
Appendix A

Mathematical Background

To understand this book, it is necessary to know certain mathematical subjects listed
below. Because it is assumed the student has already taken a course in calculus, topics
such as derivatives, integrals, and infinite series are treated quite briefly here. Multi-
variable integrals are treated in somewhat more detail.

A.1 Derivatives
From calculus, we know that the derivative of a function f is its instantaneous rate of
change:

f !(x) = d

dx
f (x) = lim

h→0

f (x + h)− f (x)

h
.

In particular, the reader should recall from calculus that

d
dx 5 = 0, d

dx x3 = 3x2, d
dx xn = nxn−1,

d
dx ex = ex , d

dx sin x = cos x, d
dx cos x = − sin x,

etc. Hence, if f (x) = x3, then f !(x) = 3x2 and, e.g., f !(7) = 3 72 = 147.
Derivatives respect addition and scalar multiplication, so if f and g are functions

and C is a constant, then

d

dx
(C f (x)+ g(x)) = C f !(x)+ g!(x).

Thus,

d

dx
(5x3 − 3x2 + 7x + 12) = 15x2 − 6x + 7,

etc.
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Finally, derivatives satisfy a chain rule; if a function can be written as a composition
of two other functions, as in f (x) = g(h(x)), then f !(x) = g!(h(x)) h!(x). Thus,

d
dx e5x = 5e5x ,

d
dx sin(x2) = 2x cos(x2),

d
dx (x

2 + x3)5 = 5(x2 + x3)4(2x + 3x2),

etc.
Higher-order derivatives are defined by

f !!(x) = d

dx
f !(x), f !!!(x) = d

dx
f !!(x),

etc. In general, the r th-order derivative f (r)(x) can be defined inductively by f (0)(x) =
f (x) and

f (r)(x) = d

dx
f (r−1)(x)

for r ≥ 1. Thus, if f (x) = x4, then f !(x) = 4x3, f !!(x) = f (2)(x) = 12x2, f (3)(x) =
24x , f (4)(x) = 24, etc.

Derivatives are used often in this text.

A.2 Integrals
If f is a function, and a < b are constants, then the integral of f over the interval
[a, b], written ! b

a
f (x) dx,

represents adding up the values f (x), multiplied by the widths of small intervals around
x . That is,

" b
a f (x) dx ≈#d

i=1 f (xi )(xi−xi−1),where a = x0 < x1 < . . . < xd = b,
and where xi − xi−1 is small.

More formally, we can set xi = a + (i/d)(b − a) and let d →∞, to get a formal
definition of integral as! b

a
f (x) dx = lim

d→∞

d$
i=1

f (a + (i/d)(b− a)) (1/d).

To compute
" b

a f (x) dx in this manner each time would be tedious. Fortunately, the
fundamental theorem of calculus provides a much easier way to compute integrals. It
says that if F(x) is any function with F !(x) = f (x), then

" b
a f (x) dx = F(b)− F(a).

Hence, " b
a 3x2 dx = b3 − a3," b
a x2 dx = 1

3 (b
3 − a3)," b

a xn dx = 1
n+1 (b

n+1 − an+1),
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and " b
a cos x dx = sin b − sin a," b
a sin x dx = −(cos b− cos a)," b
a e5x dx = 1

5(e
5b − e5a).

A.3 Infinite Series
If a1, a2, a3, . . . is an infinite sequence of numbers, we can consider the infinite sum
(or series)

∞$
i=1

ai = a1 + a2 + a3 + · · ·

Formally,
#∞

i=1 ai = limN→∞
#N

i=1 ai . This sum may be finite or infinite.
For example, clearly

#∞
i=1 1 = 1 + 1 + 1 + 1 + · · · = ∞. On the other hand,

because
1
2
+ 1

4
+ 1

8
+ 1

16
+ · · · + 1

2n =
2n − 1

2n ,

we see that

1
2
+ 1

4
+ 1

8
+ 1

16
+ · · · =

∞$
i=1

1
2i = lim

N→∞

N$
i=1

1
2i = lim

N→∞
2N − 1

2N = 1.

