
Chapter 9

Model Checking

CHAPTER OUTLINE

Section 1 Checking the Sampling Model
Section 2 Checking for Prior–Data Conflict
Section 3 The Problem with Multiple Checks

The statistical inference methods developed in Chapters 6 through 8 all depend on
various assumptions. For example, in Chapter 6 we assumed that the data s were
generated from a distribution in the statistical model P : . In Chapter 7, we
also assumed that our uncertainty concerning the true value of the model parameter
could be described by a prior probability distribution . As such, any inferences drawn
are of questionable validity if these assumptions do not make sense in a particular
application.

In fact, all statistical methodology is based on assumptions or choices made by
the statistical analyst, and these must be checked if we want to feel confident that
our inferences are relevant. We refer to the process of checking these assumptions as
model checking, the topic of this chapter. Obviously, this is of enormous importance
in applications of statistics, and good statistical practice demands that effective model
checking be carried out. Methods range from fairly informal graphical methods to
more elaborate hypothesis assessment, and we will discuss a number of these.

9.1 Checking the Sampling Model
Frequency­based inference methods start with a statistical model f : , for the
true distribution that generated the data s. This means we are assuming that the true
distribution for the observed data is in this set If this assumption is not true, then
it seems reasonable to question the relevance of any subsequent inferences we make
about .

Except in relatively rare circumstances, we can never know categorically that a
model is correct. The most we can hope for is that we can assess whether or not the
observed data s could plausibly have arisen from the model.
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480 Section 9.1: Checking the Sampling Model

If the observed data are surprising for each distribution in the model, then we have
evidence that the model is incorrect. This leads us to think in terms of computing a
P­value to check the correctness of the model. Of course, in this situation the null
hypothesis is that the model is correct; the alternative is that the model could be any of
the other possible models for the type of data we are dealing with.

We recall now our discussion of P­values in Chapter 6, where we distinguished
between practical significance and statistical significance. It was noted that, while a P­
value may indicate that a null hypothesis is false, in practical terms the deviation from
the null hypothesis may be so small as to be immaterial for the application. When the
sample size gets large, it is inevitable that any reasonable approach via P­values will
detect such a deviation and indicate that the null hypothesis is false. This is also true
when we are carrying out model checking using P­values. The resolution of this is to
estimate, in some fashion, the size of the deviation of the model from correctness, and
so determine whether or not the model will be adequate for the application. Even if
we ultimately accept the use of the model, it is still valuable to know, however, that we
have detected evidence of model incorrectness when this is the case.

One P­value approach to model checking entails specifying a discrepancy statistic
D : S R1 that measures deviations from the model under consideration. Typically,
large values of D are meant to indicate that a deviation has occurred. The actual value
D s is, of course, not necessarily an indication of this. The relevant issue is whether
or not the observed value D s is surprising under the assumption that the model is cor­
rect. Therefore, we must assess whether or not D s lies in a region of low probability
for the distribution of this quantity when the model is correct. For example, consider
the density of a potential D statistic plotted in Figure 9.1.1. Here a value D s in the
left tail (near 0), right tail (out past 15), or between the two modes (in the interval from
about 7 to 9) all would indicate that the model is incorrect, because such values have a
low probability of occurrence when the model is correct.
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Figure 9.1.1: Plot of a density for a discrepancy statistic D
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The above discussion places the restriction that, when the model is correct, D must
have a single distribution, i.e., the distribution cannot depend on . For many com­
monly used discrepancy statistics, this distribution is unimodal. A value in the right
tail then indicates a lack of fit, or underfitting, by the model (the discrepancies are
unnaturally large); a value in the left tail then indicates overfitting by the model (the
discrepancies are unnaturally small).

There are two general methods available for obtaining a single distribution for the
computation of P­values. One method requires that D be ancillary.

Definition 9.1.1 A statistic D whose distribution under the model does not depend
upon is called ancillary, i.e., if s P , then D s has the same distribution for
every .

If D is ancillary, then it has a single distribution specified by the model. If D s is a
surprising value for this distribution, then we have evidence against the model being
true.

It is not the case that any ancillary D will serve as a useful discrepancy statistic.
For example, if D is a constant, then it is ancillary, but it is obviously not useful for
model checking. So we have to be careful in choosing D.

Quite often we can find useful ancillary statistics for a model by looking at resid­
uals. Loosely speaking, residuals are based on the information in the data that is left
over after we have fit the model. If we have used all the relevant information in the data
for fitting, then the residuals should contain no useful information for inference about
the parameter . Example 9.1.1 will illustrate more clearly what we mean by residuals.
Residuals play a major role in model checking.

The second method works with any discrepancy statistic D. For this, we use the
conditional distribution of D given the value of a sufficient statistic T . By Theorem
8.1.2, this conditional distribution is the same for every value of . If D s is a surpris­
ing value for this distribution, then we have evidence against the model being true.

Sometimes the two approaches we have just described agree, but not always. Con­
sider some examples.

EXAMPLE 9.1.1 Location Normal
Suppose we assume that x1 xn is a sample from an N 2

0 distribution, where
R1 is unknown and 2

0 is known. We know that x is a minimal sufficient statistic
for this problem (see Example 6.1.7). Also, x represents the fitting of the model to the
data, as it is the estimate of the unknown parameter value

Now consider

r r x1 xn r1 rn x1 x xn x

as one possible definition of the residual. Note that we can reconstruct the original data
from the values of x and r .

It turns out that R X1 X Xn X has a distribution that is independent of
with E Ri 0 and Cov Ri R j

2
0 i j 1 n for every i j ( i j 1 when i

j and 0 otherwise). Moreover, R is independent of X and Ri N 0 2
0 1 1 n

(see Problems 9.1.19 and 9.1.20).
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Accordingly, we have that r is ancillary and so is any discrepancy statistic D that
depends on the data only through r . Furthermore, the conditional distribution of D R
given X x is the same as the marginal distribution of D R because they are inde­
pendent. Therefore, the two approaches to obtaining a P­value agree here, whenever
the discrepancy statistic depends on the data only through r

By Theorem 4.6.6, we have that

D R
1
2
0

n

i 1

R2
i

1
2
0

n

i 1

Xi X
2

is distributed 2 n 1 , so this is a possible discrepancy statistic Therefore, the P­
value

P D D r (9.1.1)

where D 2 n 1 , provides an assessment of whether or not the model is correct.
Note that values of (9.1.1) near 0 or near 1 are both evidence against the model, as

both indicate that D r is in a region of low probability when assuming the model is
correct. A value near 0 indicates that D r is in the right tail, whereas a value near 1
indicates that D r is in the left tail.

The necessity of examining the left tail of the distribution of D r as well as the
right, is seen as follows. Consider the situation where we are in fact sampling from an
N 2 distribution where 2 is much smaller than 2

0 In this case, we expect D r
to be a value in the left tail, because E D R n 1 2 2

0
There are obviously many other choices that could be made for the D statistic

At present, there is not a theory that prescribes one choice over another. One caution
should be noted, however. The choice of a statistic D cannot be based upon looking at
the data first. Doing so invalidates the computation of the P­value as described above,
as then we must condition on the data feature that led us to choose that particular D.

EXAMPLE 9.1.2 Location­Scale Normal
Suppose we assume that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. We know that x s2 is a minimal sufficient
statistic for this model (Example 6.1.8). Consider

r r x1 xn r1 rn
x1 x

s

xn x

s

as one possible definition of the residual. Note that we can reconstruct the data from
the values of x s2 and r .

