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1 Introduction

This paper describes how to elicit a prior and how to implement Monte Carlo
algorithms for the posterior calculations for a number of different linear models
where the underlying error distributions are assumed to be normally distributed.
Elicitation algorithms are provided for the parameters associated with means
and variances of response variables while a uniform prior is always used for the
correlation matrix when there several response variables. A website containing
an implementation of this approach can be found at the website:

Section 2 discusses the simplest case where there is a single response varaible
and no predictors. Section 3 describes the generalization to the case of p > 1
response variables and no predictors. Section 4 considers the linear regression
model and Section 5 consders the multivariate regression model.

2 Location-Scale Normal Model

Suppose the sampling model is y ~ N(u,0?) where (u,02) is completely un-
known. A conjugate prior is then given by

1/0’2 ~ gamma(am,agg)
plo® ~ N(ug,Ago?) (1)

where (g9, Ao, @01, ap2) are hyperparameters that need to be specified via an elic-
itation based upon what the practitioner knows about the measurement process
in the application that produces y.

Consider now the elicitation of these hyperparameters and for this we need to
specify a probability v that represents virtual certainty. For example, v = 0.99
is a reasonable choice and it will be used extensively in the elicitation. We



break the elicitation into two parts. Note that, given the structure of the prior,
namely, the prior on y is conditional on a given value of o2, it makes sense to
first elicit the values (a1, g2). Accordingly, we break the elicitation into two
parts.

2.1 The Prior on o

For this we note that the interval ji;,.,. &+ true2(14+)/2 Will contain a measure-
ment y with virtual certainty. Of course, we don’t know (fis,e, Otrue) and so we
will place a prior on these quantities as specified in (1) and drop the "true" sub-
script. We suppose first that the practitioner’s knowledge is such that they can
specify some limits on the half-length of this interval as in specifying constants
(s1,82) where

51 S 0Z(144)/2 < S2

such that these inequalities hold with virtual certainty. This implies that

52 1 22
(1+;)/2 < = < (1+;)/2 (2)
s3 o s3

holds with virtual certainty. Note that it is possible to take s? = 0 but the
bigger we can take it the better and we will suppose in the following that s > 0
but it might be small.

Now let G (a1, @g2,-) denote the gamma(agi, apz) cdf, using the rate pa-
rameterization, so that G (a1, a2, z) = G (o1, 1, agez) . Therefore, with the
quantile function of the gamma(ag1, ap2) denoted by G~ (a1, age, -), the in-
terval given by (2) contains 1/0? with virtual certainty, when ag1, ago satisfy,

Gil (a()lv a2, (1 + 7)/2) = 2(21+p)/27 /8%7
Gil (aOlv a2, (1 - 7)/2) = 2(21+p)/2/$§7

or equivalently

G(Oé017a0272(21+p)/2/5%) =(1+7)/2,
G(Oé017a0272(21+p)/2/5§) =({1-7)/2,

or equivalently

G(ap1, 1, a2z

—~hN

Lip)2/57) = (1+7)/2, (3)
Lip)2/53) = (1=7)/2. (4)

It is a simple matter to solve these equations for (a1, ag2) . For this choose an
initial value for a1 and, using (3), find = such that G(ao1, 1,z) = (1 +7)/2,
which implies agy = w52,/ 2(21 +p)/2- I the left-side of (4) is less (greater) than
(1 —+)/2, then decrease (increase) the value of ap; and repeat step 1. Continue
iterating this process until satisfactory convergence is attained.

[\

G(ap1, 1, a2z

—~



it apr Qo2 prob. content of (s1, $2)
1 25 23.96118 0.9950000
2 12.5 14.14578 0.9950000
3 6.25 8.760395 0.9949823
4 3.125 5.723011 0.9898152
5 4.6875 7.292580 0.9946849
6 3.90625 6.524291 0.9937067
7 3.515625 6.128473 0.9924021
8 3.320312 5.927058 0.9913268
9 3.222656 5.8253790  0.99063500
10 3.173828 5.774283 0.9902425
11 3.149414 5.748669 0.9900334

Table 1: Output from the iterative procedure to determine (agi,ag2) based
on (s1,82) = (2,10) where the starting value of ag; is 25 and error criiterion
e = 0.0001.

