likelihood and score functions are given
by I (z1,...,2n]0%) = —nlno? — ooz Yoy (x—MO)Z,S(xl,...,xn|02) =

—2 + 5L S (@ — ). Then S (21,...,2,|0%) = 0 leads to the MLE
iy = po, 6%, = = i (2 — 10)?, and the maximized log-likelihood equals

I(z1,...,2,|0%,) =nlnn—nln Y1 (2 — f10)> — 2.
When H, : 1 # po holds, the log-likelihood function is given by
1 n

U(zy,...,zn|p,0%) = —nlno? — 55 30", (z—p)?.

By Example 6.2.6 the MLE is given by i = z,6% =1 Y% | (z — z)? and the

maximized log-likelihood is given by [ (ml, cey T | 1,6 ) =

nlnn—nlnd " (z — ﬂc)2 — 5. Then the likelihood ratio test rejects whenever
2(1 (xl,...,xn|/l,62) —l(wl,...,mn|612qo))

- - - Zn—1 (z — M0)2
=2(-nl) (-2 +nnd (z-— u0)2> =2nIln =5 > 21 4
( ; ; Diey (T — $)2

where 21, is the (1 — a)th quantile of the x? (2 — 1) = x? (1) distribution.

8.2.22
(a) We have that

Py(1p(0) € C(s)) =Py ({s: 0 (0) € Cs)}) = Po ({s: 0y (s) =0})
= 1= Py ({s:0p0) () =1}) = 1= Ep (py(0) 21—«

since Eg (@w(@)) < a.

(b) We have that B (%(9)) = Py(y(0) ¢ C*(s)) = 1 — Py (¢ (0) € C*(s)) <
1—(1—a)=asince Py(¢ () € C*(s)) >1—a.

(c) Suppose now that, for each value of vy, the test function ¢y, is UMP size
a for Hy : ¥ (8) = 9o versus H, @ 9 (0) # 1. Then, if C is the confidence
set corresponding to this family of tests, we have that Py (¢ (6*) € C(s)) =
Py({s:9(0%) € C(s)}) =1— Py (¥ (0%) ¢ C*(s)) = 1 — Eg (py(6+)) , and since
Ey (py(e+)) is maximized when v (0) # ¢ (%), part (b) implies that the prob-
ability of covering a false value is uniformly minimized by C.

Challenges

8.2.23 Suppose that a test ¢ is size « and UMP for Hy : 6 = 6, versus H,, :
0 = 01. Let ¢y be as in Theorem 8.2.1. Following the proof of Theorem 8.2.1,
let S ={s:o(s) # ¢ (s)}N{s: fo, (s) # cofe, (s)}. Then Ey, (¢) = Ep, (¢o)
and, since ¢ is size a, we have that 0 > Ey, (o) — Eg, (¢) —co (@ — Ep, () =
S aes (80 (5) — 9 () (o, (5) — oy (5)) = Doy (00 () — 0(s))

x (fo, (s) = cofo, (s)) = 0 since (o (s) =@ (s)) (fo, (5) = cofo, (s)) > 0 on 5™
But this implies that S* = ¢ and we have that ¢o(s) = ¢ (s) whenever fy, (s) #
cofo, (). The values ¢y and ¢ may differ on B = {s: fy, (s) = cofo, (5)}.
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Since Ep, (¢o) — Eg, (¢) = 0 the inequalities above establish that
co (v — Ep, () = 0. If ¢g = 0, then @o(s) = 1 whenever fp, (s) > 0, so the
power of the UMP test is 1. If ¢y # 1, then Fy, () = a and ¢ has exact size a.

8.3 Optimal Bayesian Inferences

Exercises
8.3.1 The posterior distribution of 4 is given by
o2 B3
36 taa O 36 T31 O

soIlI(#=2|2)>11(0 =1]|2) and we accept Hy : 0 = 2.

8.3.2 The Bayes rule is given by the posterior mean and this is given by %—i—%Z =
8

=
8.3.3 In Example 7.1.2 we determined that the posterior distribution of pu is

given by the
1 n\ * n 1 n\ *
(3 ) o))
o 00 70 ) o 00

distribution. Then the Bayes rule is given by the posterior mean
1 n\ " Lo n n\ '/ n
-+ = S 4 =T — —I| =z

8.3.4 From Example 7.1.1 we have that the posterior distribution of 6 is
Beta(nZ + a,n (1 — Z) + ) . The Bayes rule is given by the posterior mean and
this is evaluated in Example 7.2.2 to be (nZ + ) / (n+ o+ 3) .

8.3.5 The likelihood is given by L (8| xz1,...,2,) = " exp {—pnz} and the
prior density is 7 (8) o< 87 ~!e~v08. Therefore, the posterior density is pro-
portional to 8"t T0~1exp {— (nZ + vg) B}, and from this we deduce that the
posterior distribution of 8 is Gamma(nag + 79, nZ + vg) . The Bayes rule is given
by the posterior mean and this equals (nag + 79) / (nZ + vo) . By the weak
law of large numbers this converges in probability to (since Ejs(Z) = ao/f)
ag/ (ao/B) = B as n — oo.

8.3.6 The Bayes rule is given by the posterior mean of 1/8 and this equals
_ nao+T10 [e'e]
1
M/ <_> 6na0+7'071 exp{— (nic—l—vo) B} dﬂ
0

as 79 — 00.

T (nag + 710) I3
(nZ +vo)" "™ /OO o702 .
= NAOTTO™2 o —(nZ +wv d
T oo 170 Jo B xp {— ( 0) B} dp
(nZ + )"t T (nog + 10 — 1) ~ nT+w

T (nag+70) (n@ 4 ve) ™1 nag+7—1
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and this converges to (ag/3) /ap = 1 as n — oo.

8.3.7 By Theorem 8.3.2 the Bayes rule is given by ¢(Z) = 1 whenever the
posterior probability of Hy is less than or equal to the posterior probability of
H§. Equivalently, ¢(Z) = 1 whenever the posterior probability of Hy is less than
or equal to 1/2. By (7.2.9) and Theorem 7.2.1 the posterior probability of Hy
is given by

’I“BFH
I (¢ (0) = =—7
(00) =i |5) = e g
where 7 = po/(1 — po), BF, = m1(s)/ma(s) and m;(s) is the prior predictive
density of s = (x1,...,z,) under the prior II;, where II; is the prior degenerate

at po, and Iy is the N(pug,03) prior. Note that IT (v (6) = vg | s) < 1/2 if and
only if BFy, < r~!. Then following Example 7.2.13 we have that

mg(.’lil,...,],‘n)

-1 2
—n -1 _ 1 1 n o n _
— (2r02) 2 _n 2 1 (L. n Ho T
( 7T0'0) exp 203 587 | 1y " exp 5 Tg + ‘73 7'3 + Ug:r
_ —-1/2
wexp (L (# P\ (2 1)
2\1¢  o? ot 78 '

Because II; is degenerate at p, it is immediate that the prior predictive
under II; is given by

—n/2 n—1 n ,_ 2
mi(z1,...,z,) = (2707) exp <— 572 52) exp (—T‘g (T — o) ) .

Therefore, BFy, equals

BFy, =
’ 1z 4 L —1/2 (Ll ! .“_O_i_L*Z_l ﬁzl_;’_n_fz
To \oz 772 EXp\2\72 752 P 2\ T o2

and we reject whenever this is less than (1—pg)/po. As 78 — oo the denominator
converges to 0 and so in the limit we never reject Hy.

8.3.8 Since the posterior distribution given data is the same as the posterior
distribution given a minimal sufficient statistic, we base our calculations on
T=X;+- -+ X, ~ Binomial(n, ). Let IT; be the prior degenerate at 6y and
II; be the UJ0, 1] prior. By (7.2.9) and Theorem 7.2.1 the posterior probability
of Hy is given by

- ’I“BFHO

o 1+ ’I“BF’H(J

where r = po/(1 — po), BFm, = m1(t)/ma(t) and m;(t) is the prior predictive
density of T' when the prior I1; is being used. By Theorem 8.3.2 the Bayes rule is
given by ¢(Z) = 1 whenever II (¢ (0) = 1o | s) < 1/2, or, equivalently, BFy, <

r

(¥ (6) = o)
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We have that m(t) = (?)96(1 — o)t and

ma(t) = /01 CL) 0'(1 — 0)"tdo — (?) L(t +%)(E(Z ;)t +1)

Therefore,

I'(n+2)
Frt+1)I'(n—t+1)

and we reject whenever this is less than (1 — pg)/po.

Problems

BFy, = 05 (1 — 6p)" "

8.3.9 Suppose T'(s) € {01,062} for each s. The Bayes rule will minimize

B (Py (T(s) #0)) = Eu (Ep (1 — Iy (T(5))))
= 1= En (Ep (Itoy (T(s))) = 1= Ent (Enc.1) (L) (T(5)))) -

Therefore, the Bayes rule at s is given by 7'(s) which maximizes

B sy (Igoy (T(s))) = TL({61} | s) I{g,3 (T(s)) + T ({02} | 5) Igg,y (T'(s))

and this is clearly given by

[0 T({1} ]s) > TT({6a) | 5)
T(s) = { Oy T ({02} ]s) >T1 ({01} |s)

and when II ({61} |s) = I1 ({2} | s) we can take T'(s) to be either §; or 2. So
the Bayes rule is given by the posterior mode.

8.3.10 Since IT( = 2|2) > II(# = 1|2), we have that the Bayes rule takes the
value T'(s) = 2 for this data. An advantage for this estimator over the posterior
mean is that the posterior mode is always an element of the parameter space,
while the posterior mean may not be, as in Exercise 8.3.1. So if we use the
posterior mean, we may estimate the parameter by a value that it could never
possibly take.

8.3.11 In Example 7.1.4 we derived the posterior distribution of (1, 1/0?), and
in Example 7.2.1 we derived the marginal posterior distribution of u to be

28
Ha o+ \/(2a0 ey

where Z ~ t (n+ 2ap) where p, = (n+ 1/7'02)_1 (po/73 4+ nx) and
2 -1 2

— e Mo n—lo 1 B Ho | oz
ﬂw—ﬁo—i-QiE —1—27_02+ 5 * 2<n+7_8 Tg—i-nm .

We know the Bayes rule is given by the posterior mean of ;1 and this equals

26(17
Ly + FEry. T T Z) = Ha
\/(2a0+n) (n+1/73) e far,an) (2)




244 CHAPTER 8. OPTIMAL INFERENCES

since the mean of a Student()) random variable is 0 (provided A > 1). So the
Bayes rule is given by p,.

8.3.12 Suppose T'(s) € {01, ...,0;} for each s. The Bayes rule will minimize
En (Py (T(s) #6)) = En (Eo (1— 1oy (T(s))))
=1 - Eu (Ey (Iypy (T(5)))) = 1= Eanr (Bn. 1) (Ioy (T(9)))) -
Therefore, the Bayes rule at s is given by T'(s), which maximizes

k

Eus) (Itey (T(s))) = ZH({Qi} |s) L9,y (T'(s))

i=1

and this is clearly given by T'(s) = 6; whenever II({6;} |s) > II({0;} | s) for
every j # 4. When more than one value of § maximizes II ({0} |s) we can take
T(s) to be any of these values.

Challenges
8.3.13 We have that

oty
_ By (Ep9<-|s> (EQ9<'|5> ((i@ - t)2)>)
= Eum ((%(-ls) <<T(S) h t> >))

where @ (- | s) is the posterior predictive measure for ¢ given s (has density or
probability function ¢ (¢|s) as specified in Section 7.2.4). This is minimized if

- . 2
we can find T'(s) that minimizes Fg. | ) <<T(s) - t) > for each s. By Theorem

8.1.1 this is minimized by taking T (s) = Eg(.|s) (t), the posterior predictive
mean of £.

8.4 Decision Theory

Exercises

8.4.1 The model is given by the collection of probability functions
{0 (1 —60)"""" : 6 € [0,1]} on the set of all sequences (z1,...,z,) of 0’s and
1’s. The action space is A = [0, 1], the correct action function is A (0) = 0, and
the loss function is L (6, a) = (§ — a)”.

The risk function for T' is given by Rr (0) = Ey ((9 - a‘c)2> =Varg () =
0 (1 — @) /n. This is plotted below.
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0.0

0.0l

8.4.2 The model is given by the collection of probability functions
(A=A I 2l A > 0}

on the set of all sequences (1, ..., ;) of nonnegative integers. The action space
is A = [0,00), the correct action function is A (A) = A, and the loss function is

L(\a)=(\—a)’.

The risk function for T'is given by Ry () = Ex((A — z)?) = Vary (Z) = A\/n.
This is plotted below for n = 25.

0& -
ne T
0t T

[ o

nn L 1

0 3 10 I ]].Ijﬂ.t't'l.bdg.:]

8.4.3 The model is given by the collection of density functions

1 1 « 5 L
-  — ‘pER
(e gyt e

on the set of all sequences (x1,...,2zy) of real numbers. The action space is
A = R!, the correct action function is A (u) = p, and the loss function is

L(sa) = (- a)?.
The risk function for 7" is given by Ry (1) = E, ((/J - f)2> =Var, (Z) = ﬁ:l
This is plotted below for n = 25 and 62 = 2 (note 2/25 = 0.08).
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JNIES

05T
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8.4.4 The model is given by the collection of probability functions
0" (1 —-0)"""": 0|0, 1]} on the set of all sequences (z1,...,z,) of 0’s and
1’s. The action space is A = {Hy, H, }, where Hy : § = 1/2, the correct action
function is ) /
[ H, —1/2
A(Q)—{ Ho 6041)2

and the loss function is

0.a0y={ © 0 =1/2,a=Hyor0+#1/2,a=H,
YTV 1 0=1/2,a=H, or 0 #1/2,a = Hy.

The test function ¢ is given by

.~ _fJoO £¢{0,, ,n}
oo ={ ) prEOL b

The risk function for ¢ is given by

Ry (0) = By (p (nz) = 1) = B ({0,1,n — 1,n})

R R A N

A plot of R, when n = 10 (the power equals 2.1484 x 1072 at § = 1/2) follows.

10

03 A
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8.4.5
(a) The risk function is given by
Rq(a) = Eq (L (a,d(s)))
— iL (a,d (1)) + iL (a,d (2)) + OL (a,d (3)) + %L (a,d (4))
1 1 1 1 1
= ZL(a,a) + ZL(a,a) + §L(a,b) = §L(a,b) =3
Rq (b) = Ep (L (b, d (s)))

- %L (b,d (1)) + 0L (b,d (2)) + iL (b,d(3)) + iL (b,d (4)
1
2

3

1 1 1 1
= 5L(b.a)+ 7L (b,a) + 7L (b,b) = 5L (b.a) + 7L (b,a) = 7.

2

(b) Consider the risk function of the decision function d* given by
d* (1) =b,d* (2) = a,d* (3) = b,d* (4) = a. The risk function is given by

Ry (a) = Eq (L (a,d” (s)))

- iL (a,d" (1)) + %L (a,d" (2)) + 0L (a, d* (3)) + %L (a, d* (4))

1 1 1 1 1
= ZL(a,b) + ZL(a,a) + §L(a,a) = ZL(a,b) =7
Ry« (b) = Ey (L (b,d" (s)))

- %L (b,d* (1)) + OL (b, d" (2)) + %L (b,d" (3))+ iL (b, d* (4))

1 1 1 1 1

s0 Ry« (a) < Rq(a), Ry« (b) < R4 (b) and d is not optimal.
8.4.6 The model is given by the collection of probability functions

n
{(JJzh "A7e X > 0}
i=1
on the set of all sequences (x1, ..., z,) of nonnegative integers. The action space

is A= {Hy, H,}, where Hy : A < A\g. The correct action function is

[ Hy A< )Xo
AR = { Hy, A>X
and the loss function is

_J o A< )Ag,a= Hgyor A>X\,a=H,
L()\,CL)—{ 1 )\S)\o,a:Haor)\>)\0,a:H0.
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The test function ¢ is given by
0 nT < [nXo + 2v/no|
o(x1,...,xn) =% 1/2 nT = Ln)\g—i—Q\/n)\oJ
1 n& > |nXo +2v/nXo] .

The power function for ¢ is given by (using nZ ~ Poisson()\))

B (A\) = Px(p(@1,...,20) =1)
= (mc = [n)\o +2\/n_)\0J) + Py (mE > [n)\o +2\/n_)\0J)

(nd) ) exp {—nA\ 3 (n)\)k
(Ln)\o -I-QWJ) P }+k_Ln>\0§\/n_>\0J+1

exp {—nA}.

(A

L,
PR
1
T2

When A\g = 1 and n = 5 then [nXg+2y/nXg| = 9, so the power function is
given by

_ 1100 > (50)"
R, (V) =3 ol exp{—5)\}+k;0 - exp{=5A}
9 9 k
_%(?3))! exp{-5A}+1- 3 (52!) exp {—BA} .
k=0

ST

8.4.7 The model is given by the collection of density functions

1 1 «— 5 L
——exXp{ ———> T — pER
{ e p{ 597 ;( In) } 7 }
on the set of all sequences (z1,...,x,) of real numbers. The action space is

A={Hy, H,}, where Hy : i = pg. The correct action function is

[ Hy A<
aw={ 3 J5p
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and the loss function is

_J 0 p=pe,a=Hyorpu#py,a=H,
L(A’a)_{ 1 p=po,a= H, or p+# po,a= Ho.

The test function ¢ is given by

w(x,... m):{o _506[“0_200/\/75#0-1-200/\/5]
T @ [wo — 200/v/n, o + 200/ /]

The power function for ¢ is given by (using Z ~ N (i, 03 /n))

B (1) = Pu (@ (@1, omn) = 1) = 1= By (% € [0 = 200/ v/, jo + 200/v/])

:1_PM<M0—M 2<w—u<uo—u+2>
n

oo/vn T oo/ oo/
(i) (e )
When 1o = 0,00 = 3,7 = 10 the power function is
Pe i) =1 <® <_3/\M/ﬁ+2) _(b(_?»/f/ﬁ_z))'

This is plotted below (power equals 0.0455 at p = 0).

10 —
09 —|
08 —
07 —
06 —
05 —
04 —
03 —
02 —
01 —
00 — .

beta

Problems

8.4.8 Suppose we have that 0 (s, -) is degenerate at d(s) for each s. Then clearly
d:S— A
Now suppose we have d : S — A and define

! d(s) e B
0(s,B) = { 0 otherwise

for B C A. Then ¢ (s,.A) = 1 and, if By, Bs,... are mutually disjoint subsets
of A, then d(s) € B; for one i (and only one) if and only if d(s) € U2, B;, so
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1) (S,U;?';lBj) = Z;il d (s, Bj) . Therefore, ¢ (s,-) is a probability measure for
each s and ¢ is a decision function.

Now, using the fact that ¢ (s,-) is a discrete probability measure degenerate
at d(s), we have that Rs (0) = Ey (Es(s,) (L (6,a))) =
Eo(d(s,{d(s)})(L(0,d(s))) = Ep(L(0,d(s))) since ¢ (s,{d(s)}) = 1.

8.4.9

(a) Consider the decision function dg, (s) = A(fp). Then note that R, (fo) = 0.
Then, if § is optimal, we must have that Rs(6y) < Ry, (6g) for every 6,
so Rs(¢) = 0. But this implies that Fj(.) (L (6,a)) = 0 at every s, where
Py ({s}) > 0. Since L (6,a) > 0, then Challenge 3.3.29 implies that
0(s,{L(#,a) =0}) = 1 and, since L(A,a) = 0 if and only if a = A(0), this
implies that 6 (s,-) is degenerate at A (f) for each s for which Py ({s}) > 0.

(b) Part (a) proved that, for an optimal 4, 6 (s, -) is degenerate at A () for each
s for which Py ({s}) > 0. But if there exists s such that Py, ({s}) > 0 and
Py, ({s}) >0 and A(0;) # A(02), then this cannot happen and so no optimal
0 can exist.

8.4.10 Suppose § is not minimax. Then there exists decision function §* such
that supy Rs+ (0) < supy Rs (0) . But since Rs () is constant in 6 this implies
that Rs« (6) < Rs (0) for every 0 and so ¢ is not admissible, contradicting the
hypothesis. Therefore, § must be minimax.

Challenges

8.4.11 We have that Rq(6p) = Eg, (L (fo,d(s))) = 0. Now suppose that d is
not admissible. Then there exists decision function ¢ such that Rs (6) < R4 (6)
for every 6 and Rs (0) < Rg (0) for some 6. But this implies that 0 = Rs (6y) =
Ey, (Es(s,y (L (80,a))) = 0 and then Challenge 3.3.29 implies that the set C' =
{s: Es(s,.) (L(00,a)) > 0} satisfies Py, (C) = 0. But by hypothesis this implies
that Py (C') = 0 for every 0. This in turn implies that Rs(d) = 0 for every
f. This says ¢ is optimal and contradicts the hypothesis that no such decision
function exists.

In most practical problems, there does not exist an optimal decision function.
So this result says that, in the typical decision problem, constants are admissible,
i.e., decision functions that completely ignore the data are admissible. So the
property of admissibility for a decision function is not a very strong one.



Chapter 9

Model Checking

9.1 Checking the Sampling Model

Exercises

9.1.1 The observed discrepancy statistic is given by D (r) = % Sy (@i — £)2
0

= 194.79187 = 22.761. Now D(R) ~ x? (19) distribution, so the P-value is then

given by P (D(R) > 22.761) = .248, which does not suggest evidence against

the model.

9.1.2 (a) The plot of the standardized residuals is given below.

Standardize Residuals

(b) The normal probability plot of the standardized residuals is given below.

Normal scores

T T T
Bt 0 1
Standardize Residuals
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(¢) The preceding plots suggest that the sample is probably not from a normal
distribution.

9.1.3 (@) The plot of the standardized residuals is given below.

Standardized Residuals

(b) The normal probability plot of the standardized residuals is given below.

Normal scores

T T T
1 0 1
Standardized Residuals

(¢) The preceding plots suggest that the normal assumption seems reasonable.

9.1.4 We have f; = 5 conservative, f;. = 3 males, and f;; = 2 conserva-
tive males. The Hypergeometric(10, 5, 3) probability function is given by the
following table.

i 0 1 2 3
p(i) | 0.083 0417 0417 0.083

The P-value is then equal to 1. Hence, we have no evidence against the model
of independence between gender and political orientation.

9.1.5 By grouping the data into five equal intervals each having length 0.2, the
expected counts for each interval are np; = 4, and the observed counts are given
in the following table.

Interval | Count
(0.0,0.2] 4
(0.2,0.4] 7
(0.4,0.6] 3
(0.6,0.8] 4
(0.8,1] 2
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The Chi-squared statistic is equal to 3.50 and the P-value is given by (X2 ~
x*(4)) P (X? > 3.5) = 0.4779 Therefore, we have no evidence against the Uni-
form model being correct.

9.1.6 First note that if the die is fair, the expected number of counts for each
possible outcome is 166.667. The Chi-squared statistic is equal to 9.5720 and
the P-value is given by (X2 ~ x? (5)) P (X? > 9.5720) = .08831. Therefore, we
have some evidence that the die might not be fair. The standardized residuals
are given in the following table.

1 1 2 3 4 b} 6
;| —0.069541 0.214944 —0.467818 —0.316093 0.309772 0.328737

None of these look unusual.

9.1.7

(a) The probability of the event s = 3 is 0 based on the probability measure P
having S as its support. Also the event s = 3 is surely surprising. Hence, the
most appropriate P-value is 0.

(b) Since P is Geometric(0.1), the probability P(s = k) = 6(1 — 6)* for
k =0,1,... where § = 0.1. Since P(s = k) is decreasing as k increases, the
probability of the set of & such that s = k is at least surprising as much as
(s=3)is P(s>3)=3>7,0(1-0)"=(1—6)*> =0.9° =0.729. Hence, 0.729 is
an appropriate P-value for checking whether (s = 3) comes from Geometric(0.1)
or not.

