Appendix B
Computations

We briefly describe two computer packages that can be used for all the computations
carried out in the text. We recommend that students familiarize themselves with at
least one of these. The description of R is quite complete, at least for the computations
based on material in this text, whereas another reference is required to learn Minitab.

B.1|Using R

R isafreestatistical software package that can be downloaded (http://cran.r-project.org/)
and installed on your computer. A free manual is also available at this site.

Once you have R installed on your system, you can invoke it by clicking on the
relevant icon (or, on Unix systems, ssimply typing "R"). You then see a window, called
the R Console that contains some text and a prompt * > * after which you type com-
mands. Commands are separated by new linesor * ; . Output from commandsis aso
displayed in this window, unlessit is purposefully directed elsewhere. To quit R, type
q() after the prompt. To learn about anything in R, a convenient resource is to use
Help on the menu bar available at the top of the R window. Alternatively, type ?nane
after the prompt (and press enter) to display information about nane, e.g., ?q brings
up a page with information about the terminate command q.

Basic Operations and Functions
A basic command evaluates an expression, such as

> 243
[1] 5

which adds 2 and 3 and producesthe answer 5. Alternatively, we could assign the vaue
of the expression to avariable such as

> a <- 2

where <- (less than followed by minus) assigns the value 2 to a variable caled a.
Alternatively = can be used for assignment asina = 2 but we will use <- . We can

683

684 Appendix B: Computations

then verify this assignment by simply typing a and hitting return, which causes the
value of a to be printed.

> a
[1] 2

Notethat R is case sensitive, so A would be adifferent variable than a. There are some
restrictionsin choosing names for variables and vectors, but you won't go wrong if you
aways start the name with aletter.

We can assign the values in a vector using the concatenate function c() such as

> b < ¢(1,1,1, 3,4,5)
> b
[1] 111345

which creates a vector called b with six valuesin it. We can accessthei-th entry in a
vector b by referringtoitasb[i] . For example,

> b[3]
[1] 1

printsthe third entry in b, namely, 1. Alternatively, we can use the scan command to
input data. For example,

> b <- scan()
1. 111345
7.

Read 6 itens
> b

[1] 111345

accomplishes the same assignment. Note that with the scan command, we simply
type in the data and terminate data input by entering a blank line. We can also use
scan to read datain from afile, and we refer the reader to ?scan for this.

Sometimes we want vectors whose entries are in some pattern. We can often use
the r ep function for this. For example, x <- rep(1, 20) crestes a vector of 20
ones. More complicated patterns can be obtained, and we refer the reader to ?r ep for
this.

Basic arithmetic can be carried out on variables and vectors using + (addition), -
(subtraction), * (multiplication), / (division), and * (exponentiation). These operations
are carried out componentwise. For example, we could multiply each component of b
by itself via

> b*b
[1] 111 9 16 25

or multiply each element of b by 2 asin

> 2*Db
[1] 2 2 2 6 8 10

which accomplishes this.

Appendix B.1: Using R 685

Therearevariousfunctionsavailablein R, suchasabs(x) (calculatesthe absolute
value of x), | og(x) (calculates the natura logarithm of x), exp(x) (calculates e
raised to the power x), si n(x), cos(x),tan(x) (which calculate the trigonomet-
ric functions), sqrt (x) (which calculates the square root of x), cei | i ng(x), and
f1 oor (x) (calculate the ceiling and floor of x). When such a function is applied to
a vector X, it returns a vector of the same length, with the function applied to each
dement of the original vector. There are numerous special functionsavailablein R, but
two important ones are ganma(x) , which returns the gamma function applied to x,
and | gamma(x) , which returns the natural logarithm of the gamma function.

There are also functions that return a single value when applied to a vector. For
example, m n(x) and max(x) return respectively the smallest and largest elements
inx; | engt h(x) givesthe number of elementsin x; and sun(x) givesthe sum of
thevaluesin x.

R also operates on logical quantities TRUE (or T for true) and FALSE (or F for
false). Logica values are generated by conditions that are either true or false. For
example,

> a <- ¢(-3,4,2,-1,-5)

> b <- a>0

> b

[1] FALSE TRUE TRUE FALSE FALSE

compares each el ement of the vector a with 0, returning TRUE when it is greater than 0
and FAL SE otherwise, and these logical values are stored in the vector b. The follow-
ing logical operatorscan beused: <, <=, >=, >, == (for equality), ! = (for inequality)
aswell as & (for conjunction), | (for disiunction) and! (for negation). For example, if
we create alogical vector ¢ asfollows:

>c¢c < ¢(T,T,T,T,T)

> b&c

[1] FALSE TRUE TRUE FALSE FALSE
> bjc

[1] TRUE TRUE TRUE TRUE TRUE

then an element of b&c is TRUE when both corresponding elements of b and ¢ are
TRUE, while an element of b|c is TRUE when at least one of the corresponding ele-
ments of b and ¢ is TRUE.

Sometimes we may have variables that take character values. While it is aways
possible to code these values as numbers, there is no need to do this, as R can aso
handle character-valued variables. For example, the commands

> A <- c(’a,’'b)
> A
[l] llall Ilbll

create a character vector A, containing two values a and b, and then we print out this
vector. Note that we included the character values in single quotes when doing the
assignment.

