Appendix A
Mathematical Background

To understand this book, it is necessary to know certain mathematical subjects listed
below. Because it is assumed the student has already taken a course in calculus, topics
such as derivatives, integrals, and infinite series are treated quite briefly here. Multi-
variable integrals are treated in somewhat more detail.

A.1| Derivatives

From calculus, we know that the derivative of afunction f isits instantaneous rate of
change:

f(x +h) — f(x)

d
o L
f(X)_dxf(x) r|1—>| 0 h

In particular, the reader should recall from calculus that

dg d 3 _ ay2 dn _ n—1
a2 =0, o XC = 3X4, ax X =nx'Te,

d _ i . _ i g
w€ =€, gInXx=cosXx, g CoSX=—sinx,

etc. Hence, if f(x) = x3, then f/(x) = 3x2 and, e.g., f/(7) = 372 = 147.

Derivatives respect addition and scalar multiplication, so if f and g are functions
and C isaconstant, then

d
&(C f(x)+9(x)) =C f'(x) + g'(x).

Thus,
d
&(5x3 —3X%+ 7x +12) = 15x%> — 6x + 7,

€tc.
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Finally, derivatives satisfy achainrule; if afunction can bewritten asacomposition
of two other functions, asin f (x) = g(h(x)), then f'(x) = g'(h(x)) h'(x). Thus,
%e'SX — 565X,
& sin(x?) = 2x cos(x?),
T (x2 +x3)% = 5(x2 + x3*(2x + 3x?),

€tc.
Higher-order derivatives are defined by

" d / " d /"
f (X):&f (X)’ f (X)Z&f (X)>

etc. Ingeneral, ther th-order derivative f () (x) can bedefined inductively by f© (x) =
f(x) and d
Oy — 9 -1
Y% X f (X)
forr > 1. Thus, if f(x) = x*, then f/(x) = 4x3, f”(x) = f@(x) = 12x3, @ (x) =

24x, £ @ (x) = 24, etc.
Derivatives are used often in this text.

A.2 | Integrals

If f isafunction, and a < b are constants, then the integral of f over the interval

[a, b], written A
/ f(x) dx,
a

represents adding up thevalues f (x), multiplied by thewidths of small intervalsaround
X. Thatis, f; f(x)dx ~ Zidzl f(Xi)(Xi —Xj—1), wherea=Xg < X1 < ... < Xg = b,
and where x; — Xj_1 issmall.

More formally, wecanset X, = a+ (i/d)(b —a) andlet d — oo, to get aformal
definition of integral as

b d
f(x)dx = li f i/d)y(b— 1/d).
J, foodx= fim 371 @+ 006 -a) @)

To compute f; f (x) dx inthismanner each time would betedious. Fortunately, the
fundamental theorem of calculus provides a much easier way to compute integrals. It
saysthat if F(x) isany function with F’(x) = f (x), then f; f(x)dx = F(b) — F(a).
Hence,

f(,f 3x2dx = b3 — a3,

f(,f x2dx = (b3 — ad),

b n _ 1 an+l n+1
Ja XMdx = i (0T —atth,
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and )
Ja cosxdx =sinb —sina,

f;sinx dx = —(cosb — cosa),

b 5x 4y _ 1(aBb _ a5a
Jo e dx = g€ —e?).

A.3 | Infinite Series

If a1, ap, ag, . .. is an infinite sequence of numbers, we can consider the infinite sum

(or series)

a=ai+at+ag+ -
i=1

Formally, >°; & = limn_s oo Zi’\'zl a; . Thissum may be finite or infinite.

For example, clearly > 211 =141+ 1+ 1+ --- = co. On the other hand,
because
1 1 1 1 1 2"-1
statetet tam=
we see that

1 1 1 N 1 2N _1
4z il - —~ — -1
>T2%tg 16 28 Z:2' N—>ooZ;‘ 7 = N TN

More generally, we compute that

Sao 2

i=1
whenever |a| < 1.
One particularly important kind of infinite seriesisa Taylor series. If f isafunc-
tion, then its Taylor seriesis given by
Lo ® SENET
f(0) + xf’ O+ X f O+ x f0) + - zi—le (0).
i=0 "~
(Herei! =i(i = (i —2)---(2)() standsfor i factorial, withQ! = 1! =1, 2! = 2,
3l =6,4! = 24, etc.) Usualy, f(x) will beexactly equal toits Taylor series expansion,

thus,
snx = Xx—x3/3+x%5—x"/T+--,
cosx = 1—x%/2+x*4—x5/5+...,
& = 14+x+x%/2+x3/3 +x4/4 +
e = 1+5x+ (5x)%/2 + (5x)3/3 + (5x)*/4! +

etc. If f(x) isapolynomia (e.g., f (x) = x3 — 3x2 + 2x — 6), then the Taylor series
of f(x) isprecisely the samefunction as f (x) itself.
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Matrix Multiplication

A matrixisany r x s collection of numbers, e.g.,
2 -1
A=(88) e=(222) c=( 35 25).
-06 -179
€etc.