9.1.8 We measure the probability of the set having the same or less degree of
surprise than s = 3. The values k having P(s = k) < P(s = 3) are at least as
surprising as s = 3 and this set is given by {s : s < 3 or s > 7}. Therefore a
P-value representing the surprise of (s = 3) is

P({s:s<3o0ors>7})=1-2P(s=4)— P(s=5)
=1-1420(1/2)* —252(1/2)'° = 11/32 = 0.34375.

Hence, it is not that surprising.

9.1.9 A discrepancy statistic looks for a particular kind of deviation from model
correctness. Hence, the model might be incorrect even though no evidence
against the model is found using a particular discrepancy statistic. Also there
might not be enough data to detect a deviation from model correctness even
when one exists.

9.1.10 The probability of the scores that is at least as surprising as —4 is
considered. The set of scores at least as surprising as —4 is {|s| > 4}. Hence,
the P-value is P({|s| > 4}) = ®(—4) + 1 — ®(4) = 2®(—4) = 0.00006334. Thus,
the value —4 is very surprising and this is strong evidence that the statement is
incorrect.
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9.1.11

(a) Under the assumption that the coin is unbiased and it is tossed indepen-
dently, the probability of observing (x1,...,x,) is 67%(1 — 0)*1=%), The distri-
bution of nZ is Binomial(n, ). Therefore, the conditional probability function
of (z1,...,2y) is O"%(1 — O)"1=2) /(" )o"#(1 — 0)"(1=%) = 1/(). This is the
probability function of a uniform distribution on the set of all sequences of zeros
and ones of length n containing nZ ones.

(b) The probability distribution of & = the number of ones in the first [n/2] ob-
servations, given that there are nZ ones overall, is a Hypergeometric(n, |n/2], nZo)
distribution. (Think of taking a sample of size nZy without replacement from a
population of n sequence positions and counting the number of sequence posi-
tions in the sample less than or equal to [n/2].)

(c) Let y be the number of 1’s in the first |n/2] observations. The probability
Py =klnz = 6) is (})(s°,)/ (%) for k= 1,...,5. Hence, P(y = 1|nZ = 6) =
P(y = 5|nz = 6) = 1/42, P(y = 2|nT = 6) = P(y = 4|nZ = 6) = 10/42 and
P(y = 3|nZ = 6) = 20/42. Thus, the P-value is P(y € {1,5}|nZ =6) =1/21 =
0.0476. Therefore, the observation (1,1,1,1,1,0,0,0,0,1) is surprising at level
5%.

Computer Exercises

9.1.12 The plot is given below.

Normal scores
%0

Standardized residuals

From this we have no evidence against the normality assumption.

9.1.13 Not all the graphs look like straight lines. With a small sample size like
n = 10, we should expect a fairly wide variety of shapes.

9.1.14 We have X.; = 56 conservative, X;. = 35 males and X;; = 20 con-
servative males. Using the Hypergeometric(100, 56, 35) probability function to
calculate the probability of observing a value with probability less than or equal
to P (X711 =20||X3.,X.1) = 0.164941, we obtain that the P-value is 1. There-
fore, we have no evidence against the model of independence between gender
and political orientation.

9.1.15 The Binomial(10, 0.2) distribution gives rise to the following cell proba-
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bilities and cell expected numbers.

P(X =z) expected numbers

0.107374
0.268435
0.301990
0.201327
0.088080
0.026424
0.005505
0.000786
0.000074
0.000004
0.000000

50000 Ut W= OR

1.07347
2.68435
3.01990
2.01327
0.88080
0.26424
0.05505
0.00786
0.00074
0.00004
0.00000

255

So we grouped from the elements having the smallest probability, i.e, x = 10,
until the expected number of the group is greater than or equal to 1. It turns
out the last 7 cells are grouped , say G, to ensure E(Ilg, (X)) = nP(G5) > 1.
Let G; = {i—1} for i = 1,...,4. Then, the expected numbers of all groups are
at least 1. The next table summarizes this result.

i| G; P(X =2x) expected numbers
1140 0.107374 1.07347
2 | {1} 0.268435 2.68435
3| {2} 0.301990 3.01990
4 {3} 0.201327 2.01327
5| {4,5,6,7,8,9,10)  0.120874 1.20874

The Chi-squared statistic obtained from the simulated sample of 1000 was equal
to 2.09987 with P-value 0.71740. Hence, there is no evidence that the sample is
not from this distribution. If a P-value close to 0 is obtained, we would conclude
the data may not come from Binomial(10,0.20) distribution. However, it didn’t
happen in the simulation study. The Minitab code for the simulation is given

below.

%solution 1000

# the corresponding macro file "solution.mac"

macro
solution M

# solution 9.1.15

mcolumn cl1 c2 c3 c4 c5 c6
mconstant M k1 k2

# M is the length of sample
set cl

0:10

end

pdf cl c2;
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binomial 10 0.2.
let ¢c3=10*c2
print cl c2 c3
copy c2 c3;

include;

rows 5:11.
let c2(5) = sum(c3)
delete 6:11 c2
let c3=10*c2
print c2 c3
let c3 = M*c2
random M c5;

binomial 10 0.2.
copy c5 c6;

include;

where "c5 = 0".
let c4(1) = count(cb6)
copy c5 c6;

include;

where "c5 = 1".
let c4(2) = count(c6)
copy c5 c6;

include;

where "c5 = 2".
let c4(3) = count(c6)
copy c5 c6;

include;

where "c5 = 3".
let c4(4) = count(cb6)
copy c5 c6;

include;

where "c5 >= 4".
let c4(5) = count(cb6)
let kl=sum((c4-c3)**2/c3)
cdf k1 k2;

chisquare 4.
let k2=1-k2
name k1 "Chi-square" k2 "P-value"
print k1 k2
endmacro

9.1.16 A contiguous grouping is applied as long as the grouped probability is
bigger than 0.13. So we get a grouping, 0 — 3, 4, 5, 6 — 7, 8 — co. The group
probabilities, expected cell counts and the observed cell counts in a simulation
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are summarized in the next table.

group start x end x probability expected counts observed counts

G4 0 3 0.2650 265.0 255
Go 4 4 0.1755 175.5 186
Gs 5 ) 0.1755 175.5 168
Gy 6 7 0.2507 250.7 238
Gs 8 00 0.1334 133.4 153

The chi-squared statistic obtained from the above table is equal to 4.8582 with
P-value 0.3022. Hence, there is no evidence that the sample is not from this
distribution. If a P-value close to 0 is obtained, we would conclude that the
data may not come from Poisson(5) distribution. However, it did not happen
in the simulation study. The Minitab code for the simulation is given below.

%solution 1000
# the corresponding macro "'solution.mac"
macro
solution M
# solution 9.1.16
mcolumn c1 ¢c2 ¢3 c4 c5
mconstant M k1 k2
# M is the length of sample
set cl

3:57
end
cdf cl c2;

poisson 5.
let cl=c2
let c1(5)=1-c2(4)
do k1=2:4

let cl(kl) = c2(kl)-c2(kl-1)
enddo
let c2=M*cl
let c3=0*cl
random M c4;

poisson 5.
copy c4 c5;

include;

where "'c4 <= 3".
let c3(1) = count(c5)
copy c4 c5;

include;

where "'c4 = 4".
let c3(2) = count(ch5)
copy c4 c5;
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include;

where "'c4 = 5".
let c3(3) = count(ch5)
copy c4 c5;

include;

where "'c4 >= 8".
let c3(5) = count(ch5)
let c3(4) = M-sum(c3)
let kl=sum((c3-c2)**2/c2)
cdf k1 k2;

chisquare 4.
let k2=1-k2
print cl c2 c3
name k1 "Chi-square™ k2 "P-value"
print k1 k2
endmacro\textbf{\medskip}

9.1.17 We separate R' into 5 cells having the same N(0,1) probability. Sim-
ply, R! is separated using the first four quintile points, i.e., the five cells are
(—00, 20.2], (20.2,20.4], (20.4, 2056, (20.6,20.8], and (z0.8,00). The group proba-
bilities, expected cell counts and the observed cell counts in a simulation are
summarized in the next table.

group group range prob. expected counts observed counts
G, (—o0, —0.8416] 0.2 200 202
Gs (—0.8416,—0.2533] 0.2 200 214
Gs (—0.2533,0.2533] 0.2 200 200
Gy (0.2533,0.8416] 0.2 200 203
G5 (0.8416, ) 0.2 200 181

The chi-squared statistic obtained from the above table is equal to 2.8500 with
P-value 0.5832. Hence, there is no evidence that the sample is not from this
distribution. The Minitab code for the simulation is given below.

%solution 1000
# the corresponding macro "‘solution.mac"
macro
solution M
mcolumn ¢l c2 c3 c4 c5 c6 c7
mconstant M k1 k2 k3
# M is the length of sample
set c2
1:4
end
let c2=c2/5
invcdf c2 cl;
normal 0 1.
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cdf cl c2;
normal 0 1.
let c2(5)=1-c2(4)
do k1=4:2
let c2(kl) = c2(kl)-c2(kl-1)
enddo
let c3=M*c2
let c4=0*c2
random M c5;
normal O 1.
let c6=c5
let k2=minimum(c6)
if k2 > minimum(cl)
let k2=minimum(cl)
endif
let k3=maximum(c6)
if k3 < maximum(cl)
let k3=maximum(cl)

endif
let k3=k3-2*k2+3
do ki1=4:1

let c7=ceiling((c6+k3)/(cl(kl)+k3)-1)
let c4(kl+1l) = sum(c7)
let c6=c6*(1-c7)+(k2-1)*c7
enddo
let c4(1) = sum(ceiling((c6+k3)/(k2-.5+k3)-1))
let kl=sum((c4-c3)**2/c3)
cdf k1 k2;
chisquare 4.
let k2=1-k2
print cl c2 c3 c4
name k1 "Chi-square”™ k2 "P-value"
print k1 k2
endmacro

Problems

9.1.18 We have E (a1Y1 + -+ arYr) = a1p1 + - - - + agpg, so E(Y;) = w;
by taking a;, = 1 and a; = 0 whenever j # i. By Theorem 3.3.3 (b) we have
Var(a1Y1 + - - - + a;Yy) = a? Var(Y1)+--+a3 Var(Yy)+2 >y @iaj Cov(Y, Y;) =
Zle 25:1 a;a;o;;. Putting a; = 1 and a; = 0 whenever ¢ # j, we obtain
Var(Y;) = 0; and this implies that ¥; ~ N (u;, 04;) .

Putting a; = a; = 1 and a; = 0 whenever [ ¢ {3, j}, we obtain Var(Y; +Y;) =
0ii + 0jj + 2045 = Var(Y;) +Var(Y;) + 2 Cov(Y;, Y;) . This immediately implies
that COV(Y;', Y;) = 0ij-
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9.1.19 Using Theorem 4.6.1, we have that

~N<Z(ai—a)u,a(2]2(ai—a)2> —N(O,U(Q]Z(ai—a)2>.

i=1 i=1
Therefore, by Problem 9.1.18, R is multivariate normal with mean vector given
by (0,...,0) and variance matrix given by 3 = (Cov (R;, R;)) and

Sk Z?Zl a;a; Cov(R;, Rj) = 02 32", (a; —a)® . Putting a; = 1 and a; = 0
whenever i # j, we have that Var(R;) = o3 {(1 —1/n)*>+ (n— 1)/n2} =
03 (1—1/n). Putting a; = a; = 1 and a¢; = 0 whenever [ ¢ {i,j}, we ob-
tain Var(R;)+Var(R;) +2Cov(R;, R;) = 02 0, (a; — @) = 202 (1 — 2/n)” +
og(n —2)4/n* = 0§ (2—8/n+8/n*+4/n —8/n?) = 0§(2 — 4/n). Therefore,
Cov(R;, Rj) = 03(1 —2/n—1+1/n) = —0§/n.

9.1.20 We have that (arguing as in the solution to Problem 9.1.18)

(5350 o (§ 2 S

i=1 i=1
:iil(  —a) Cov (X;, X;) li i —a) Cov (X, X;)
1= 7 [yt 7

Theorem 4.6.2 gives the result.
9.1.21 The likelihood function is given by

L(ay,pr)=af" (L—a)"" " Bt (1= B)" "

The log-likelihood function is then i (aq, 51) = z1. In (1) +(n — z1.) In (1 — 1)+
zaln(f1)+ (n—x1)In(1 - Fy1). If we fix By, then the partial derivative with

respect to a; is
xI1. n—=Ii.

(0%] 1—041

with second derivative
xI1. n—=xy.

o (-

Solving
xI. n—=Iy.

a7 1-— (&3]
leads to & = x1./n. That this is a maximum is seen from the second derivative
as it is negative at this point. Since it does not involve 31, this is the MLE of
a. A similar argument leads to the value §; = .1 /n as the MLE of ;.
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9.1.22 Consider the set of all sequences of ordered pairs ((a1,b1), ..., (an,by))
where z1. of the a; equal 1 (with the rest equal to 2), and z.; of the b; equal
1 (with the rest equal to 2). We are required to count the number of such
sequences.

We can select z1. of these pairs to have a; = 1 in (;I) ways. Let us suppose
that we have made these choices.

Now let ¢ denote the number of pairs where a; = 1 and b; = 1. Clearly
max {0,z1. + 21 —n} < i < min{zy.,2.1}. We can pick i of the pairs where
a; = 1 so that b; = 1 in (*}') ways and then choose the remaining pairs that

"_'Tj:) ways. The multiplication principle then

Xr.1—1

implies that there are (" )(“}) (%~ ") such sequences. Therefore, the number
1- 3 T.1—1

of samples satisfying the constrains (9.1.2) is equal to

min{zi.,x.1}
n Z xI1. n—=Iy.
() () )

i=max{0,x1.+x.1—n}

will have a; =2 and b; = 1 in (

Using the fact that the probability function of Hypergeometric(n, f1., f1) is
given by
ERIEN)

()

for max{0,z1. + .1 —n} < i < min{x;., 2.1}, we get that the number of such
samples is equal to

n n min{z;.,z.1} ’I‘Zl 7;—17;11 n n
)0) s EEE(())

i=max{0,x1.+x.1—n}

P(Xy =i) =

as claimed.
Computer Problems

9.1.23 A density histogram of a sample of 10* from the distribution of D (R) =

1

10 R? . L
=D i—11n (ﬁ) , when the model is correct, is given below.

09 —f
08 —
0.7 —
06 —f
05 —f

04 —f

density

03 —
02 —
01 —

00 —f
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Using the data of Exercise 9.1.3 we obtained the value D (r) = — Y In(r?/(n—

n

1)) = 2.60896, and the proportion of sample values of D in the simulation that
were greater is 0.9864. This can be viewed as evidence that the normal location-
scale model is not correct as the observed value of D is surprisingly small.

The following code was used for this simulation.
gmacro
goodnessoffit
base 34256734

note - generated sample is stored in cl
note - residuals are placed in c2
note - value of D(r) are placed in c3

note - k1 = size of data set
let k1=10

do k2=1:10000

random k1 cl

let k3=mean(cl)

let k4=sqrt(kl-1)*stdev(cl)
let c2=((c1-k3)/kd)**2

let c2=loge(c2)

let k5=-sum(c2)/k1

let c3(k2)=k5

enddo

endmacro

9.1.24 We get the following histogram (using the code below) when we are
sampling from a normal distribution.

We get the following histogram (using the code below) when we are sampling
from a Cauchy distribution.
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density

We see that the distribution of D is quite different under a normal model than
under a Cauchy model. The distribution when sampling under Cauchy sampling
has a longer right tail and a sharp peak at its mode. Note that a larger sample
size than 10* is required to get a smoother histogram.

gmacro

goodnessoffit

base 34256734

note - generated sample is stored in cl

note - residuals are placed in c2

note - value of D(r) are placed in c3

note - k1 = size of data set

let k1=10

do k2=1:10000

random k1 cl

let k3=mean(cl)

let k4=sgrt(kl-1)*stdev(cl)

let c2=((c1-k3)/kd)**2

let c2=loge(c2)

let k5=-sum(c2)/k1

let c3(k2)=k5

random k1 c1;

student 1.

let k3=mean(cl)

let k4=sgrt(kl-1)*stdev(cl)

let c2=((c1-k3)/kd)**2

let c2=loge(c2)

let k5=-sum(c2)/kl

let c4(k2)=k5

enddo

endmacro

9.1.25 The interval counts are 10,3,1,2,1,3. The likelihood function is then
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given by
LO|f1, . fo) = (1 _ 6729)10 (6720 _ 6749)3 (6749 _ 6760) (6769 _ 6780)2
% (e—se o 6—109) (6—109)3’
so the log-likelihood is given by
10In(1—e ) +3In(e? —e ) +In (e —e %) +2In (e — =)
+In (6780 — 67100) — 300.
This is plotted below.

X
oo o0l o2 03 04 05
Elr' _jl:l T T —
-100

-130

-10m

By successively plotting the log-likelihood over smaller and smaller intervals,
the MLE was determined to be 6 = .22448. Accordingly, we get the following
expected counts 20(1 — e™2%) = 7.2342,20(e™2? — e7%%) = 4.6175,20(e 4% —
e=60) = 2.9473,20(e %9 — e=80) = 1.8812,20(e =80 — ¢=109) = 12008, 20100 =
2.1190, and the chi-squared statistic equals

(7.2342 — 10)* N (46175 —3)>  (2.9473—1)°  (1.8812 — 2)°

2
X0= "7 3m 4.6175 20473 | 18812
(1.2008 —1)*  (2.1190 — 3)*
1.2008 2.1190
— 3.3180

The P-value equals (X2 ~ x?(1)) P(X? > 3.3180) = 1—.4939 = 0.5061. Hence,
we do not have evidence against the model.

9.1.26
(a) We have that ‘
PA(* oo, 600]) = @ (6103%%11)#7 600—u
oo ooy o (Bt B
’ 500 500 /°
P((1800,00)) = 1 — @ (£25-4),
so the log likelihood is given by

600 — 1 1200 — p 600 — p
9ln<I>< =00 >+201n<<1>< 200 > <I>< =00 ))-l—
o (@ 1800 — p 3 1200 — p com(1—-a 1800 — p .
500 500 500
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This is plotted below.

oo 1000 1500 EI]I]I]

TN\

Plotting the log-likelihood over successively smaller intervals, we obtain the
MLE as ji = 914.3. This leads to the expected counts

38 NormalDist (%L) — 10.063,

500
38 (NormalDist (22052 ) — NormalDist (252 ) ) = 17.151,

38 (NormalDist (%) — NormalDist (1200_’2>> = 9.333,

500
38 (1 — NormalDist (12252) ) = 1.453,

and the Chi-squared statistic is given by

(10.063 — 9)>  (17.151 —20)*>  (9.333—7)>  (1.453 —2)*

= 1.375.
10.063 + 17.151 + 9.333 + 1.453 375

X5 =

The P-value in this case is given by (X2 ~ x?(2)) P(X? > 1.375) = 1—.4972 =

0.5028, so we have no evidence against the model.

(b) The overall MLE of p, namely without grouping, i = 900, so there

is a difference.

(c) We have that
P((~o0,600]) = @ (0t
P((600,1200]) = & (1222=£) — @ (20—4)
P(1200, 1500)) — @ (0 _ g (100
P((1800,00)) = 1 — @ (=2 |

so the log likelihood is given by

9In @ <600_’”‘) +20In <<I> <—1200_“) —® (—600_“))
g g g
+7In <c1> <LOO_“) — (LOO_“» +2In <1 — <LOO_’“‘)> .
ag g ag

9.1.27 The symmetry of a N(0,1) distribution implies that —r and r have the
same distribution. Since Dyew (—7) = n1/2(n—1)73/23"" | (=1;)3 = —Dyew (1),
both Dgew (—7) and Dggeyw () have the same distribution. Thus, Dggey is sym-
metric. The density histogram of Dgyew and Diyrtosis, when n = 10, is drawn
below based on m = 10* samples.

)
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0.8

0.7 4

0.6 4

0.5

0.4 4
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0.3

0.2 4

0.14

0.0

-18 -1.2 -0.6 oo a6 12 1.8
skewness

0.6

0.5

0.4 4

Density

0.3 4

0.24

0.14

0.0

16 24 3.2 4.0 4.8 5.6 6.4
kurtosis

In the graphs, both statistics are unimodal. Since the skewness is symmetric,
the P-value for assessing the normality is

P(| Dsxew (7)| > | Dskew (70)])-

The density histogram for kurtosis is not symmetric but skewed to the right. To
measure the surprise of a value g, we compute a P-value, i.e., the probability
of the set of more surprising values to rg. If the observed discrepancy dy =
Diurtosis (7o) is around the peak, there will be no evidence against the sample
coming from a normal distribution. If dj is placed on the right side of the peak,
we must find a left side boundary [, of the peak giving the same density to
dp. Then, compute p = P(D < I, or D > dy) based on the simulation. It is
the P-value for checking normality using the kurtosis statistic. If dy is placed
on the left side of the peak, then find a right side boundary r, and compute
p=P(D <dyor D>m).

The same graphs are provided below when n = 20.
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18 -1z 06 0o 0 12 13 24
skewness

12 24 26 4.8 6.0 7.2 2.4 9.6
kurtosis

The graphs look similar, with the n = 20 case perhaps a bit more regular.
The Minitab code for this simulation is given below.

%solution 10 10000
%solution 20 10000
# the corresponding macro “solution.mac™
macro
solution N M
# solution 9.1.27
mcolumn c1 c2 c3 c4
mconstant N M k1 k2 k3 k4
# N is the sample size
# M is the number of repetition
set cl
1:M
end
let cl=c1*0
let c2=cl
let k3=N**0.5 * (N-1)**(-1.5)
let k4=N * (N-1)**(-2)
do kl1=1:M
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random N c3;
normal 0 1.
let c4 = (c3-mean(c3))/stdev(c3)
let c1(kl) = k3*sum(c4**3)
let c2(kl) = k4*sum(c4**4)
enddo
name cl "skewness" c2 "kurtosis"
histogram cl;
density;
bar;
color 23;
nodtitle;
graph;
color 23.
histogram c2;
density;
bar;
color 23;
nodtitle;
graph;
color 23.
endmacro

Challenges

9.1.28 We have that X; = u+ 0Z; where Z1,...,Z, is a sample from f. Now
observe that Z = p+ 0z and 0, (2 —2)° = Y1, (w402 — p+02)° =
023", (2 — 2)°. Therefore,

ry—x Tp — T
T(ml,...,mn):< ! e, >

S S

21—z

W SRS \/z:f; (-2°)

and so is a function of the z;. This implies that the distribution of R is inde-
pendent of (u, o) and so is ancillary.

9.2 Checking the Bayesian Model

Exercises

9.2.1
(a) The probability of obtaining s = 2 from f; is 1/3, which is a reasonable
value, so we have no evidence against the model {f1, f2}.
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(b) The prior predictive M distribution is given by

(1)fil+llfl
m 103 7103 3
3 7 1
m2) =153+ 10" 100
3 72 17
m(3) = o2 + 2

103 7103 30

So the probability of a data set occurring with probability as small as or smaller
than m(2) is 1/10, so the observation 2 is not very surprising. Accordingly,
there is no evidence of a prior-data conflict.

(¢) The prior predictive M now is given by

11 991

1

1 = —— — —
m) =103t 1003 ~ 3
11 99, 1

2 = —— — = —
m(2) = 1003 * 100° = 300°
o L1, 992 19
m = = _— = —
1003 1003 _ 300

So the probability of a data set occurring with probability as small as or smaller
than m(2) is 1/300, and the observation 2 is surprising. Accordingly, there is
some evidence of a prior-data conflict.