It turns out R has a distribution that is independent of 2 (and hence is an­
cillary — see Challenge 9.1.28) as well as independent of X S2 So again, the two
approaches to obtaining a P­value agree here, as long as the discrepancy statistic de­
pends on the data only through r

One possible discrepancy statistic is given by

D r
1

n

n

i 1

ln
r2
i

n 1
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To use this statistic for model checking, we need to obtain its distribution when the
model is correct. Then we compare the observed value D r with this distribution, to
see if it is surprising.

We can do this via simulation. Because the distribution of D R is independent
of 2 , we can generate N samples of size n from the N 0 1 distribution (or
any other normal distribution) and calculate D R for each sample. Then we look
at histograms of the simulated values to see if D r , from the original sample, is a
surprising value, i.e., if it lies in a region of low probability like a left or right tail.

For example, suppose we observed the sample

2 08 0 28 2 01 1 37 40 08

obtaining the value D r 4 93 Then, simulating 104 values from the distribution
of D under the assumption of model correctness, we obtained the density histogram
given in Figure 9.1.2. See Appendix B for some code used to carry out this simulation.
The value D r 4 93 is out in the right tail and thus indicates that the sample is not
from a normal distribution. In fact, only 0 0057 of the simulated values are larger, so
this is definite evidence against the model being correct.
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Figure 9.1.2: A density histogram for a simulation of 104 values of D in Example 9.1.2.

Obviously, there are other possible functions of r that we could use for model
checking here. In particular, Dskew r n 1 3 2 n

i 1 r
3
i , the skewness statis­

tic, and Dkurtosis r n 1 2 n
i 1 r

4
i , the kurtosis statistic, are commonly used.

The skewness statistic measures the symmetry in the data, while the kurtosis statistic
measures the “peakedness” in the data. As just described, we can simulate the distribu­
tion of these statistics under the normality assumption and then compare the observed
values with these distributions to see if we have any evidence against the model (see
Computer Problem 9.1.27).

The following examples present contexts in which the two approaches to computing
a P­value for model checking are not the same.
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EXAMPLE 9.1.3 Location­Scale Cauchy
Suppose we assume that x1 xn is a sample from the distribution given by
Z where Z t 1 and 2 R1 0 is unknown. This time, x s2 is

not a minimal sufficient statistic, but the statistic r defined in Example 9.1.2 is still
ancillary (Challenge 9.1.28). We can again simulate values from the distribution of R
(just generate samples from the t 1 distribution and compute r for each sample) to
estimate P­values for any discrepancy statistic such as the D r statistics discussed in
Example 9.1.2.

EXAMPLE 9.1.4 Fisher’s Exact Test
Suppose we take a sample of n from a population of students and observe the values
a1 b1 an bn where ai is gender (A 1 indicating male, A 2 indicating

female) and bi is a categorical variable for part­time employment status (B 1 indicat­
ing employed, B 2 indicating unemployed). So each individual is being categorized
into one of four categories, namely,

Category 1, when A 1 B 1

Category 2, when A 1 B 2

Category 3, when A 2 B 1

Category 4, when A 2 B 2

Suppose our model for this situation is that A and B are independent with P A
1 1 P B 1 1 where 1 [0 1] and 1 [0 1] are completely unknown.
Then letting Xi j denote the count for the category, where A i B j , Example 2.8.5
gives that

X11 X12 X21 X22 Multinomial n 1 1 1 2 2 1 2 2

As we will see in Chapter 10, this model is equivalent to saying that there is no rela­
tionship between gender and employment status.

Denoting the observed cell counts by x11 x12 x21 x22 , the likelihood function is
given by

1 1
x11

1 2
x12

2 1
x21

2 2
x22

x11 x12
1 1 1

n x11 x12 x11 x21
1 1 1

n x11 x21

x1
1 1 1

n x1 x 1
1 1 1

n x 1

where x1 x 1 x11 x12 x11 x21 . Therefore, the MLE (Problem 9.1.14) is
given by

1 1
x1

n

x 1

n
.

Note that 1 is the proportion of males in the sample and 1 is the proportion of all
employed in the sample. Because x1 x 1 determines the likelihood function and can
be calculated from the likelihood function, we have that x1 x 1 is a minimal sufficient
statistic.

In this example, a natural definition of residual does not seem readily apparent.
So we consider looking at the conditional distribution of the data, given the minimal
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sufficient statistic. The conditional distribution of the sample A1 B1 An Bn
given the values x1 x 1 is the uniform distribution on the set of all samples where
the restrictions

x11 x12 x1

x11 x21 x 1

x11 x12 x21 x22 n (9.1.2)

are satisfied. Notice that, given x1 x 1 all the other values in (9.1.2) are determined
when we specify a value for x11.

It can be shown that the number of such samples is equal to (see Problem 9.1.21)

n

x1

n

x 1

Now the number of samples with prescribed values for x1 x 1 and x11 i is given by

n

x1

x1

i

n x1

x 1 i

Therefore, the conditional probability function of x11 given x1 x 1 is

P x11 i x1 x 1

n
x1

x1
i

n x1
x 1 i

n
x1

n
x 1

x1
i

n x1
x 1 i
n
x 1

This is the Hypergeometric n x 1 x1 probability function.
So we have evidence against the model holding whenever x11 is out in the tails of

this distribution. Assessing this requires a tabulation of this distribution or the use of a
statistical package with the hypergeometric distribution function built in.

As a simple numerical example, suppose that we took a sample of n 20 students,
obtaining x 1 12 unemployed, x1 6 males, and x11 2 employed males. Then
the Hypergeometric 20 12 6 probability function is given by the following table.

i 0 1 2 3 4 5 6
p i 0 001 0 017 0 119 0 318 0 358 0 163 0 024

The probability of getting a value as far, or farther, out in the tails than x11 2 is equal
to the probability of observing a value of x11 with probability of occurrence as small
as or smaller than x11 2 This P­value equals

0 119 0 017 0 001 0 024 0 161

Therefore, we have no evidence against the model of independence between A and B
Of course, the sample size is quite small here.

There is another approach here to testing the independence of A and B. In particu­
lar, we could only assume the independence of the initial unclassified sample, and then
we always have

X11 X12 X21 X22 Multinomial n 11 12 21 22
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where the i j comprise an unknown probability distribution. Given this model, we
could then test for the independence of A and B We will discuss this in Section 10.2.

Another approach to model checking proceeds as follows. We enlarge the model to
include more distributions and then test the null hypothesis that the true model is the
submodel we initially started with. If we can apply the methods of Section 8.2 to come
up with a uniformly most powerful (UMP) test of this null hypothesis, then we will
have a check of departures from the model of interest — at least as expressed by the
possible alternatives in the enlarged model. If the model passes such a check, however,
we are still required to check the validity of the enlarged model. This can be viewed as
a technique for generating relevant discrepancy statistics D.

9.1.1 Residual and Probability Plots

There is another, more informal approach to checking model correctness that is often
used when we have residuals available. These methods involve various plots of the
residuals that should exhibit specific characteristics if the model is correct. While this
approach lacks the rigor of the P­value approach, it is good at demonstrating gross
deviations from model assumptions. We illustrate this via some examples.

EXAMPLE 9.1.5 Location and Location­Scale Normal Models
Using the residuals for the location normal model discussed in Example 9.1.1, we have
that E Ri 0 and Var Ri 2

0 1 1 n We standardize these values so that they
also have variance 1, and so obtain the standardized residuals r1 rn given by

ri
n

2
0 n 1

xi x . (9.1.3)

The standardized residuals are distributed N 0 1 and, assuming that n is reasonably
large, it can be shown that they are approximately independent. Accordingly, we can
think of r1 rn as an approximate sample from the N 0 1 distribution.