686 Appendix B: Computations

Sometimes data values are missing and so are listed as NA (not available). Opera-
tions on missing values create missing values. Also, an impossible operation, such as
0/0, produces NaN (not a number).

Various objects can be created during an R session. To see those created so far in
your session, use the command | s() . You can remove any objects in your workspace
using the r mcommand. For example, r m(X) removes the vector X.

Probability Functions

R has a number of built-in functions for evaluation of the cdf, the inverse cdf, the
density or probability function, and generating random samples for the common dis-
tributions we encounter in probability and statistics. These are distinguished by prefix
and base distribution names. Some of the distribution names are given in the following
table.

Digtribution R name and arguments Distribution R name and arguments
beta beta(- ,a,b) hypergeometric hyper(- ,N,M,n)
binomial binom(- ,n,p) negative binomial nbinom(- ,k,p)
chi-squared chisqg(- ,df) normal norm(- ,mu,sigma)
exponentid exp(- ,Jambda) Poisson pois(- ,lambda)

F f(- ,df1,df2) t t(- ,df)

gamma gamma(- ,aphalambda) | uniform unif(- ,min,max)
geometric geom(- ,p)

As usual, one has to be careful with the gamma distribution. The safest path is
to include another argument with the distribution to indicate whether or not | anbda
is a rate parameter (density is (I' («))~11%x*~1e=*X) or a scale parameter (density
is (I (a))~1A—*x*~1le=*/*). So gamma(- ,al pha, r at e=| anbda) indicates that
| anbda isarate parameter, and gama(- ,al pha, scal e=l anbda) indicatesthat
it isascale parameter.

The argument given by - is specified according to what purpose the command using
the distribution name has. To obtain the cdf of a distribution, precede the name by p,
and then - isthe value at which you want to evaluate the cdf. To obtain the inverse cdf
of adistribution, precede the name by g, and then - is the value at which you want to
evaluatetheinverse cdf. To obtain the density or probability function, precede the name
by d, and then - is the value at which you want to evaluate the density or probability
function. To obtain random samples, precede the name by r , and then - is the size of
the random sample you want to generate.

For example,
> X <- rnorm(4,1,2)
> X

[1] -0.2462307 2.7992913 4.7541085 3. 3169241

generates asample of 4 from the N (1, 22) distribution and assigns this to the vector x.
The command

Appendix B.1: Using R 687

> dnorm(3.2,2,.5)
[1] 0.04478906

evaluatesthe N (2, .25) pdf at 3.2, while

> pnorm(3.2,2,.5)
[1] 0.9918025

evaluatesthe N(2, 0.25) cdf at 3.2, and

> gnorn{. 025, 2,.5)
[1] 1.020018

givesthe 0.025 quantile of the N (2, 0.25) distribution.

If we have data stored in a vector x, then we can sample vaues from x, with or
without replacement, using the sanpl e function. For example, sanpl e(x, n, T)
will generate a sample of n from x with replacement, while sanpl e(x, n, F) will
generate a sample of n from x without replacement (note n must be no greater than
| engt h(x) inthelatter case).

Sometimes it is convenient to be able to repeat a smulation so the same random
values are generated. For this, you can use the set . seed command. For example,
set. seed(12345) establishesthe seed as12345.

Tabulating Data

Thet abl e command is available for tabulating data. For example, t abl e(x) re-
turns a table containing a list of the unique values found in x and their frequency of
occurrencein x. Thistable can be assigned to avariable via

y <- table(x)

for further analysis (see The Chi-Squared Test section on the next page).

If x and y are vectors of the same length, then t abl e(x, y) produces a cross-
tabulation, i.e., counts the number of times each possible value of (x, y) is obtained,
where x can be any of the valuestaken in x and y can be any of the valuestakeniny.

Plotting Data

R has a number of commands available for plotting data. For example, suppose we
have a sample of size n stored in the vector x.

The command hi st (x) will provide afrequency histogram of the datawhere the
cutpoints are chosen automatically by R. We can add optional argumentsto hi st . The
following are some of the arguments available.

br eaks - A vector containing the cutpoints.
freq - A logical variable; when f r eq=T (the default), a frequency his-
togram is obtained, and when f r eq=F, adensity histogram is obtained.

For example, hi st (x, breaks=c(-10,-5,-2,0, 2,5, 10), freq=F) will plot
adensity histogram with cutpoints —10, —5, —2, 0, 2, 5, 10, where we have been care-
ful to ensurethat m n(x) > —10and max(x) < 10.

688 Appendix B: Computations

If y isanother vector of the same length as x, then we can produce a scatter plot of
y against X viathe command pl ot (X, y) . Thecommand pl ot (x, y, type="1")
provides a scatter plot of y against x, but now the points are joined by lines. The
command pl ot (x) plotsthevaluesin x against their index. The pl ot (ecdf (X))
command plots the empirical cdf of the datain x.

A boxplot of the datain X is obtained viathe boxpl ot (x) command. Side-by-
side boxplots of thedatain x, y, z, etc., can be obtained viaboxpl ot (X, vy, z).

A normal probability plot of the values in x can be obtained using the command
ggnor n(x) .

A barplot can be obtained using the bar pl ot command. For example,

> h <- ¢(1,2,3)

> bar pl ot (h)

produces a barplot with 3 bars of heights 1, 2, and 3.