9.2.2 The prior predictive probability function for the minimal sufficient statis-
ticy =nz =Y ., ; is given by

(7)) T Ty+3)LO-y)
L(12) @) T+ 1) (7—y)

m(y) =

A tabulation and a plot of this is given below.
y m(y)
0 0.060606
1 0.136364
2 0.194805
3 0.216450
4 0.194805
5 0.136364
6 0.060606
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0.20 -

015 —

Prior predictive

010

0.05 -

Using the symmetry of the prior predictive, the probability of obtaining a value
with probability of occurrence no greater than y = nz = 2 is equal to m (0) +
m (1) +m(2)+m(4)+m (5)+m (6) = 2 (0.060606)+2(0.194805)+2 (0.136364) =
0.78355. Therefore, the observation y = nZ = 2 is not surprising and we conclude
that there is not any prior-data conflict.

9.2.3 The distribution of Z given the parameter y is Z|pu ~ N(u,03/n). Hence,
we can write T = pu + z where z ~ N(0,02/n) is independent of p. Since
p ~ N(puo,7¢) in the prior specification, the prior predictive distribution of Z is
N(po,75) + N(0,08/n) ~ N(po, 75 4 04 /n) by Theorem 4.6.1.

9.2.4 The prior predictive distribution is Mz ~ N(0,1 + 2/5) ~ N(0,1.4) as
is in Example 9.2.3. We compute the prior probability of the event mz(s) <
mz(7.3) = (|s| > 7.3) to assess whether or not observing z = 7.3 is surprising.
Hence we get

p=P(|s| >73)=P(s>73)+ P(s < -7.3)
=1—®(7.3/V1.4) + ®(—7.3/v/1.4) = 6.845 x 1071°,

It is very surprising. Hence, we find a strong evidence that there is a prior-data
conflict.

9.2.5 The maximum possible value of = from x ~ Uniform[0,6] is = . And
the maximum possible value of 8 from the prior is 1. Hence, the gross maximum
possible value of = is 1. However, x = 2.2 is observed. It is very surprising.
Hence, an appropriate P-value for checking for prior-data conflict must be 0.
We will show the same result mathematically. The prior predictive distribution
is m(z) = [y folx)dd = [ Tog(x)/0d0 = [, 1/6d = mO|)=} = —Inz for
x € [0,1] and 0 for ¢ [0, 1]. Since m(2.2) = —1Ijp,11(2.2) In2.2 = 0, the P-value
for checking prior-data conflict is

p=M(m(z) <m(2.2)) = M(m(z) <0)=0.

Hence, there is definitely a prior-data conflict.
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Computer Exercises

9.2.6 The prior predictive probability function for the minimal sufficient statis-
tics y =nz =Y. | x; is given by

r@1 T'©) I'+3)r23—y)

r'26) (T @3)*Ty+1)T(2l—y)

m(y) =

A tabulation and plot of this is given below.

y m(y)
0 0.0043478
1 0.0118577
2 0.0214568
3 0.0321852
4 0.0431959
5 0.0537549
6 0.0632411
7 0.0711462
8 0.0770751
9 0.0807453
10 0.0819876
11 0.0807453
12 0.0770751
13 0.0711462
14 0.0632411
15 0.0537549
16 0.0431959
17 0.0321852
18 0.0214568
19 0.0118577
20 0.0043478

0.08 —| ° e

007 — . .
0.06 —
0.05 —
0.04 —
0.03 —

Prior Predictive
.
.

0.02 — .

0.01 —

.
0.00 —

Using the symmetry of the prior predictive, the probability of obtaining a value
probability of occurrence no greater than y = nZ = 6 equals 2m (0) + 2m (1) +
2m (2)+2m (3)+2m (4)+2m (5)+2m(6) = 0.460079. Therefore, the observation
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y = nZ = 6 is not surprising and we conclude that there is not any prior-data
conflict.

Problems

9.2.7 First, by Corollary 4.6.1 we have X ~ N(u,02/n). Then we can write
X as X = u+ Z/\/n, where Z ~ N(0,03) is independent of p ~ N(ug, 73)-
Hence, by Theorem 4.6.1 we have that the prior predictive distribution of X is
the N(uo, 73 + 02/n) distribution.

9.2.8 We have that Y = nX ~ Gamma(n,6), so the prior predictive distribu-
tion of Yis given by

B o gn - 5309&0—16—,809
m(y)—/o T exp (—y0) T (a0) do

= Wi‘(n)ynfl/o 9n+a071 exp (_ (6() +y) 9) do
_ 0" I (a0 + 1) ”—1M(l>n_l (1+i)_(ao+n)i
" T(a)T(n) (Bo +y)" e YooT (o) T (n) \ Bo Bo 3o’

Making the transformation Z = y/n, we see that the prior predictive density of
X is given by

r -\ n—1 _\ —(ao+n)
m@):M(@) <1+@) n
I'(ao)I'(n) \ Bo Bo Bo
and from this we deduce that the prior predictive of agX /By is F (n, ap) -

9.2.9 We know that (x1,...,25) ~ Multinomial(n, 0y, ...,0;). Therefore, the
prior predictive distribution of (x1,...,xx) is given by

n T(og+ - +ap) [* 10l o
“es = e aal ‘Tl .
m (1, ..., Tk) (xl xk> I'(ow) T (o) /() /0 1

X(L=0) — = O )™ dhy - dOy
:< n )F(a1+---+ak)F(a1+ﬂc1)---F(ak+mk)
(o) - Tlaw) Tlort--+axt+n)

1 ... Tk

9.2.10 When Xj,..., X, is a sample from the Uniform[0, #] distribution then
X(n) has density given by n (a:(n))n_l /0" for 0 < x(,,y < 0. Therefore, the prior
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predictive density of X, is given by

o n— 0113 o) (0
me) = [ g @) M) (9)(<>z+§ﬁ)‘)‘(—1)d9

n (o) " %
:m /0 0™ i {y 8}00) (6) 40

n—1 0o
_ M/ 9= gp

(Oé - 1) Ba—l max{l‘(n)ﬁ}

n—1
_ n ()

(a+n—1)(a—1)B2"1 (max {2, B})

oa— n+1

9.2.11 Suppose i, is the true value of p. The P-value for checking for prior-data
conflict in Example 9.2.3 is given by

M(IX = po| 2 |7 — pol) = 2(1 = @(|Z — pol/ (75 + /) '/?)).
Since  — j1, and 03 /n — 0 as n — oo, the limit P-value is
Jim M(X ~ ol > |6 = pol) = 2 =2 lim (1 — pol /(53 + o /m)1/%)
=2 —2%(|px — pol/70)-
So we see that, in the limit, we have prior-data conflict when the true value of

the parameter lies in the tails of the prior.

9.2.12

(a) The prior predictive distribution is m(z fo (1—0)*df = Beta(2,z2+1) =
1/[(z + 1)(x + 2)]. Since m(z) is strictly decreasmg, the set of values at least
as surprising as xq is {x > z¢}. Thus, the appropriate P-value for checking for
prior-data conflict is

> 1 = 1 1 1
M > = -— e ( —_ ): .
(x> o) Fzm(x+1)(x+2) I:ZI s+l z+2) @+l

(b) Since the P-value in (a) is decreasing as x( increases, the bigger value zg
causes the stronger prior-data conflict.

(c) Note that the Geometric(0) does not make sense as it implies that we will
never observe any data. So putting a prior on 6 which is positive at 0 does
not make sense as this implies that # = 0 is a possibility. Note we cannot
eliminate this possibility by simply defining the prior density to be 0 at 0 because
limg_o7(0) = 1 so every small interval about # = 0 has non-negligible prior
probability. We conclude that the UJ0,1] prior does not make sense in this
example.

Challenges

9.2.13 The prior predictive distribution is given by the joint density of
(X, 5%, 1,1/0?) divided by the posterior density of (y,1/0?) . The joint density
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(X 52, 1,1/0?), using the fact X ~ N(u,0?/n) independent of (n — 1) $? /g% ~
X% (n — 1), is given by

n—1

nl/2 n ) 1 (nfl)"T_l (32) 7 1
- —— (7 — I'((n—1)/2) \ 202
([T e (- o u))}{ AU .

(e (e Nt (7)o (-2))

Then using the same algebraic manipulations as carried out in Section 7.5, we
have that this joint density equals

nt/2 (n — 1)%1 (32)%171 1 Bge 1\ 2T (a0 +1n/2)
o YR S bt {(”* =) e }
1 1\ /2 1/2
=) @) ( ( 7))
aotn/2 1\ cotn/2-1
where g, = (n+ 1/78) " (uo/ 1o + nx) and
noo, Mg -1 2 L LY (ko ?
szﬂo—i—ax +22+ 5 —§<n+7_—g> <7_0+mc) .

Since we know that the posterior distribution of (u,o?) is given by u|o?,x ~
N(pe, (n+1/73)"'0?) and 1/0? |z ~ Gamma(ag + n/2, 3;), this implies that
the prior predictive density of (X, S?) is given by

n'/2 (n— 1)%1 (52)%71 1 5 N 2T (ap +1n/2)
\/% I‘((n—l)/?) {T()F(Oéo)} ( +T§) ;«Hrn/? .




Chapter 10

Relationships Among
Variables

10.1 Related Variables

Exercises

10.1.1 From the definitions we know that if the conditional distribution of
Y given X does not change as we change X, then X and Y are unrelated
and then for any x1,xs, (that occur with positive probability) and y we have
P(Y=y|X=x1)=P(Y =y|X =x9). Hence,

P(X=x1,Y=y) PX=ux,Y=y)

P(X=z) —  PX=u)

so P(X=x,,Y=y)=P(X =29,Y=y)P(X =121)/P (X =22). Summing
this over z leads to P(X = 25,Y =y) = P(X = a2) P(Y = y), and this im-
plies that X and Y are statistically independent. Conversely, if X and Y are
statistically independent, then for all x and y we have

PX=zY=y PX=z)PY =y)

so the conditional distribution of Y given X does not change as we change X,
and therefore X and Y are unrelated.

10.1.2 Suppose there exists 1 # xo such that g (z1) # ¢ (z2) and fx (z1) #
0, fx (x2) # 0, where fx is the relative frequency function for X. Then we must

have
_ '7fX,Y(337;,y)7 0 y # g(x)
frwl X =m0 = fx (xi) _{1 y=g(zi)

for i = 1,2. Since g (1) # g (x2), this implies that the conditional distribution
of Y changes as we change X, and therefore X and Y are related.

275
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If g(z) = ¢ for all z, we have g(z1) = g(22) = ¢, so fy (y| X =z1) =
fy (y| X = o) for all y, i.e., the conditional distribution of Y given X does not
change as we change x and so they are not related.

10.1.3 To check whether or not a relationship exists between Y and X we
calculate the conditional distributions of Y given X. These are given in the
following table.

Y=1 Y =2 Y =3
11 0.15/0.73 = .20548 0.18/0.73 = .24658 0.40/0.73 = .54795
21 0.12/0.27 = 44444  0.09/0.27 = .33333  0.06/0.27 = .22222

X
X

The conditional distribution of Y given X = x does change as we change z, so
we conclude that X and Y are related.

10.1.4 To check whether or not a relationship exists between Y and X we
calculate the conditional distribution of Y given X. These are given in the
following table.

. 1/6 1 1/6 1 1/3 1
X=1 %_Z ﬁ—z ?‘5
_ 1/12 _ 1 1/12 _ 1 1/6 1
X=2|53=9 93 =1 1323

As we can see, the conditional distribution of Y given X = z does not change
at all as we change z, so we conclude that X and Y are unrelated.

10.1.5 Suppose that P (X = z) > 0. We have that

P(X=xX2= 2

and so the conditional distributions will change with = whenever X is not de-
generate.

10.1.6 This cannot be claimed to be a cause-effect relationship because we
cannot assign the value birth-weight at birth.

10.1.7 If the conditional distribution of life-length given various smoking habits
changes, then we can conclude that these two variables are related. However, we
cannot assign the value of smoking habit (perhaps different amount of smoking),
and there might be many other confounding variables that should be taken into
account, e.g., exercise habits, eating habits, sleeping habits, etc. So we cannot
conclude that this relationship is a cause-effect relationship.

10.1.8 The teacher should conduct an experiment in which a random sample is
drawn from the population of students. Then half of this sample should be ran-
domly selected to write the exam with open book, while the other half writes
it with closed book. Then a comparison should be made of the conditional
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distributions of the response variable Y (the grade obtained) given the predic-
tor X (closed or open book) using the samples to make inference about these
distributions.

10.1.9 The researcher should draw a random sample from the population of
voters and ask them to measure their attitude towards a particular political
party on a scale from favorably disposed to unfavorably disposed. Then the
researcher should randomly select half of this sample to be exposed to a negative
ad (an ad that points out various negative attributes about the opponents),
while the other half is exposed to a positive ad (one that points out various
positive attributes of the party). They should all then be asked to measure
their attitude towards the particular political party on the same scale. Then
compare the conditional distribution of the response variable Y (the change in
attitude from before seeing the ad to after) given the predictor X (type of ad
exposed to) using the samples to make inference about these distributions.

10.1.10 Recall that the correlation of any two random variables is non-zero only
if the covariance of them is non-zero. This immediately implies that the two
variables are not independent, else Cov(X,Y") = 0. Therefore, the two variables
are related.

10.1.11

(a) First, let 1 = 0 denote usual diet and zo = 1 denote new diet. The
experimental design is given by {(0,100),(1,100)} .

(b) There are several concerns about the conduct of this study. First, we have
not taken a sample from the population of interest. The individuals involved
in the study have volunteered and, as a group, they might be very different
from the full population, e.g., in their ability to stick to the diet. Second, the
sample size might be too small relative to the population size, so inference may
be inconclusive.

(¢) We should group the individuals according to their initial weight W into
homogenous groups (blocks) and then randomly apply the treatments to the
individuals in each block and compare the conditional distribution of the re-
sponse given the two predictors, type of diet and initial weight. This will make
the comparisons more accurate by reducing variability.

10.1.12

(a) There are 10 conditional distributions since the factor W has 2 levels and
the factor X has 5 levels and so there 5(2) = 10 combinations.

(b) The predictor variable W (gender) is a categorical variable, while both the
response variable Y and the predictor variable X (age in years) are quantitative
variables.

(c) To have a balanced design we should allocate 200 individuals to each com-
bination of the factors.

(d) A relationship between the response and the predictors cannot be claimed to
be a cause-effect relationship since we cannot assign the values of the predictor
variables.
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(e) We should use family income as a blocking variable having, say, two levels,
namely low and high. Then look at the conditional distributions of the response
given the blocking variable and the two predictors.

10.1.13

(a) The response variable could be the number of times an individual has
watched the program. A suitable predictor variable is whether or not they
received the brochure.

(b) Yes as we have controlled the assignment of the predictor variable.

10.1.14 Given a fixed value of X, the conditional distribution of Y given W
and X does not change as W changes and is given by the N(3,5) distribution
for X = 0 and the N(4,5) distribution for X = 1. Therefore, we can conclude
that W does not have a relationship with Y. However, for a fixed value of W,
the conditional distribution of Y given W and X changes as X changes from the
N(3,5) distribution for X = 0 to the N(4,5) distribution for X = 1. Therefore,
we can conclude that X does have a relationship with Y.

10.1.15 Given the value X = 1, the conditional distribution of Y given W and
X does not change as W changes and is given by the N (4, 5) distribution. While
given the value X = 0, the conditional distribution of Y given W and X changes
as W changes from the N(2,5) distribution for W = 0 to the N (3, 5) distribution
for W = 1. Therefore, we conclude that W does have a relationship with Y.
Now, the conditional distribution of Y given W and X changes as X changes,
for a fixed value of W, and we can conclude that X does have a relationship
with Y.

10.1.16 In Exercise 10.1.14 the predictors do not interact since the changes
in the conditional distribution of Y given W and X, as we change X, does
not depend on the value of W. While in Exercise 10.1.15 the changes in the
conditional distribution of Y given W and X, as we change W, depend on the
value of X, so the predictors interact.

10.1.17
(a) X(i) =1 for i € {1,3,5,7,9} and X (i) = 0 for ¢ € {2,4,6,8,10}. Hence,
the relative frequencies are

X=0 X=1|sum
Rel. Freq. 0.5 0.5 1.0

(b) Y(i) =1fori e {3,6,9} and Y (i) =0 for ¢ € {1,2,4,5,7,8,10}. Hence,

Y=0 Y=1/|sum
Rel. Freq. 0.7 0.3 1.0

(c) There are four possible pairs (X,Y). The relative frequency table is given
by



10.1. RELATED VARIABLES 279

Rel. Freq. | X =0 X =1 | sum
Y =0 0.3 0.4 0.7
Y=1 0.2 0.1 0.3

sum 0.5 0.5 1.0

(d) The conditional probability table is as follows.

PY=yX=2)|y=0 y=1|sum
z=0 0.6 0.4 1.0
r=1 0.8 0.2 1.0

(e) The conditional distribution of Y given X varies as X varies. For example,
P(Y=0/X=0)=06%#08=PY =0/X =1). Thus, X and Y are related.

10.1.18 If there is exact relationship between X and Y, then finding a function
g such that Y = g(X) may not be a bad idea. However, there is no such g
in most practical problems. In most cases, the responses, Y, are not unique
even though the predictor values, X, are the same because of variation. For
example, a study on the relationship between blood pressure and age. Blood
pressures of the same aged people are not the same. Even though there is a
certain relationship between responses and predictors, responses may not be
determined by only predictors in most practical problems. So, we must take
into account this variability of responses when looking for relationships among
variables.

10.1.19 The distribution of Y given X = x is not the same when x changes
from 1 to 2. Thus, X and Y are related. We see that only the variance of the
conditional distribution changes as we change X.

10.1.20 The conditional distribution of Y given X = x changes as x changes.
Thus, X and Y are related. Both the mean and variance of the conditional
distributions change as we change X but the distribution is always normal.

10.1.21 The correlation is given by Cov(X,Y) = E(XY) — E(X)E(Y) =
E(X?) — E(X)E(X?) = 0 since E(X*) = 0 for positive odd integer k because
X is symmetric. Even though the correlation between Y and X is 0, there is a
definite relationship, namely, Y = X2. Note that the conditional distribution of
Y given X = x puts 1/2 the probability at  and 1/2 the probability at —z and
so the conditional distributions change with X. Thus, X and Y are related.

Problems

10.1.22 The situation is somewhat simpler when the predictors do not interact
because we can ignore the other predictor when studying the effects of changing
just one predictor as the change is the same no matter what value the other
predictor takes. Typically, the experimenter cannot control whether or not the
predictors interact.

10.1.23 If X and Y are related, then there exist x1, x2, y such that fy|x (y|21) #
frix (y|x2). Now suppose that fx|y (z]y) = fxjy(z|y) for all z,y,y, ie.,
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that the conditional distribution of X given Y does not change as we change
Y. Then fxy (z]y) = fxv (@,9)/fy (y) = fxy(@,y)/fyy) = fxy(@ly)

which implies fxy (z,y) = (fX7y(;L‘,yl)/fy(y/))fy (y) for all z,y,y , which in
turn implies

fx,Y(m,y):ZfXY(my fY( ) ZfoYY(

Yy

) frw) #v (v)

X rxr (28) | v ) = Fx (@) /v )

for every z,y. But this implies fy|x (y[21) = fx (z1) fy () /fx (21) = fr (y) =
fyx (y|w2), which is a contradiction. Therefore we must have that fx|y (z|y) #

Ixpy (] y,) for all z,y,y , ie., that the conditional distribution of X given Y
changes as we change Y, which implies that Y and X are related variables (by
Definition 10.1).

10.1.24 We have that
Cov (U, V) = E(UV) — E(U)E(V)
=BE(X+2)Y+2)-EX+2)EY +2)
EXY+XZ+YZ+27* —(E(X)+E(2)(E(Y)+ E(Z))
E(XY)+E(XZ)+E(YZ)+E(Z*) -0
E(X)E(Y)+E(X)E(Z)+E(Y)E(Z)+ E(Z*) =

so U and V are not independent and so must be related.

10.1.25 First note that the joint probability distribution function of X and
Y is given by P(X ==,Y =y) = (7) (”;I) (%)w (%)y (%)nfwiy. Since X ~
Binomial(n, 1/3) , the marginal probability function of X is given by P (X = z) =
(Z) (%)w (%)niw . Therefore, the conditional distribution of Y given X = x has
probability function

() (”;,2)(%);(2)”(%3"_36_?’ _ (n;x) (é/g)J (é/g)"‘””‘y

S\ 2 2
and this is the Binomial(n — x, 1/2) distribution and this changes with x. There-
fore, X and Y are related.
10.1.26 By Problem 2.8.27 X and Y are independent if and only if p = 0 and
Corr(X,Y)=p

10.1.27 If the conditional distribution of Y given X = z and Z = z changes
as we change x for some value z then X and Y are related. If the conditional
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distribution of Y given X = x and Z = z never changes as we change z for each
fixed value of x, then Z and Y are not related.

Now px v,z (%,y,2) = py|x,z (Y| 2, 2) px,z(2, 2) =
py|x,z (Y |®, 2) px|z(x | 2)pz (2) and, because py|x, z (y|x,z) is constant in z,
we must have that

pyix (y]2) = pxy (z,y) . Pyix,z (Y|, 2) px|z(w ] 2)pz (2)
v px () px ()
_ 2.Pxiz(x|2)pz (2)
px (2)

=Dv|X,Z (y|x,z)

Therefore, px,y,z (7,9, 2) = py|x (¥ z) px|z(2 | 2)pz (2) .

10.2 Categorical Response and Predictors

Exercises

10.2.1 First, note that the predictor variable, X-year, is not random. The
estimated conditional distribution of Y given X are recorded in the following
table.

June July August
Year 1 60/240 = .25 100/240 = .41667 80/240 = .33333
Year 2 | 80/240 = .33333  100/240 = .41667 60/240 = .25

Under the null hypothesis of no difference in the distributions of thunderstorms
between the two years, the MLE’s are given by

140 . 200 - 140
= Jgg = 29167, 0> = S5 = 41667, 0 = = = . 20167.

Then the estimates of the expected counts n;0; are given in the following table.

D>

1

June July August
Year 1 70 100 70
Year 2 70 100 70

The Chi-squared statistic is then equal to X3 = 5.7143 and, with X2 ~ x? (2),
the P-value equals P (X 2> 5. 7143) = .05743. Therefore, we do not have evi-
dence against the null hypothesis of no difference in the distributions of thun-
derstorms between the two years, at least at the .05 level.

10.2.2 First note that the predictor variable, X (received vitamin C or not),
is deterministic. The estimated conditional distributions of Y given X are
recorded in the following table.

No cold  Cold
Placebo 22143 .77857
Vitamin C | .12230 .87770
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Under the null hypothesis of no relationship between taking vitamin C and the
incidence of the common cold, the MLE’s are given by

.48 . 231
b = 55 = 17204, 6y = == = 82796

Then the estimates of the expected counts n;0; are given in the following table.

No cold  Cold
Placebo 24.086 11591
Vitamin C | 23.914 115.09

The Chi-squared statistic is equal to X3 = 4.8105 and, with X2 ~ 2 (1),
the P-value equals P (X 2> 4.8105) = .02829. Therefore, we have evidence
against the null hypothesis of no relationship between taking vitamin C and the
incidence of the common cold.

10.2.3 The estimated conditional distributions of Y (second digit) given X (first
digit) are recorded in the following table.

Second digit 0 Second digit 1
First digit 0 0.489796 0.510204
First digit 1 0.500000 0.500000

Under the null hypothesis of no relationship between the digits, the MLE’s are
given by

. 495 A 505
91——1000 495, 9_2——1000 505
for the Y probabilities and
A 490 A 510
%= Too0 — 4% 02 = 100 = P

for the X probabilities. Then the estimates of the expected counts n;0;. 6.; are
given in the following table.

Second digit 0 Second digit 1
First digit 0 242.55 247.45
First digit 1 252.45 257.55

The Chi-squared statistic is then equal to X2 = . 10409 and, with X2 ~ x2 (1),
the P-value equals P (X 2> 0.104092) = .74698. Therefore, we have no evidence
against the null hypothesis of no relationship between the two digits.

10.2.4 First, note that the predictor variable, X (university), is not random.
The estimated conditional distributions of Y given X are recorded in the fol-
lowing table.