Therefore, a plot of the points i ri should not exhibit any discernible pattern.
Furthermore, all the values in the y­direction should lie in 3 3 unless of course
n is very large, in which case we might expect a few values outside this interval A
discernible pattern, or several extreme values, can be taken as some evidence that the
model assumption is not correct. Always keep in mind, however, that any observed
pattern could have arisen simply from sampling variability when the true model is
correct. Simulating a few of these residual plots (just generating several samples of n
from the N 0 1 distribution and obtaining a residual plot for each sample) will give
us some idea of whether or not the observed pattern is unusual.

Figure 9.1.3 shows a plot of the standardized residuals (9.1.3) for a sample of 100
from the N 0 1 distribution. Figure 9.1.4 shows a plot of the standardized residuals
for a sample of 100 from the distribution given by 3 1 2Z where Z t 3 . Note that
a t 3 distribution has mean 0 and variance equal to 3, so Var 3 1 2Z 1 (Problem
4.6.16). Figure 9.1.5 shows the standardized residuals for a sample of 100 from an
Exponential 1 distribution.
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Figure 9.1.3: A plot of the standardized residuals for a sample of 100 from an N 0 1
distribution.
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Figure 9.1.4: A plot of the standardized residuals for a sample of 100 from X 3 1 2Z
where Z t 3 .
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Figure 9.1.5: A plot of the standardized residuals for a sample of 100 from an Exponential 1
distribution.
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Note that the distributions of the standardized residuals for all these samples have
mean 0 and variance equal to 1. The difference in Figures 9.1.3 and 9.1.4 is due to the
fact that the t distribution has much longer tails. This is reflected in the fact that a few
of the standardized residuals are outside 3 3 in Figure 9.1.4 but not in Figure 9.1.3.
Even though the two distributions are quite different — e.g., the N 0 1 distribution
has all of its moments whereas the 3 1 2 t 3 distribution has only two moments —
the plots of the standardized residuals are otherwise very similar. The difference in
Figures 9.1.3 and 9.1.5 is due to the asymmetry in the Exponential 1 distribution, as
it is skewed to the right.

Using the residuals for the location­scale normal model discussed in Example 9.1.2,
we define the standardized residuals r1 rn by

ri
n

s2 n 1
xi x . (9.1.4)

Here, the unknown variance is estimated by s2. Again, it can be shown that when n is
large, then r1 rn is an approximate sample from the N 0 1 distribution. So we
plot the values i ri and interpret the plot just as we described for the location normal
model.

It is very common in statistical applications to assume some basic form for the dis­
tribution of the data, e.g., we might assume we are sampling from a normal distribution
with some mean and variance. To assess such an assumption, the use of a probability
plot has proven to be very useful.

To illustrate, suppose that x1 xn is a sample from an N 2 distribution.
Then it can be shown that when n is large, the expectation of the i­th order statistic
satisfies

E X i
1 i n 1 (9.1.5)

If the data value x j corresponds to order statistic x i (i.e., x i x j ), then we call
1 i n 1 the normal score of x j in the sample Then (9.1.5) indicates that if

we plot the points x i
1 i n 1 , these should lie approximately on a line

with intercept and slope . We call such a plot a normal probability plot or normal
quantile plot. Similar plots can be obtained for other distributions.

EXAMPLE 9.1.6 Location­Scale Normal
Suppose we want to assess whether or not the following data set can be considered a
sample of size n 10 from some normal distribution.

2 00 0 28 0 47 3 33 1 66 8 17 1 18 4 15 6 43 1 77

The order statistics and associated normal scores for this sample are given in the fol­
lowing table.

i 1 2 3 4 5
x i 0 28 0 47 1 18 1 66 1 77

1 i n 1 1 34 0 91 0 61 0 35 0 12
i 6 7 8 9 10
x i 2 00 3 33 4 15 6 43 8 17

1 i n 1 0 11 0 34 0 60 0 90 1 33
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The values

x i
1 i n 1

are then plotted in Figure 9.1.6. There is some definite deviation from a straight line
here, but note that it is difficult to tell whether this is unexpected in a sample of this
size from a normal distribution. Again, simulating a few samples of the same size (say,
from an N 0 1 distribution) and looking at their normal probability plots is recom­
mended. In this case, we conclude that the plot in Figure 9.1.6 looks reasonable.
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Figure 9.1.6: Normal probability plot of the data in Example 9.1.6.

We will see in Chapter 10 that the use of normal probability plots of standardized
residuals is an important part of model checking for more complicated models. So,
while they are not really needed here, we consider some of the characteristics of such
plots when assessing whether or not a sample is from a location normal or location­
scale normal model.

Assume that n is large so that we can consider the standardized residuals, given
by (9.1.3) or (9.1.4) as an approximate sample from the N 0 1 distribution. Then a
normal probability plot of the standardized residuals should be approximately linear,
with y­intercept approximately equal to 0 and slope approximately equal to 1. If we
get a substantial deviation from this, then we have evidence that the assumed model is
incorrect.

In Figure 9.1.7, we have plotted a normal probability plot of the standardized resid­
uals for a sample of n 25 from an N 0 1 distribution In Figure 9.1.8, we have
plotted a normal probability plot of the standardized residuals for a sample of n 25
from the distribution given by X 3 1 2Z where Z t 3 . Both distributions have
mean 0 and variance 1, so the difference in the normal probability plots is due to other
distributional differences.
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Figure 9.1.7: Normal probability plot of the standardized residuals of a sample of 25 from an
N 0 1 distribution.
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Figure 9.1.8: Normal probability plot of the standardized residuals of a sample of 25 from
X 3 1 2Z where Z t 3

9.1.2 The Chi­Squared Goodness of Fit Test

The chi­squared goodness of fit test has an important historical place in any discussion
of assessing model correctness. We use this test to assess whether or not a categorical
random variable W , which takes its values in the finite sample space 1 2 k , has a
specified probability measure P, after having observed a sample 1 n . When
we have a random variable that is discrete and takes infinitely many values, then we
partition the possible values into k categories and let W simply indicate which category
has occurred. If we have a random variable that is quantitative, then we partition R1

into k subintervals and let W indicate in which interval the response occurred. In effect,
we want to check whether or not a specific probability model, as given by P is correct
for W based on an observed sample.
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Let X1 Xk be the observed counts or frequencies of 1 k respectively.
If P is correct, then, from Example 2.8.5,

X1 Xk Multinomial n p1 pk

where pi P i . This implies that E X i npi and Var X i npi 1 pi (recall
that X i Binomial n pi ). From this, we deduce that

Ri
Xi npi
npi 1 pi

D
N 0 1 (9.1.6)

as n (see Example 4.4.9).
For finite n the distribution of Ri when the model is correct, is dependent on

P but the limiting distribution is not. Thus we can think of the Ri as standardized
residuals when n is large. Therefore, it would seem that a reasonable discrepancy
statistic is given by the sum of the squares of the standardized residuals with k

i 1 R
2
i

approximately distributed 2 k The restriction x1 xk n holds, however, so
the Ri are not independent and the limiting distribution is not 2 k . We do, however,
have the following result, which provides a similar discrepancy statistic.

Theorem 9.1.1 If X1 Xk Multinomial n p1 pk , then

X2
k

i 1

1 pi R2
i

k

i 1

Xi npi 2

npi

D 2 k 1

as n

The proof of this result is a little too involved for this text, so see, for example, Theorem
17.2 of Asymptotic Statistics by A. W. van der Vaart (Cambridge University Press,
Cambridge, 1998), which we will use here.