If the initial value chosen for ag; is not chosen large enough, then the iter-
ation will not converge and in any case one should specify a maximum number
of iterations. If the iteration fails, then just choose a larger value of ag; and
it is worth noting that the algorithm is robust to this choice as in choosing a
very large value simply leads to more iterations with virtually the same values
of (o1, p2) chosen for the hyperparameters. Table 1 contains the output of
the iteration when (s1,s2) = (2,10) and the starting value of ag; is 25 and
the algorithm stops when the content of (si,s2) differs from 0.99 by less than
e = 0.0001. So the elicited values are (a1, ag2) = (3.149414,5.748669). It is a
good idea to plot the elicited prior of oz(14,)/2 to make sure this makes sense
and this is provided in Figure 1.

2.2 The Prior on u

We now consider eliciting the hyperparameters (1, Ag). To start we specify an
interval (my,ms) such that we are virtually certain this contains the true value
of . A natural choice for g is then py = (m1 + m2)/2 but other choices could
be made in (my,mz). Now, given the prior determined for 1/02 in part 1 we
have that the prior on u, as determined by (1) is given by

Q2
1~ pio + | == Aot2ao,
Qo1

where tg,,, is distributed according to a t distribution with 2cq; degrees of
freedom. Let Has,,, denote the cdf of ts,,, so Ag must satisfy, using the sym-
metry of ¢ distributions about 0 for the final equality and we have substituted
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Figure 1: A plot of the elicited prior on oz(14,)/2-

po = (M1 +m2)/2,

v = H, M2t ) g, M~ o
"\ Vaoz/ao1 )Xo "\ Vaoz/ao1 )Xo
mo — My

= 2Hpy | —/————] -1
(\/aoz/am)\o)

Then denoting the quantile function of the t2,,, distribution by H{alm

mp M1 <1+7)
2¢/apz/ap1 Ao Zaot {2
mo — My

- 2 \% aOZ/aOlH{O&lﬂl (I_JQF‘Z)

and this completes the elicitation.
Consider the previous example where we determined

or

Ao

(cro1, aipn) = (3.149414, 5.748669)
and now suppose that (my, mg) = (—2,10). So,
2001 = 2(3.149414) = 6.298828

is the degrees of freedom for the ¢ distribution and Hz_alol ((1++)/2) =3.636274
so the interval (—3.636274,3.636274) contains v of the probability for the t24,,
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Figure 2: A plot of the elicited prior on .

distribution. For the density of p this is recentered to py = (mq + ms)/2 = 4
and rescaled by the factor og = 1/ g2/ Ao where

- My — My - 12
0 2\/aozjoor Hy (£2) — 2(1.351042)(3.636274)
—  1.22131.

Figure 2 is a plot of the prior on pu.

2.3 The Posterior
2

Suppose now that y = (y1,...,¥y,)" is observed with mss (7, s%) where s? =
> (yi — §)?. The prior specified in (1) is a conjugate prior and leads to the
following posterior.

/0%y ~  gamma(aor +1/2, a0(y))

plo®y ~ N(uy),(1/X5+n)""0?) (5)
where
ao(y) = aoe+57/2+n(F — po)*/2(1 + 1)),
p(y) = (/A5 +n) " (/N5 + ng).

As such, it is possible to directly sample from the posterior to determine poste-
rior expectations.



3 Multivariate Normal

3.1 The Prior

Suppose the sampling model is y ~ N,(u, %) where (p,¥) is completely un-
known. We write ¥ = DRD where D = diag(a}{z,...,ail/}) and R is the

correlation matrix. Rather than a conjugate prior we consider the prior

1/oyi ~ gamma(agi, o) fori=1,...,p
R ~ uniform(C),) where C, = the set of p x p correlation matrices
plE ~ Np(pg, AoXAg) where Ag = diag(Ao1, - - -, Aop)- (6)

So, (g, Ao, a1, ap2) are the 4p hyperparameters that need to be specified via
an elicitation based upon what the practitioner knows about the measurement
process in the application that produces y.