Matrices can be multiplied, asfollows. If Aisanr x s matrix, and B isansx u ma-
trix, then the product AB isanr x u matrix whosei, j entry isgiven by Zﬁzl AikByj,
asum of products. For example, with A and B asabove, if M = AB, then

8 6\( 36 2
M= (5 2)(—7 6 o)
([ 8(3)+6(-7) 8(6)+6(6) 8(+6(0) ) ( -18 84 16
= \s@+2-7 5®+26) 5+20 )=\ 1 2 1)

as, for example, the (2, 1) entry of M equals5(3) +2(—7) = 1.
Matrix multiplication turns out to be surprisingly useful, and it is used in various
placesin this book.

Partial Derivatives

Suppose f isafunction of two variables, asin f(x, y) = 3x2y3. Then we can take a
partial derivative of f with respect to x, writing

0
X f(x,y),

by varying x while keeping y fixed. That is,

fx+hy —f(x,y)
h )

This can be computed simply by regarding y as a constant value. For the example
above,

0 .
&f(x,y):rl]lﬁmO

0 a 230 a3
aX(3x y°) = 6xy°.
Similarly, by regarding x as constant and varying y, we see that
0
~ (3 2,3 -9 2 2.
ay( X7Y©) Xy
Other examplesinclude
%(18@‘3’ +x%8 —sin(y®)) = 18yeY + 6x3y8,

%(mexy +x8y8 —sn(y®)) = 18xeY +8x%y’ —3y?sin(y®),
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€tc.
If f isafunction of three or more variables, then partia derivatives may similarly
be taken. Thus,

0 246 6 0 246 2,356 0 2456 2,455
— y4 —_2y4 — =4 — y4 =6
aX(x Z°) Xy~z°, ay(xyz) X“y°z°, aZ(x Z°) Y QUAVAR

€tc.

A.6 | Multivariable Integrals

If f isafunction of two or more variables, we can till compute integrals of f. How-
ever, instead of taking integrals over an interva [a, b], we must take integrals over
higher-dimensional regions.

For example, let f(x,y) = x?y3, and let R be the rectangular region given by
R={0<x<15<y<7=[0,1 x[57.Whatis

/R/ f(x, y)dxdy,

theintegral of f over the region R? In geometrical terms, it is the volume under the
graph of f (and thisisasurface) over theregion R. But how do we compute this?
Well, if y is constant, we know that

1 1
/ f (X, y) dx =/ x2y3dx = }y3. (A.6.1)
0 0 3
This corresponds to adding up the values of f along one*“strip” of theregion R, where
y isconstant. In Figure A.6.1, we show the region on integration R = [0, 1] x [5, 7].
The value of (A.6.1), when y = 6.2, is (6.2)3 /3 = 79.443; thisis the area under the
curve x2 (6.2)° over theline[0, 1] x {6.2} .

X

1

Figure A.6.1: Plot of the region of integration (shaded) R = [0, 1] x [5, 7] together with the
lineaty = 6.2.
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If wethen add up the val ues of the areas over these stripsalong all different possible
y values, then we obtain the overall integral or volume, as follows:

/R/f(X,Y)dxdy /57(%)1f(x,y)dx)dyz/;(AleyadX)dy

7
_ 1 gy td7s_oa _
- /5(3y)dy_34(7 5% — 148.

So the volume under the the graph of f and over the region R is given by 148.
Note that we can also compute this integral by integrating first y and then x, and
we get the same answer:

/R/f(x,y)dxdy = /Ol(/57f(x’y)dy)dx=/Ol(/57x2y3dy)dx

_ /01 (%x2(74 ~5%) dx = % :11(74 _ 5% =148

Nonrectangular Regions

If the region R is not a rectangle, then the computation is more complicated. Theidea
is that, for each value of x, we integrate y over only those values for which the point
(X, y) isinside R.

For example, suppose that R is the triangle given by R = {(X,y) : 0 < 2y <
X < 6}. In Figure A.6.2, we have plotted this region together with the dlicesat x = 3
and y = 3/2. We use the x-dlices to determine the limits on y for fixed x when we
integrate out y first; we use the y-dlices to determine the limits on x for fixed y when
we integrate out x first.

Figure A.6.2: Theintegration region (shaded) R = {(X, ¥) : 0 < 2y < X < 6} together with
thedicesat X = 3andy = 3/2.
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Then x can take any value between 0 and 6. However, once we know X, then y can
only take values between 0 and x /2. Hence, if (X, y) = xy + x8y8, then

/R/f(x,y)dxdy
= ° X/Zf(x, y) dy)dx = i X/2(xy+x6y8)dy dx
(. Jo=, () )

6
= [ (150722 = )+ 65 0x/2° ~ o) dx
0

6.1 1
_ +.3 15
_/0 (5 + 2008"")
11 1 1
_-= 64_04 - = 616_016
84( )+460816( )
= 3.8264 x 10’.

Once again, we can compute the sameintegral in the opposite order, by integrating
first x and then y. In this case, y can take any value between 0 and 3. Then, for agiven
value of y, we seethat x can take values between 0 and 2y. Hence,

/R/ f(x,y)dxdy = /03 (/Ozy f(x, y)dX) dy = [)3 (/OZy(Xy+ x6y8)dx) dy.

We leave it as an exercise for the reader to finish this integral, and see that the same
answer as above is obtained.

Functions of three or more variables can also be integrated over regions of the
corresponding dimension three or higher. For smplicity, we do not emphasize such
higher-order integrals in this book.