There are many other aspectsto plotting in R that allow the user considerable con-
trol over the look of plots. We refer the reader to the manua for more discussion of
these.

Statistical Inference

R has a powerful approach to fitting and making inference about models. Models are
specified by the symbol ~. We do not discussthisfully here but only indicate how to use
thisto handle the simple and multiple linear regression model s (where the response and
the predictors are all quantitative), the one and two-factor models (where the response
is quantitative but the predictors are categorical), and the logistic regression model
(where the response is categorical but the predictors are quantitative). Suppose, then,
that we have a vector y containing the response values.

Basic Statistics

The function nean(y) returns the mean of the values in y, var (y) returns the
sample variance of the values in y, and sd(y) gives the sample standard devia-
tion. The command nmedi an(y) returns the median of y, while quanti |l e(y, p)
returns the sample quantiles as specified in the vector of probabilities p. For example,
quantile(y,c(.25,.5,.75)) returnsthe median and the first and third quan-
tiles. Thefunctionsort (y) returnsavector withthevauesiny sorted from smallest
tolargest, andr ank(y) givestheranks of thevaluesiny.

Thet-Test
For the datainy, we can use the command
> t.test(y,nu=1, alternative="two.sided", conf.|evel =. 95)

to carry out at-test. This computes the P-value for testing Hp : © = 1 and forms a
0.95-confidenceinterval for x.

The Chi-Squared Test

Suppose y contains a vector of counts for k cells and pr ob contains hypothesized
probabilities for these cells. Then the command

Appendix B.1: Using R 689

> chi sq.test(y, p=prob)

carries out the chi-squared test to assess this hypothesis. Note that y could also corre-
spond to a one-dimensiond table.

If x and y are two vectors of the same length, then chi sq. t est (x, y) carries
out a chi-squared test for independence on the table formed by cross-tabulating the
entriesin x and y. If we first create this cross-tabulation in the table t using the
t abl e function, thenchi sq. t est (t) carriesout thistest.

Simple Linear Regression

Suppose we have a single predictor with values in the vector x. The simple linear
regression model E(y | X) = 1 + Box isthen specified in R by y~x. Werefer toy~x
asamodel formula, and read thisas“y ismodelled as alinear moddl involving x.” To
carry out the fitting (which we have done here for a specific set of data), we use the
fitting linear models command | m as follows. The command

> regexanp <- | nm(y~x)

carries out the computations for fitting and inference about this model and assigns the
result to astructure called r egexanp. Any other valid name could have been used for
this structure. We can now use various R functions to pick off variousitems of interest.
For example,

> sunmar y(r egexanp)

Cal I :
I m(formula = y~x)
Resi dual s:
M n 1Q Medi an 3Q Max

-4.2211 -2.1163 0.3248 1.7255 4.3323
Coefficients:

Estimate Std. Error t value Pr(>]t))
(I'ntercept) 6.5228 1.2176 5.357 4.31e-05 ***
X 1.7531 0.1016 17. 248 1. 22e-12 ***

Signif. codes: 0 ‘***' 0.001 ‘**’" 0.01 ‘“*’ 0.05°

0.1 " 1

Resi dual standard error: 2.621 on 18 degrees of freedom
Mul ti pl e R squared: 0.9429, Adjusted R-squared: 0.9398

F-statistic: 297.5 on 1 and 18 DF, p-value: 1.219e-12

uses the sunmar y function to give us all the information we need. For example, the
fitted line is given by 6.5228 + 1.7531x. The test of Hp : f, = 0 has a P-value of
1.22 x 10712, so we have strong evidence against Ho. Furthermore, the R? is given
by 94.29%. Individual items can be accessed via various R functions and we refer the
reader to ?1 mfor this.

690 Appendix B: Computations

Multiple Linear Regression

If we have two quantitative predictors in the vectors x 1 and x2, then we can proceed
just as with simple linear regression to fit the linear regression model E(y | X1, X2)
= f1 4 foX1 + foxo. For example, the commands

> regex <- | nm(y~x1+x2)
> sunmar y(regex)

fit the above linear model, assign the results of this to the structure r egex, and then
the summar y function prints out (suppressed here) all the relevant quantities. We read
y~x1+x2 as, “y is modelled as a linear modd involving x1 and x2.” In particular,
the F-statistic, and its associated P-value, is obtained for testing Ho : > = 3 =0.

This generalizes immediately to linear regression models with k quantitative pre-
dictors x1, ..., Xk. Furthermore, suppose we want to test that the model only involves
X1,...,X forl < k. We use | mto fit the model for all k predictors, assign this to
r egex, and aso use | mto fit the moded that only involves | predictors and assign
thisto r egex1. Then the command anova(regex, regexl) will output the F-
statistics, and its P-value, for testing Ho : .1 =--- = fx =0.

One- and Two-Factor ANOVA

Suppose now that A denotes a categorica predictor taking two levels a; and ap. Note
that the values of A may be character in value rather than numeric, e.g., X isacharacter
vector containing the valuesal and a2, used to denote at which level the correspond-
ing value of y was observed. In either case, we need to make this into a factor A, via
the command

> A <- factor(x)
so that A can be used in the analysis. Then the command
> aov(y~A)

produces the one-way ANOVA table. Of course, aov also handles factors with more
than two levels. To produce the cell means, use the command t appl y(y, A, nean) .