Here the values of (a1, a2) are elicited exactly as specified in Section 2
and this is done variable by variable. Now note that Ag>XAg = AgDRDAg and
AgD = diag()\mai{z,...,)\Opa,l,x/?) and so p|X ~ Np(pg, AoXAg). Therefore,
we have that the

ti | 2~ N (o, )\(Z)igii)

and so the marginal conditional prior on u; only depends on ¢;; and the hyper-
parameters (g;, Ao;). Then, since 1/0;; ~ gamma(a;o1, tio2) this implies that
the unconditional prior on w; is given by

[ 02
i ~ Ho; + - Aoit2a,; -
Qp1?

In other words, the values (11g;, Ao;) can be elicited variable by variable exactly
as we have done in Section 2 but with possibly different limits (m1;, m2;) holding
with virtual certainty for u,.

3.2 The Posterior

The prior (4) leads to some computational issues for the posterior that need to
be addressed. First we consider a conjugate prior given by

ST~ WS, fo)
IS~ Ny, M%) (7)

The prior (6) differs from (7) in several significant ways. For (7) we need to
specify ¥ which means we need to elicit both variances and covariances with the
latter being much harder to do. Also we need to specify the degrees of freedom
parameter. More seriously, while eliciting g, can be done similar to what we
have described already, the conjugacy of this prior demands that Ag; = --- =
Aop = Ao and this results in a considerable loss of control over the priors on the
individual means p,; and this is not satisfactory. Still, as shall be demonstrated,



the posterior resulting from (7) has value when evaluating expectations with
respect to the posterior induced by (6) and so is stated here.

The following result is well-known and is stated here as it will be used when
considering the posterior associated with (6). Here Y = (y1---yn) € R"*P is
the observed sample, y'=1'Y/n and S = (Y — 1y')'(Y — 1§').

Theorem 1. With the prior given by (7), the posterior of (u,¥x71) given Y, is
STHY  ~ W(B(Y), fo +n),

WISY ~ N(u(Y),(n+ 1/32)'5), ®)
where
S(Y) = <261+S+#%(S'uo)(iuo)’>,
WYY = (0 1A (/N2 + ).

Note that when p = 1, then gamma(ag1, a2) = Wi(1/2a02,2001) which ex-
plains the apparent difference in appearance between (8) and (5).

Now consider the prior given by (6) and note that for matrix A, etr(A) =
exp(tr(A)). For this let wy(+; V, f) denote the density of a Wishart,(V, f) density
and @, (-; p, 22) denote the density of a Nj(p, ) distribution.

Theorem 2. With the prior given by (6), the posterior of (u,=) = (u, X 71) is
proportional to

wp(Z; 87 n —p— D, (7,271 /n)k(p, E) 9)

where

- 1 ey —
D) = exp {500 o) 0520 0 o) |
k
(1/03) T PTI2 oxp (—apgi /i) -

i=1

Proof: We need to show that the joint posterior of (u, =) is proportional to

—(n—2p— 1.1 = n e _ -
1 e {5z b o { a9 - )} K D)

With D = diag(a}f,...,a,l,;/,z) put U = D=2 = diag(1/o11,...,1/0,p), then
the posterior of (u,U,R) is proportional to,
L(p, U.R|Y)m(p| U,R)m(U)
1
I8 e {55 - S5 - e {gsut
P

_ 1 a1 — Qo1i—
12| 1/2€XP{—§(N—H0)IA0 'S 1A01(N_NO)}HuiOM b exp (—a2iui) -
i=1



Now put V = diag(vy,...,v,) = U~ = diag(1/u1,...,1/u,) and note that the
transformation U — V has Jacobian vy 2., "V, 2, Therefore, the posterior of
(i, V, R), where ¥ = VY/2RV'/2  is proportional to

o 1 e _ noo_ 1/
S et { g8t B e {5 (15 - ' 5 ) | ¢
exp ,l('u,“ YAGTETIAG (1 — ) Hv @0ti~Loxp ( — Qo
5 0) fo 0