Fail Pass
University 1 | 0.187500 0.812500
University 2 | 0.077193  0.922807
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Under the null hypothesis of no relationship between calculus grades and uni-
versity, the MLE’s are given by

5 %) A 406
01 161 931, 0 161 88069

Then the estimates of the expected counts n;0; are given in the following table.

Fail Pass
University 1 | 20.999 155.0
University 2 | 34.003 251.0

The Chi-squared statistic is then equal to X2 = 12.598 and, with X2 ~ x2 (1),
the P-value equals P (X? > 12.598) = .00039. Therefore, we have strong evi-
dence against the null hypothesis of no relationship between the calculus grades
and university.

10.2.5
(a) First, note that the predictor variable, X (gender), is not random. The
estimated conditional distributions of Y given X are given in the following
table.

Y=fair Y=red Y =medium Y =dark Y = jet black
X =m | 0.281905 0.0566667 0.404286 0.240000 0.0171429
X =1f | 0.305104 0.0544027 0.379697 0.252944 0.0078519

Under the null hypothesis of no relationship between hair color and gender, the
MLE’s are given by

A 1136 A 216 A 1526
=—=.292 =— =, 2 = ——=.0.392
01 3833 92557, 6, 3333 055627, 65 3933 0.392995,

A 955 5 50
04 3833 5944, 05 3333 0.012877

Then the estimates of the expected counts n;0; are given in the following table.

Y=fair Y =red Y =medium Y =dark Y = jet black
m | 614.370 116.817 825.290 516.482 27.041
f 521.630 99.183 700.710 438.518 22.959

X
X

The Chi-squared statistic is then equal to Xg = 10.4674 and, with X2 ~ x2 (4),
the P-value equals P (X? > 10.4674) = .03325. Therefore, we have some ev-
idence against the null hypothesis of no relationship between hair color and
gender.

(b) The appropriate bar plots are the two conditional distributions and these
are plotted as follows for males and then females.



284 CHAPTER 10. RELATIONSHIPS AMONG VARIABLES
00 T T |:\I T I:\l
%0 T T — T I:\l

hair color

(c) The standardized residuals are given in the following table. They all look
reasonable, so nothing stands out as an explanation of why the model of inde-
pendence doesn’t fit. Overall, it looks like a large sample size has detected a
small difference.

Y=fair Y=red Y =medium Y =dark Y = jet black

X =m | —1.07303 0.20785 1.05934 —0.63250 1.73407

X=f 1.16452  —0.22557 —1.14966 0.68642 —1.88191
10.2.6

(a) First, note that the predictor variable X, is not random. The estimated
conditional distributions of Y given X are given in the following table.

X=-1 X-2 X-3 X=4
Y=0] 048 040 064 056
Y=1| 052 060 036 044

Under the null hypothesis of no relationship between X and Y, the MLE’s are
given by

. 59 R
O =100 = 5% 02 =15 = 48

Then the estimates of the expected counts n;0; are given in the following table.

48

X=1
0 13
1 12

X =2
13
12

X=3 X=4
13 13
12 12

Y
Y

The Chi-squared statistic is then equal to X2 = 3.20513 and, with X2 ~ x2 (3),
the P-value equals P (X? > 3.20513) = .36107. Therefore, we do not have any
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evidence against the null hypothesis of no cause-effect relationship between X
and Y.

(b) If a relationship had been detected, this would be evidence of a cause-effect
relationship because we have assigned the value of X to each sample element.

10.2.7 We should first generate a value for X7 ~ Dirichlet(1,3). Then generate
U, from the Beta(1,2) distribution and set X9 = (1 — X7) Ua. Then generate
Us from the Beta(1, 1) distribution and set X3 = (1 — X; — X5) Us. Then set
Xy=1-X; — X2 — Xs.

10.2.8 The first step is drawing the frequency table of (X,Y’), that is, tabulate
fz,y, the number of items having X =z and Y = y. Also let N be the size of the
population. Then check whether X and Y are independent or not, i.e., check
whether fg, = fy.fy/N for all x and y or not. If X and Y are independent,
there is no relationship between X and Y. And there is a relationship otherwise.
If the frequency table is close to that of independent variables, there is a weak
relationship. So, if |fzy — fz.f.y/N| is small there is a weak relationship and if
it is big there is a strong relationship.

10.2.9 Let X and Y be the numbers showing on each die. Then there are 36
possible pairs (i, j) for i, j = 1,...,6. Then, write a 6x6 frequency table, say f;;,
and compute chi-squared statistic, X2 = S0 Z?Zl(fij — fi-fi/n)? ) (fi-fg/m).
Using X2 — x2((6 — 1)(6 — 1)) ~ x%(25), we compute P(x?(25) > X?). If this
is small, we have evidence against the null hypothesis.

10.2.10

(a) First of all, write a frequency table, say f;; for i = A, B,C, D, E and F, and
j =.female, male. Then, compute the chi-squared statistic, X? =", " j( fij —
fi-fj/n)?/(fi.-f;/n). Based on X% — x?((6 —1)(2 — 1)) ~ x*(5), compute
P(x%(5) > X?). If it is small, we have evidence against the null hypothesis of
no difference in the final grade distributions between females and males.

(b) As indicated in part (a), the distribution of X? is asymptotically x?(5)-
distribution. However, the professor has not sampled from a population. To
carry out the test the professor needs to assume that the class is like a random
sample from some larger population of interest and this may not be the case.

10.2.11 We look at the differences |f;; — fi-f.;/n| to see how big these are. If
these are all quite small, then the deviation from independence detected by the
test is of no practical importance.

Problems

10.2.12 We place a Dirichlet(1,1,1,1,1,1,1,1,1,1,1,1) prior distribution on
(011,021, 031,012,022, 032,013, 03, 033, 014, 024,034), so the posterior is propor-
tional to (using 34 = 1— the other parameters) 01]603703201169,01301105,033011
x05,0%. Therefore, the posterior distribution is Dirichlet(18, 18,13, 12,10, 14,
12,9,20, 15,8, 29).

10.2.13 We place a Dirichlet(1,1,1) prior on (0p|x—j,0ax=;) for j = P,G,C,
and we assume that these three distributions are independent. Therefore, the
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posterior is proportional to

(Oopx—r)"™ Oarx—r)"" Opx=r)"" x (Boix=c)™" (Bax-c)"" (Osx-c)™
% (90|X:C)2892 (GA‘X:C)2625 (aBlX:C)570’
s0 (Bo|x=p,0a x=p) |data ~ Dirichlet(984,680,135), (fo|x=c 04 x=c) |

data ~ Dirichlet(384,417,85) , (00| x=c,0ax=c) |data ~ Dirichlet(2893, 2626,
571) and they are independent.

10.2.14 Consider the following 2 x 2 table.

Y=1 Y=2 P(X=2

X=1 011 012 011+ 012

X =2 B21 B2 021 + B2
P(Y =y) | 011 +621 012+ 02 1

NowX and Y independent implies that

011 = (011 + 012) (011 +021), 612 = (011 + 012) (O12 + 022)
021 = (021 + 022) (611 +021), b2z = (021 + 022) (O12 + 022) .

and this implies that

011000 (011 4 012) (011 + 021) (021 + 022) (012 + O22)

012021 (011 + 012) (O12 + 022) (021 + O22) (011 + 021)

Now 911922/912921 =1 1mphes that 911922 = 912921 and so (911 + 912) 922 =
012 (021 + O22) and (011 + 612) (012 + b22) = 612 (021 + O22 = 011 + 612) = O12.
Also, 011622 = 012021 implies (011 + 621) 622 = (612 + O22) O21 and so (611 + 621)
X (021 + 022) = (612 + 22 + 011 + 021) 021 = 021. Similarly, Oao = (021 + 022)

X (012 + 022) and 011 = (011 + 612) (011 + 621), so X and Y are independent.

10.2.15 When sampling with replacement from the population, we can think
of the sample as an i.i.d. sample from this population, so each observation has
probability 6;; of falling in the (¢, j) category, namely 6,;. Then when f;; sample

elements fall in this cell the likelihood takes the form []¢_, H?Zl 9{;'7 as claimed.

10.2.16 First, note that there are only ab— 1 free parameters, so we place 0, =
1— Z(W-#(a’b) 0;;. The likelihood function is given by L(611, ...,04 | (z1,y1), ..,
(0, yn)) = [T54 H§:1 Hlfj’ The log-likelihood function is given by 1(611, ..., 04 |

a b
(T1,91)5 0 (Tns Yn)) = D iy ijl fij In ;.
The score function is then given by

Juo
S (9117 "'aaa(bfl) | (xlvyl)w'ﬂ (’T’ruyn)) = 012~ Oap
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Setting this equal to 0 and solving leads to 6;; = (fij/fab) Oap. Then summing
both sides over all (,7) # (a,b) leads to 1 — Oup = (n — fap) Oun/ fap OF Oup =
fap/m, and this implies that 6;; = fi;/n gives a unique solution to the score
equations.

Now the log-likelihood takes the value —oco whenever any 6;; = 0, so the
log-likelihood does not attain its maximum at such a point. Therefore, the log-
likelihood is maximized at some point for which all #;; # 0, and the log-likelihood
is continuously differentiable at such a point. Since the unique solution to the
score equations is such a point, it must be the MLE.

10.2.17 Welet 0., ...,0(q—1).,0.1,...,0.4—1) be the free parameters since 0,. =
1— Y07 6 and 6, = 1 — Y_1 0.;. The likelihood function is then given by
a b .
L(Hl-v ERR 9((171)-7 9-17 B 70>(b71) | ('Tlv 91)7 ) (:Env yn)) = Hi:l szl(alej)fw =
[T, Hlf’ H;’.Zl 9?;5-1. The log-likelihood function is given by (61, ...,0q—1).,0.1,

by [ (@nyn)s e (@0, un)) = Yoiq fiIni + Z?Zl fjIn6.;. The score
function is then given by

Jio fa
01. ~ 0.
S (91~7 cey 9((1—1)-7 9~17 v ,9-(1)—1) | (xlvyl) y ey (mn7yn)) = fa _ fo
6. 0,
Setting this equal to 0 and solving leads to
0;. = ﬁea,, 0.; = &9@.
fa- f-b
Summing these over i =1,...,a—1and j =1,...,b— 1 leads to the equations
1=y ="y ana1—g, = "I,
fa- f-b

Therefore, 0,. = fq./n,0.5 = f/n, and this implies that 6;. = f;./n,0.; = f.;/n
gives a unique solution to the score equations.

Now the log-likelihood takes the value —oo whenever any 6;. =0 or 6.; =0,
so the log-likelihood does not attain its maximum at such a point. Therefore,
the log-likelihood is maximized at some point for which all §;. # 0 or 6.; # 0,
and the log-likelihood is continuously differentiable at such a point. Since the
unique solution to the score equations is such a point, it must be the MLE.

10.2.18 There are a (b — 1) free parameters because Oy x—; = 1 — Z;’;} 01 x=i
for i = 1,...,a. The likelihood function is given by

L (91|X:17 e ,eb—1|X:17 ) 9b—1\X:a | (T1,91) 5 (xnvyn))

- I 6"

i=1j=1
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The log-likelihood function is given by

! (91\)(:1, cee 9b—1|X:17 cee ,9b—1|X:a | (1,91) 5 s (xruyn))

a b
= ZZfij In6jx—;.

i=1 j=1
The score function is then given by

- fii_ ; fiv
S (91|m:1791\m:2 | (mhyl) ey (xnvyn)) = e . e

Setting this equal to 0 and solving leads to 0 x—; = (fij/ fiv) Op|x=i- Summing
both sides over j =1,...,b— 1 leads to

ng. — fip

7 O x=i

1 =0y x=i = .

and this implies that 0y x—; = fip/n; further implying that 0;x—; = fij/ni
gives a unique solution to the score equations.

Now the log-likelihood takes the value —oo whenever any 0;x—; = 0, so
the log-likelihood does not attain its maximum at such a point. Therefore, the
log-likelihood is maximized at some point for which all 6;x—; # 0, and the
log-likelihood is continuously differentiable at such a point. Since the unique
solution to the score equations is such a point, it must be the MLE.

10.2.19 There are b—1 free parameters because 0, = 1—2?;% 0;. The likelihood
function is given by L (61,...,0—1] (z1,y1), .., (Tn,yn)) = [1i= H§:1 9{"’-" =
H?’:l 0; 7. The log-likelihood function is given by

1O, 0b—1] (1,91) 5oy (@, ) = Z?Zl f.;1n0;. The score function is then
given by

fa_Is
01 [N
5(917"',9b*1| (mhyl)v"'v(xnvyn)) = .
f‘-g(h—l) - %

Setting this equal to 0 gives 6; = (f;/fs)0, and summing this over j =
1,...,b—1 gives 1 — 0, = (n— f4) 6/ fp. This implies that 6, = f;/n, fur-
ther implying that §; = f.;/n gives a unique solution to the score equations.

Now the log-likelihood takes the value —oo whenever any 6; = 0, so the
log-likelihood does not attain its maximum at such a point. Therefore the log-
likelihood is maximized at some point for which all 6; # 0, and the log-likelihood
is continuously differentiable at such a point. Since the unique solution to the
score equations is such a point, it must be the MLE.
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10.2.20 First, note that the density of Dirichlet(c, ..., ) density is given by
F(Ozl—‘r--'—‘r(lk)xalflmagfl .
(o) T (ak) 11 2

I3 Y ! o L e U
0 0

F(al_F"'+-ak) ar1—1, . as—1
A A (B Bt 7

T(a) - D(ag) + 72 (1= k1)

(o +---+ag) Tlar+h) --T(ag+1g)

C T(aa) - T(ag) T(ar+-+ar+li+-+ )

o x?"’fl. Therefore,

ak,fl

dml---dmk,l

Computer Problems

10.2.21 The following code generates the sample in c2, ¢3, c4, cb.

gmacro

dirichlet

note - the base command sets the seed for the random number
generator (so you can repeat a simulation).

base 34256734

note - here we provide the algorithm for generating from a
Dirichlet(kl,k2,k3,kd4) distribution.

note - assign the values of the parameters.

let k1=1

let k2=1

let k3=1

let k4=1

let k5=K2+k3+k4

let k6=k3+k4

note - generate the sample with i-th sample in i-th row of
c2, c3, c4, c5, ....

do k10=1:10000

random 1 cl;

beta k1 K5.

let c2(k10)=c1(1)

random 1 cl;

beta k2 k6.

let c3(k10)=(1-c2(k10))*c1(1)

random 1 cl;

beta k3 k4.

let c4(k10)=(1-c2(k10)-c3(k10))*c1(1)

let c5(k10)= 1-c2(k10)-c3(k10)-c4(k10)

enddo

endmacro

Based on the output, the following commands calculate the estimates of the
expectations.
MTB > let kl=mean(c2)
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MTB > let k2=mean(c3)
MTB > let k3=mean(c4)
MTB > let k4=mean(c5)
MTB > print kl-k4
Data Display

K1 0.247073

K2 0.251701

K3 0.251028

K4 0.250198

From Appendix C the exact values of each of these expectations is given by
1/(1+1+1+1)=.25.

10.2.22 From Problem 10.2.12 we need to generate from a Dirichlet(18, 18,13, 12,

10,14,12,9, 20, 15, 8, 29) distribution. The code below generates the sample.

gmacro

dirichlet

note - the base command sets the seed for the random number
generator (so you can repeat a simulation).

base 34256734

note - here we provide the algorithm for generating from a
Dirichlet(kl,k2,k3,k4) distribution.

note - assign the values of the parameters.

let k1=18

let k2=18

let k3=13

let k4=12

let k5=10

let k6=14

let k7=12

let k8=9

let k9=20

let k10=15

let k11=8

let k12=29

let k20=K2+k3+k4+k5+k6+k7+k8+k9+k10+k11+k12

let k21=k3+k4+k5+k6+k7+k8+k9+k10+k11+k12

let k22=k4+k5+k6+k7+k8+k9+k10+k11+k12

let k23=k5+k6+k7+k8+k9+k10+k11+k12

let k24=k6+k7+k8+k9+k10+k11+k12

let k25=k7+k8+k9+k10+k11+k12

let k26=k8+k9+k10+k11+k12

let k27=k9+k10+k11+k12

let k28=k10+k11+k12

let k29=k11+k12

let k30=k12

note - generate the sample with i-th sample in i-th row of
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c2, c3, c4, c5, ....

do k100=1:10000

random 1 ci;

beta k1 k20.

let c2(k100)=c1(1)

random 1 ci;

beta k2 k21.

let c3(k100)=(1-c2(k100))*c1(1)

random 1 cl;

beta k3 k22.

let c4(k100)=(1-c2(k100)-c3(k100))*cl(1)

random 1 ci;

beta k4 k23.

let c5(k100)=(1-c2(k100)-c3(k100)-c4(k100))*cl(1)

random 1 cl;

beta k5 k24.

let c6(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100))*c1(1)

random 1 ci;

beta k6 k25.

let c7(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)
-c6(k100))*c1(1)

random 1 ci;

beta k7 k26.

let c8(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)
-c6(k100)-c7(k100))*c1(1)

random 1 cl;

beta k8 k27.

let c9(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)
-c6(k100)-c7(k100)-c8(k100))*cl1(1)

random 1 cl;

beta k9 k28.

let c10(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)
-c7(k100)-c8(k100)-c9(k100))*cl1(1)

random 1 ci;

beta k10 k29.

let c11(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)
-c7(k100)-c8(k100)-c9(k100)-c10(k100))*cl(1)

random 1 c1;

beta k11 k30.

let ¢c12(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)
-c7(k100)-c8(k100)-c9(k100)-c10(k100)-c11(k100))*c1(1)

let c13(k100)=(1-c2(k100)-c3(k100)-c4(k100)-c5(k100)-c6(k100)
-c7(k100)-c8(k100)-c9(k100)-c10(k100)-c11(k100)-c12(k100))

enddo

endmacro
Once the sample is generated, the following code generates the estimates.
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MTB
MTB
MTB
MTB
MTB
MTB
MTB
MTB
MTB
MTB
MTB

let kl=mean(c2)
let k2=mean(c3)
let k3=mean(c4)
let k4=mean(c5)
let k5=mean(c6)
let k6=mean(c7)
let k7=mean(c8)
let k8=mean(c9)
let k9=mean(c10)
let k10=mean(cll)
let kll=mean(cl2)
MTB let k12=mean(cl3)
MTB print kl-k12
Data Display
K1 0.101230
K2 0.101019
K3 0.0728538
K4 0.0675903
K5 0.0562978

0

0

0

0

VVVVVVVVVYVYVVYV

K6 0.0785378
K7 0.0675277
K8 0.0507912
K9 0.112003
K10 0.0844297
K11 0.0449191
K12 0.162800
From Appendix C the exact posterior expected values are given by (where
s =184+184+ 134124+ 104+ 144+ 124+ 9420+ 154+ 8 + 29 = 178) and
(18/5,18/s,13/s,12/5,10/s,14/5,12/s,9/5,20/s,15/s,8/5,29/s). So the esti-
mates are as recorded in the following table.

Estimate of posterior mean of «;
1.0112 x 10!
1.0112 x 10!
7.3034 x 1072
6.7416 x 102
5.6180 x 1072
7.8652 x 1072
6.7416 x 102
5.0562 x 102
0.11236
8.4270 x 102
4.4944 x 102
0.16292

00 J O Ui W N =

— == O
N = O
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Challenges
10.2.23 We have that Uy, Us,...,Ur_1 are independent, with
U; ~ Beta(a;, ajp1 + -+ - + ag) and
X1=U,X0=01-X1)Usy...,. Xj1=(1—-X1— -+ — Xp—1) Up—1,
so
Ur=X1,U02=Xo/(1=X1),...,Up—1 = Xpm1/ (1 = X1 — -+ = Xj—1)..

From this we deduce that the matrix of partial derivatives of this transforma-
tion is lower triangular and the ith element along the diagonal is OU;/0X; =
1/(1 =Xy — -+ — X,;_1). Therefore, the Jacobian derivative is given by

H::Ql 1-X3—-— i,l)fl . Now the joint density of (Uy, Us, ..., Uk_1) pro-
portional to

uflhfl (1 o ul)az+"'+ak—1 ungl (1 . u2)a3+~'-+ak—1 . 'uziil_l (1 _ Ulcfl)ak_l )

Therefore, the joint density of (X7, Xo, ..., Xk_1) is proportional to

azfl
a;—1 ag+-toap—1 To To
x] (1 —x1) T2 1— 2

—1—1 —1
o —meea NV men ™R
e e Y l—z1——xp_2

k—1
X H(l—l‘l —"'—{L‘i_l)_l
=2

_ a1 —1_as—1 ak—1—1 ap—1
= Ty .”xk—l (1_x1_..._:1;k71)

% (1 _ xl)aer---Jrak*l (1 _ x1)1*a2*(a3+"-+ak*1) (1 _ xl)*l

>a3+'“+ak*1

X (1 — T — .1‘2)&3+m+ak_1 (1 — T — .1‘2)1_(13_(&44_'“4_0%_1) (1 — T — .7,‘2)_1 Xoeee
= 1‘?1_11‘32_1 .. .xziil_l (1 J— :L'l — e e — xkil)akil s

SO (Xl,XQ, v 7Xk71) ~ DiI‘iChlet(Oél,O[Q, ey Odk) .

10.3 Quantitative Response and Predictors

Exercises

10.3.1 Since T € [0, 1] with probability 1, we have that Z is the least-squares
estimate of the mean 6.

10.3.2 Since T € [0,0] C [0,00) with probability 1, we have that Z is the
least-squares estimate of the mean 6/2 € [0, o).

10.3.3 Since T € (0,00) with probability 1, we have that Z is the least-squares
estimate of the mean 1/6 € (0, c0).

10.3.4
(a) A scatter plot is given below.
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10 —

> 0 . ®
o
. L]
10 - »
T T T
5 0 5
X

(b) The least-squares estimates of $; and [2 are given by by = 2.1024 and
b1 =y = —0.00091, so the least-squares line is given by y = —0.00091+2. 1024x.
A scatter plot of the data together with a plot of the least-squares line follows.

Regression Plot
Y=-0.0009091 +2.10236 X

S=154276 RSq=958% R-Sq(ad)=953%

(c) The plot of the standardized residuals against X follows.

Residuals Versus X
(response is Y)

Standardized Residual

(d) A normal probability plot of the standardized residuals is given below.
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Normal Probability Plot of the Residuals

(responsse is Y)

Normal Score

T T T T
2 1 0 1

Standardized Residual

(e) Both graphs indicate that the normal simple linear regression model is rea-
sonable.
(f) A .95-confidence interval for the intercept is given by

—0.00091 + 0.4652 (2.2622) = (—1.0533, 1.0515)

and a .95-confidence interval for the slope is given by 2.1024 £ 0.1471 - 2. 2622 =
(1.7696,2.4352) .
(g) The ANOVA table is follows.

Source | Df SS MS

X 1 486.19 486.19
Error 9 21.42 2.38
Total | 10 507.61

The F' statistic for testing Hy : B2 = 0 is given by F = 486.19/2.38 = 204. 28
and, since F' ~ F'(1,9) under Hy, the P-value is given by P(F > 204. 28) = .000,
so we reject the null hypothesis of no effect between X and Y.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R? = 486.19/507.61 = .9578.

(i) The prediction is given by y = —0.00091 + 2.1024 (0) = —0.00091. This is
an interpolation because 0.0 is in the range of observed X values. The standard
error of this prediction is, since Z = 0 (using Corollary 10.3.1), (2.38/11)1/2 =
0.46515.

(j) The prediction is given by y = —0.00091 + 2.1024 (6) = 12.613. This is an
extrapolation because 6 is not in the range of observed X values. The standard
error of this prediction is, since Z = 0 (using Corollary 10.3.1),

1/2
1 _ 2
(2.38)"/2 (— L 620 ) = 0.99763.