Suppose thereis a second factor B taking 5 levelsby, . . ., bs. If thisisthe factor B
in R, then the command

> aov(y~A+B+A: B)

produces the two-way ANOVA for testing for interactions between factors A and B. To
produce the cell means, use the command t appl y(y, | i st (A, B), mean). The
command aov(y~A+B) producesthe ANOVA table, assuming that there are no inter-
actions.

L ogistic Regression

Suppose we have binary data stored in the vector y, and x contains the corresponding
values of a quantitative predictor. Then we can use the generalized linear model com-
mand gl mto fit the logistic regression model P(Y = 1|x) = exp{f1 + Sx}/(1 +
exp{f1 + foX}). The commands

Appendix B.1: Using R 691

> logreg <- gl my~x, fam|y=binom al)
> sunmary(| ogreg)

fit the logistic regression model, assign theresultsto | ogr eg and then the surmar y
command outputs this material. This gives us the estimates of the g;, their standard
errors, and P-values for testing that the 5; = 0.

Control Statements and R Programs

A basic control statementisof theformi f (expr1) expr2 el se expr 3, where
expr 1 takesalogical value, expr 2 isexecuted if expr 1isT, andexpr 3 isexecuted
if expr 1 isF. For example, if x isavariable taking value —2, then

> if (x<0) {y <- -1} else {y <- 1}

resultsiny being assigned the value —1. Note that the el se part of the statement can
be dropped.

Thecommandf or (nane in expr) expr2executesexpr 2 for each value
of nane inexpr 1. For example,

> for (i in 1:10) print(i)

printsthe value of thevariablei asi issequentially assigned valuesin {1, 2,, 10}.
Note that m n is a shorthand for the sequence (m,m + 1, ..., n) in R. As another
example,

> for (i in 1:20) y[i] <- 27i

creates avector y with 20 entries, where the i -th element of y equals 2'.

The br eak terminates a loop, perhaps based on some condition holding, while
next halts the processing of the current iteration and advances the looping index.
Both br eak and next apply only to the innermost of nested loops.

Commandsin R can be grouped by placing themwithin braces{ expr 1; expr 2;
. . . } . The commands within the braces are executed as a unit. For example,

> for (i in 1:20) {print(i); y[i] <- 27i}; print(y[i])}

causesi tobeprinted, y[i] tobeassigned, andy[i] to be printed, al withinaf or
loop.

Often when a computation is complicated, such as one that involves looping, it
is better to put all the R commands in a single file and then execute the file in batch
mode. For example, suppose you have afile pr og. R containing R code. Then the
command sour ce(" pat hnane/ pr og. R") causesall the commandsin thefileto
be executed.

It is often convenient to put commentsin R programs to explain what the lines of
code are doing. A comment lineis preceded by # and of courseit is not executed.

User-Defined Functions

R also allows user-defined functions. The syntax of a function definition is as follows.

692 Appendix B: Computations

function name <- function(arguments) {
function body;
return(return value);

}

For exampl e, the following function computes the sample coefficient of variation of the
datax.

coef _var <- function(x) {
result <- sd(x)/nean(x);
return(result);

}

Then if we want to subsegquently compute the coefficient of variation of datay we
simply typecoef _var (y).

Arrays and Lists

A vector of length m can aso be thought of as one-dimensional array of length m. R
can handle multidimensional arrays, eg., mx n,mx n x p arrays, etc. If aisathree-
dimensional array, thenal i, j, k] referstotheentry inthe (i, j, k)-th position of the
array. There are various operations that can be carried out on arrays and we refer the
reader to the manual for these. Later in this manual, we will discuss the specia case of
two-dimensional arrays, which are also known as matrices. For now, we just think of
arrays as an object in which we store data.

A very genera data structure in R is given by alist. A list is similar to an array
with several important differences.

1. Any entry in an array is referred to by its index. But any entry in a list may
be referred to by a character name. For example, the fitted regression coeffi-
cientsarereferred to by r egex$coef f i ci ent s after fitting the linear model
regex <- Im(y ~ x1 + x2). Thedollar mark ($) isthe entry reference
operator, that is, var nane$ent nane indicates the “entname”’ entry in the list
“varname.”

2. While an array stores only the same type of data, alist can store any R objects.
For example, the coef fi ci ent's entry in a linear regression object is a nu-
meric vector, and the nodel entry isalist.

3. The reference operators are different: arr[i] refersto the i-th entry in the
arayarr,andlst[[i]] referstothei-th entry inthelist| st. Notethat i
can be the entry name, i.e, | st $entnane and | st [[’ ent nane’]] refer
to the same data.

Examples

We now consider some examples rel evant to particular sections or examplesinthemain
text. To run any of these codes, you first have to define the functions. To do this, load

Appendix B.1: Using R 693

the code using the sour ce command. Arguments to the functions then need to be
specified. Note that linesin the listings may be broken unnaturally and continue on the
following line.

EXAMPLE B.1.1 Bootstrapping in Example 6.4.2

The following R code generates bootstrap samples and calculates the median of each
of these samples. Torunthiscode, typey <- boot strap_nedi an(m x) , where
mis the number of bootstrap samples, x contains the original sample, and the medians
of the resamples are stored in y. The statistic to be bootstrapped can be changed by
substituting for medi an in the code.