Now make the transformation (u,V, R) — (i, ). We need to calculate the

Jacobian of the transformation (V, R) — X. For this we have o;; = Ul/zv;/zrlj

when ¢ # j and o;; = v;. Therefore, when i # j

Joij 1@4/2 12, Ooij —v1/2 —1/2. Ooij ERVERVE

v’y v, Ty .
ov; 2" J ”7811 2 ”78” v

and Jo;;/0v; = 1 with all other partial derivatives equal to 0. Now in the matrix
of partial derivatives order the rows according to

(0'11, ce ey Oppy012,++.,01p,023, ... 7O'p_lp)
and order the columns according to
(Ul, ey UpyT125 005 T1p, 723, - - - ,T,,_lp).
It is then easy to see that this matrix is lower triangular with diagonal given by

(1,...,1, i/2 1/2, ..,Ui/2v11,/2,v§/2v31,/2,..., 11)/211)1/2)

with determinant equal to
v§p_1)/2v§p_l)/2 o vz(lpfl)/Z — |diag(2)|(p*1)/2
so the Jacobian of the transformation (V,R) — X is |diag(X)|~®~Y/2. This

implies that the posterior of (u, ) is proportional to

2

p ao1i+(p+1)/2 )
I l Q024
a“ Oii

i=1

i e { g5zt b e {55 - (2 5 - 0

1 et
exp{—(uuo)’f\olE 11\01(##0)} X

Finally, make the transformation ¥ — = = ¥~ which has Jacobian |Z|~(P*1)
(see Muirhead(1982), Theorem 2.1.8). With this, the joint posterior of (u, Z) is
proportional to (9). W



As will be discussed, one of the virtues of (9) is that we can sample from the
joint density wy,(Z; 57, n —p—1)¢,(u:;¥,27") and what is left over, namely
the factor k(u, Z), does not depend on the data and generally can be considered
to have much less of an influence on the posterior, particularly as the sample
size grows. It is of some relevance, however, that another form of this result
allows direct sampling from the conditional posterior p|X,Y.

Corollary 2.1. With the prior given by (6), the posterior of (u,=Z) = (u,X71)
is proportional to

wp(Z;57  n—p)o, (u; p(Y), (nE + Ay TEAGH) ) x

1
exp {——(y — o) Ag ' (E - E(nATTEAT T + E)TIE)AGT (T - No)} k(Z10)

2
where
p(Y) = (E+ATEAN/n) T EFHAG'EAG o /n)
EE) = [nE+Aj'E gl|—1ﬁ(1/(;%)“0“*(?“)/%@(—ami/gii),
i=1

so |8, Y ~ Ny(p(Y), (nZ+ AFTEA; ).

3.3 Importance Sampling

Theorem 2 suggests a good importance sampler for computing integrals with
respect to the posterior.

Theorem 3. To approximate the expectation FEry.|y)(h(p,Z)) generate a
sample (u;,=;) for i =1,..., N where

E’i ~ WP(Silfnipi]‘)v
1|~ Ny(3.E71/n) (11)

and evaluate the estimate

r - ZZ\; h(“iin)k(“mEi)
Encvy(M(p, =) = = — :
POARPI(TINY

For an estimate of its standard error. See Evans and Swartz (2000), Theorem
6.4 for a formula for the standard error. Note that the merit in this importance
sampler lies in the fact that k(u, Z) does not depend on the data Y and it is the
data that primarily determines where the posterior concentrates and this is the
main determinant of the success of any integration algorithm in this context.
The effect of the prior on the posterior generally decreases is as sample size
increases as it concentrates about the true values and so the function k& becomes
effectively constant in the region where the bulk of the posterior probability lies

(12)