11 110

(k) The prediction is given by y = —0.00091 + 2. 1024 (20) = 42.047. This is an
extrapolation because 12 is not in the range of observed X values. The standard
error of this prediction is, since Z = 0 (using Corollary 10.3.1),

(2.38)72 L +(20_0)2 1/2*29784
’ 11 110 o '
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The standard errors get larger as we move away from the observed X values.

10.3.5
(a) A scatter plot of the data follows.

90 —
80 —|
70 —|
60 —|
50 —|
40 - .
30 —|
20 —|
10 4

0 — .

(b) The least-squares estimates of 5, and 33 are given by bs = 2.10236 and
b1 = 29.9991. The least-squares line is then given by y = 29.9991 + 2.10236x. A
scatter plot of the data together with a plot of the least-squares line follows.

Regression Plot
V=209991+2.10236 X

$=285887 R-Sq=62% RSq(ad)=00%

(c) The plot of the standardized residuals against X follows.

Residuals Versus X
(response is Y)

Standardized Residual

(d) A normal probability plot of the standardized residuals follows.
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Normal Probability Plot of the Residuals

(response is Y)

Normal Score

T T T T
-1 0 1 2

Standardized Residual

(e) The plot of the standardized residuals against X indicates very clearly that
there is a problem with this model.

(f) Based on (e), it is not appropriate to calculate confidence intervals for the
intercept and slope.

(g) Nothing can be concluded about the relationship between Y and X based
on this model as we have determined that it is inappropriate.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coeflicient of determination
R? = 486.193/7842.01 = 0.062, which is very low.

10.3.6
(a) A scatter plot of the data is given below.

30000 —

20000 —

Density
L]

10000 —

Day

(b) The least-squares estimates of 51 and [, are given by be = 2732.67 and by =
—9033.28, respectively. The least-squares line is then given by y = —9033.28 +
2732.67x. A scatter plot of the data together with a plot of the least-squares
line follows.
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Regression Plot
Density = -9033.28 + 2732.67 Day

$=729381 R-Sq=591% R-Sq(ad)=54.0%

30000 —|

20000 —|

Density

10000 —|

Day

(¢) A plot of the standardized residuals against X follows.

Residuals Versus Day

(response is Density)

Standardized Residual

Day

(d) A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals

(response is Density)

Normal Score

T T T T
-1 0 1 2

Standardized Residual

(e) The plot of the standardized residuals against X indicates very clearly that
there is a problem with this model.

(f) Taking the logarithm of the response, we obtain the least-squares line given
by In (y) = 0.169155 + 1.06500z. A scatter plot of the data together with the
least-squares line follows
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Regression Plot
Log:Density=0.169155 + 1.06500 Day

$=0606788 RSq=960% R-Sq(ad)=955%

Log-Density
|

A plot of the standardized residuals against X follows.

A normal probability

Residuals Versus Day

(response is Log-Dens)

Standardized Residual

Day

Normal Probability Plot of the Residuals
(response is Log-Dens)

Normal Score

T T T T
-2 -1 0 1
Standardized Residual

plot of the standardized residuals follows.

299

Both graphs above look reasonable and therefore indicate no evidence against
the normal linear model for the transformed response.
(g) As we can see from the scatter plot in part (a), the relationship between X
and Y is definitely non-linear, and therefore it is not appropriate to calculate
confidence intervals for the intercept and slope. However, after transforming the
response, the relationship looks quite linear, so for this model 0.95-confidence
intervals for the intercept and the slope are given by 0.169155+0.4760 (2.306) =
(—.9285,1.2668) and 1.065 £+ 0.07671 (2.306) = (.88811,1.2419), respectively.
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(h) The ANOVA table based on the transformed data (in part f) is given below.

Source | Df SS MS

X 1 93.573 93.573
Error 8 3.884 0.486
Total 9 97.458

The F statistic for testing Hy : f2 = 0 for this model is then given by F =
93.573/3.884 = 24.092 and, since F' ~ F (1,8) under Hy, the P-value is P(F >
24.092) = 0.000. Therefore, we have strong evidence against the null hypothesis
of no relationship between InY and X.

(i) Yes, we can conclude that there is a relationship. We can then express the
relationship between X and Y as E(InY | X = z) = 0.169155 + 1.06500z.

(j) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R? = 616068769/1.042E + 09 = 59.1 for the first model, which is quite low, and
R? =93.573/97.458 = . 96014 for the second model (as in part f), which is quite
high.

(k) The prediction of InY at X = 12 is given by 0.169155 + 1.06500 (12) =
12.949. The prediction of Y is then given by exp (12.949) = 4.2042 x 10°. This
is an extrapolation as 12 lies outside the range of observed X values.

10.3.7
(a)

904 .

804 L]

grade

604

504

(b) For the data analysis, we need to do some computations. We define Syp =
S (a;—a)(b;—b) for two random variables A and B. Then, Sxy = > 1 (z;—
)Y —T) = S Tili— Doy T Do Yi/n = 5822 —78-852/12 = 284, Xy x =
S (i —3)2 =" a2 — (X0, @) /n = 650 — 782/12 = 143 and Xyy =
Sy — (0 y1)2/n = 62104 — 8522/12 = 1612. The regression coefficients
are by =Y 0 (x; — %) (yi — 9)/ Soiy (i — %)* = Sxy /Sxx = 284/143 = 1.9860
and by = § — boZ = 71 — 1.9860 x 6.5 = 58.9090.
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904 L]

804

04

grade

A0+

50

week

stdres

week

(d) The standardized residual of the ninth week departs from the other residuals
in part (c). This provides some evidence that the model is not correct.
(e) From Corollary 10.3.2, the vy-confidence intervals of 8; and By are by +

s(1/n + fQ/Sxx)l/zt(lJr,y)/g(n —2) and by + 55;%215(14,’\/)/2 (n — 2). Note that
t0.975(10) = 2.228 from Table D.4. Hence, the required confidence intervals are

by £ s(1/n+72/Sxx)*t(154)/2(n — 2) = 58.0909 £ (10.2370)(0.6155)(2.228)
= [44.0545, 72.1283]

by £ 85y 5 (114 2(n — 2) = 1.9860 + (10.2370)(0.0836) (2.228)
= [0.0787,3.8933].

(f) For the ANOVA table, we need to compute the total sum of squares and
the regression sum of squares. They are > .- (y; — §)? = Syy = 1612 and RSS
= b% Z?:l(a:i—a?)Z = (Sxy/SXx)Q'SXX = Sg(y/SXX = 2842/143 = 564.0280.
Hence, ESS = 1612 — 564.0280 = 1047.9720.

Source | Df Sum of Squares Mean Square

X 1 564.0280 564.0280
Error | 10 1047.9720 104.7972
Total | 11 1612.0000
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We compute the F-statistic

RSS 564.0280

F = =
ESS/(n—2)  1047.9720/10

= 5.3821.

The probability P(F(1,10) > 5.3821) < 0.05 from Table D.5. Hence, we con-
clude there is evidence against the null hypothesis of no linear relationship
between the response and the predictor.

(g) The coefficient of determination is given by

g2 BXi(@i—7)° RSS _ 564.0280
Sii(wi—9)?  Syy 1612

Hence, almost 35% of the observed variation in the response is explained by
changes in the predictor.

10.3.8
(a) From the relationship, Z =Y — E(Y|X) and

= 0.3499.

EZIX)=EY -EY|X)|X)=EY|X)- E(Y|X)=0.
(b) The covariance can be written as

Cov(E(Y|X),Z)=E(E(Y|X)Z)—-E(EY |X))E(Z).
Theorem 3.5.2 implies E(Z) = E(E(Y | X)) and E(Z|X) = 0 from part (a).
So, E(Z) = E(E(Z|X)) = E(0) = 0. In a similar vein, F(E(Y |X)Z) =
E(E(B(Y | X)Z|X)) and E(E(Y | X)Z|X) = E(Y'| X)E(Z]X) = 0. Therefore,
Cov(E(Y | X),Z) =0—0=0.
(c) Given X =z, E(Y|X = x) is constant. So, the conditional cdf of Y given
X=uzis

Fyix(ylz) = P(Y <ylz) = P(Y —E(Y | X =2) <y - E(Y | X = 2)[x)
=P(Z<y-EY|X =a)|z)=Fz(y - E(Y|X = z)).

We see from this that the conditional distribution Y given X depends on X
only through its conditional mean E(Y | X).

10.3.9 In general, E(Y | X)) = exp(f1 + 52X) is not a simple linear regression
model since it cannot be written in the form E(Y | X) = 87 + 53V where V is
an observed variable and the /3 are unobserved parameter values.

10.3.10 Corollary 3.6.1 implies that

Cov(X,Y)

Y =E(Y)+ Var ()

(X — E(X)).

By letting 82 = Cov(X,Y)/Var(X) and 8; = E(Y) — S2E(X), the model be-
comes Y = (1 + 52X. Hence, it is a simple linear regression model where
Z =0.
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10.3.11 We can write E(Y | X) = E(Y | X?) in this case and E(Y | X?) =
B1 + 2X? so this is a simple linear regression model but the predictor is X2
not X.

10.3.12 The conditional expectation of Y given X is
EY|X)=EX+ZIX)=X+EZX)=X+EZ)=X=0+1-X.
Hence, 31 =0, B2 = 1 and 0 = Var(Y — E(Y|X)) = Var(Z) = 1.

10.3.13 The residual analysis shows the model is compatible with the data.
Also there is a linear relationship between the response and predictor from the
ANOVA test. However, the obtained R? = 0.05 is very small. That means the
linear model only explains 5% of the response. Hence, the predictor explains
only 5% of the response and 95% of the variation in the response is due to
random error. The model will not have much predictive power.

Computer Exercises

10.3.14
(a) A scatter plot of the data is given below.

600 —

500 —

Income

400 —

T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Investment

(b) The least-squares estimates of 5, and 3 are given by by = 3.04845 and
by = 344.703. The least-squares line is then given by y = 344.703 4+ 3.04845x. A
scatter plot of the data together with a plot of the least-squares line follows.

Regression Plot
Income =344.703 + 3.04845 vestmert

$=257384 RSq=817% R-Sq(ad)=80.6%

600 —|

500 —f

Income

400 —|

10 20 30 40 50 60 70 80 90 100
Investment
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(c) The plot of the standardized residuals against X follows.

Residuals Versus Investme

(response is Income)

Standardized Residual

10 20 30 40 50 60 70 80 9 100
Investme

(d) A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals

(response is Income)

Normal Score

T T T T
2 -1 0 1

Standardized Residual

(e) Both plots above indicate that the model assumptions are reasonable.

(f) A .95-confidence interval for the intercept is given by 344.703+16.48 (2.1009)
= (310.08,379.33) and a .95-confidence interval for the slope is given by 3.04845+
0.3406 (2.1009) = (2.3329, 3.764) .

(g) The F statistics for testing Hp : 2 = 0 is given by F' = 53069/662 = 80.165
and, since F' ~ F'(1,18) under Hy, the P-value is P(F > 80.165) = 0.000,
indicating strong evidence against the null hypothesis of no linear relationship.
Since we have accepted the model as appropriate, this leads us to conclude that
a relationship between Y and X exists.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coeflicient of determination
R? = 53069/64993 = . 81653, which is reasonably high.

10.3.15
(a) A scatter plot of the data follows.
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Strength
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o

300 — .

250 —
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(b) The least-squares estimates of 8, and 3 are given by by = 2.14440 and
b1 = 168.854 respectively. The least-squares line is then given by y = 168.854 +
2.14440x. A scatter plot of the data together with a plot of the least-squares

line follows.

Strength

350 —f

300 —|

250 —|

Regression Plot
Strength = 168.854 + 2.14440 Hardness

S$=260837 R-Sq=58.6% R-Sq(adj)=56.3%

70 75
Hardness

(c) A plot of the standardized residuals against X follows.

Standardized Residual

Residuals Versus Hardness
(response is Strength)

T
70 80 100

Hardness

(d) A normal probability plot of the standardized residuals follows.
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Normal Probability Plot of the Residuals

(response is Strength)

Normal Score

T T T T T
2 -1 0 1 2

Standardized Residual

(e) Both plots look reasonable. The first plot might reveal some trend indicating
a possible violation of the assumption of equal variances.

(f) Then, 0.95-confidence intervals for the intercept and the slope are given
by 168.854 + 28.98 - (2.1009) = (107.97,229.74) and 2.1444 £ 0.4250 (2. 1009) =
(1.2515,3.0373) , respectively.

(g) The F statistic for testing Hy : B2 = 0 is given by F' = 17323/680 = 25.475
and, since F' ~ F(1,18) under Hy, the P-value equals P(F > 25.475) = 0.000,
indicating strong evidence against the null hypothesis of no linear relationship.
We conclude that there is a linear relationship between X and Y.

(h) The proportion of the observed variation in the response that is being ex-

plained by changes in the predictor is given by the coeflicient of determination
R? =17323/29570 = . 58583.

10.3.16
(a) A scatter plot of the response Y against the predictor W (speed) follows.

65 — °
°
L]
55 — ° ° o
8 45 R o

35 —

®
T T T T T T T T T
2400 2500 2600 2700 2800 2900 3000 3100 3200

Speed

25 —

The scatter plot of the response Y against the predictor X (temperature) follows.
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65 — o
.
55 | .. .
S 45 — o o
35 — .
25 - °*
T T T
45 55 65
Temperature

(b) The least-squares estimates of 1, 32, and S5 are given by by = 87.8, by =
—0.0406 and b3 = 1.23. The least-squares equation is then given by ¥ = 87.8 —
0.0406W + 1.23X.

(c) a plot of the standardized residuals against W follows.

Residuals Versus Speed
(response is Tar)

Standardized Residual

T T T T T T T T T
2400 2500 2600 2700 2800 2900 3000 3100 3200
Speed

The plot of the standardized residuals against X follows.

Residuals Versus Temperat

(response is Tar)

Standardized Residual

T
45 55 65
Temperat

(d) A normal probability plot of the standardized residuals follows.
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Normal Probability Plot of the Residuals
(response is Tar)

Normal Score

T T T T
2 -1 0 1

Standardized Residual

(e) The normal probability plot seems to indicate that the normality assumption
is suspect. The other residual plots look reasonable.

(f) The .95-confidence intervals for the regression coefficients are given by 87.8 +
28.98(2.3646) = (19.274,156.33) for (1, —0.0406 + 0.009142(2.3646) =
(—0.062217, —0.018983) for S5, and 1.23 +0.3595(2.3646) = (.37993,2.0801) for

Bs.
(g) The ANOVA table is given below.

Source | Df SS MS
W, X 2 1159.29 579.65
Error 7 315.58 45.08
Total 9  1474.87

The F statistic for testing Hy : B2 = 3 = 0 is given by F' = 579.65/45.08 =
12.858, and since F' ~ F'(2,7) under Hy, the P-value equals P(F > 12.858) =
0.0045. This provides strong evidence against the null hypothesis of no relation-
ship between the response and the predictors.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R? =1159.29/1474.87 = . 78603.

(i) The ANOVA table for testing the null hypothesis Hy : 82 = 0, given that X
is in the model, follows.

Source | Df SS MS

X 1 271.06 271.06
WX 1 888.24 888.24
Error 7 315.58 45.08
Total 9  1474.87

The F statistic is then F' = 888.24/45.08 = 19.704, and since F' ~ F' (1,7) under
Hy, the P-value equals P (F > 19.704) = .00301, so we have some evidence
against the null hypothesis. We conclude that W (speed) has an effect on the
response Y (tar), given that X is in the model.

(j) The estimate of the mean of Y when W = 2750 and X = 50.0 is given by
Y = 87.8—-0.0406 (2750) + 1.23 (50.0) = 37.65. This is an extrapolation because
50.0 is not in the range of observed X values.
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10.3.17
(a) A scatter plot of the response Y against the predictor X follows.

90 —f
80 —
70 —
.
60 —
50 —
40 —|
30 o
20 —
10 o

0 -

(b) The least-squares estimates of 81, 82 and (3 are given by by = 0.752 and
be = 2.10 and b3 = 2.92. The least-squares line is then given by ¥ = 0.752 +
2.10X +2.92X2.

(c) A plot of the standardized residuals against X follows.

Residuals Versus X

(resporse is Y)

Standardized Residual

T T T
5 0 5
X

(d) A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals
(response is Y)

Normal Score

T T T T
2 1 0 1 2

Standardized Residual

(e) All plots above, for the most part, look reasonable, so the model assumptions
seem reasonable.

(f) Then, .95-confidence intervals for the regression coefficients are given by
0.752 =+ 0.6553(2.306) = (—.75912,2.2631) for 81, 2.10 £ 0.1372(2.306) =
(1.7836,2.4164) for B2, and 2.92 + 0.04911(2.306) = (2.8068, 3.0332) for Ss.

(g) The ANOVA table is given below.

Source | Df SS MS
X, X2 ] 2 78255 39127
Error 8 16.6 2.1
Total | 10 7842.0
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The F statistic for testing Hy : 82 = B3 = 0 is given by F = 3912.7/2.1 =
1890.54, and since F' ~ F'(2,8) under Hy, the P-value equals P (F > 1890.54) =
0.000, indicating strong evidence against the null hypothesis of no relationship
between the response and the predictors.

(h) The proportion of the observed variation in the response that is being ex-
plained by changes in the predictor is given by the coefficient of determination
R? = 7825.5/7842.0 = . 9979, which is very high.

(i) The ANOVA table for testing the null hypothesis Hy : 83 = 0 given that X
is in the model follows.

Source | Df SS MS

X 1 486.2  486.2
X2 |X |1 73393 7339.3
Error 8 16.6 2.1
Total | 10 7842.0

The F statistic is given by F' = 7339.3/2.1 = 3494. 9, and since F' ~ F' (1, 8) un-
der Hy, the P-value equals P (F > 3494.9) = 0.000, so we have strong evidence
against the null hypothesis. We conclude that X? has an effect on the response,
given that X is in the model.

(j) We predict Y at X = 6 by 29.9991 4 2.10236 (6) = 42.613 using the simple
linear model and by 0.752+42.10 (6) 4+2.92 (6%) = 118.47 using the linear model
containing the linear and quadratic terms. So there is a substantial difference
in these predictions.

Problems

10.3.18 First, note that the mean of this distribution is given by (1/2)* +
(1/2)((6 —2) /2) = (8 — 1) /4 and that this value is in the interval (7/4, c0).
Therefore, the least-squares estimate is given by Z whenever Z € (7/4,c0) and
is equal to 7/4 whenever T < 7/4.

10.3.19 Since Y7, (z; — )* = 0, we must have (z; — z)> = 0, so x; = & for
every ¢ and all the z; are equal to the same value, say . Then we need to
estimate the conditional mean of Y at X = z based on a sample (y1,...,yn)
from this distribution. The model says that this conditional mean is of the form
E(Y|X =1x) = 81 + B2z, where (1,32 € R'. Therefore, E (Y | X = z) can be
any value in R', and the least-squares estimate is given by the sample average
7.

10.3.20 For convenience we write Cov(A, B| X1 = z1,..., X, = 2y)
=Cov(A4, B) . By Theorem 3.3.2 (linearity of covariance) we have

Cov (Y; — By — BQ.T,‘Z',Y;' — By — BQ.Tj) = Cov (Y; Y}) — Cov (Y;,Bl + BQ.T,‘J')
— Cov (Y}, By + ngl) + Cov (Bl + Box;, By + ngj) .
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Now Cov(Y;,Y;) = 024,j, where 6;; = 1 when i = j and is 0 otherwise. Also,

Yo (V5 =Y) () — 90))
Z;'l:1 (z; — ‘f)2

Cov (Y;, Bg) = Cov (Y;,

1 n n B n B
= Cov [Vi,) 2,V -2> YV, -V z;+nzy
n ) i VRS J J
> i (@ — ) j=1 j=1 j=1
1 n B _n B
=— ~Cov | Y; z;Y;: —xnY —nzY z; +nzY
" ) i) L j
>ic (@i — ) J; g;
1 Cov | Y; iﬂc Y; —znY
= e Cov | Vi, ) wY—
>ie (T — ) j=1
1 _
= —Zn ( 7)2 (xiO'Q — nz Cov (Yi,Y))
i=1\Ti — T
1 2(g; — 7
=< ,2(%“72_3—3‘72): i (@ x22'
> iy (T — ) Yiey (i — )

and Cov(Y;, b1) :COV(}/Z‘,Y — Bgf) :COV(Yi,Y) — zCov(Y;, Ba) = 0%/n —
0% (x; —2) &/ .7, (xi — %) . Therefore,

2

2 (. 7\ 2 (. _ 5 .
COV(EaBl+B2xj):%_ o (z:~ ) o (w3

S @2 YL (7

) = Cov (Y}, B1 + Baw;) .

_g<1+ui@ﬂ%j@
n dic (@i — )
Also, using Theorem 10.3.3 we have that

Cov (Bl + Box;, B1 + ngj)

= Var (B1) + x;x; Var (Bs) + (x; + x;) Cov (B1, B2)

= g2 (l + z? Lilj _ (wl + xj) z )

n _\2 + n _\2 n _\2
no i (T —2) >icr (T — ) >ie (@i —2)

a1 D)
<n+'zlmm—ff>'

All together this implies that
Cov (Y; — Bl — BQ.Ti,Y}' — Bl — BQ.’IZ]')

2 o1 | (@i—2) (v — ) o1 | (@i—2) (v — )
=0%0;; — 207 | = —~ — o’ | —
<n+'z#mm—xf>*‘ ( Y@ )

2 o (1 (zi—%)(z; —T)
ZO'(;ij—O' - T — 5 .
Qﬁ'zpmm—m )
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10.3.21 We have that

Y, — (Y—Bgff—ngi) ZE—Y—BQ(xi—f)
_ " o(x;—7) (Y=Y
ZE—Y—(ﬂci—f)Zﬂ_l(nJ )(,jg )
Zj:l (z; — )
and we note that this is a linear combination of the independent normals

Y1,...,Y,. Therefore, by Theorem 4.6.1 we have that Y; — (By + Bsx;), given
X1 =uz1,...,X, = x,, is normally distributed with mean

Y; — (B1 + Bax;) =

E(Y;‘—(Bl—l-ngi) |X1:{L‘1,...,Xn:1‘n)

ZE(Y;'|X1:ZL‘l,...,Xn:{L‘n)—E(B1|X1:ml,...,Xn:JIn)
—E(BQ|X1:$1,...,Xn:$n).Ti
= P+ Bax; — 1 — P2z =0,

and with variance (using Problem 10.3.20 with i = j)

Var(Y;—(Bl—l—ngl) |X1 :.Tl,...,Xn—.Tn)

_02<1_1_ (2: — 2)° )
n Z?ﬂ(xi_f)

Therefore,
Y, — (B1 + Bax;
) ( 1(4___2;) 1/2 ~ N(0,1)
7 (1 T T T @)’
as claimed.

10.3.22 We have that

:Y—Y—(mi—a‘c)Zy:l(fj_i)(yj;y)
Zj:l(xj_'f)

and we note that this is a linear combination of the independent normals
Y, Y1,...,Y,. Therefore, by Theorem 4.6.1 we have that Y — (B + Bax), given
X=uzX =x,...,X,, = x,, is normally distributed with mean

EY —-(B1+Bx) | X=2,X1=21,..., X, =)
=FEY | X=z,X1=21,.... Xy =)
—EB | X=2,X1=21,..., X, =x,)
—EB | X=x,X1=21,....,. Xy, =ap)2
=FEY|X=2)—-EB|X1=21,...,Xpn =2n)
—FE(B| X1 =21,..., Xy =ap)2
=01+ B2z — 1 — P2z =0,
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and with variance (using Corollary 10.3.1)

Var (Y — (B1+ Boz) | X =2, X1 =21,..., Xy, = xp)
=Var (Y |X =z)+ Var (B1 + Boz | X1 = 21,..., X,y = )

= <1+%+ZH($(——§C)2_)2>.
i=1\Ti =&

Also, Y —(B; + Baz) is independent of (n—2)5%/02 ~ x?(n—2), so by Definition
4.6.2

T — Y — (Bl —I-ng) / (7’L—2)52
B 1 @—? 2"\ (n—2)o?
o (1 +1q n;‘;(m‘i‘_@z)
Y — (By + Byx)
= o 1/2~t(n—2).
$(1+1+=22)

Therefore,
7:P(—ti21 (n—2)<T<t1+Tv (n—2)) X:m,Xlzﬂcl,...,anﬂcn),

so the probability that
1/2
1 i — X 2
Y e Bl+ngiS<1———(m—x))2> troy (n—2)

is equal to 7.

