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In Chapter 5, we introduced the basic ingredient of statistical inference — the statistical

model. In Chapter 6, inference methods were developed based on the model alone via

the likelihood function. In Chapter 7, we added the prior distribution on the model

parameter, which led to the posterior distribution as the basis for deriving inference

methods.

With both the likelihood and the posterior, however, the inferences were derived

largely based on intuition. For example, when we had a characteristic of interest ψ(θ),
there was nothing in the theory in Chapters 6 and 7 that forced us to choose a particular

estimator, confidence or credible interval, or testing procedure. A complete theory of

statistical inference, however, would totally prescribe our inferences.

One attempt to resolve this issue is to introduce a performance measure on infer-

ences and then choose an inference that does best with respect to this measure. For

example, we might choose to measure the performance of estimators by their mean-

squared error (MSE) and then try to obtain an estimator that had the smallest possible

MSE. This is the optimality approach to inference, and it has been quite successful

in a number of problems. In this chapter, we will consider several successes for the

optimality approach to deriving inferences.

Sometimes the performance measure we use can be considered to be based on

what is called a loss function. Loss functions form the basis for yet another approach

to statistical inference called decision theory. While it is not always the case that a

performance measure is based on a loss function, this holds in some of the most impor-

tant problems in statistical inference. Decision theory provides a general framework in

which to discuss these problems. A brief introduction to decision theory is provided in

Section 8.4 as an advanced topic.
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434 Section 8.1: Optimal Unbiased Estimation

8.1 Optimal Unbiased Estimation
Suppose we want to estimate the real-valued characteristic ψ(θ) for the statistical

model { fθ : θ ∈ �} . If we have observed the data s, an estimate is a value T (s) that the

statistician hopes will be close to the true value of ψ(θ). We refer to T as an estimator

of ψ. The error in the estimate is given by |T (s)− ψ(θ)|. For a variety of reasons

(mostly to do with mathematics) it is more convenient to consider the squared error

(T (s)− ψ(θ))2.

Of course, we would like this squared error to be as small as possible. Because

we do not know the true value of θ, this leads us to consider the distributions of the

squared error, when s has distribution given by fθ , for each θ ∈ �. We would then

like to choose the estimator T so that these distributions are as concentrated as possible

about 0. A convenient measure of the concentration of these distributions about 0 is

given by their means, or

MSEθ (T ) = Eθ ((T − ψ(θ))
2), (8.1.1)

called the mean-squared error (recall Definition 6.3.1).

An optimal estimator of ψ(θ) is then a T that minimizes (8.1.1) for every θ ∈ �.
In other words, T would be optimal if, for any other estimator T ∗ defined on S, we

have that

MSEθ (T ) ≤ MSEθ (T
∗)

for each θ. Unfortunately, it can be shown that, except in very artificial circumstances,

there is no such T, so we need to modify our optimization problem.

This modification takes the form of restricting the estimators T that we will enter-

tain as possible choices for the inference. Consider an estimator T such that Eθ (T )
does not exist or is infinite. It can then be shown that (8.1.1) is infinite (see Challenge

8.1.26). So we will first restrict our search to those T for which Eθ (T ) is finite for

every θ.
Further restrictions on the types of estimators that we consider make use of the

following result (recall also Theorem 6.3.1).

Theorem 8.1.1 If T is such that E(T 2) is finite, then

E((T − c)2) = Var(T )+ (E(T )− c)2,

This is minimized by taking c = E(T ).

PROOF We have that

E((T − c)2) = E((T − E (T )+ E (T )− c)2)

= E((T − E (T ))2)+ 2E (T − E (T )) (E (T )− c)+ (E (T )− c)2

= Var(T )+ (E(T )− c)2, (8.1.2)

because E(T − E (T )) = E(T )− E(T ) = 0. As (E(T )− c)2 ≥ 0, and Var(T ) does

not depend on c, the value of (8.1.2) is minimized by taking c = E(T ).
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8.1.1 The Rao–Blackwell Theorem and Rao–Blackwellization

We will prove that, when we are looking for T to minimize (8.1.1), we can further

restrict our attention to estimators T that depend on the data only through the value

of a sufficient statistic. This simplifies our search, as sufficiency often results in a

reduction of the dimension of the data (recall the discussion and examples in Section

6.1.1). First, however, we need the following property of sufficiency.