We refer to X2 as the chi­squared statistic. The process of assessing the correctness
of the model by computing the P­value P X2 X2

0 , where X2 2 k 1 and
X2

0 is the observed value of the chi­squared statistic, is referred to as the chi­squared
goodness of fit test. Small P­values near 0 provide evidence of the incorrectness of the
probability model. Small P­values indicate that some of the residuals are too large.

Note that the i th term of the chi­squared statistic can be written as

Xi npi 2

npi

(number in the i th cell expected number in the i th cell)2

expected number in the i th cell
.

It is recommended, for example, in Statistical Methods, by G. Snedecor and W. Cochran
(Iowa State Press, 6th ed., Ames, 1967) that grouping (combining cells) be employed to
ensure that E Xi npi 1 for every i as simulations have shown that this improves
the accuracy of the approximation to the P­value.

We consider an important application.

EXAMPLE 9.1.7 Testing the Accuracy of a Random Number Generator
In effect, every Monte Carlo simulation can be considered to be a set of mathematical
operations applied to a stream of numbers U1 U2 in [0 1] that are supposed to
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be i.i.d. Uniform[0 1] Of course, they cannot satisfy this requirement exactly because
they are generated according to some deterministic function. Typically, a function
f : [0 1]m [0 1] is chosen and is applied iteratively to obtain the sequence. So we
select U1 Um as initial seed values and then Um 1 f U1 Um Um 2
f U2 Um 1 etc. There are many possibilities for f and a great deal of re­
search and study have gone into selecting functions that will produce sequences that
adequately mimic the properties of an i.i.d. Uniform[0 1] sequence.

Of course, it is always possible that the underlying f used in a particular statistical
package or other piece of software is very poor. In such a case, the results of the
simulations can be grossly in error How do we assess whether a particular f is good
or not? One approach is to run a battery of statistical tests to see whether the sequence
is behaving as we know an ideal sequence would.

For example, if the sequence U1 U2 is i.i.d. Uniform[0 1], then

10U1 10U2

is i.i.d. Uniform 1 2 10 ( x denotes the smallest integer greater than x e.g.,
3 2 4) So we can test the adequacy of the underlying function f by generating
U1 Un for large n putting xi 10Ui and then carrying out a chi­squared
goodness of fit test with the 10 categories 1 10 with each cell probability equal
to 1/10.

Doing this using a popular statistical package (with n 104) gave the following
table of counts xi and standardized residuals ri as specified in (9.1.6).

i xi ri
1 993 0 23333
2 1044 1 46667
3 1061 2 03333
4 1021 0 70000
5 1017 0 56667
6 973 0 90000
7 975 0 83333
8 965 1 16667
9 996 0 13333

10 955 1 50000

All the standardized residuals look reasonable as possible values from an N 0 1 dis­
tribution. Furthermore,

X2
0 1 0 1

0 23333 2 1 46667 2 2 03333 2

0 70000 2 0 56667 2 0 90000 2

0 83333 2 1 16667 2 0 13333 2

1 50000 2

11 0560

gives the P­value P X2 11 0560 0 27190 when X2 2 9 This indicates that
we have no evidence that the random number generator is defective.
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Of course, the story does not end with a single test like this. Many other features
of the sequence should be tested. For example, we might want to investigate the inde­
pendence properties of the sequence and so test if each possible combination of i j
occurs with probability 1/100, etc.

More generally, we will not have a prescribed probability distribution P for X but
rather a statistical model P : where each P is a probability measure on the
finite set 1 2 k Then, based on the sample from the model, we have that

X1 Xk Multinomial n p1 pk

where pi P i
Perhaps a natural way to assess whether or not this model fits the data is to find the

MLE from the likelihood function

L x1 xk p1
x1 pk xk

and then look at the standardized residuals

ri
xi npi

npi 1 pi

We have the following result, which we state without proof.

Theorem 9.1.2 Under conditions (similar to those discussed in Section 6.5), we

have that Ri
D

N 0 1 and

X2
k

i 1

1 pi R2
i

k

i 1

Xi npi 2

npi

D 2 k 1 dim

as n

By dim we mean the dimension of the set Loosely speaking, this is the mini­
mum number of coordinates required to specify a point in the set, e.g., a line requires
one coordinate (positive or negative distance from a fixed point), a circle requires one
coordinate, a plane in R3 requires two coordinates, etc. Of course, this result implies
that the number of cells must satisfy k 1 dim

Consider an example.

EXAMPLE 9.1.8 Testing for Exponentiality
Suppose that a sample of lifelengths of light bulbs (measured in thousands of hours)
is supposed to be from an Exponential distribution, where 0 is
unknown. So here dim 1 and we require at least two cells for the chi­squared
test The manufacturer expects that most bulbs will last at least 1000 hours, 50% will
last less than 2000 hours, and most will have failed by 3000 hours. So based on this,
we partition the sample space as

0 0 1] 1 2] 2 3] 3
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Suppose that a sample of n 30 light bulbs was taken and that the counts x1 5
x2 16 x3 8 and x4 1 were obtained for the four intervals, respectively. Then
the likelihood function based on these counts is given by

L x1 x40 1 e 5 e e 2 16 e 2 e 3 8 e 3 1

because, for example, the probability of a value falling in 1 2] is e e 2 and we
have x2 16 observations in this interval. Figure 9.1.9 is a plot of the log­likelihood.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

­500

­400

­300

­200

­100

theta

ln L

Figure 9.1.9: Plot of the log­likelihood function in Example 9.1.8.

By successively plotting the likelihood on shorter and shorter intervals, the MLE
was determined to be 0 603535 This value leads to the probabilities

p1 1 e 0 603535 0 453125

p2 e 0 603535 e 2 0 603535 0 247803

p3 e 2 0 603535 e 3 0 603535 0 135517

p4 e 3 0 603535 0 163555

the fitted values

30p1 13 59375

30p2 7 43409

30p3 4 06551

30p4 4 90665
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and the standardized residuals

r1 5 13 59375 30 0 453125 1 0 453125 3 151875

r2 16 7 43409 30 0 247803 1 0 247803 3 622378

r3 8 4 06551 30 0 135517 1 0 135517 2 098711

r4 1 4 90665 30 0 163555 1 0 163555 1 928382

Note that two of the standardized residuals look large. Finally, we compute

X2
0 1 0 453125 3 151875 2 1 0 247803 3 622378 2

1 0 135517 2 098711 2 1 0 163555 1 928382 2

22 221018

and
P X2 22 221018 0 0000

when X2 2 2 Therefore, we have strong evidence that the Exponential model
is not correct for these data and we would not use this model to make inference about

.
Note that we used the MLE of based on the count data and not the original sample!

If instead we were to use the MLE for based on the original sample (in this case, equal
to x and so much easier to compute), then Theorem 9.1.2 would no longer be valid.

The chi­squared goodness of fit test is but one of many discrepancy statistics that
have been proposed for model checking in the statistical literature. The general ap­
proach is to select a discrepancy statistic D like X2 such that the exact or asymptotic
distribution of D is independent of and known. We then compute a P­value based on
D The Kolmogorov–Smirnov test and the Cramer–von Mises test are further examples
of such discrepancy statistics, but we do not discuss these here.