10.3.23
(a) Putting b= >"1" | miyi/ > i, x7, we have that

i=1"%)

NE

(yi — Ba;)? = Z( yi — bx; + bx; — 5357:)2

1=1

(i = b)) +2(b—B) Y (yi — bwi) i + (b — B)* > a7
i=1 i=1

.
Il

|
M3 -

i=1

(y; — bx;)?

Il
HM

i=1

since Y1 (yi — bz xi = > iy Ty — bZ?:l 2? = 0, and this is clearly mini-

mized, as a function of 3, by b.

(b) We have that

E(Y;|X1 :'T17"'7X7’L:'T7’L)
Z:’il:l m72

EB|X)=x,...,Xp=2,) = D i Ti

Y mi(Br) Y
S v aiacs > Ak
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rox?Var (V| X, = e Xy =x,
Var(B|X1:x1,...,Xn:xn):2171% ar( | nl 2‘77127 ) x )
(> iz 27)
AT s g

C(CLie)t Ximel
(c) We have that

E(S2|X1:.’E1,...,Xn:;1;n)
= 1 ZE((Y;_B'T’L)2|X1:~T17’Xn:xn>

n—li:

and
E((Y;—B.Z‘l)2 |X1 :.Tl,...,Xn :.Z‘n>

:E((K—6$1+5$7—B$7)2 |X1:$1,...,Xn:1‘n)
=Var (Y; | X1 =21,..., Xp =2,) + 27 Var (B| X1 = 21,..., X, = )
— 22, Cov(Y;,B| X1 =21,..., X = xp)
02:102 22

2 %
= n - n Vi Y| Xy = 7"'7Xn: n
i PO D DA ar (Vi [ Xr = o)

o252 x2

— 2 _ 2 2 1 _ 2

=0 —Zn 3 = g —n 5 B) .
i=1 T D1 T

Combining these, we obtain F (S?| X1 = z1,..., X, = z,) = 0°.
(d) We have that

iysz(yi—bxi—kbxi) i( —bx;) +2bz —bxi)xi+b2im?

i=1 i=1 i=1 i=1
n n
= Z (yi — bx;)” + b? Zm?
i=1 i=1

Here we have that Y . (y; — bx;)? is the error sum of squares and b2 S x?
is the regression sum of squares The coefficient of determination is then given
by R? = b? >0 2?/>"" , y? and this is the proportion of the total variation
observed in Y (as measured by > 1| y3 2) due to changes in X.

(e) Since B is a linear combination of independent normal variables we have
that B is normally distributed with mean given by (part (b)) 8 and variance
(part (b)) given by 02/ | z7.

(f) We have that (B— ) /o (X1, 2?) V2 N(0,1) independent of (n —
1)82/0% ~ y2(n—1), so (B — 5)/5(21 22~ t(n—1). Now there is
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no relationship between X and Y if and only if 5 = 0, so we test Hy : 8 = 0 by
computing the P-value P(|T| > [b/s (37" m2)71/2 ), where T ~t (n —1).

i=1Tj
(g) We have that y; = bx; + (y; — bz;) and when the model is correct y; —
bx; is a value from a distribution with mean 0 and variance (see part (b))

o? (1 —a2/>, ?) . Therefore, the ith standardized residual is given by

(yi —bay) /s (1 —a?/ >0, 2F) 2 We can plot these in residual plots and nor-
mal probability plots to see if they look like samples from the N (0, 1) distribu-
tion.

10.3.24 First, we should express the 8’s in terms of the a’s as follows By = as
and 51 = a1 — aZ. Substituting those into the sum of squares, and noting that

oy (@ — ) =Y (yi — ) =0, we get

Z (yi — B1 — Pozi)’

i=1

= Z (yi —on — o (z; — x))z
i=1

:Z(yz—@-FQ—Oq — ap (z; — 7))
i=1

=1 =1 i=1
+Z(gj—o¢1 —ag (x; —ac))2
=1
=Y Wi—9)* 20> (i) (@ —2) +nF— )’
i=1 i=1
— 20 (y—ozl)Z(ﬂcZ —I) —koz%Z(mZ —z)?
i=1 i=1
= wi-9)7 20> Wi (@ -5 +nG-a)+ady (z—2)
i—1 i=1 i=1
as claimed.

Clearly, this is minimized for oy, independently of s, by selecting a; = .
Then we must minimize

~200) (i ) (i~ %) + 03y _ (2~ )’

=1

Yy (i —2)° i (@i — &)’
for ay. Clearly, this is minimized by taking
as =30 (g —9) (w — 7)) 0, (v — ©)° as claimed.

1=1

Y (o - <a2 _ i B9 (@i f>>2 O =) = ®)°
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10.3.25 The likelihood function is given by

2

2 2 2
—n/2 c, — CxQa n _ C,
(270%) " exp <—7> exp (=557 (01 = 9)°) exp (‘ ‘ (0‘2_“)2)

202
The posterior distribution of ;, given ¢2, is then proportional to

exp | —5g (a1 — )" — - (01— m)?
202 2702
K
2
Ti

1 1 9 _
xexp | —5— n—|—7_—12 o] —2 | ny+ o
1 2
x € 1 n -+ 1 « n -+ 1 n’—i—ul
<p | ——— el _ el 7l
P 202 T2 ! T2 y T2

and we recognize this as being proportional to the density of a
N((n+ 1/7'12)_1 (ng + pa /7)), (n+ 1/7'12)_1 o?) distribution.
Also, the posterior distribution of as, given o2, is then proportional to

c2 2 1 2
P | ~gp7 (02 —a) — 5acg (02— )
2
1 2, 1 2 2 H2
X exp <_T¢'2 {<0T+T_22) gy — <cxa+ 7_22 (D)
1 1 1\ L ’
o 2, L (2 & 2 2
oo () (o (242) (e00)

2
and we recognize this as being proportional to the density of a
N((e2 + 1/7‘22)71 (Ra+ p2/73), (2 + 1/7‘22)71 0?) distribution.

Finally, the posterior density of 1/0? is proportional to
(1/5?) 2t oxp (—vay/0?) , Where

-1 2
1 (Ci — CLZCi) + |:ny2 + %i_ — <n+ 7-_12> (ngj—i— ‘;%) ]
1 1 1
=35 2 ~1 2 +v
tlec g (@) (e s)]
2 2 2

and we recognize this as being proportional to the density of a
Gamma(k + n/2, vgy) distribution. Therefore, we established that the posterior

distributions above are from the same family of distribution as the prior and
therefore this prior is conjugate.

Uy

10.3.26 When 7 — 00,72 — 00 and v — 0 and the posterior converges to

2
a1 | ag, 0 ~ N(7,0%/n), az|o® ~ N(a,z—2), 1/o% ~ Gamma(
x

n
£t 5ov)
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where v,y = {cg — a%i} /2, then the marginal posterior density of «; is pro-
portional to

I g;)é j 12L () e} a(z)
G

Making the change of variable 1/0% — w, where w = (me + % (o — gj)2> Jo?,

i exp{ (vaw + 5 (01 = 9)%) %} d (%)

in the above integral, shows that the marginal posterior density of «; is propor-
_ 2r4ndl
2

tional to (1 + 5 (o — gj)2> . This establishes (Problem 4.6.17) that

. S . . . a1 —7 ~
the posterior distribution of «; is given by 2k + n—IL\/m t(2k+n).

Challenges

10.3.27 Let p be the mean and 0% be the variance of the distribution of X.
By the SLLN we have that X “3 4 so, of necessity, X? “3 p2. Further,

I (Xi— X)2 =1 Z? L X2 - X225 0% + 42 — p? = o? since (again by
the SLLN) n= ! >°" | X2 3 E(X?) = 0%+ p2. Also, for any random variable
Y, we have that Y/y/n “3 0. Therefore,

X'_X _ (X X)/\/_ a.s.

- =0.
oL (n-X)? i, (- %)

Qlo

10.4 Quantitative Response and Categorical
Predictors

Exercises

10.4.1
(a) A side-by-side boxplot of the data follows.

>~
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(b) A plot of the standardized residuals against A follows.

Residuals Versus A
(response is Y)

Standardized Residual

A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals

(response is Y)

Normal Score

Standardized Residual

Both plots look reasonable, indicating no serious concerns about the correctness
of the model assumptions.
(c) The ANOVA table for testing Hy : 81 = 82 = (3 is given below.

Source | Df  SS MS

A 2 437 2.18
Error 9 1885 2.09
Total 11 23.22

The F statistic for testing Hy is given by F' = 2.18/2.09 = 1.0431, and since
F ~ F(2,9) under Hy, we have P-value P (F > 1.0431) = .39135. Therefore,
we do not have evidence against the null hypothesis of no difference among the
conditional means of Y given X.

(d) Since we did not find any relationship between Y and X, there is no need
to calculate these confidence intervals.

10.4.2
(a) A side-by-side boxplot of the data follows.
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30 —|

20 —|

10 —

(b) A plot of the standardized residuals against A follows.

Residuals Versus A
(response is Y)

Standardized Residual

T T T
1 2 3

A
A normal probability plot of the standardized residuals is given below.

Normal Probability Plot of the Residuals
(response is Y)

Normal Score

Standardized Residual

Both plots indicate a problem with the model assumptions.

(¢) A possible way to “fix” this problem is to remove the extreme observation in
the first category, namely 33.07. After removing this value, we get the following
plot of the standardized residuals against A and normal probability plot of the
standardized residuals. These look much more reasonable.
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Residuals Versus A

(response is Y)

Standardized Residual

Normal Probability Plot of the Residuals

(responseis Y)

Normal Score

T T T T
2 1 0 1

Standardized Residual

(d) The ANOVA table for testing Hy : 81 = 52 = f3, after removing the outlier,
is given below.

Source | Df SS MS
A 2 14.840 7.420
Error | 8 58.904 7.363
Total 11 73.744

The F statistics for testing Hy is given by F' = 7.41/7.363 = 1.01, and since F' ~
F (2,8) under Hy, the P-value equals P (F > 1.01) = .407. Therefore, we have
no evidence against the null hypothesis of no difference among the conditional
means of Y given X.

(e) There is no need to compute these confidence intervals as we found no
evidence of a relationship between the response and the predictor.

10.4.3
(a) A side-by-side boxplot of the data follows.
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% moisture
@
N

Cheese

(b) A plot of the standardized residuals against cheese follows.

Residuals Versus Cheese

(response s % moist)

Standardized Residual

T T T
10 15 20

Cheese

A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals
(response is % moistu)

Normal Score

1 o 1
Standardized Residual

Both plots indicate a possible problem with the model assumptions.
(¢c) The ANOVA table for testing Hy : 81 = B2 is given below.

Source | Df SS MS

Cheese | 1 0.114 0.114
Error | 10 26.865 2.686
Total | 11  26.979

The F statistic for testing Hy is given by F = .114/2.686 = .04 and, since
F ~ F(1,10) under Hy, the P-value equals P (F' > .04) = .841. Therefore, we
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do not have any evidence against the null hypothesis of no difference among the
conditional means of Y given Cheese.

10.4.4
(a) A side-by-side boxplot of the data follows.

250 —

aE

150 —

Weight gained

T T T T T
0.00 0.04 0.07 0.10 0.13

Gossypol %

50 —

Some of the boxplots don’t look very symmetrical, which should be the case
for normal samples. So these graphs are some evidence that the normality
assumption may not be appropriate.

(b) A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals
(response is Weight g)

2.5
2.0
1.5—
;
1.0 -t
g ra
3 054 .
»n l/
— 00—
[+ .
E o5 ,J’
o ..l
Z a0+ :
s
15—
204
25
T T T T T T
3 2 1 0 1 2

Standardized Residual

A plot of the standardized residuals against the factor gossypol follows.



10.4. QUANTITATIVE RESPONSE, CATEGORICAL PREDICTORS 323

Residuals Versus Gossypol
(response is Weight g)

Standardized Residual

I I I
0.00 0.05 0.10

Gossypol

Again, these plots provide some evidence that the normality assumption may
not be appropriate.
(c) The ANOVA table for testing Hy : 81 = B2 = 3 = B4 = 35 follows.

Source | Df SS MS

Gossypol | 4 141334 35333
Error 62 38754 625
Total 66 180087

The F statistic for testing Hy is given by F' = 35333/625 = 56. 533, and since
F ~ F (4,62) under Hy, the P-value equals P (F > 56.533) = 0.000. Therefore,
we have strong evidence against the null hypothesis of no difference amongst
the mean level of the response given different amounts of gossypol.

(d) The 0.95-confidence intervals for the difference between the means are given
in the following table.

Famly error rate = 0.279
Individual error rate = 0.0500
Qitical value = 1.999
Interval s for (colunm | evel nean) - (row|evel nean)
0.00 0.04 0.07 0.10
0.04 -14.75
24.40
0.07 28.10 21.50
66. 27 63.23
0.10 84. 60 77.85 35.98
119. 42 116.53 73.67
0.13 85.34 78.78 36.87 -16. 44
124. 49 121. 40 78.59 22.24

Only the mean at the 0.00% level does not differ from the mean at the 0.04%
level and the mean at the 0.10% level does not differ from the mean at the 0.13%
level at the 5% significant level, as both intervals include the value 0.
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10.4.5
(a) A side-by-side boxplot of the data follows.

16 —

15 —

14 —

13 —

12 — I ‘

Coblat Coblat+Copper  Control Copper
Group

(b) A plot of the standardized residuals against the predictor follows.

Residuals Versus Treatmen

(response is Y)

Standardized Residual
°

Treatmen

A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals

(response is Y)

Normal Score

T T T T T
2 -1 0 1 2

Standardized Residual

Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
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(c) The ANOVA table for testing Hy : 81 = B2 = B3 = (B4 follows.

Source Df SS MS

Treatment | 3 19.241 6.414
Error 20  11.788 0.589
Total 23 31.030

The F statistic for testing Hy is given by F' = 6.414/0.589 = 10.89 and, since
F ~ F(3,20) under Hy, the P-value equals P (F' > 10.89) = .00019. Therefore,
we have strong evidence against the null hypothesis of no difference among the
conditional means of Y given the predictor.

(d) The 0.95-confidence intervals for the difference between the means are given
in the following table.

Famly error rate = 0.192
I'ndividual error rate = 0.0500

Qitical value =208

Intervals for (colunm |evel nean) - (rowlevel nean)

1 2 3
2 -0.3913
1.4580
3 -2.2746 8080

-2
-0.4254 -0. 9587

4 -2.5246 -3.0580 -1.1746
-0.6754 -1.2087 0. 6746

The mean response for the control treatment does not differ from the mean
response given the Cobalt treatment and the mean response for the Copper
treatment does not differ from the mean response for the Cobalt+Copper treat-
ment at the 5% level, since both intervals include the value 0. All other mean
differences are judged to be nonzero at the 5% level.

10.4.6
(a) A side-by-side boxplot of the data follows.

25 —

15 —

Weight gains

Diet

(b) A plot of the standardized residuals against Diet follows.
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Residuals Versus Diet
(response is Weight g)

Standardized Residual

T
1.0 15 2.0
Diet

A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals
(response is Weight g)

Normal Score

T T T T T
-2 -1 0 1 2

Standardized Residual

Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
(c) The ANOVA table for testing Hy : f1 = B2 follows.

Source Df SS MS
Treatment 1 136.4 136.4
Error 20 434.0 21.7
Total 21  570.4

The F statistic for testing Hy is given by F = 136.4/21.7 = 6.2857 and, since
F ~ F(1,20) under Hy, the P-value equals P (F > 6.2857) = .02091. There-
fore, we have evidence against the null hypothesis of no difference among the
conditional means of Y given Diet at the 5% level but not at 1%.

(d) A .95-confidence interval for the difference between the means follows.

1 1\ /2
B1 — B2 € (10.0 — 15.0) + 4.658 (1—0 + E) 2.086 = (—9.1604, —.83961)
Note that this does not include the value 0 and therefore supports our conclusion

from part (c).

10.4.7
(a) A side-by-side boxplot of the data follows.
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80 —

70 —

Marks

60 —

T T
Calculus Statistics
Course

(b) Treating the marks as separate samples, the ANOVA table for testing any
difference between the mean mark in Calculus and the mean mark in Statistics
follows.

Source | Df SS MS

Course | 1 36.45 36.45
Error | 18 685.30 38.07
Total | 19 721.75

The F statistic for testing Hy : 51 = (2 is given by F' = 36.45/38.07 = .95745
and, since F' ~ F (1,19) under Hy, the P-value equals P (F' > .95745) = .3408.
Therefore, we do not have any evidence against the null hypothesis of no differ-
ence among the conditional means of Y given Course.

A plot of the standardized residuals against Course follows.

Residuals Versus Course
(response is Marks)

Standardized Residual

T
10 15 20
Course

A normal probability plot of the standardized residuals follows.
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Normal Probability Plot of the Residuals

(response is Marks)

Normal Score

T T T T
-1 0 1 2

Standardized Residual

Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.

(c) Treating this data as repeated measures, the mean difference between the
mark in Calculus and the mark in Statistics is given by d = —2.7 with stan-
dard deviation s = 2.00250. The P-value for testing Hy : p1 = e, since
T ~ t(9) under Hy, the P-value is given by P ([T > |-2.7/ (2.00250/+/10)|) =
2P (T > 4.2637) = .0021, so we have strong evidence against the null hypoth-
esis. Hence we conclude that there is a difference between the mean mark in
Calculus and the mean mark in Statistics. A normal probability plot of the data
follows and this does not indicate any reason to doubt model assumptions.

Normal Scores
®

Mark difference

(d) The estimate of the correlation between the Calculus and Statistics marks
is given by the sample correlation coefficient r,, = 0.944155.

10.4.8
(a) A side-by-side boxplot of the data follows.
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16 —

15 —

14 —

13 —

Number of florets

12 —

T T
Corm High Corm Low

Treatment

(b) Treating the Corm High and Corm Low measurements as separate sam-
ples, the ANOVA table for testing any difference between the population means
follows.

Source Df SS MS

Treatment | 1 5.040 5.040
Error 12 16.014 1.335
Total 13 21.054

The F statistic for testing Hy : 81 = B2 is given by F' = 5.040/1.335 = 3.7753
and, since F' ~ F'(1,19) under Hy, the P-value equals P (F > 3.7753) = .07585.
Therefore, we do not have substantial evidence against the null hypothesis of
no difference amongst the conditional means of Y given Corm level.

A plot of the standardized residuals against Treatment follows.

Residuals Versus Treatmen

(response is Number o)

Standardized Residual

T
1.0 15 2.0
Treatmen

A normal probability plot of the standardized residuals follows.
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Normal Probability Plot of the Residuals

(response is Number o)

Normal Score

T T T T
-1 0 1 2

Standardized Residual

Both plots look reasonable, indicating no concerns about the correctness of the
model assumptions.
(c) Treating this data as repeated measures, the mean difference between the
number of florets in plots with Corm High and the number of florets in plots
with Corm Low is given by d = —1.2 with standard deviation s = 1.395. The
P-value for testing Hy : u1 = pg, since T ~ ¢ (6) under Hy, equals P(|T| >
| —1.2/(1.395/V/7|)) = 2P(T > 2.2759) = .06316, so we do not have substantial
evidence against the null. Hence, we conclude that there is no difference between
the mean number of florets in plots with Corm High and the mean number of
florets in plots with Corm Low.

A normal probability plot of the data follows and this reveals no evidence of
model incorrectness.

Normal Scores
o
|
L]

°
T T T T T T T T T T
35 30 -25 -20 -15 -10 -05 00 05 10

Difference

(d) The estimate of the correlation between the Calculus and Statistics marks
is given by the sample correlation coefficient r,, = 0.301949.
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10.4.9 When Y7 and Y, are measured on the same individual we have that
Var(Y; — Y2) = Var(Y7)+Var(Yz) — 2Cov(Y1,Ys) = 2(Var(Y7)— Cov(Y1,Y2)) >
2Var(Y7) since Cov(Y1, Y3) < 0. If we had measured Y; and Y3 on independently
randomly selected individuals, then we have that Var(Y; —Ys) = 2Var(Y]) since
Cov(Y1,Y2) = 0 in that case. So we get less variation under independence
sampling.

10.4.10 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictor X, i.e., the conditional distribution of Y’
given X, depends on X only through E(Y | X) and the error Z =Y — E(Y | X)
is independent of X, (2) the error Z =Y — E(Y | X) is normally distributed.

10.4.11 The following assumption is required: the difference of the two re-
sponses Y; and Y5 is normally distributed, i.e., Y7 — Yo ~ N(u, 0?).

10.4.12 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictors X; and Xo, i.e., the conditional dis-
tribution of Y given (X7, X5), depends on (X7, X5) only through E(Y | X1, X5)
and the error Z =Y — E(Y | X1, X5) is independent of (X1, X2), (2) the error
Z =Y — E(Y| Xy, X5) is normally distributed.

10.4.13 The following assumptions are required: (1) we have a regression model
relating the response Y to the predictors X; and Xs, i.e., the conditional dis-
tribution of Y given (X1, X2), depends on (X7, X3) only through E(Y | X3, X3)
and the error Z =Y — E(Y | X1, X») is independent of (X1, X3), (2) the er-
ror Z =Y — E(Y | X1, X3) is normally distributed, and (3) X; and Xs do not
interact.

Problems

10.4.14 To prove this we express the sum of squares as follows

>3 =80 = 03 (s~ 45—

i=1 j=1 i=1 j=1

:Zi(yij_gi)2+222(yij—ﬂi — Bi) +an i — Bi)
=1 j=1 1=1 j=1

First, note that the second term is equal to O since

Uz

Z (vij — i) (Ui — Bi) = Z Yij — NilYi

j=1
= (5 — Bi) Zyij —niZ# =0
j=1 j=1 "

So the above sum of squares is minimized as a function of ; if and only if the
second term is equal to 0, and if and only if §; — 5; = 0, if and only if 5; = ;.
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10.4.15 To prove this we express the sum of squares as follows.

ZZ(?JU -79) = ZZ(?JU ~ Ui+ 05— )

i=1 j=1 i=1 j=1

= ZZ(%; - 5)° +22i(yij =) (Wi —9) +Zm @ -9’
i=1 j=1 i=1 j=1 i=1

Note that the second term is equal to 0 since

a

a n; n;

ZZ (g — ¥i) (Ui —9) = Z ) Zyij - NYi

i=1 j=1 i=1 j=1

ZZ (i —9) Zyij_ni nL: =0
=1 j=1 j=1

10.4.16 If an interaction exists between the two factors, then the b response
curves are not parallel and therefore cannot be horizontal, i.e., there must be
effect due to both factors.

10.4.17 By assumption we have Y;; ~ N (61-,02) and these are all indepen-
dent. Therefore, we have that Y; ~ N (8;,0?/n;). Further, Cov(Y;;,Y;) =

Cov (Yij, Sorig %) = 0?/n;. Therefore, by Theorem 4.6.1 we have that Y;; —
Y; ~ N (0,0% (1 —1/n;)) as claimed.

10.4.18 By assumption we have Y, ~ N (Bij,a2) and these are all inde-
pendent. Then we have that }71-]- ~ N (61-]-,02/71“) . Further, COV(Y;]-;{,YU) =
Cov(Yijk,Z”” Zit) = 62 /n;;. Therefore, by Theorem 4.6.1 we have Y;j; —

=1 ny;

Y;‘j ~ ]V(O,O’2 (1 - 1/7’Lij)) .