Theorem 8.1.2 A statistic U is sufficient for a model if and only if the conditional

distribution of the data s given U = u is the same for every θ ∈ �.

PROOF See Section 8.5 for the proof of this result.

The implication of this result is that information in the data s beyond the value of

U (s) = u can tell us nothing about the true value of θ, because this information comes

from a distribution that does not depend on the parameter. Notice that Theorem 8.1.2

is a characterization of sufficiency, alternative to that provided in Section 6.1.1.

Consider a simple example that illustrates the content of Theorem 8.1.2.

EXAMPLE 8.1.1

Suppose that S = {1, 2, 3, 4}, � = {a, b}, where the two probability distributions are

given by the following table.

s = 1 s = 2 s = 3 s = 4

θ = a 1/2 1/6 1/6 1/6
θ = b 1/4 1/4 1/4 1/4

Then L(· | 2) = L(· | 3) = L(· | 4), and so U : S −→ {0, 1}, given by U (1) = 0 and

U (2) = U (3) = U (4) = 1 is a sufficient statistic.

As we must have s = 1 when we observe U (s) = 0, the conditional distribution of

the response s, given U (s) = 0, is degenerate at 1 (i.e., all the probability mass is at

the point 1) for both θ = a and θ = b. When θ = a, the conditional distribution of the

response s, given U (s) = 1, places 1/3 of its mass at each of the points in {2, 3, 4} and

similarly when θ = b. So given U (s) = 1, the conditional distributions are as in the

following table.

s = 1 s = 2 s = 3 s = 4

θ = a 0 1/3 1/3 1/3
θ = b 0 1/3 1/3 1/3

Thus, we see that indeed the conditional distributions are independent of θ .

We now combine Theorems 8.1.1 and 8.1.2 to show that we can restrict our at-

tention to estimators T that depend on the data only through the value of a sufficient

statistic U . By Theorem 8.1.2 we can denote the conditional probability measure for

s, given U (s) = u, by P(· |U = u), i.e., this probability measure does not depend on

θ , as it is the same for every θ ∈ �.

For estimator T of ψ(θ), such that Eθ (T ) is finite for every θ, put TU (s) equal to

the conditional expectation of T given the value of U (s), namely,

TU (s) = EP(· |U=U (s))(T ),
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i.e., TU is the average value of T when we average using P(· |U = U (s)). Notice

that TU (s1) = TU (s2) whenever U (s1) = U (s2) (this is because P(· |U = U (s1)) =
P(· |U = U (s2))), and so TU depends on the data s only through the value of U (s).

Theorem 8.1.3 (Rao–Blackwell) Suppose that U is a sufficient statistic and Eθ (T
2)

is finite for every θ . Then MSEθ (TU ) ≤MSEθ (T ) for every θ ∈ �.

PROOF Let Pθ,U denote the marginal probability measure of U induced by Pθ . By

the theorem of total expectation (see Theorem 3.5.2), we have that

MSEθ (T ) = EPθ,U

(
EP(· |U=u)((T − ψ(θ))

2)
)

,

where EP(· |U=u)((T − ψ(θ))
2) denotes the conditional MSE of T , given U = u. Now

by Theorem 8.1.1,

EP(· |U=u)((T − ψ(θ))
2) = VarP(· |U=u)(T )+ (EP(· |U=u)(T )− ψ(θ))

2. (8.1.3)

As both terms in (8.1.3) are nonnegative, and recalling the definition of TU , we have

MSEθ (T ) = EPθ,U (VarP(· |U=u)(T ))+ EPθ,U ((TU (s)− ψ(θ))
2)

≥ EPθ,U ((TU (s)− ψ(θ))
2).

Now (TU (s) − ψ(θ))2 = EP(· |U=u)((TU (s) − ψ(θ))2) (Theorem 3.5.4) and so, by

the theorem of total expectation,

EPθ,U ((TU (s)− ψ(θ))
2) = EPθ,U

(
EP(· |U=u)((TU (s)− ψ(θ))

2)
)

= EPθ ((TU (s)− ψ(θ))
2) = MSEθ (TU )

and the theorem is proved.