9.1.3 Prediction and Cross­Validation

Perhaps the most rigorous test that a scientific model or theory can be subjected to
is assessing how well it predicts new data after it has been fit to an independent data
set. In fact, this is a crucial step in the acceptance of any new empirically developed
scientific theory — to be accepted, it must predict new results beyond the data that led
to its formulation.

If a model does not do a good job at predicting new data, then it is reasonable to say
that we have evidence against the model being correct. If the model is too simple, then
the fitted model will underfit the observed data and also the future data. If the model is
too complicated, then the model will overfit the original data, and this will be detected
when we consider the new data in light of this fitted model.

In statistical applications, we typically cannot wait until new data are generated to
check the model. So statisticians use a technique called cross­validation. For this, we
split an original data set x1 xn into two parts: the training set T comprising k of
the data values and used to fit the model; and the validation set V , which comprises
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the remaining n k data values. Based on the training data, we construct predictors of
various aspects of the validation data. Using the discrepancies between the predicted
and actual values, we then assess whether or not the validation set V is surprising as a
possible future sample from the model.

Of course, there are
n

k

possible such splits of the data and we would not want to make a decision based on
just one of these. So a cross­validational analysis will have to take this into account.
Furthermore, we will have to decide how to measure the discrepancies between T and
V and choose a value for k We do not pursue this topic any further in this text.

9.1.4 What Do We Do When a Model Fails?

So far we have been concerned with determining whether or not an assumed model is
appropriate given observed data. Suppose the result of our model checking is that we
decide a particular model is inappropriate. What do we do now?

Perhaps the obvious response is to say that we have to come up with a more appro­
priate model — one that will pass our model checking. It is not obvious how we should
go about this, but statisticians have devised some techniques.

One of the simplest techniques is the method of transformations. For example, sup­
pose that we observe a sample y1 yn from the distribution given by Y exp X
with X N 2 . A normal probability plot based on the yi , as in Figure 9.1.10,
will detect evidence of the nonnormality of the distribution. Transforming these yi
values to ln yi will, however, yield a reasonable looking normal probability plot, as in
Figure 9.1.11.

So in this case, a simple transformation of the sample yields a data set that passes
this check. In fact, this is something statisticians commonly do. Several transforma­
tions from the family of power transformations given by Y p for p 0 or the logarithm
transformation lnY are tried to see if a distributional assumption can be satisfied by a
transformed sample. We will see some applications of this in Chapter 10. Surprisingly,
this simple technique often works, although there are no guarantees that it always will.

Perhaps the most commonly applied transformation is the logarithm when our data
values are positive (note that this is a necessity for this transformation). Another very
common transformation is the square root transformation, i.e., p 1 2 when we have
count data. Of course, it is not correct to try many, many transformations until we find
one that makes the probability plots or residual plots look acceptable. Rather, we try a
few simple transformations.
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Figure 9.1.10: A normal probability plot of a sample of n 50 from the distribution given by
Y exp X with X N 0 1 .
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Figure 9.1.11: A normal probability plot of a sample of n 50 from the distribution given by
ln Y , where Y exp X and X N 0 1 .

Summary of Section 9.1

Model checking is a key component of the practical application of statistics.

One approach to model checking involves choosing a discrepancy statistic D and
then assessing whether or not the observed value of D is surprising by computing
a P­value.
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Computation of the P­value requires that the distribution of D be known under
the assumption that the model is correct. There are two approaches to accom­
plishing this. One involves choosing D to be ancillary, and the other involves
computing the P­value using the conditional distribution of the data given the
minimal sufficient statistic.

The chi­squared goodness of fit statistic is a commonly used discrepancy statis­
tic. For large samples, with the expected cell counts determined by the MLE
based on the multinomial likelihood, the chi­squared goodness of fit statistic is
approximately ancillary.

There are also many informal methods of model checking based on various plots
of residuals.

If a model is rejected, then there are several techniques for modifying the model.
These typically involve transformations of the data. Also, a model that fails a
model­checking procedure may still be useful, if the deviation from correctness
is small.

EXERCISES

9.1.1 Suppose the following sample is assumed to be from an N 4 distribution with
R1 unknown.

1 8 2 1 3 8 1 7 1 3 1 1 1 0 0 0 3 3 1 0
0 4 0 1 2 3 1 6 1 1 1 3 3 3 4 9 1 1 1 9

Check this model using the discrepancy statistic of Example 9.1.1.
9.1.2 Suppose the following sample is assumed to be from an N 2 distribution with

unknown.

0 4 1 9 0 3 0 2 0 0 0 0 0 1 1 1 2 0 0 4

(a) Plot the standardized residuals.
(b) Construct a normal probability plot of the standardized residuals.
(c) What conclusions do you draw based on the results of parts (a) and (b)?
9.1.3 Suppose the following sample is assumed to be from an N 2 distribution,
where R1 and 2 0 are unknown.

14 0 9 4 12 1 13 4 6 3 8 5 7 1 12 4 13 3 9 1

(a) Plot the standardized residuals.
(b) Construct a normal probability plot of the standardized residuals.
(c) What conclusions do you draw based on the results of parts (a) and (b)?

9.1.4 Suppose the following table was obtained from classifying members of a sample
of n 10 from a student population according to the classification variables A and B,
where A 0 1 indicates male, female and B 0 1 indicates conservative, liberal.

B 0 B 1
A 0 2 1
A 1 3 4
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Check the model that says gender and political orientation are independent, using
Fisher’s exact test.
9.1.5 The following sample of n 20 is supposed to be from a Uniform[0 1] distrib­
ution.

0 11 0 56 0 72 0 18 0 26 0 32 0 42 0 22 0 96 0 04
0 45 0 22 0 08 0 65 0 32 0 88 0 76 0 32 0 21 0 80

After grouping the data, using a partition of five equal­length intervals, carry out the
chi­squared goodness of fit test to assess whether or not we have evidence against this
assumption. Record the standardized residuals.
9.1.6 Suppose a die is tossed 1000 times, and the following frequencies are obtained
for the number of pips up when the die comes to a rest.

x1 x2 x3 x4 x5 x6
163 178 142 150 183 184

Using the chi­squared goodness of fit test, assess whether we have evidence that this is
not a symmetrical die. Record the standardized residuals.
9.1.7 Suppose the sample space for a response is given by S 0 1 2 3 .

(a) Suppose that a statistician believes that in fact the response will lie in the set S
10 11 12 13 and so chooses a probability measure P that reects this When

the data are collected, however, the value s 3 is observed. What is an appropriate
P­value to quote as a measure of how surprising this value is as a potential value from
P?
(b) Suppose instead P is taken to be a Geometric(0.1) distribution. Determine an ap­
propriate P­value to quote as a measure of how surprising s 3 is as a potential value
from P .

9.1.8 Suppose we observe s 3 heads in n 10 independent tosses of a purportedly
fair coin. Compute a P­value that assesses how surprising this value is as a potential
value from the distribution prescribed. Do not use the chi­squared test.
9.1.9 Suppose you check a model by computing a P­value based on some discrepancy
statistic and conclude that there is no evidence against the model. Does this mean the
model is correct? Explain your answer.
9.1.10 Suppose you are told that standardized scores on a test are distributed N 0 1
A student’s standardized score is 4. Compute an appropriate P­value to assess whether
or not the statement is correct.
9.1.11 It is asserted that a coin is being tossed in independent tosses. You are somewhat
skeptical about the independence of the tosses because you know that some people
practice tossing coins so that they can increase the frequency of getting a head. So you
wish to assess the independence of x1 xn from a Bernoulli distribution.
(a) Show that the conditional distribution of x1 xn given x is uniform on the set
of all sequences of length n with entries from 0 1
(b) Using this conditional distribution, determine the distribution of the number of 1’s
observed in the first n 2 observations. (Hint: The hypergeometric distribution.)
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(c) Suppose you observe 1 1 1 1 1 0 0 0 0 1 Compute an appropriate P­value to
assess the independence of these tosses using (b).