Exanple B. 2.1
function nanme: bootstrap_nedi an
par anet er s:
m resanpl e size
X original data
return val ue:
a vector of resanpled nedi ans
description: resanples and stores its nedian
bootstrap _nedian <- function(mx) {
n <- length(x);
result <- rep(0,m;
for(i in 1:m result[i] <- nedian(sanmple(x,n,T));
return(result);

}

EXAMPLE B.1.2 Sampling from the Posterior in Example 7.3.1
Thefollowing R code generates a sample of from the joint posterior in Example 7.3.1.
To run asimulation, type

#
#
#
#
#
#
#
#

post <- post_nornal (m x, al pha0, bet a0, mu0, t auOsquar e)

where mis the Monte Carlo sample size and the remaining arguments are the hyperpa
rameters of the prior. Theresult isalist called (in this case) post , where post $nmu
and post $si gmasq contain the generated values of x and o2, respectively. For
example,

> X <- c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,
1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899, 4.9233,

8. 3223, 7.9486);

> post <- post_normal (10**4,x, 2,1, 4, 2)

> z <- sqrt(post$sigmasq)/ post $nu

runs asimulation asin Example 7.3.1, with N = 10%.

Exanple B. 2.2

function nanme: post_nor nal
paraneters:

m sampl e size

694 Appendix B: Computations

X dat a

al pha0 shape paraneter for 1/sigma”2

bet a0 rate paraneter for 1/sigma”2

mu0 | ocation paraneter for mu

tauOsquare variance ratio paraneter for mu
returned val ues:

mu sanpl ed nu

si gmasq sanpl ed si gmasquare
description: sanples fromthe posterior distribution
in Exanple 7.3.1

ost _nornal <-function(m x, al pha0, bet a0, nu0, t auOsquar e) {
set the length of the data
<- length(x);
the shape and rate paraneters of the posterior dist.
al pha_x = first paraneter of the gamma dist.
= (al pha0 + n/2)
al pha_x <- alpha0 + n/2
beta_ x = the rate paraneter of the gammma dist.
beta x <- beta0 + (n-1)/2 * var(x) + n*(nean(x)-nmu0)**2/
2/ (1+n*t auOsquare) ;
mu_x = the nmean paraneter of the nornmal dist.
mu_x <- (mu0/tauOsquar e+n*nean(x))/ (n+1l/tauOsquare);
tausq_x = the variance ratio paraneter of the nornma
di stribution
tausq_x <- 1/(n+1/taulsquare);
initialize the result

HHFEHRSHTDHEHFHFHFHHHFHHRHF

result <- list();
resul t $si gmasq <- 1/rgamma(m al pha_x, rate=beta x);
resul t $mu <- rnorm(mmu_x, sqrt(tausq_x *

resul t $si gmasq)) ;
return(result);

}

EXAMPLE B.1.3 Calculating the Estimates and Sandard Errorsin Example 7.3.1
Once we have a sample of values from the posterior distribution of y stored in psi ,
we can calculate the interval given by the mean value of psi plus or minus 3 standard
deviations as ameasure of the accuracy of the estimation.

Exanple B.2.3

set the data

X <- c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,
1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899,
4.9233, 8.3223, 7.9486);

post <- post _normal (10**4,x,2,1, 4, 2);

conmpute the coefficient of variation

Appendix B.1: Using R 695

psi <- sqrt(post$si gnasq)/ post $nu;

psi _hat <- nean(psi <= .5);

psi_se <- sgrt(psi_hat * (1-psi_hat))/sqrt(length(psi));
the interval

cq <- 3
cat("The three times s.e. interval is ",
"[",psi_hat-cq*psi_se, ", ", psi_hat+cg*psi_se,"]\n");

EXAMPLE B.1.4 Using the Gibbs Sampler in Example 7.3.2
To run this function, type

post <-gi bbs_nor mal (m x, al pha0, bet a0, | anmbda, nuo0,
t au0sq, bur ni n=0)

asthiscreates alist caled post , where post $mu and post $si gmasq contain the
generated values of i and o2, respectively. Note that the bur ni n argument is set to
anonnegative integer and indicates that we wish to discard the first bur ni n values of
u and o2 and retain the last m The default valueisbur ni n=0.

Exanple B.2.4

functi on nane: gi bbs_nornal
par amet er s
m the size of posterior sanple
X dat a
al pha0 shape paranmeter for 1/sigma”2
bet a0 rate paraneter for 1/sigm"2
| anbda degree of freedom of Student’s t-dist.
mu0 | ocation paraneter for mnu

t auOsq scal e paraneter for nmu
burni n size of burn in. the default value is O.

returnrd val ues
mu sampled mu’'s
sigmasq sanpled sigmat2’'s
description: sanples fromthe posterior in Ex. 7.3.2