More generally, we compute that

∞$
i=1

ai = a

1− a

whenever |a| < 1.
One particularly important kind of infinite series is a Taylor series. If f is a func-

tion, then its Taylor series is given by

f (0)+ x f !(0)+ 1

2!
x2 f !!(0)+ 1

3!
x3 f (3)(0)+ · · · =

∞$
i=0

1

i!
xi f (i)(0).

(Here i! = i(i − 1)(i − 2) · · · (2)(1) stands for i factorial, with 0! = 1! = 1, 2! = 2,
3! = 6, 4! = 24, etc.) Usually, f (x)will be exactly equal to its Taylor series expansion,
thus,

sin x = x − x3/3+ x5/5− x7/7+ · · · ,
cos x = 1− x2/2+ x4/4− x5/5+ · · · ,

ex = 1+ x + x2/2!+ x3/3!+ x4/4!+ · · · ,
e5x = 1+ 5x + (5x)2/2!+ (5x)3/3!+ (5x)4/4!+ · · · ,

etc. If f (x) is a polynomial (e.g., f (x) = x3 − 3x2 + 2x − 6), then the Taylor series
of f (x) is precisely the same function as f (x) itself.
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A.4 Matrix Multiplication
A matrix is any r × s collection of numbers, e.g.,

A =
%

8 6
5 2

&
, B =

%
3 6 2

−7 6 0

&
, C =

 2 −1
3/5 2/5
−0.6 −17.9

 ,
etc.

Matrices can be multiplied, as follows. If A is an r×s matrix, and B is an s×u ma-
trix, then the product AB is an r×u matrix whose i, j entry is given by

#s
k=1 Aik Bkj ,

a sum of products. For example, with A and B as above, if M = AB, then

M =
%

8 6
5 2

&%
3 6 2

−7 6 0

&
=

%
8 (3)+ 6 (−7) 8 (6)+ 6 (6) 8 (2)+ 6 (0)
5 (3)+ 2 (−7) 5 (6)+ 2 (6) 5 (2)+ 2 (0)

&
=
% −18 84 16

1 42 10

&
,

as, for example, the (2, 1) entry of M equals 5 (3)+ 2 (−7) = 1.
Matrix multiplication turns out to be surprisingly useful, and it is used in various

places in this book.

A.5 Partial Derivatives
Suppose f is a function of two variables, as in f (x, y) = 3x2y3. Then we can take a
partial derivative of f with respect to x , writing

∂

∂x
f (x, y),

by varying x while keeping y fixed. That is,

∂

∂x
f (x, y) = lim

h→0

f (x + h, y)− f (x, y)

h
.

This can be computed simply by regarding y as a constant value. For the example
above,

∂

∂x
(3x2y3) = 6xy3.

Similarly, by regarding x as constant and varying y, we see that

∂

∂y
(3x2y3) = 9x2y2.

Other examples include

∂

∂x
(18exy + x6y8 − sin(y3)) = 18yexy + 6x5y8,

∂

∂y
(18exy + x6y8 − sin(y3)) = 18xexy + 8x6y7 − 3y2 sin(y3),



Appendix A.6: Multivariable Integrals 679

etc.
If f is a function of three or more variables, then partial derivatives may similarly

be taken. Thus,

∂

∂x
(x2y4z6) = 2xy4z6,

∂

∂y
(x2y4z6) = 4x2y3z6,

∂

∂z
(x2y4z6) = 6x2y4z5,

etc.

A.6 Multivariable Integrals
If f is a function of two or more variables, we can still compute integrals of f . How-
ever, instead of taking integrals over an interval [a, b], we must take integrals over
higher-dimensional regions.