COMPUTER EXERCISES

9.1.12 For the data of Exercise 9.1.1, present a normal probability plot of the standard­
ized residuals and comment on it.
9.1.13 Generate 25 samples from the N 0 1 distribution with n 10 and look at
their normal probability plots. Draw any general conclusions.
9.1.14 Suppose the following table was obtained from classifying members of a sam­
ple on n 100 from a student population according to the classification variables A
and B, where A 0 1 indicates male, female and B 0 1 indicates conservative,
liberal.

B 0 B 1
A 0 20 15
A 1 36 29

Check the model that gender and political orientation are independent using Fisher’s
exact test.
9.1.15 Using software, generate a sample of n 1000 from the Binomial 10 0 2
distribution. Then, using the chi­squared goodness of fit test, check that this sample is
indeed from this distribution. Use grouping to ensure E X i npi 1. What would
you conclude if you got a P­value close to 0?
9.1.16 Using a statistical package, generate a sample of n 1000 from the Poisson 5
distribution. Then, using the chi­squared goodness of fit test based on grouping the
observations into five cells chosen to ensure E Xi npi 1, check that this sample
is indeed from this distribution. What would you conclude if you got a P­value close
to 0?
9.1.17 Using a statistical package, generate a sample of n 1000 from the N 0 1
distribution. Then, using the chi­squared goodness of fit test based on grouping the
observations into five cells chosen to ensure E Xi npi 1, check that this sample
is indeed from this distribution. What would you conclude if you got a P­value close
to 0?

PROBLEMS

9.1.18 (Multivariate normal distribution) A random vector Y Y1 Yk is said to
have a multivariate normal distribution with mean vector Rk and variance matrix

i j Rk k if

a1Y1 akYk N
k

i 1

ai i

k

i 1

k

j 1

aia j i j

for every choice of a1 ak R1. We write Y Nk . Prove that E Yi i ,
Cov Yi Y j i j and that Yi N i ii . (Hint: Theorem 3.3.4.)
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9.1.19 In Example 9.1.1, prove that the residual R R1 Rn is distributed mul­
tivariate normal (see Problem 9.1.18) with mean vector 0 0 and variance
matrix i j Rk k , where i j

2
0 n when i j and i i

2
0 1 1 n

(Hint: Theorem 4.6.1.)
9.1.20 If Y Y1 Yk is distributed multivariate normal with mean vector Rk

and variance matrix i j Rk k and if X X1 Xl is distributed multi­
variate normal with mean vector Rl and variance matrix i j Rl l then it
can be shown that Y and X are independent whenever k

i 1 aiYi and l
i 1 bi X i are

independent for every choice of a1 ak and b1 bl . Use this fact to show
that, in Example 9.1.1, X and R are independent. (Hint: Theorem 4.6.2 and Problem
9.1.19.)
9.1.21 In Example 9.1.4, prove that ( 1 1 x1 n x 1 n is the MLE.

9.1.22 In Example 9.1.4, prove that the number of samples satisfying the constraints
(9.1.2) equals

n

x1

n

x 1
.

(Hint: Using i for the count x11, show that the number of such samples equals

n

x1

min x1 x 1

i max 0 x1 x 1 n

x1

i

n x1

x 1 i

and sum this using the fact that the sum of Hypergeometric n x 1 x1 probabilities
equals 1.)

COMPUTER PROBLEMS

9.1.23 For the data of Exercise 9.1.3, carry out a simulation to estimate the P­value for
the discrepancy statistic of Example 9.1.2. Plot a density histogram of the simulated
values. (Hint: See Appendix B for appropriate code.)
9.1.24 When n 10 generate 104 values of the discrepancy statistic in Example 9.1.2
when we have a sample from an N 0 1 distribution. Plot these in a density histogram.
Repeat this, but now generate from a Cauchy distribution. Compare the histograms (do
not forget to make sure both plots have the same scales).
9.1.25 The following data are supposed to have come from an Exponential distrib­
ution, where 0 is unknown.

1 5 1 6 1 4 9 7 12 1 2 7 2 2 1 6 6 8 0 1
0 8 1 7 8 0 0 2 12 3 2 2 0 2 0 6 10 1 4 9

Check this model using a chi­squared goodness of fit test based on the intervals

2 0] 2 0 4 0] 4 0 6 0] 6 0 8 0] 8 0 10 0] 10 0

(Hint: Calculate the MLE by plotting the log­likelihood over successively smaller in­
tervals.)
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9.1.26 The following table, taken from Introduction to the Practice of Statistics, by D.
Moore and G. McCabe (W. H. Freeman, New York, 1999), gives the measurements in
milligrams of daily calcium intake for 38 women between the ages of 18 and 24 years.

808 882 1062 970 909 802 374 416 784 997
651 716 438 1420 1425 948 1050 976 572 403
626 774 1253 549 1325 446 465 1269 671 696

1156 684 1933 748 1203 2433 1255 110

(a) Suppose that the model specifies a location normal model for these data with 2
0

500 2. Carry out a chi­squared goodness of fit test on these data using the intervals
600] 600 1200] 1200 1800] 1800 (Hint: Plot the log­likelihood over

successively smaller intervals to determine the MLE to about one decimal place. To
determine the initial range for plotting, use the overall MLE of minus three standard
errors to the overall MLE plus three standard errors.)
(b) Compare the MLE of obtained in part (a) with the ungrouped MLE.
(c) It would be more realistic to assume that the variance 2 is unknown as well. Record
the log­likelihood for the grouped data. (More sophisticated numerical methods are
needed to find the MLE of 2 in this case.)

9.1.27 Generate 104 values of the discrepancy statistics Dskew and Dkurtosis in Example
9.1.2 when we have a sample of n 10 from an N 0 1 distribution. Plot these
in density histograms. Indicate how you would use these histograms to assess the
normality assumption when we had an actual sample of size 10. Repeat this for n 20
and compare the distributions.

CHALLENGES

9.1.28 (MV) Prove that when x1 xn is a sample from the distribution given by
Z , where Z has a known distribution and 2 R1 0 is unknown,

then the statistic

r x1 xn
x1 x

s

xn x

s

is ancillary. (Hint: Write a sample element as xi zi and then show that
r x1 xn can be written as a function of the zi .)

9.2 Checking for Prior–Data Conflict
Bayesian methodology adds the prior probability measure to the statistical model
P : for the subsequent statistical analysis. The methods of Section 9.1 are

designed to check that the observed data can realistically be assumed to have come
from a distribution in P : When we add the prior, we are in effect saying
that our knowledge about the true distribution leads us to assign the prior predictive
probability M given by M A E P A for A to describe the process
generating the data. So it would seem, then, that a sensible Bayesian model­checking
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approach would be to compare the observed data s with the distribution given by M
to see if it is surprising or not.

Suppose that we were to conclude that the Bayesian model was incorrect after
deciding that s is a surprising value from M This only tells us, however, that the
probability measure M is unlikely to have produced the data and not that the model
P : was wrong. Consider the following example.