HHFHFEHFHFHFHFHHFEHFHFHHHR

gi bbs_normal <- function(m x, al phaO, bet a0, | anbda, muo0,
t au0sq, bur ni n=0) {
initialize the result
result <- list();
resul t $si gmasq <- result$nmu <- rep(0,M;
set the initial paraneter

mu <- mean(Xx);
sigmasq <- var(Xx);
n <- length(x);

set paraneters

696 Appendix B: Computations

al pha_x <- n/2 + al pha0 + 1/2;
| oop
for(i in (1-burnin):m {
update v_i’'s
Y <- rgamma(n, (1 anbda+1)/ 2, rat e=((x-mu)**2/
si gmasq/ | anbda+1)/2);
updat e si gna-square
beta x <-(sum(v*(x-nu)**2)/| anbda+(mu- mu0) **2/
tauOsq)/ 2+bet a0;
si gmasq<- 1/rgama(1, al pha_x, rat e=beta_x);
update mu
r <- 1/ (sun(v) /| anbda+1/t au0sq);
nu <- rnorm(1, r*(sum v*x) /| anbda+nu0/t au0sq),
sqgrt(r*sigmasq));
burnin check
if(i < 1) next;
resul t$mufi] <- mu;
resul t $si gmasq[i] <- signasq;
}
resul t$psi <- sqgrt(result$sigmasq)/result$nu;
return(result);

}
1

EXAMPLE B.1.5 Batching in Example 7.3.2

The following R code divides a series of data into batches and calculates the batch
means. To run the code, type y <- bat chi ng(k, x) to place the consecutive batch
means of size k, of the datain the vector X, in the vector y.

Exanple B. 2.5
function nane: batching
par anet ers:
k size of each batch
X dat a
return val ue:
an array of the averages of each batch
description: this function separates the data x into
floor(length(x)/k) batches and returns the array of
the averages of each batch
bat ching <- function(k,x) {
m <- floor(length(x)/k);
result <- rep(0,m;
for(i in 1:n) result[i] <- mean(x[(i-21)*k+(1:k)]);
return(result);

Appendix B.1: Using R 697

EXAMPLE B.1.6 Smulating a Sample from the Distribution of the Discrepancy Sa-
tigtic in Example 9.1.2

The following R code generates a sample from the discrepancy statistic specified in
Example 9.1.2. To generate the sample, typey <- di scr epancy(m n) to place a
sample of size miny, where n is the size of the original data set. This code can be
easily modified to generate samples from other discrepancy statistics.

Exanple B. 2.6
function nane: discrepancy
par aneters:
m resanpl e size
n size of data
return val ue:
an array of m discrepancies
description: this function generates m di screpancies
when the data size is n
di screpancy <- function(mn) {
result <- rep(0,m;
for(i in 1:m {
X <- rnorm(n);
xbar <- nmean(x);
r <- (x-xbar)/sqrt((sun((x-xbar)**2)));
result[i] <- -sum(log(r**2));
}

return(result/n);

}
1

EXAMPLE B.1.7 Generating froma Dirichlet Distribution in Example 10.2.3
Thefollowing R code generates a sample from aDirichlet(a1, a2, a3, a4) distribution.
To generate from this distribution, first assign values to the vector al pha, and then
typeddi ri chl et (n, al pha) wheren isthe sample size.

Exanple B. 2.7
function nane: ddirichlet
paraneters:
n sanmpl e si ze
al pha vector(al phal, ..., al phak)
return val ue:
a (nx k) matrix. rows are i.i.d. sanples
description: this function generates n random sanpl es
fromDirichlet(alphal,...,alphak) distribution
ddirichlet <- function(n,al pha) {
k <- length(al pha);
result <- matrix(0,n,k);
for(i in 1:k) result[,i] <- rgamma(n,al pha[i]);
for(i in 1:n) result[i,] <- result[i,] /
sum(result[i,]);

698 Appendix B: Computations

return(result);

Matrices

A matrix can be thought of as a collection of data values with two subscripts or as a
rectangular array of data. So if a isamatrix, thena[i, j] isthe(i, j)-th dementin
a. Notethata[i ,] referstothei-throwof aandal, j] referstothe j-th column of
a. If amatrix has m rows and n columns, then it isan m x n matrix, and m and n are
referred to as the dimensions of the matrix.

Perhapsthe simplest way to create matricesiswith cbi nd and r bi nd commands.
For example,

x<-¢(1,2,3)
y<-c(4,5,6)
a<-chind(x,y)
a

vV V.V V

PRENE
———
wWN R
o s

creates the vectors x and y, and the cbi nd command takes x as the first column
and y as the second column of the newly created 3 x 2 matrix a. Note that in the
printout of a, the columns are still labelled x and y, although we can still refer to
theseasa[, 1] and a[, 2] . We can remove these column names via the command
col nanmes(a) <- NULL. Similarly, ther bi nd command will treat vector arguments
as the rows of amatrix. To determine the number of rows and columns of a matrix a,
we can use the nrow(a) and ncol (a) commands. We can aso create a diagonal
matrix using the di ag command. If x is an n-dimensional vector, then di ag(x) is
ann x n matrix with the entriesin x along the diagonal and O's elsewhere. If a isan
m x n matrix, then di ag(a) isthe vector with entries taken from the main diagonal
of a. To createan n x n identity matrix, usedi ag(n) .

There are a number of operations that can be carried out on matrices. |If matrices
a and b are m x n, then a+b is the m x n matrix formed by adding the matrices
componentwise. The transpose of a isthen x m matrix t (a) , with i-th row equal
to the i-th column of a. If ¢ isanumber, then c*a isthe m x n matrix formed by
multiplying each elementof aby c. Ifaism x nandb isn x p, then a% %b isthe
m x p matrix product (Appendix A.4) of a and b. A numeric vector is treated as a
column vector in matrix multiplication. Note that a* b is aso defined when a and b
are of the same dimension but this is the componentwise product of the two matrices,
which is quite different from the matrix product.