In fact, a whole class of importance samplers suggests itself. For we can
write,

— i (n—2p— 1=\ = n e _ —
10 et { 552 22 exp {5 (s~ 9200~ 9) K. 2)
= |E|(”2p2)/zetr{%SE} X

=17 oo { -5 0~ 9200 - 9) = 31300 10l 1)}

1

3 = 00t ) .

k(u,E)eXp{
Note that, excepting k(u, Z), the first line is similar to the situation that obtains
when obtaining the posterior with part of the conjugate prior on g but with no

prior on Z. So, this now becomes proportional to, using the notation, x’ A(-) =
x’' Ax for a quadratic form,

1
172 exp {5 = (108 ) s/ 38 + 19 1/ 4 )0 |
1 (n—2p— n _ _ _
S0 et {5 |54 (7 = )5 — )| 2 e
where
— 1 e 2
Ba(i3) = eXP{—§(N—No)'(A01:Aol—/\02:)(#—#0)} x

k
H 001z+(P+1)/2

=1

exp (—a2i/04i) -

This establishes the following result.

Theorem 4. To approximate the expectation Ery(.|y)(h(u,Z)) generate a
sample (p;,=;) for i =1,..., N where

~ Wp(E(Y),n—p—1),

(11 (1]

BIE ~ Npy(u(Y),(n+1/A)'E™), (13)
where
SW) = (S+ - mIE )
p(Y) = (n+1/X) " (po/N +ny)

and evaluate the estimate

ZN h(Nmuz)k)\o (NN‘”) (14)
21 1 k)\o(p’wh‘l)

En(~ \ Y)(h(N7 E)) =

10



We are free to choose )\(2) to improve the efficiency of the sampler and a natural
choice is A3 = max(\2,, ..., A%p) as this guarantees that the importance sampler
is based on the most pessimistic choice of this hyperparameter. Note that taking
A2 = oo gives the importance sampler (11).

3.4 Sampling from the Posterior

It is also of interest to be able to at least approximately generate a sample of
n from the posterior. For this we can use the SIR algortithm of Rubin (1988).
After generating the sample from the importance sampler and computing the
weights. The cumulative cdf of the weights is then evaluated as (3, 23:1 wj),

a value U ~ U(0,1) is then generated and the value i, satisfying 22‘:1 w; <

U < Z;J:l w; is computed. The value (p;,Z;) is then returned as a value
approximately generated from the posterior. This is repeated n independent
times to generate the sample (u; ,Z;,),...,(1; ,Z;,). This approximation is
justified by the fact that a generated value converges weakly to the posterior
distribution as N — oo.

4 Linear Regression

Suppose the sampling model is y ~ N(x'3,0?%) for a set of k predictors x =
(x1,...,2)" and where (3, 02) is completely unknown. A possible prior is then
given by

1/o* ~ gamma(ag, ao2)
Blo* ~ Ni(By,0°AP) (15)

where Ay = diag(Ao1, ..., k) and so (B, Ao, @01, ap2) are hyperparameters
that need to be specified via an elicitation. The elicitation of (a1, ag2) for o
proceeds as in Section 2 so we focus on the prior for 3. We consider several
different scenarios for this.

4.1 Prior information about each g,

This proceeds just as in Section 2 for the mean of a multivariate normal. So,
we have that the marginal prior on 3, is

3

Q02i
61‘ ~ 601’ + - >‘0it2a01i'
Qo1
So after specifying the limits (m1;, m2;), such that we are virtually certain this
contains the true value of 3;, and putting 8y, = (my; + ma;)/2, then

Moj — M1y

2y/aozi/aoriHy,, (552)

Aoi =

11



The likelihood for the observed y ~ N, (X3,0?) at predictor values X =
(X1,...,%,) € R"*F is given by

1
I 2 —2\n/2 _
(8,0 |y) x ()" exp { 5

(v~ XB) (v - X0
1 n/2 1 )
I €xp —r‘g(y—Xb) (y = Xb) p x
1
{30 - /XX - )
where b = (X’ X)X’y and it is assumed that X is of rank k. It is clear that

the prior (15) is conjugate and this leads to the following well-known result for
the posterior.