EXAMPLE 9.2.1 Prior–Data Conflict
Suppose we obtain a sample consisting of n 20 values of s 1 from the model with

1 2 and probability functions for the basic response given by the following
table.

s 0 s 1
f1 s 0 9 0 1
f2 s 0 1 0 9

Then the probability of obtaining this sample from f2 is given by 0 9 20 0 12158
which is a reasonable value, so we have no evidence against the model f1 f2 .

Suppose we place a prior on given by 1 0 9999 so that we are virtually
certain that 1 Then the probability of getting these data from the prior predictive
M is

0 9999 0 1 20 0 0001 0 9 20 1 2158 10 5.

The prior probability of observing a sample of 20, whose prior predictive probability is
no greater than 1 2158 10 5 can be calculated (using statistical software to tabulate
the prior predictive) to be approximately 0 04. This tells us that the observed data are
“in the tails” of the prior predictive and thus are surprising, which leads us to conclude
that we have evidence that M is incorrect.

So in this example, checking the model f : leads us to conclude that it is
plausible for the data observed. On the other hand, checking the model given by M
leads us to the conclusion that the Bayesian model is implausible.

The lesson of Example 9.2.1 is that we can have model failure in the Bayesian con­
text in two ways. First, the data s may be surprising in light of the model f : .
Second, even when the data are plausibly from this model, the prior and the data may
conflict. This conflict will occur whenever the prior assigns most of its probability to
distributions in the model for which the data are surprising. In either situation, infer­
ences drawn from the Bayesian model may be flawed.

If, however, the prior assigns positive probability (or density) to every possible
value of then the consistency results for Bayesian inference mentioned in Chapter 7
indicate that a large amount of data will overcome a prior–data conflict (see Example
9.2.4). This is because the effect of the prior decreases with increasing amounts of data.
So the existence of a prior–data conflict does not necessarily mean that our inferences
are in error. Still, it is useful to know whether or not this conflict exists, as it is often
difficult to detect whether or not we have sufficient data to avoid the problem.

Therefore, we should first use the checks discussed in Section 9.1 to ensure that the
data s is plausibly from the model f : If we accept the model, then we look
for any prior–data conflict. We now consider how to go about this.
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The prior predictive distribution of any ancillary statistic is the same as its distrib­
ution under the sampling model, i.e., its prior predictive distribution is not affected by
the choice of the prior. So the observed value of any ancillary statistic cannot tell us
anything about the existence of a prior–data conflict. We conclude from this that, if we
are going to use some function of the data to assess whether or not there is prior–data
conflict, then its marginal distribution has to depend on .

We now show that the prior predictive conditional distribution of the data given a
minimal sufficient statistic T is independent of the prior.

Theorem 9.2.1 Suppose T is a sufficient statistic for the model f : for
data s Then the conditional prior predictive distribution of the data s given T is
independent of the prior .

PROOF We will prove this in the case that each sample distribution f and the prior
are discrete. A similar argument can be developed for the more general case.

By Theorem 6.1.1 (factorization theorem) we have that

f s h s g T s

for some functions g and h Therefore the prior predictive probability function of s is
given by

m s h s g T s

The prior predictive probability function of T at t is given by

m t
s:T s t

h s g t

Therefore, the conditional prior predictive probability function of the data s given
T s t is

m s T t
h s g t

s :T s t h s g t

h s

s :t s t h s

which is independent of

So, from Theorem 9.2.1, we conclude that any aspects of the data, beyond the value
of a minimal sufficient statistic, can tell us nothing about the existence of a prior–data
conf lict. Therefore, if we want to base our check for a prior–data conf lict on the
prior predictive, then we must use the prior predictive for a minimal sufficient statistic.
Consider the following examples.

EXAMPLE 9.2.2 Checking a Beta Prior for a Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli model, where [0 1] is
unknown, and is given a Beta prior distribution. Then we have that the sample
count y n

i 1 xi is a minimal sufficient statistic and is distributed Binomial n
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Therefore, the prior predictive probability function for y is given by

m y
n

y

1

0

y 1 n y 1 1 1 d

n 1

y 1 n y 1

y n y

n
y n y

y 1 n y 1
.

Now observe that when 1 then m y 1 n 1 i.e., the prior predictive
of y is Uniform 0 1 n and no values of y are surprising. This is not unexpected,
as with the uniform prior on we are implicitly saying that any count y is reasonable.

On the other hand, when 2 the prior puts more weight around 1/2. The
prior predictive is then proportional to y 1 n y 1 This prior predictive is
plotted in Figure 9.2.1 when n 20. Note that counts near 0 or 20 lead to evidence
that there is a conf lict between the data and the prior. For example, if we obtain the
count y 3, we can assess how surprising this value is by computing the probability
of obtaining a value with a lower probability of occurrence. Using the symmetry of the
prior predictive, we have that this probability equals (using statistical software for the
computation) m 0 m 2 m 19 m 20 0 0688876 Therefore, the observation
y 3 is not surprising at the 5% level.
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Figure 9.2.1: Plot of the prior predictive of the sample count y in Example 9.2.2 when
2 and n 20.

Suppose now that n 50 and 2 4 The mean of this prior is 2 2
4 1 3 and the prior is right­skewed. The prior predictive is plotted in Figure 9.2.2.
Clearly, values of y near 50 give evidence against the model in this case. For example,
if we observe y 35 then the probability of getting a count with smaller probability of
occurrence is given by (using statistical software for the computation) m 36
m 50 0 0500457. Only values more extreme than this would provide evidence
against the model at the 5% level.
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Figure 9.2.2: Plot of the prior predictive of the sample count y in Example 9.2.2 when
2 4 and n 50.

EXAMPLE 9.2.3 Checking a Normal Prior for a Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1

is unknown and 2
0 is known. Suppose we take the prior distribution of to be an

N 0
2
0 for some specified choice of 0 and 2

0 Note that x is a minimal sufficient
statistic for this model, so we need to compare the observed of this statistic to its prior
predictive distribution to assess whether or not there is prior–data conflict.

Now we can write x z where N 0
2
0 independent of z

N 0 2
0 n From this, we immediately deduce (see Exercise 9.2.3) that the prior pre­

dictive distribution of x is N 0
2
0

2
0 n . From the symmetry of the prior predictive

density about 0 we immediately see that the appropriate P­value is

M X 0 x 0 2 1 x 0
2
0

2
0 n 1 2 (9.2.1)

So a small value of (9.2.1) is evidence that there is a conf lict between the observed
data and the prior, i.e., the prior is putting most of its mass on values of for which
the observed data are surprising.

Another possibility for model checking in this context is to look at the posterior
predictive distribution of the data. Consider, however, the following example.

EXAMPLE 9.2.4 (Example 9.2.1 continued)
Recall that, in Example 9.2.1, we concluded that a prior–data conf lict existed. Note,
however, that the posterior probability of 2 is

0 0001 0 9 20

0 9999 0 1 20 0 0001 0 9 20
1

Therefore, the posterior predictive probability of the observed sequence of 20 values of
1 is 0 12158 which does not indicate any prior–data conflict. We note, however, that
in this example, the amount of data are sufficient to overwhelm the prior; thus we are
led to a sensible inference about
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The problem with using the posterior predictive to assess whether or not a prior–
data conflict exists is that we have an instance of the so­called double use of the data.
For we have fit the model, i.e., constructed the posterior predictive, using the observed
data, and then we tried to use this posterior predictive to assess whether or not a prior–
data conflict exists. The double use of the data results in overly optimistic assessments
of the validity of the Bayesian model and will often not detect discrepancies. We will
not discuss posterior model checking further in this text.