For example, let f (x, y) = x2 y3, and let R be the rectangular region given by
R = {0 ≤ x ≤ 1, 5 ≤ y ≤ 7} = [0, 1]× [5, 7] .What is!

R

!
f (x, y) dx dy,

the integral of f over the region R? In geometrical terms, it is the volume under the
graph of f (and this is a surface) over the region R. But how do we compute this?

Well, if y is constant, we know that! 1

0
f (x, y) dx =

! 1

0
x2y3 dx = 1

3
y3. (A.6.1)

This corresponds to adding up the values of f along one “strip” of the region R, where
y is constant. In Figure A.6.1, we show the region on integration R = [0, 1]× [5, 7].
The value of (A.6.1), when y = 6.2, is (6.2)3 /3 = 79.443; this is the area under the
curve x2 (6.2)3 over the line [0, 1]× {6.2} .

y

x1

5

7

y = 6.2

Figure A.6.1: Plot of the region of integration (shaded) R = [0, 1]× [5, 7] together with the
line at y = 6.2.
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If we then add up the values of the areas over these strips along all different possible
y values, then we obtain the overall integral or volume, as follows:!

R

!
f (x, y) dx dy =

! 7

5

+! 1

0
f (x, y) dx

,
dy =

! 7

5

+ ! 1

0
x2y3 dx

,
dy

=
! 7

5

+1
3

y3
,

dy = 1
3

1
4
(74 − 54) = 148 .

So the volume under the the graph of f and over the region R is given by 148.
Note that we can also compute this integral by integrating first y and then x , and

we get the same answer:!
R

!
f (x, y) dx dy =

! 1

0

+! 7

5
f (x, y) dy

,
dx =

! 1

0

+ ! 7

5
x2y3 dy

,
dx

=
! 1

0

+1
4

x2(74 − 54)
,

dx = 1
3

1
4
(74 − 54) = 148.

Nonrectangular Regions

If the region R is not a rectangle, then the computation is more complicated. The idea
is that, for each value of x , we integrate y over only those values for which the point
(x, y) is inside R.

For example, suppose that R is the triangle given by R = {(x, y) : 0 ≤ 2y ≤
x ≤ 6}. In Figure A.6.2, we have plotted this region together with the slices at x = 3
and y = 3/2. We use the x-slices to determine the limits on y for fixed x when we
integrate out y first; we use the y-slices to determine the limits on x for fixed y when
we integrate out x first.

y

x
x = 3 x = 6

y = 3/2

2y = x

Figure A.6.2: The integration region (shaded) R = {(x, y) : 0 ≤ 2y ≤ x ≤ 6} together with
the slices at x = 3 and y = 3/2.
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Then x can take any value between 0 and 6. However, once we know x , then y can
only take values between 0 and x/2. Hence, if f (x, y) = xy + x6y8, then!

R

!
f (x, y) dx dy

=
! 6

0

+! x/2

0
f (x, y) dy

,
dx =

! 6

0

+! x/2

0
(xy + x6y8) dy

,
dx

=
! 6

0

+
x

1
2
((x/2)2 − 02)+ (x6 1

9
((x/2)9 − 09))

,
dx

=
! 6

0

+1
8

x3 + 1
4608

x15
,

dx

= 1
8

1
4
(64 − 04)+ 1

4608
1

16
(616 − 016)

= 3.8264× 107.

Once again, we can compute the same integral in the opposite order, by integrating
first x and then y. In this case, y can take any value between 0 and 3. Then, for a given
value of y, we see that x can take values between 0 and 2y. Hence,!

R

!
f (x, y) dx dy =

! 3

0

+! 2y

0
f (x, y) dx

,
dy =

! 3

0

+! 2y

0
(xy + x6y8) dx

,
dy.

We leave it as an exercise for the reader to finish this integral, and see that the same
answer as above is obtained.

Functions of three or more variables can also be integrated over regions of the
corresponding dimension three or higher. For simplicity, we do not emphasize such
higher-order integrals in this book.