10.4.19 First, recall that s* = == > 7, 23:1 SorE Yk — gij)2. Now if
ni; = 1 then y;; = y,;x for all i and j. Hence, y;;1 — 7;; = 0, which establishes
that s? = 0 as claimed.

10.4.20 By looking at various plots of the residuals, for example, a normal
probability plot of the standardized residuals.

Computer Problems

10.4.21 Controlling a family error rate of 0.0455, the 0.95-confidence intervals
for the difference between the means are given in the following table. It required
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a 0.01 individual error rate.

10.4.22

Fanly error rate = 0.0455
Individua error rate = 0.0100

Qitical value =285

Intervals for (col um level nean) - (rowlevel nean)

@l at @bl at+C Qntrol

@bl at +C -3.3%44

Qntrol -1.7944 0.3389
0.7277 2 8611

-3.1444 -10111 -2.6111
-0.6223 1511 -0.0839

333

(a) A side-by-side boxplot of the data by treatment (using the coding 3(i—1)+)

follows.

39

38

37

% moisture

36

35

treatment

(b) A table of the cell means is given follows.

(¢) A normal probability plot of the standardized residuals follows.

Lot 1

Lot2 Lot 3

Cheese 1 | 38.905
Cheese 2 | 38.985

35.575  36.510
35.550  35.870
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Normal Probability Plot of the Residuals

(response is % moistu)

Normal Score

Standardized Residual
A plot of the standardized residuals against each of the treatment combinations
(using the coding 3(i — 1) + j) follows.

Residuals Versus treatmen

(response is % moist)

Standardized Residual
°

treatmen

Both plots looks reasonable, so indicating no serious concerns about the cor-
rectness of the model assumptions.
(d) The ANOVA table for testing all relevant hypotheses follows.

Source Df SS MS
Cheese 1 0.114 0.114
Lot 2 25.900 12.950
Interaction | 2 0.303 0.151
Error 6 0.662 0.110
Total 11 26.979

The F statistic for testing Hy : no interaction between cheese and lot, is
given by F' = 0.151/0.110 = 1.3727 and, since F' ~ F(2,6) under Hy, the
P-value equals P (F > 1.3727) = .32293. Therefore, we do not have evidence
against the null hypothesis of no interaction effect.

We can then proceed to calculate the P-value for testing Hy : no effect
due to cheese. This is given by P (F > 0.114/0.110 = 1.0364) = . 34794, since
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F ~ F (1,6) under Hy. Therefore, we do not have any evidence against the null
hypothesis of no effect due to Cheese.

The P-value for testing Hy : no effect due to lot, since F' ~ F(2,6) under
Hy, is given by P (F > 12.950/0.110 = 117.73) = .00002. Therefore, we have
strong evidence against the null hypothesis of no effect due to Lot.

(e) Since we conclude that only the factor Lot has a significant effect on the
response, we calculate the following table of means.

Lot 1 Lot 2 Lot 3
Mean | 38.945 35.563 36.190

The corresponding response curve follows.

Main Effects Plot - Data Means for % moisture

39 —

% moisture

36 —

Lot

The .95-confidence intervals for the difference between the means are given in
the following table.

Famly era rae=0113
Idvidd era rae =000

Citicd vdwe =22
Inevds fa (cdunled ree) - (rovlevd neen)
1 2

2 2888
3932

3 22013  -11812
3387 -00738

As we can see, all the confidence intervals above do not include the value 0,
indicating differences between all the means at the 5% level.
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(f) Our result here agrees with the result of Exercise 10.4.3 as in both cases no
significant effect due to cheese was found although we do find an effect due to

Lot.
10.4.23

(a) A side-by-side boxplot of the data by treatment (using the coding 3(: —1)+j
with A =4, B = j) follows.

40 —

30 —f

Response

10 —

20 —

N

QQH 2 f

treatment

(b) A table of the cell means is given follows.

A=1 A=2 A=3

1] 21.58 26.64 31.23
21 20.00 2683 31.72
3| 14.02 2259 27.26

S oW
Il

(¢) A normal probability plot of the standardized residuals follows.

Normal Probability Plot of the Residuals

(response is Response)

Normal Score

Standardized Residual

A plot of the standardized residuals against each of the treatment combination

follows.
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Residuals Versus treatmen
(response is Response)

Standardized Residual

treatmen

Both plots indicate a possible problem with the model assumptions, but nothing
severe.

(d) The ANOVA table for testing all relevant hypotheses follows.

Source | Df SS MS
A 2 807.2 403.6
B 2 204.2 102.1

AxB | 4 17.0 4.2

Error | 27 2158.0 79.9
Total | 35 3186.3

The F' statistic for testing Hy : no interaction between Cheese and Lot, is
given by F' = 4.2/79.9 = 0.0526 and, since F' ~ F (4, 27) under Hy, the relevant
P-value equals P (F' > 0.0526) = .99451. Therefore, we do not have any evidence
against the null hypothesis of no interaction effect.

We can then proceed to calculate the P-value for testing Hj : no effect due
to A and, since F' ~ F' (2,27) under Hy, this is given by P (F > 403.6/79.9) =
.01369. Therefore, we have some evidence against the null hypothesis of no effect
due to A.

We can also test Hy : no effect due to B and, since F' ~ F'(2,27) under
Hy, the P-value equals P (F (2,6) > 102.1/79.9) = .29497. Therefore, we have
enough no evidence against the null hypothesis of no effect due to B.

(e) Since we conclude that only factor A has a significant effect on the response
we calculate the following table of means.

A=1 A=2 A=3
Mean | 1853 25.35 30.07

A plot of the corresponding response curve follows.
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Main Effects Plot - Data Means for Response

30 —

25 —

Response

20 —

The 0.95-confidence intervals for the difference between the means are given in
the following table.

Famly era rae =010
Idvidd era rae=0080

Citicd vdle=20%6
Ineavds fa (cdunled neen) - (rovled neen)
1 2

2 -138°2
Q237

3 -8 -172
-4.481 2337

As we can see, at the 5% significance level, only the means of the first and third
groups do not differ.

10.4.24

(a) A side-by-side boxplot of the data by treatment (using the coding 3(: —1)+j
with A =4, B = j) follows.
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(b) A table of the cell means follows.
Cask1 Cask2 Cask3
Batch 1 62.70 61.20 62.90
Batch 2 60.70 57.20 60.00
Batch 3 58.10 63.50 64.55
Batch 4 56.75 57.75 64.60
Batch 5 55.10 54.45 58.00
Batch 6 64.15 58.70 60.25
Batch 7 62.55 59.85 57.30
Batch 8 59.30 65.60 64.45
Batch 9 54.80 64.00 57.25
Batch 10 | 58.80 59.20 57.85

(¢) A normal probability plot of the standardized residuals follows.
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Standardized Residual

A plot of the standardized residuals against each of the treatment combinations

follows.

Standardized Residual

Residuals Versus treatmen

(response is % of fil

treatmen

30

Both plots looks reasonable, indicating no concerns about the correctness of the
model assumptions.
(d) The ANOVA table for testing all relevant hypothesis follows.

Source Df SS MS
Cask 2 20.425 10.213
Batch 9 249.328 27.703
Interaction | 18 328.841 18.269
Error 30 19.555 0.652
Total 59 618.150

The F statistic for testing Hy : no interaction between Cask and Batch, is given
by F = 18.269/0.652 = 28.02 and, since F' ~ F (18,30) under Hy, the P-value
equals P (F' > 28.02) = .0000. Therefore, we have strong evidence against the
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null hypothesis of no interaction. It is clear now that both predictors, Cask and
Batch, will have a significant effect on the response. There is no need to test
for an effect due to either Cask or Batch.

(e) Since we conclude that Cask and Batch interact, the appropriate table of
means is given in part (b). The plot of the response curves follows.

Interaction Plot - Data Means for % of fill st

Cask

65 —

60 —

Mean

55 —

10.4.25

(a) First, since there is only one observation in each combination of the two
factors, Fertilizer and Plot of Land, we have to assume that no interaction
exists between the two in order to be able to detect an effect due to fertilizer.
The ANOVA table for testing no effect due to fertilizer follows.

Source | Df SS MS
Fertilizer | 4 0.7308 0.1827
Block 2 0.1086 0.0543
Error 8 0.3384 0.0423
Total 14 1.1778

The F statistic for testing Hy : no effect due to fertilizer, is given by F =
0.1827/0.0423 = 4.3191 and, since F' ~ F (4,8) under Hy, the P-value equals
P(F (4,8) > 4.3191) = .03747. Therefore, we have some evidence against the
null hypothesis of no effect due to Fertilizer.

(b) As mentioned in part (a), since n;; = 1, we assume, in addition to the usual
assumptions, that there is no interaction between Fertilizer and Plot of Land.
(¢) This would increase the number of degrees of freedom available for error,
as we would need only 1 degree of freedom to estimate the effect (slope) of
Fertilizer. So we would have 11 degrees of freedom for error and thus make our
comparisons more accurate.

(d) Using Minitab we fit this model obtaining the following ANOVA table.
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Analysis of Variance for Response, using Adjusted SS for Tests

Source DF
A 1
B 2
Error 11
Total 14

Seq SS
0.55981
0.10864
0.50939
1.17784

MS F P
0.55981 12.09 0.005
0.05432 1.17 0.345
0.04631

From this we can see that there is strong evidence of an effect due to A.
To check the validity of this model we provide a normal probability plot of
the standardized residuals below.

Normal Probability Plot of the Residuals

(response is Response)

Normal Score

| T I
0 1 2

Standardized Residual

A plot of the standardized residuals against each of the treatment combination

is given below.

Residuals Versus treatmen

(response is Response)

Standardized Residual

treatmen

Both plots looks reasonable, indicating no serious concerns about the correctness
of the model assumptions.
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10.5 Categorical Response and Quantitative

Predictors
Exercises
10.5.1 We have [, f(2)dr = % o mprde = i io — 1. Hence, f is
indeed a density functlonm. The distribution function is then given by F (x) =
[ (lj;t)zdt = 1+1e—t = H% as claimed. Let p= P (X <z) = F (),

then p € [0,1] and we have p = (1 +e*w)71, which implies F~1(p) = 2 =
In(p/ (1 —p)) as claimed.

10.5.2 Let p = P(Y = 1]|z). The log odds at X = x is then given by (10.5.1)
as follows.

In (%) = ((1 ixfxiﬁ{lﬂTEZZQ}x}) / (1 + exp {151 + Box} >)
=In(exp {B1 + fa2x}) = B1 + Box

as claimed.

10.5.3 Let I = I(p) = In(p/(1 — p)) be the log odds. Then, € = p/(1 —p) =
1/(1/p —1). Hence,

el 1 1 P

l+e 1+1/d 1+0-p/p p+d-p

By substituting [ = £1 + S22, we have

_ exp(B1 + fax)
1 +exp(f1 + Bax)’

10.5.4 A Laplace distribution having density f(z) = e~1*//2 is used for the
inverse cdf. The cdf is F(z) = [*_ e 1¥l/2dz = e¥/2 for x < 0 and F(z) =
1—e /2 for x > 0. Hence, F~!(p) = In(2p) for p < 1/2 and —In(2(1 — p)).
Therefore,

PY =1X1=21,..., Xy =x) = F(B1w1 + - + Brxk)

_ {GXP(BNH + -+ Brxr)/2 if B1z1 + -+ + Brar <0

1 —exp(—(frz1 + -+ + Brxk))/2  if iy + - + Brxy > 0.

10.5.5 A Cauchy distribution having density f(x) = 1/[x(1 + 22)] is used for
the inverse cdf. The cdf is

z q 1 arctan(z) 1 1 arctan(x) 1
F(x) :/ ——da::/ - sec? 0dh = —df

o 1422 —r/2 71+ tan® 6 —/2 0
_arctan(z) 4 7/2

™
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In the third integral, arc-tangent transformation is used, i.e., x = tan is used.
Hence, F~!(p) = tan(w(p — 1/2)). Therefore,

P(YZ 1|X1 Zl‘l,...,Xk :l‘k) :F(ﬁlxl —l-—l-ﬂkxk)
=1/2 + arctan(Sr1xz1 + -+ - + Brxg) /7.
Computer Exercises
10.5.6 The results should be the same as presented in Example 10.5.1.

10.5.7
(a) Fitting the model using Minitab leads to the estimates given in the following
table.

Coefficient | Estimate Std. Error Z P-value
51 —1.1850 0.9338 —1.27 0.204
B 0.9436 0.3966 2.38 0.017
33 0.0597 0.1462 0.41 0.683

(b) The Chi-squared statistic for testing the validity of the model is then equal
to 4.66204 with P-value given by P (x? (8) > 4.66204) = .79301. Therefore, we
have no evidence that the model is incorrect.

(c) The P-value for testing Hy : 83 = 0 is 0.638, so we do not have any evidence
against the null hypothesis.

(d) Since the null hypothesis Hy : 83 = 0 is not rejected, we dropped the
quadratic term and refit the model. This leads to the estimates given in the
following table.

Coefficient | Estimate Std. Error Z P-value
051 —1.0063 0.8150 —1.23 0.217
B 0.9969 0.4163 2.39 0.017

The P-value for testing Hy : S = 0 is 0.017, so we have some evidence against
the null hypothesis and we conclude that there is a linear effect.

(e) The plot of P(Y =1|X =) as a function of = using the estimates found
above follows.

1.0 -
09 —
0.8 —
0.7 —
0.6 —|
05 —
0.4 —|
0.3 —
0.2 —
0.1 —
0.0 —|

P(Y=1/%)
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Problems

10.5.8 The cell count (number of successes) is an observation from a
Binomial(m (w2, 23) , P (Y = 1| Xy = 22, X3 = x3)) distribution. Let p(4,,4,) (0)
=P(Y =1]| X2 =x9,X3 =123), where § = (02,3). Then by Theorem 9.1.2
we have that

. 2
X2 — Z (5 (‘7327'7:3) — m(x2: .7,‘3)p(.’132,.1’3)) g XZ (k _1_ dlmQ)
() m (2, 23) P (T2, 3)

where k is the number of combinations of (2, z3) and dim 2 = 2. Hence, (10.5.3)
is the correct form of the Chi-squared goodness of fit test statistic.






Chapter 11

Stochastic Processes

11.1 Simple Random Walk

Exercises

11.1.1

(a) 0.

(b) 0.

(c) 1/3.

(d) 2/3.

(e) 0.

(f) 2(1/3)(2/3) = 4/9.

(g) 0.

(h) (1/3)(1/3) = 1/9.

(i) 0.

(i) 0.

(k) (39)(1/3)12(2/3)® = 0.00925.

(1) 0.

(m) (3)(1/3)°(2/3)* = 0.0987.

11.1.2

a) P(X; =6, Xy =5) = (2/5)(3/5) = 6/25.
b) P(X1 =4, Xy =5)=(3/5)(2/5) = 6/25.

P(Xo =5) = (3)(2/5)(3/5) = 12/25.
By the law of total probability, P(Xs =5) = P(X; =6, X2 =5)+ P(X1 =

B~~~
s
>
|
ot
N~—

=
[N
=
w

PX; =X3=8)=P(X;, =8 Xo =7, Xz =8 +P(X;, =8, Xo =
9, X3=28)=(1/6)(5/6)(1/6) + (1/6)(1/6)(5/6) = 10/216 = 5/108.

(b) P(X1 =6, X3=8)=P(X;1 =6, Xo =7, X3=28)=(5/6)(1/6)(1/6) =
5/216 .

(c) P(X5=8) = (3)(1/6)%(5/6)' = 15/216 = 5/72.

—
&
Nl

347
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(d) By the law of total probability, P(X3 = 8) = P(X; =6, X5 =8)+P(X; =
8, X3=238).

11.1.4

(a) Here E(X,) = a+ n(2p — 1) = 1000 — n(0.02). Hence, E(Xy) = 1000;
E(X1) = 999.98; E(X») = 999.96; E(X10) = 999.80; E(Xa0) = 999.60;
E(X100) = 998; E(X1000) = 980.

(b) If B(X,) < 0, then 1000 — 1(0.02) < 0, i.e., n > 1000/(0.02) = 50, 000.

11.1.5

(a) Here P(7. < 79) = 0.89819. That is, if you start with $9 and repeatedly
make $1 bets having probability 0.499 of winning each bet, then the probability
you will reach $10 before going broke is equal to 0.89819.

(b) Here P(7. < 79) = 0.881065.

(c) Here P(71. < 19) = 0.664169.

(d) Here P(1, < 79) = 0.0183155.
(e) Here P(1, < 79) = 4 x 10718,
(f) Here P(1. < 19) =2 x 107174,

11.1.6 If p = 0.4, then P(rp < o0) = 1. If p = 0.6, then P(rp < o0) =
(1 —p)/p)* = (0.4/0.6)!° = 0.0173415, i.e., less than 2%. That is, if we start
with $10 and repeatedly make bets with probability 0.4 of winning each bet,
then we will eventually go broke with certainty. However, if the probability of

winning each bet is 0.6, then there is less than 2% chance of eventually going
broke.

11.1.7 We use Theorem 11.1.1.
(a)a=5n=1k=1,p=1/4,g=3/4s0 P(X, =a+k)=1/4
(bya=5n=1,k=-1,p=1/4,q=3/4s0 P(X, =a+k)=3/4
(c)a=bn=2k=2p=1/4,g=3/4s0 P(X, =a+k)=(1/4)* = 0.0625
(d)a—Gn—lk—lp—1/4q—3/4soP( n=a+k)=1/4
(e)a=4n=1k=3,p=1/4,q=3/4s0o P(X,,=a+k)=0

(1) P(X, = 6/X, = 7) = P(X; = 6, X, — 7)/P(X, = 7) = P(X; =
6)P(Xz = T| X1 = 6)/P(Xz = 7) = (1/4)(1/4)/(1/4)? = 1

(g) We know that the initial fortune is 5 so to get to 7 in two steps the walk
must have been at 6 after the first step.

11.1.8 We use Theorem 11.1.1. a +n(2p — 1)

(a) a = 1000,n = 1,p = 2/5,q = 3/5 so B(X1) = 1000 + 1(2-2/5 — 1) = 999.8
(b) a=5,n=10,p=1/4,q =3/4 so E(X19) = 1000+ 10(2-2/5—1) = 998.0
(c)a=5mn=1,p=2/54q=3/5s0 E(X100) = 1000+ 100(2 - 2/5 — 1) = 980.0
(d)a=6,n=1,p=2/5q=3/550 E(X1000) = 1000+1000(2-2/5— 1) = 800.0
(e)

(a)- P(X;>a)=P(X1=a+1)=18/38

(b) P(X; > a) = (18/38)% + (%)(18/38)(20/38) = 0.72299
(c) P(X3>a) = (18/38)% + (3)(18/38)%(20/38) = 0.46056
(

d) lim, 0o P(X, > a)=0
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(e) In the long run the gambler loses money.

Problems

11.1.10

(a) This is equivalent to having $5, and trying to reach $50, by making bets
of just $1 each time — since we can count things in units of $2 instead of $1.
Hence, the desired probability is (1 — ((1 — p)/p)®)/(1 — ((1 —p)/p)°).

(b) If p = 0.4, then this equals approximately 1.034 x 1078,

(c) The corresponding probability with $1 bets is (1 — ((1 —p)/p)1°)/(1 - ((1—
p)/p)t%9) = 1.39 x 10716, Hence, we have a larger probability of reaching our
goal if we bet $2 each time, rather than $1.

(d) The corresponding probability with $10 bets is (1 — ((1—p)/p)')/(1— ((1—
p)/p)1%) = 0.00882. Hence, the probability of success increases if we bet $10
each time, rather than $1 or $2.

Challenges

11.1.11 Fix a and c and let f(z) = (1 — 2%)/(1 — z¢). We wish to com-
pute lim, .1/ f((1 —p)/p). Since lim,_,/5((1 — p)/p) = 1, the desired limit
is equal to lim,_,; f(x) (if it exists). But from L’Hoépital’s rule, lim,_,; f(z) =
limg 1 (<2 (1 — 2%) /£ (1 = 2°)) = lim, 1 (az®™!)/(cz®"") = a/c, as desired.

11.2 Markov Chains

Exercises

(b) P(Xo=2) =p2 =0.1

(¢) P(Xo = 3) = s = 0.2

(d) P(X; =2|Xo=1) = ppo = 1/4

(e) P(X3=2]|Xy=1)=pip=1/4

(8) P(X1 =2) =3, pipiz = (0.7)(1/4) + (0.1)(1/2) + (0.2)(3/8) = 0.3.

11.2.2

(a) P(XO = hlgh) Hhigh = 1/3

(b)P(X() IOW) Hlow = 2/3

(c) P(X1 = high | Xo = high) = puigh hignh = 1/4.

(d) P(X3 = high| Xy = high) = phign nign = 1/4.

(e) P(X1 = high) = 3, pipinign = (1/3)(1/4) + (2/3)(1/6) = 7/36.

11.2.3

1) = 2129072%1 = (0. )( ) ( 8)(0.7) = 0.72. Pi(X2 = 0) = >3, p1ipio =
(0.3)(0.2)+(0.7)(0.3) = 0.27. Pi(Xs=1) = 3", puipir = (0.3)(0.8)+(0.7)(0.7) =
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(b) Po(X3 =1) = 32, . poipijpjn = (0.2)(0.2)(0.8)+(0.2)(0.8)(0.7)+(0.8)(0.3)(0.8)
+(0.8)(0.7)(0.7) = 0.728.

11.2.4

(a) We need m(0.2) + 71(0.3) = mp and m(0.8) + m1(0.7) = 71, where m; =
(8/3)mo, where myp = 3/11, and m; = 8/11.

(b) Since p;; > 0 for all ¢ and j, the chain is irreducible and aperiodic, so
(¢) Similarly, lim,, o P1 (X, =0) = 7y = 3/11.

11.2.5

(a) P2(X1 =1) =p21 =1/2

(b) PQ(Xl = ) P22 = 0

(C) PQ(Xl = 3) = P23 — 1/2

(d) Po(X =1) =3 ; paipis = (1/2)(1) + (1/2)(0) = 1/2.

(€) Pa(Xz =2) =3 paipis = (1/2)(0) + (1/2)(1/5) = 1/10

(f) Po(X2 =3) = > ; paipiz = (1/2)(0) + (1/2)(4/5) = 2/5.

égr)/fgéng ) = 2 P2ipipss = (1/2)(0)+(1/2)(1/5)(1/2)+(1/2)(4/5)(4/5) =
h) Py(X3 = 1) = > paipijpjn = (1/2)(1)(1) + (1/2)(1/5)(1/2) = 11/20.

i) Py(X, =7) =0.

(a) Here p;; > 0 for all 4 and j, so the chain is irreducible and aperiodic.

(b) Here p;; > 0 for all ¢ and j, so the chain is irreducible and aperiodic.

(c) Here p1ape1 > 0 and pay > 0, so the chain is irreducible. Also, piape; > 0
and p1apoop21 > 0 and pao > 0, so the chain is aperiodic.

(d) Since p;2 > 0 for all 4, and py; > 0 for all j, the chain is irreducible. Also,
2

since p,;

> 0 and pS’ )'> 0 for all 4, the chain is aperiodic.
S;L) > 0 for some n < 3.
> 0 only when n is a multiple of

(e) This chain is irreducible since for all ¢ and j, p

However, the chain is not aperiodic since p(-m

3. /
(f) This chain is irreducible since for all ¢ and j, p(")

ij
since pS’ )> 0 and pgf) > 0 for all 4, the chain is aperiodic.

> 0 for some n < 3. Also,

11.2.7 This chain is doubly stochastic, i.e., has ). p;; =1 for all j. Hence, as
in Example 11.2.15, we must have the uniform distribution (71 = my = 73 =
w4 = 1/4) as a stationary distribution.

11.2.8

(a) By moving clockwise one step at a time, we see that for all ¢ and j, we have

pf;) > 0 for some n < d. Hence, the chain is irreducible.
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(b) Since p;; > 0 for all 4, each state has period 1, so the chain is aperiodic.