We have only touched on the basics of checking for prior–data conflict here. With
more complicated models, the possibility exists of checking individual components of a
prior, e.g., the components of the prior specified in Example 7.1.4 for the location­scale
normal model, to ascertain more precisely where a prior–data conflict is arising. Also,
ancillary statistics play a role in checking for prior–data conf lict as we must remove
any ancillary variation when computing the P­value because this variation does not
depend on the prior. Furthermore, when the prior predictive distribution of a minimal
sufficient statistic is continuous, then issues concerning exactly how P­values are to be
computed must be addressed. These are all topics for a further course in statistics.

Summary of Section 9.2

In Bayesian inference, there are two potential sources of model incorrectness.
First, the sampling model for the data may be incorrect. Second, even if the
sampling model is correct, the prior may conflict with the data in the sense that
most of the prior probability is assigned to distributions in the model for which
the data are surprising.

We first check for the correctness of the sampling model using the methods of
Section 9.1. If we do not find evidence against the sampling model, we next
check for prior–data conflict by seeing if the observed value of a minimal suffi­
cient statistic is surprising or not, with respect to the prior predictive distribution
of this quantity.

Even if a prior–data conflict exists, posterior inferences may still be valid if we
have enough data.

EXERCISES

9.2.1 Suppose we observe the value s 2 from the model, given by the following
table.

s 1 s 2 s 3
f1 s 1 3 1 3 1 3
f2 s 1 3 0 2 3

(a) Do the observed data lead us to doubt the validity of the model? Explain why or
why not.
(b) Suppose the prior, given by 1 0 3 is placed on the parameter 1 2 .
Is there any evidence of a prior–data conflict? (Hint: Compute the prior predictive for
each possible data set and assess whether or not the observed data set is surprising.)
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(c) Repeat part (b) using the prior given by 1 0 01.

9.2.2 Suppose a sample of n 6 is taken from a Bernoulli distribution, where
has a Beta 3 3 prior distribution. If the value nx 2 is obtained, then determine
whether there is any prior–data conflict.
9.2.3 In Example 9.2.3, establish that the prior predictive distribution of x is given by
the N 0

2
0

2
0 n distribution.

9.2.4 Suppose we have a sample of n 5 from an N 2 distribution where is
unknown and the value x 7 3 is observed. An N 0 1 prior is placed on Compute
the appropriate P­value to check for prior–data conflict.
9.2.5 Suppose that x Uniform[0 ] and Uniform[0 1] If the value x 2 2 is
observed, then determine an appropriate P­value for checking for prior–data conflict.

COMPUTER EXERCISES

9.2.6 Suppose a sample of n 20 is taken from a Bernoulli distribution, where
has a Beta 3 3 prior distribution. If the value nx 6 is obtained, then determine

whether there is any prior–data conflict.

PROBLEMS

9.2.7 Suppose that x1 xn is a sample from an N 2
0 distribution, where

N 0
2
0 . Determine the prior predictive distribution of x

9.2.8 Suppose that x1 xn is a sample from an Exponential distribution where
Gamma 0 0 Determine the prior predictive distribution of x

9.2.9 Suppose that s1 sn is a sample from a Multinomial 1 1 k distri­
bution, where 1 k 1 Dirichlet 1 k Determine the prior predictive
distribution of x1 xk , where xi is the count in the i th category.
9.2.10 Suppose that x1 xn is a sample from a Uniform[0 ] distribution, where

has prior density given by I[ 1 1 where 1
0 Determine the prior predictive distribution of x n .
9.2.11 Suppose we have the context of Example 9.2.3. Determine the limiting P­value
for checking for prior–data conflict as n Interpret the meaning of this P­value
in terms of the prior and the true value of
9.2.12 Suppose that x Geometric distribution and Uniform[0 1]
(a) Determine the appropriate P­value for checking for prior–data conflict.
(b) Based on the P­value determined in part (a), describe the circumstances under which
evidence of prior–data conflict will exist.
(c) If we use a continuous prior that is positive at a point, then this an assertion that
the point is possible. In light of this, discuss whether or not a continuous prior that is
positive at 0 makes sense for the Geometric distribution.

CHALLENGES

9.2.13 Suppose that X1 Xn is a sample from an N 2 distribution where
2 N 0

2
0

2 and 1 2 Gamma 0 0 . Then determine a form for the
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prior predictive density of X S2 that you could evaluate without integrating (Hint:
Use the algebraic manipulations found in Section 7.5.)

9.3 The Problem with Multiple Checks
As we have mentioned throughout this text, model checking is a part of good statistical
practice. In other words, one should always be wary of the value of statistical work
in which the investigators have not engaged in, and reported the results of, reasonably
rigorous model checking. It is really the job of those who report statistical results to
convince us that their models are reasonable for the data collected, bearing in mind the
effects of both underfitting and overfitting.

In this chapter, we have reported some of the possible model­checking approaches
available. We have focused on the main categories of procedures and perhaps the
most often used methods from within these. There are many others. At this point, we
cannot say that any one approach is the best possible method. Perhaps greater insight
along these lines will come with further research into the topic, and then a clearer
recommendation could be made.

One recommendation that can be made now, however, is that it is not reasonable to
go about model checking by implementing every possible model­checking procedure
you can. A simple example illustrates the folly of such an approach.

EXAMPLE 9.3.1
Suppose that x1 xn is supposed to be a sample from the N 0 1 distribution.
Suppose we decide to check this model by computing the P­values

Pi P X2
i x2

i

for i 1 n where X2
i

2 1 Furthermore, we will decide that the model is
incorrect if the minimum of these P­values is less than 0.05.

Now consider the repeated sampling behavior of this method when the model is
correct. We have that

min P1 Pn 0 05

if and only if
max x2

1 x2
n

2
0 95 1

and so

P min P1 Pn 0 05

P max X2
1 X2

n
2
0 95 1 1 P max X2

1 X2
n

2
0 05 1

1
n

i 1

P X2
i

2
0 95 1 1 0 95 n 1

as n This tells us that if n is large enough, we will reject the model with virtual
certainty even though it is correct! Note that n does not have to be very large for there
to be an appreciable probability of making an error. For example, when n 10 the



510 Section 9.3: The Problem with Multiple Checks

probability of making an error is 0.40; when n 20 the probability of making an error
is 0.64; and when n 100 the probability of making an error is 0.99.

We can learn an important lesson from Example 9.3.1, for, if we carry out too many
model­checking procedures, we are almost certain to find something wrong — even if
the model is correct. The cure for this is that before actually observing the data (so
that our choices are not determined by the actual data obtained), we decide on a few
relevant model­checking procedures to be carried out and implement only these.

The problem we have been discussing here is sometimes referred to as the problem
of multiple comparisons, which comes up in other situations as well — e.g., see Sec­
tion 10.4.1, where multiple means are compared via pairwise tests for differences in
the means. One approach for avoiding the multiple­comparisons problem is to simply
lower the cutoff for the P­value so that the probability of making a mistake is appro­
priately small. For example, if we decided in Example 9.3.1 that evidence against the
model is only warranted when an individual P­value is smaller than 0.0001, then the
probability of making a mistake is 0 01 when n 100 A difficulty with this approach
generally is that our model­checking procedures will not be independent, and it does
not always seem possible to determine an appropriate cutoff for the individual P­values.
More advanced methods are needed to deal with this problem.

Summary of Section 9.3

Carrying out too many model checks is not a good idea, as we will invariably
find something that leads us to conclude that the model is incorrect. Rather than
engaging in a “fishing expedition,” where we just keep on checking the model,
it is better to choose a few procedures before we see the data, and use these, and
only these, for the model checking.