Theorem 4. With the prior given by (15), the posterior of (3, 0?) is

1/02|y ~  gamma(apr + n/2, a2 (y))

Blo*y ~ N(By),(X'X +A;%)7"0%) (16)
where
an(y) = aoz+5°/2+ (b—By) (A§+ (X' X)) (b= By)/2,
Bly) = (X'X+A:)7((X'X)b+A;%8).,

where 52 = (y—Xb)'(y—XDb).

Therefore it is possible to sample directly from the posterior in this context.

4.2 Prior information about x'(3 for some set of predictors

Suppose that there is little knowledge about the individual ;. It is supposed
instead that there is a set of k linearly independent predictor vectors vq,..., vy
such that bounds (mj1,m;2) can be stated so that vi3 €(m;1,m;2) with vir-
tual certainty. Note that the v; could be observed or specified values of the
predictors. Putting

V:( Vi o Vi )/

this implies 8 = V8 €(mq1,my2) X - - - X (M1, My2) with virtual certainty. Now
suppose that the prior for (a,0?) is given by

1/02 ~  gamma(ag1, 02)
0|0 ~ Ni(6p,0°A3) (17)

and we determine the hyperparameters just as was done previously for (3,02).
This implies that the prior on (3,02) is now

1/0? ~ gamma(ag, o)
Blo® ~ Ni(By,0*Vo) (18)

12



where By = V510,V = VIAZ(V LY.
The posterior. is then given by the following result.
Theorem 5. With the prior given by (15), the posterior of (3, 0?) is

1/o%|y ~  gamma(aor +n/2, a2(y))

Blo*y ~ N(B(y),o*(X'X+VyH)™h (19)
where
aoa(y) = age+5°/24 (b—By) (Vo +(X'X)"") " (b-8,)/2,
Bly) = X'X+VyH) H(X'X)b+Vy'By).

Again, it is possible to sample directly from the posterior.

Note that the elicitation methodology of Section 4.1 is really encompassed
by that of Section 4.2. For example, the method of Section 4.1 is just V with
v; = e; the i-th standard basis vector.

5 Multivariate Linear Regression

Now suppose we have a p-dimensional response vector y and predictor variables
x € R¥ such that

n x'B,
v=|  |~N, 2| =N, (B'%x,%)
yp Xllap
where
B=(B, - B,)eR.
So, B; = (Bisy---,0y;) contains the regression coefficients relating the i-th
response variable y; to the k predictor variables. Therefore, with yq,...,y,

independent, y;~N,(Bx;,%) and

X:(Xl ot Xp )Iayz(yl o Yn )l7

13



the likelihood function is

L(B,X|Y)
x |E|"/26Xp{%Z( i — B'x;) 27! (YiB/Xi)}
=1
— |E|_”/2etr{ %( B'xt)(yi—l")"xi)l> Z_l}
= |2” "/Qetr{ %Y XB) (Y—XB)EI}
= |E|_”/2etr{ %Y XB) (Y—XB)E_l+(B—B)’X’X(B—B)Z_1}
= |3~ ”/zetr{ ; } {—(B BYX'X(B - B)x~ }

and where S = (Y — XB) (Y — XB),B = (X'X)"'X'Y since
(Y —XB) (Y —XB)=(Y —XB)(Y - XB)+ (B-B)/X'X(B - B).
For the prior on X we proceed as in Section 2.1 and put

1/oy; ~  gamma(agy;, o) fori=1,....p
R ~  Uniform(C,) where C, = the set of p X p correlation matrices.
For the conditional prior on B|3X we will follow Section 4.2 and recall that this

just generalizes the approach of Section 4.1. So, we suppose there are design
matrices Vi,...,V, and bounds (my1;, mi2i) X - -+ X (Mg14, Mi2;) such that

0; = ViB;€(mi1s, mi2;) X -+ X (Mi1i, Mk2s)
holds with virtual certainty. This determines 6;y and diagonal matrix Agy; €

RP*P using
M24j — Mi4j

2\/a02j/a01jH5a101j (=)’

0;| % ~ Ni(0i0, AoiXAoi).