If aisan m x m matrix, then the inverse of a is obtained as sol ve(a). The
sol ve command will return an error if the matrix does not have an inverse. If aisa
sgquare matrix, then det (a) computes the determinant of a.

We now consider an important application.

Appendix B.1: Using Minitab 699

EXAMPLE B.1.8 Fitting Regression Models

Suppose the n-dimensional vector y corresponds to the response vector and the n x k
matrix V correspondsto the design matrix when we arefitting alinear regression model
givenby E(y|V) = V. Theleast-squares estimate of S isgiven by b ascomputed in

b<-sol ve(t (V)% W) % % (V) %%

with the vector of predicted values p and residuasr given by
> p<- V% %
> r<-y-p

with squared lengths

> slp<-t(p) %%
> slr<-t(r)%W%

where sl p is the squared length of p and sl r is the squared length of r . Note that
thematrix sol ve(t (V) % %/) isused for forming confidence intervals and tests for
the individual g;. Virtually al the computations involved in fitting and inference for
the linear regression matrix can be carried out using matrix computations in R like the
ones we have illustrated. B

Packages

There are many packages that have been written to extend the capability of basicR. Itis
very likely that if you have adataanalysis need that cannot be met with R, then you can
find afreely available package to add. We refer the reader to ?i nst al | . packages
and ?l i br ary for more on this.

B.2 | Using Minitab

All the computations found in this text were carried out using Minitab. This statistical
software package is very easy to learn and use. Other packages such as SAS or R (see
section B.1) could also be used for this purpose.

Most of the computations were performed using Minitab like a calculator, i.e., data
were entered and then a number of Minitab commands were accessed to obtain the
quantities desired. No programming is required for these computations.

There were a few computations, however, that did involve a bit of programming.
Typicdly, thiswas a computation in which numerous operations to be performed many
times, and so looping was desirable. In each such case, we have recorded here the
Minitab code that we used for these computations. As the following examples show,
these programs were never very involved.

Students can use these programs as templates for writing their own Minitab pro-
grams. Actually, the language is so simple that we feel that anyone using another
language for programming can read these programs and use them as templates in the
same way. Simply think of the symbolscl, c2, etc. as arrays where we address the
i-thelementinthearray c1 by c1(i) . Furthermore, there are constantsk 1, k2, etc.

700 Appendix B: Computations

A Minitab program is called a macro and must start with the statement grmmacr o
and end with the statement endnacr o. Thefirst statement after gmacr o givesaname
to the program. Comments in a program, put there for explanatory purposes, start with
not e.

If the file containing the programis called pr og. t xt and thisis stored in the root
directory of adisk drive called ¢, then the Minitab command

MIB> %: / prog. txt

will run the program. Any output will either be printed in the Session window (if you
have used apri nt command) or stored in the Minitab worksheet.

More details on Minitab can be found by using Hel p in the program. We provide
some examples of Minitab macros used in the text.

EXAMPLE B.2.1 Bootstrapping in Example 6.4.2

The following Minitab code generates 1000 bootstrap samples from the datain c1,
calculates the median of each of these samples, and then cal cul ates the sample variance
of these medians.

gnmacr o

boot st r appi ng

base 34256734

note - original sanple is stored in cl

note - bootstrap sanple is placed in c2 with each one
not e overwritten

note - nedi ans of bootstrap sanples are stored in c3
note - k1l = size of data set (and bootstrap sanples)
| et k1=15

do k2=1:1000

sample 15 cl1 c2;

repl ace.

I et ¢3(k2)=nedi an(c2)

enddo

note - k3 equals (6.4.5)

| et k3=(stdev(c3))**2

print k3

endnacr o

|

EXAMPLE B.2.2 Sampling from the Posterior in Example 7.3.1

The following Minitab code generates a sample of 10* from the joint posterior in Ex-
ample 7.3.1. Note that in Minitab software, the Gamma(«,) density takes the form
(B~%/T (a))x*~Le™/F So to generate from a Gamma(a,) distribution, as defined
in this book, we must put the second shape parameter equal to 1/ in Minitab.

gmacr o

nor mal post

note - the base command sets the seed for the random
not e nunbers

Appendix B.1: Using Minitab 701

base 34256734
note - the paraneters of the posterior

note - k1l = first paraneter of the gamma distribution
not e = (al pha_0 + n/2)
let k1=9.5

note - k2 = 1/ beta

let k2=1/77.578

note - k3 = posterior nean of nu

| et k3=5.161

note - k4 = (n + 1/(tau_0 squared))~(-1)

| et k4=1/15.5

note - main | oop

note - ¢3 contains generated val ue of signa**2

note - c4 contains generated value of nu

note - c¢5 contains generated value of coefficient of
variation

do k5=1:10000

random 1 c1;

gamma k1 k2.

l et ¢c3(k5)=1/c1(1)

| et k6=sqrt(k4/cl(1))

random 1 c2;

normal k3 k6.

| et c4(kb5)=c2(1)