(c) If ¢ and j are two or more apart, then p;; = pj; = 0. If ¢ and j are one
apart, then m;p;; = (1/d)(1/3) = 1/3d and m;p;; = (1/d)(1/3) = 1/3d. Hence,
the chain is reversible with respect to {m;}.

11.2.9

(a) By either increasing or decreasing one step at a time, we see that for all 4
S;L) > 0 for some n < d. Hence, the chain is irreducible.

(b) The chain can only move from even numbers to odd, and from odd numbers
to even. Hence, each state has period 2.

(c) If 4 and j are two or more apart, then p;; = p;; = 0. If j = ¢ + 1, then
mipi; = (1/29)(3)((d — 0)/d) = (1/2)(al/id — 0)1)((d — i)/d) = (1/2%)((d ~
D1/l — i — 1)), while mpy; = (1/29)(.4)) (6 +1)/d) = (1/2)(dl/ (i + 1)(d ~
i— )N ((i+1)/d) = (1/2%)((d—1)!/i!(d—i—1)!). Hence, the chain is reversible
with respect to {m;}.

and 7, we have p

11.2.10

(a) This chain is irreducible since for all ¢ and j, pg-l)
(b) Since pgf ) >0 and pff’ )'> 0 for all 4, the chain is aperiodic.

(c) We need m3(1/2) = my, m1(1) + 73(1/2) = w2, and ma(1) = m3. Hence,
m =1/4 and my = 13 = 1/2.

(d) We have lim,, .o P1(X,, =2) = m3 = 1/2. Hence, P (X500 = 2) ~ 1/2.

> 0 for some n < 3.

11.2.11

(a) This chain is irreducible since for all ¢ and j, pgl) > 0 for some n < 3.

(b) Since pgf )>0and pff )'> 0 for all 4, the chain is aperiodic.

(c) We need 7m3(1/2) = w1, m1(1/2) + m3(1/2) = ma, and 71(1/2) + m2(1) = 7s.
Hence, m = 2/9, m2 = 3/9, and 75 = 4/9.

(d) We have llmn*)oo Pl(Xn = 2) = Ty = 3/9 = 1/3 Hence, Pl(X500 = 2) ~
1/3.

11.2.12
(a) This chain is irreducible and aperiodic since p;; > 0 for all ¢ and j.
(b) Pi(X;=3)=.4

3 3 4\° 0.19 0.23 0.58
@©f 2 2 6| =] 016 022 062 |soP(Xs=3)=.3-4+.3-6+
1 2 7 014 021 0.65
4.7=058
3 3 4\° 0.161 0.219 0.620
@ 2 2 6| = 0154 0216 0.630 | soP(X;=3)=.62
1 2 7 0.149 0214 0.637
()

3 3 4
(71'1 Uy 7T3) 2 2 6 :(71'1 T2 7T3)
1 2 7
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implies
-7 3 4
( T T2 T3 ) 2 -8 6 = ( 0 0 O ),
1 2 -3

and solving these equations leads to m = (12/50)ws, w2 = (17/50)73 and finally
w1+ 7o + w5 = 1 implies m = 12/79, 12 = 17/79, and 73 = 50/79. Therefore,
lim,,_.. P1(X, = 3) = 50/79.

11213 P(X1 + X2 > 5) = P(X; = 2,X = 3) + Pu(Xy = 3, X5 = 2) +
P(X;1=3X,=3)=3-6+.4-2+.4-.7=054

11.2.14

(a) The period of 1 is 1 since pgq) = 1 for all n. The period of 2 is 2 since pr) =1
when n is even and is 0 otherwise. Similarly, the period of 3 is 2.

(b) The chain is not aperiodic since all states do not have period equal to 1.

11.2.15

(a) The chain is irreducible since we can get from any state to any other state
with positive probability, e.g., the transitions 1 -2 —- 3,2 - 1,3 -2 — 1 all
have positive probability of occurring.

(b) We have that ged{n : pgq) > 0} = ged{2,4,6,...} = 2 and so the chain is
not aperiodic.

Problems

11.2.16 For reversibility, we need mip1a = mapae1, SO0 M2 = (pi2/p21)m =
((4/5)/(1/5))m1 = 4my. Then w3 = (p23/ps2)m2 = ((4/5)/(1/5))m2 = 4wy =
421y, Then 7y = (p3a/pas)ms = ((4/5)/(1/5))73 = 4wz = 43m. Then 715 =
(pas/psa)ma = ((4/5)/(1/5))my = 4wy = 4*m;. Hence, since 1 +4+4%+4% +4% =
341, we have m = 1/341, m = 4/341, 15 = 42/341, m; = 43/341, and
s = 44/341.

11.2.17 We know that this example is irreducible and aperiodic, with m; =

1/d =1/100 for all i. Hence, lim, .o Po(X, = 55) = 1/100. Hence, for large n
(such as the number of seconds in a month), Py(X,, = 55) ~ 1/100.

11.2.18 We use induction on n. The case n = 1 follows by definition. Assuming
the theorem is true for some n, then P;(X, 41 =j) =Y L Bi(X, =k, Xpi1 =
J) =2 Pi(Xn = E)pry = D2, Zil,...,in_lpiilpiliz -+ Pin_1kPrkj- The result
follows by replacing the dummy variable k& by 4,,.

11.2.19 If j = 0, then p;; > 0 only for ¢ = 1 when p;p = 1/d. Hence,
Zies TiPij = 7T1(1/d) = (1/2d)(61l)(1/d) = (1/2d)(d)(1/d) = (1/2d) = To-

If j = d, then p;; > 0 only for ¢ = d — 1 when pg_14 = 1/d. Hence,

Yies mpij = mi(1/d) = (1/29) (%) (1/d) = (1/2%)(d)(1/d) = (1/2%) = ma.
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11.3 Markov Chain Monte Carlo

Exercises

11.3.1 First, choose any initial value Xy. Then, given X,, =i, let Y, 11 =i+1
or ¢ — 1, with probability 1/2 each. Let j = Y;, 41 and let o;; = min(1, 7;/7m;) =
min(1, e‘(j_13)4+(i‘13)4). Then let X,,+1 = j with probability «;;, otherwise
let Xn+1 = ¢ with probablhty 1-— Qj .

11.3.2 First, choose any initial value Xy. Then, given X,, =14, let Y11 =i+1
with probability 5/8 or Y,,41 = i — 1 with probability 3/8. Let j = Y,41
and let o;; = min(1, 7;q;i/miqi;) = min(1, (i47.5)73(3/8)/(i+6.5)73(5/8)) if
j =i+1lora;; =min(1, 7;qj;/miqi;) = min(1, (i+5.5)78(5/8)/(i+6.5)"5(3/8))
if j =¢—1. Then let X, +; = j with probability a;;, otherwise let X,, 11 =1
with probability 1 — ;.

11.3.3 First, choose any initial value Xy. Then, given X,, =, let Y, 11 =i +1
with probability 7/9 or Y,,11 = ¢ — 1 with probability 2/9. Let j = Y, 41 and
let o;; = min(1, 7;q;;/miq;;) = min(1, e_j4_j6_j8(2/9)/6_i4_i6_i8(7/9)) if j =
i+ 1 or a; = min(1, 7;q5/miq;;) = min(1, e =1"=0%(7/9) Je=* =" =%(2/9))
if j =i —1. Then let X, 1 = j with probability a;;, otherwise let X,, 11 =1
with probability 1 — ay;.

11.3.4 Let {Z,} be i.i.d. ~ N(0,1). First, choose any initial value Xy. Then,
given X,, =z, let Y11 = X,, + Z41. Let y = Y, 41 and let

gy = min(1, f(y)/f(z)) = min(1, e~v'~¥’ v +a"+2"+") Then let X, =y
with probability a.,, otherwise let X, 1 = = with probability 1 — o,.

11.3.5 Let {Z,} be i.i.d. ~ N(0,1). First, choose any initial value Xo. Then,
given X,, =z, let Y11 = X,, + \/EZHH. Let y = Y11 and let ayy =
min(1, f(y)/f(z)) = min(1, =¥ ~¥° " +*+e°+e®)  Then let X, 1 = y with
probability oy, otherwise let X,, 1 = 2 with probability 1 — a,.

Problems

11.3.6 First, choose any initial value X. Then, given X,, = (i1, i2), choose Y;, 11
so that P(Y,41 = (i1,7)) = 277 for j = 1,2,3,.... Then, given Y, 11 = (i1, J),
choose Z,.1 so that P(Z,y1 = (k,j)) = 27F for k = 1,2,3,.... Then set
XnJrl - Zn+1 = (khj)

11.4 Martingales

Exercises

11.4.1 Here E(X,11 | X») = (3/8)(X,,—4)+(5/8)(X,,+C) = X,,+(5C —12)/8.
This equals X, if C = 12/5.

11.4.2 Here E(Xp+1| X)) = 0)(Xn +7) + (1 —p)(X,, — 2) = X, + (90 — 2).
This equals X, if p = 2/9.
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11.4.3 Here B(Xpi1| X,) = (0)(2X0) + (1— p)(Xn/2) = Xn(2p+ (1 —p)/2) =
Xn((3p/2) + (1/2)). This equals X, if (3p/2) 4+ (1/2) =1, i.e. if p=1/3.

11.4.4 Let p = P(X,, = 14). Then E(X,,) = (0.1)(8)+ (0.9~ p)(12) + (p)(14) =
2p + 11.6. But {X,} is a martingale, so we know that E(X,) = Xo = 14.
Hence, 2p +11.6 = 14, so p = 1.2.

11.45 Let p = P(X, = 4). Then E(X,) = (2/3)(1 — p)(3) + (1/3)(1 —
p)(4) + (p)(6) = (8p + 10)/3. But {X,} is a martingale, so we know that
E(X,) = Xo=05. Hence, (8p+10)/3 =5,s0p=>5/8.

11.4.6

(a) Let X,, be the number of pennies at time n. Then {X,,} is a martingale.
Hence, E(XQ()) = X(] = 175.

(b) Let p be the probability you have 200 pennies when you stop. Then let
T be the time at which you stop. Then E(X7) = (p)(200) 4 (1 — p)(100) =
100 + 100p. But {X,,} is a bounded martingale, so E(Xr) = Xy = 175. Hence,
100 + 100p = 175, so p = 3/4.

11.4.7

(a) Here E(X 41| X,) = (1/4)(3X,) + (3/4)(X,./3) = X, so {X,,} is a mar-
tingale.

(b) T is non-negative integer-valued and does not look into the future, so it is
a stopping time.

(c) Since {X,,} <7 is bounded between 1 and 81, we have E(Xrp) = Xy = 27.
(d) Let p= P(X7 = 1). Then E(X7) = (p)(1)+ (1 —p)(81) = 81 —80p. Hence,
81 — 80p = 27, so p = 54/80 = 27/40.

Problems

11.4.8 Since 15 happens later than 77, it also does not look into the future, so
it also must be a stopping time. However, since T5 happens earlier, it is possible
that T3 looks into the future, so T5 may not be a stopping time.

11.4.9
(a) Since {T3 < n} = {Th <n}U{T> < n} and T; and T, are stopping times,
then {T5 < n} is also a function of Xy, Xy,..., X, alone, so that T3 is also a

stopping time.
(b) Since {Ty < n} ={T1 <n}N{T> <n} and T} and T, are stopping times,
then {T, < n} is also a function of Xy, X1,...,X,, alone, so that Ty is also a
stopping time.

11.5 Brownian Motion

Exercises

11.5.1
(a) PV =1)=1/2.
(b) P(Y{® =1) =0.
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(c) PV = v2) = P(Yy7) = 2/V2) = (1/2)(1/2) = 1/4.

(d) We have P(Y\*") > 1) = P(v,}}, > VM /VM). Hence, P(Y,") > 1) =1/2.

Also, P(Y{? > 1) = (1/2)(1/2) = 1/4. Also, P(V\®) > 1) =

(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2) + (1/2)(1/2)(1/2) = 3/8. Also, P(¥{" >
1) = (1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2)
+(1/2)(1/2)(1/2)(1/2) + (1/2)(1/2)(1/2)(1/2) = 5/16.

11.5.2 Since By ~ N(0,1), P(B; > 1) = P(B; < —1) = ®(—1) = 0.1587.

11.5.3

(a) P(Bz > 1) = P((1/v2)B2 > 1/V/2) = ®(~1/v2) = 0.2397.

(b) P(Bs < —4) = P((1/V/3)By < —4/V/3) = ®(—4/y/3) = 0.0105.

(c) P(Bg — By < 24) = P(By < 24) = P((1/2)By < 2.4/2) = ®(2.4/2) =
1 — ®(—2.4/2) = 0.8849.

(d) P(By — Bi1 > 9.8) = P(Bis > 9.8) = P((1/V15)Bis > 9.8/V/15) =

®(—9.8/4/15) = 0.0057.

(e) P(Bps < —6) = P((1/v26.3)Byss < —6/v26.3) = ®(-6/v26.3) =
0.1210.

(f) P(Bag.3 < 0) = P((1/v/26.3)Byg.s < 0/1/26.3) = ®(0//26.3) = 1/2.

11.5.4

(a) P(B: > 1, Bs — By >2) = P(By > 1) P(Bs — B2 > 2) = P((1/v/2)By >
1/v2) P((1/v/3)(Bs — Bs) > 2/v/3) = B(—1/v/2) &(—2/v/3) = 0.02975.

(b) P(Bs < =2, Bi3—Bs >4) =P 2)P(Bls Bs > 4) = P((1/V5)Bs <

( 2/1/5) ®(—4//8) = 0.01459.

> 3.2, Bigg — Bga > 0. (Bs.a > 3.2) P(Bigg — Bga >
0.9) = P( 1/\/_)384 > 3.2/v/8.4) P( /V10 2)(Bis.s — Bs.a) > 0.9/V10.2) =
®(—3.2/1/8.4) ®(—0.9/1/10.2) = 0.05243.

11.5.5 E(By3Bs) = min(13,8) = 8.

11.5.6

( ) Since B17—Bl4 NN( 5 ) ((317—314)2) =3+02 =3.

(b) E((Bi7—B14)?) = E(B},)—2E(B17B14)+E(B?},) = 17+0%>—2min(17, 14)+
14402=17-2-14+ 14 = 3.

11.5.7

(a) Let p = P(hit —5 before 15) and let T" be the first time we hit either. Then
0= E(Br) = p(—5) + (1 — p)(15) = 15 — 20p, so that p = 15/20 = 3/4.

(b) Let p = P(hit —15 before 5) and let T be the first time we hit either. Then
0= E(Br) =p(—15) + (1 — p)(5) = 5 — 20p, so that p =5/20 = 1/4.

(c) The answer in (a) is larger because —5 is closer to By = 0 than 15 is, while
—15 is farther than 5 is.

(d) Let p = P(hit 15 before —5) and let T" be the first time we hit either. Then
0= E(Br) = p(15) + (1 — p)(—5) = —5 + 20p, so that p = 5/20 = 1/4.

(e) We have 3/4 + 1/4 = 1, which it must since the events in parts (a) and (d)
are complimentary events.

SII /\*e*l\/

< (Bs
?/\/5) ((1/f)(313—B5)>4/\/—)

—~
—_
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11.5.8

(a) E(X;)=E(5+3-7+2B7)=5+3-7+2-0=26.

(b) Var(Xg,l) = Var(5 +3-8.1+ 238.1) = 4VaI‘(Bg,1) =4-8.1=324.

(¢c) P(Xo5 < 12) = P(5+3-25+2Bys < 12) = P(Bos < —1/4) =
P((1/v/2.5)Ba.s < —1/44/2.5) = ®(—1/41/2.5) = 0.4372.

(d) P(X17 > 50) = P(5+3-174+2By7 > 50) = P(B17 > —3) = P((1/y/17)By7 >
—3V17) = &(-3/y/17) = 0.2334.

11.5.9 E(X3X5) = B((10 — 1.5 - 3 +4B3)(10 — 1.5 - 5 + 4B5)) = E((5.5 +
4B3)(2.5 + 4Bs)) = E(5.5-2.5+4-25-B3+4-55-Bs +4-4- By - B;) =
55-2.54+4-25-0+4-55-044-4-min(3,5) = 61.75.

11.5.10

(a) P(Xs > 500) = P(400+0-84+9Bs > 500) = P(Bgs > 100/9) = P((1/v/8)Bs >
100/9+/8) = ®(—100/9+/8) = 0.00004276.

(b) P(Xg > 500) = P(40045-84-9Bg > 500) = P(Bg > 60/9) = P((1/+/8)Bs >
60/9v/8) = ®(—60/9/8) = 0.009211.

(c) P(Xs > 500) = P(400+10-84+9Bs > 500) = P(Bs > 20/9) = P((1/v/8)Bs >
20/9+/8) = ®(—20/9v/8) = 0.2160.

(d) P(Xs > 500) = P(400 + 20 - 8 + 9Bg > 500) = P(Bs > —60/9) =
P((1/4/8)Bg > —60/9/8) = 1 — ®(—60/9v/8) = 0.9908.

11.5.11

(a) P(X10 > 250) = P(200 4+ 3 - 10 4+ 1Bo > 250) = P(Byy > 20/1) =
P((1/v/10) By > 20/1y/10) = ®(—20/11/10) = 1.27 x 10710,

(b) (X10 > 250) = P(200 +3 - 10 + 4B1¢ > 250) = P(Blo > 20/4) =
P((1/3/10)Byo > 20/4/10) = ®(—20/4+/10) = 0.05692.

¢) P(X10 > 250) = P(200 + 3 10 + 10Byp > 250) = P(Bjo > 20/10) =
P((1/+/10) By > 20/101/10) = ®(—20/104/10) = 0.2635.

(d) P(X19 > 250) = P(200 4+ 3 - 10 + 100Byo > 250) = P(Bjo > 20/100) =
P((1/3/10)Byo > 20/1001/10) = ®(—20/1004/10) = 0.4748.

Problems
11.5.12 We have that E(X) = E(2B3—T7Bs) =2-0—7-0 = 0. Also, E(X?) =

E((2B3—TB5)?) = E(AB2 1+ 49B2 —28B3Bs) = 4-3+49-5— 28 min(3,5) = 173,
Hence, Var(X) = 173.

11.5.13 We have that P(B; < z) = P((1/v#)B; < x/\/t) = ®(x/+/5), while
P(By > —x) = P((1/V)By > —a/Vt) = 1 — ®(—z/V/5) = ®(z/V5) = P(B; <

—~

Challenges

11.5.14 Let g(x,y) = fB.B, (z,y) be the joint density function of B; and B;— Bs.
Since Bs ~ N(0,s) and By — By ~ N(0,t — s) and they are independent, then
glx,y) = (1/2m+/s(t — s))e*$2/2se*y2/2(t*5). Then let h(z,y) = fB, B, (x,y) be
the joint density function of Bs and B;. Then by the two-dimensional change-
of-variable theorem h(x,y) = g(z,y — x)
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= (1/2m/s(t — 5))e~®"/25¢=(=2)"/2(t=5)  Then the conditional density of B,
given B, is equal to

hzly) = h(z,y)/ f5,(y)
= (1/21/s(t — s))e " /256~ W=D/20=5) /(1 /\/2mt)e /2
t/2ms(t — s)e 12V 2= FV /2 — | fporg(t — g)e(tmmsy)/2st(i=s)

1/2n[s(t — 5) /t]e~(@—su/D*/2s(t=5)/1],

We conclude that, conditional on B; = y, the conditional distribution of By is
normally distributed with mean sy/t and variance s(t — s)/t. Hence, choosing
Z ~ N(sy/t, s(t —s)/t), we have P(Bj <x|Bt —y) P(Z <z)=P(Z -
sy/t)//s(t— )/t < (xz—sy/t)//s(t—s) (x —sy/t)//s(t —s)/t).
11.5.15

(a) limp o [(f(t + R) — f(£))?/h] < limp~o[(KR)?/h] = limps o [Kh| = 0, so
limpo(f(t + R) — f(t))?/h =0.

(b) limh\o E((Bt+h - Bt)2/fL) = limh\o h/h =1 75 0.

(¢) They imply that Brownian motion is not always a Lipschitz function. (In
fact, it never is.)

(d) This implies that Brownian motion is not always a differentiable function.
(In fact, it never is.)

11.6 Poisson Processes

Exercises

11.6.1

(a) Na ~ Poisson(14), so P(Ny = 13) = e~ 141413 /13! = 0.1060.

(b) P(N5 = 3) = e35353/31 = 4.5 x 10712,

(c) P(Ng = 20) = e—*24220 /20! = 6.9 x 10~5.

(d) P(Nso = 340) = e~350350340 /340! = 0.01873.

(e) We have that P(N; = 13, N5 = 3) = 0 since we always have N5 > Na.

(f) We have that P(N2 = 13 N5 = 20) P(NQ = 13, N5 _N2 = 7) (N2 =
13) P(Ns — Ny = 7) = (e~141413 /131) (e=21217/71) = 2.9 x 105,

(g) P(N2 =13, N5 =3, Ng =20) = 0 since we always have N5 > N.

11.6.2 We have that P(Ny 5 = 6) = ¢~3/2(3/2)5 /6! = 0.00353. Also, P(Ny.3 =
5) = 99(0.9) /5! = 0.00200.

11.6.3 We have that P(N, = 6) = e~2/3(2/3)6/6! = 6.26 x 10~°. Also, P(N3 =
5) = e~3/3(3/3)% /5! = 0.00307.

11.6.4 We have that P(Ny =6, N3 = 5) = 0 since we always have N3 > No.

11.6.5 P(Nog = 2| Nog = 2) = P(Nag = 2, Nog = 2)/P(Nag = 2) =
P(Nyg =2, Najg— Nag = 0)/P(Nag = 2) = P(Nog = 2) P(Nag — Nog =
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0)/P(Nag = 2) = (e~2692.62/21)(e=0-320.3°/01) /(e 292,92 /21) = (2.6/2.9) =
0.8038

11.6.6

(a) P(Ns6 = 5|Ng = 5) = P(N¢ = 5, Ng = 5)/P(Ng = 5) = P(Ns =

5, Ng — Ng = 0)/P(Ng = 5) = P(Ng = 5) P(Ng — Ng = 0)/ P(Ng = 5) =

(e=/3(6/3)°/5!)(e=3/3(3/3)°/0) /(e=2/3(9/3)® /5!) = 0.1317.

(b) P(Ns = 5|Ng = 7) = P(Ng = 5, Ng = 7)/P(Ny = 7) = P(Ns

5, Ng — Ng = 2)/P(Ng = T) = P(Ng = 5) P(Ng — Ng = 2) / P(Ny :7)

(e=%73(6/3)° /5 (e~/3(3/3)%/2!) /(e~/*(9/3)"/T!) = 0.6145.

(c) We have that P(Ng = 5| Ng = 7) = 0 since we always have Ng > Ng.

(d) P(Ng = 7|Ng = 7) = P(Ng — Ng = 0| Ng = 7) = P(Ng — N = 0) =
e 3/3(3/3)°/0! = 1/e = 0.3679.

(e)P(N9—12|N6—7) (Ng—N6=5|N6=7)ZP(Ng—N6=5):

e3/3(3/3)% /5! = 0.00307.

Problems

11.6.7

(a) P(Ng = j|N; = j) = P(Ns = j, Ny = j)/P(N; = j) = P(N, =
j» Ny = Ny = 0)/P(N; = j) = P(Ny = j)P(N; — N, = 0)/ P(N; = j) =

(e (as)? /) (e~ ") (as)?/0) /(e *(at)T /3!) = (s/t)’.

(b) No, the answer does not depend on a. Intuitively, once we condition on
knowing that we have exactly 7 events between time 0 and time ¢, then we no
longer care what was the intensity which produced them.

11.6.8

(a) P(Ns = 1| N, = 1) = (s/t)t = s/t.

(b) This says that P(Ty < s|N; = 1) = s/t. It follows that, conditional on
Ny = 1, the distribution of T3 is uniform on the interval [0, ¢].
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