Aoij =

SO

which implies

Bi| X ~ Ni(Bois Voi)
where By; = V; 10,0 and Vp; = V, ' Ag; S Ao (V). Also, it is assumed that
the B3, are conditionally independent given 3. Therefore, the prior on B|X is
proportional to

p
|E|—p/2€xp{_ Z /@ /801 (/8 ﬂO’L)} .

wl)—*

14



Combining the prior and the likelihood leads to the following analog of The-
orem 3 where ® denotes the Kronecker product.

Theorem 6. To approximate the expectation Ery(.|y)(h(B,Z)) generate a
sample (B;,Z;) for i = 1,..., N where

Hioo~ WP(S_l,n—p—l),
Bz|Ez ~ kap(B,(X/X)71®E) (20)
and evaluate the estimate

R N B E) KB, E)
B yy(h(p, =) = == -
S k(B Ei)

(21)

where

i=1

( 1 )0401i+(p+1)/2 ( aOQi)
H — exp | ——|.
i=1 044 044

p
k(p,Z) = exp {% Z (B; — Boi) Voi - (B: — ﬁ()i)} X

Appendix

Some preliminary results are required before proving Theorem 1.
Lemma 1. For sample Y = (y1---y,) € R"*P a € RP and A € RP*P then

n n

Z (vi—a)Alyi—a) = n(y—-a)A[y —a)+ Z (vi —¥)'Aly: = ¥)

i=—1 i=—1
= n(y-a)A[F —a)+tr{(Y —1§')A(Y —15")}
= n(y—a)A[F —a) +tr {(Y - 1§7)(Y - 1§') A}
= n(y—a)A(y —a) +tr{SA}.

Then by Lemma 1 the likelihood for (u, ) based on data Y is given by

Iv—1/= 1 —
Lu.B1Y) o 317 2 exp {35 - w7 - ) peur {gsm 1 |

We make use of the following well-known result.

Lemma 2. If Ay, As € RPXP are symmetric with A; + Ao invertible and
aj,as € RP, then

(X — al)'Al (X — 3.1) + (X — ag)IAQ(X — 3.2)
= (X — (A1 + Ag)_l(Alal + Azag))l(Al + AQ)() +
(a1 - ag)/Al (A1 + Ag)ilAQ(al - ag).
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Proof of Theorem 1
The posterior is proportional to

L, | Y)r(p] S)n(=7)
x [STep {-2F - T - )}

1
S 2 exp { — 5 o) 5 (1)

1 1
etr{—552_1}|2 1|(fo—p— 1/zetr{—§§]012_1}

_ 1 _ n,_ _1,—
= |3 1/Qexp{w(uuo)’ﬁ 1(#*#0)*§(y7u)’2 1(yu)} X
0

|E_1|(”+f0_p_1)/26t1‘ {_%(201 —+ 5)2_1} .

By Lemma 2, with A; = (A2X)"1, 4y = (/n)" 1, AL + 4y = (1/M\2 +
n)X "t a; =§,a = pg
30— 1) S (o) + 3 = )5 (5 — )
0
(k- (1//\o+n) PSS /NS +nETIE)) (1/AG +n)ET() +
(F — 10) (NE) T (1/AF + 1) E(E/n) " HF — o)
= (= (/A5 +1) " (/A5 + 1) (1/AG+n)E71() +
(n/A)(1/A5 +1) "1 (F — 1) S (F — o)
(1= (/A5 + 1) (o/A5 +n9)) (1/A5 +m)S 7 () +
(n/(L+nXA)tr(F — o) (F — o)’ =7

Therefore, the posterior is proportional to
_ 1 _ _ _
172 exp {5 0 = 1/ +0) 7 o/ 38+ 9 1/ + 271 |

s o 1o _ _ )
st e {3 gt - s - o) 5

_n
1+n)\]

which gives the result. B
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