I et c5(k5)=sqgrt(c3(k5))/ca4(kb)

enddo

endmacr o

|

EXAMPLE B.2.3 Calculating the Estimates and Sandard Errorsin Example 7.3.1
We have a sample of 10* values from the posterior distribution of stored in C5.
The following computations use this sample to calculate an estimate of the posterior
probability that w < 0.5 (k1), aswell asto calculate the standard error of this estimate
(k2), the estimate minus three times its standard error (k3), and the estimate plusthree
timesits standard error (k4).

let c6=c5 le .5

| et kl=nean(c6)

| et k2=sqgrt(kl1*(1-kl1))/sqrt(10000)
| et k3=k1l-3*k2

| et k4=k1+3*k2

print k1 k2 k3 k4

|

702 Appendix B: Computations

EXAMPLE B.2.4 Using the Gibbs Sampler in Example 7.3.2
The following Minitab code generates a chain of length 10* values using the Gibbs
sampler described in Example 7.3.2.

gmacr o

gi bbs

base 34256734

note - data sanple is stored in cl
note - starting value for mu.

| et kl=nean(cl)

note - starting value for sigma**2
| et k2=stdev(cl)

| et k2=k2**2

note - |anbda

l et k3=3

note - sanple size

| et k4=15

note - n/2 + alpha 0 + 1/2

| et kb=k4/2 +2+.5

note - nmu_0O

| et k6=4

note - tau_0**2
let k7=2

note - beta O

l et k8=1

| et k9=(k3/2+.5)

note - main | oop

do k100=1: 10000

note - generate the nu_i in cl0
do k111=1:15

l et k10=.5*(((c1(k111l)-k1)**2)/(k2*k3) +1)
| et k10=1/k10

random 1 c2;

gamma k9 k10.

l et ¢c10(k111)=c2(1)

enddo

note - generate sigma**2 in c20
let cl1=c10*((cl-kl)**2)

l et kl1=.5*sun{cll)/k3+.5*((k1l-k6)**2)/k7 +k8
let k11=1/k1l1

random 1 c2;

gamma k5 k11.

| et c20(k100)=1/c2(1)

| et k2=1/c2(1)

note - generate nu in c21

| et k13=1/(sun{cl0)/k3 +1/Kk7)

Appendix B.1: Using Minitab 703

|l et cll=cl1l*c10/k3

| et kld=sun{cll) +k6/ k7
| et kl14=k13*k14

| et k13=sqgrt(k13*k2)
random 1 c2;

normal k14 k13.

| et ¢c21(k100)=c2(1)
l et kl=c2(1)

enddo

endnacro

|

EXAMPLE B.2.5 Batching in Example 7.3.2
Thefollowing Minitab code divides the generated sampl e, obtained viathe Gibbs sam-
pling code for Example 7.3.2, into batches, and cal cul ates the batch means.

gmacr o
bat chi ng

note - k2= batch size

l et k2=40

note - k4 holds the batch suns

note - cl contains the data to be batched (10000 data val ues)
note - c2 will contain the batch neans (250 batch neans)

do k10=1:10000/ 40

l et k4=0

do k20=0: 39

| et k3=c1l(k10+k20)

| et k4=k4+k3

enddo

| et kl11=floor(k10/k2) +1

| et c2(kll)=k4/k2

enddo

endmacr o

|

EXAMPLE B.2.6 Smulating a Sample from the Distribution of the Discrepancy Sa-
tisticin Example 9.1.2

The following code generates a sample from the discrepancy statistic specified in Ex-
ample9.1.2.

gnmacr o
goodnessof fit

base 34256734

note - generated sanple is stored in cl
note - residuals are placed in c2

note - value of D(r) are placed in c3
note - kl = size of data set

let k1=5

704 Appendix B: Computations

do k2=1:10000
random k1 cl

| et k3=nean(cl)

| et k4=sqgrt(kl-1)*stdev(cl)
l et c2=((cl-k3)/kd)**2
| et c2=l oge(c2)

| et k5=-sum(c2)/kl

| et ¢c3(k2)=k5

enddo

endmacr o

|

EXAMPLE B.2.7 Generating froma Dirichlet Distribution in Example 10.2.3
The following code generates a sample from a Dirichlet(a1, a2, a3, a4) distribution,
whereas = 2,020 =3, a3 =1,a4 = 1.5.

gmacr o
dirichlet

note - the base comand sets the seed for the random

not e nunber generator (so you can repeat a sinulation).
base 34256734

note - here we provide the algorithmfor generating from
not e a Drichlet(kl,k2,k3,k4) distribution

note - assign the values of the paraneters.

| et kl1=2

| et k2=3

l et k3=1

let k4=1.5

| et kb=K2+k3+k4

| et k6=k3+k4

note - generate the sanple with i-th sanple in i-th row
not e of c¢2, c3, c4, cb5,

do k10=1:5

random 1 cl;

beta k1 k5.

l et c2(k10)=c1(1)

random 1 cli;

beta k2 k6.

I et ¢3(k10)=(1-c2(k10))*cl1(1)

random 1 cl,;

beta k3 k4.

| et c4(k10)=(1-c2(k10)-c3(k10))*c1(1)

| et ¢5(k10)= 1-c2(k10)-c3(k10)-c4(k10)

enddo

endnacr o

]