Theorem 8.1.3 shows that we can always improve on (or at least make no worse)

any estimator T that possesses a finite second moment, by replacing T (s) by the esti-

mate TU (s). This process is sometimes referred to as the Rao-Blackwellization of an

estimator.

Notice that putting E = Eθ and c = ψ(θ) in Theorem 8.1.1 implies that

MSEθ (T ) = Varθ (T )+ (Eθ (T )− ψ(θ))
2. (8.1.4)

So the MSE of T can be decomposed as the sum of the variance of T plus the squared

bias of T (this was also proved in Theorem 6.3.1).

Theorem 8.1.1 has another important implication, for (8.1.4) is minimized by tak-

ing ψ(θ) = Eθ (T ). This indicates that, on average, the estimator T comes closer (in

terms of squared error) to Eθ (T ) than to any other value. So, if we are sampling from

the distribution specified by θ, T (s) is a natural estimate of Eθ (T ). Therefore, for a

general characteristic ψ(θ), it makes sense to restrict attention to estimators that have

bias equal to 0. This leads to the following definition.
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Definition 8.1.1 An estimator T of ψ(θ) is unbiased if Eθ (T ) = ψ(θ) for every

θ ∈ �.

Notice that, for unbiased estimators with finite second moment, (8.1.4) becomes

MSEθ (T ) = Varθ (T ).

Therefore, our search for an optimal estimator has become the search for an unbiased

estimator with smallest variance. If such an estimator exists, we give it a special name.

Definition 8.1.2 An unbiased estimator of ψ(θ) with smallest variance for each

θ ∈ � is called a uniformly minimum variance unbiased (UMVU) estimator.

It is important to note that the Rao–Blackwell theorem (Theorem 8.1.3) also ap-

plies to unbiased estimators. This is because the Rao–Blackwellization of an unbiased

estimator yields an unbiased estimator, as the following result demonstrates.

Theorem 8.1.4 (Rao–Blackwell for unbiased estimators) If T has finite second mo-

ment, is unbiased for ψ(θ), and U is a sufficient statistic, then Eθ (TU ) = ψ(θ) for

every θ ∈ � (so TU is also unbiased for ψ(θ)) and Varθ (TU ) ≤Varθ (T ).

PROOF Using the theorem of total expectation (Theorem 3.5.2), we have

Eθ (TU ) = EPθ,U (TU ) = EPθ,U

(
EP(· |U=u)(T )

)
= Eθ (T ) = ψ(θ).

So TU is unbiased for ψ(θ) and MSEθ (T ) =Varθ (T ), MSEθ (TU ) =Varθ (TU ). Ap-

plying Theorem 8.1.3 gives Varθ (TU ) ≤ Varθ (T ).

There are many situations in which the theory of unbiased estimation leads to good

estimators. However, the following example illustrates that in some problems, there

are no unbiased estimators and hence the theory has some limitations.

EXAMPLE 8.1.2 The Nonexistence of an Unbiased Estimator

Suppose that (x1, . . . , xn) is a sample from the Bernoulli(θ) and we wish to find a

UMVU estimator ofψ(θ) = θ/ (1− θ), the odds in favor of a success occurring. From

Theorem 8.1.4, we can restrict our search to unbiased estimators T that are functions

of the sufficient statistic nx̄ .

Such a T satisfies Eθ (T (n X̄)) = θ/ (1− θ) for every θ ∈ [0, 1]. Recalling that

n X̄ ∼ Binomial(n, θ) , this implies that

θ

1− θ
=

n∑
k=0

T (k)

(
n

k

)
θk (1− θ)n−k

for every θ ∈ [0, 1]. By the binomial theorem, we have

(1− θ)n−k =
n−k∑
l=0

(
n − k

l

)
(−1)l θ l .
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Substituting this into the preceding expression for θ/ (1− θ) and writing this in terms

of powers of θ leads to

θ

1− θ
=

n∑
m=0

(
m∑

k=0

T (k)

(
n

k

)
(−1)m−k

)
θm . (8.1.5)

Now the left-hand side of (8.1.5) goes to ∞ as θ → 1, but the right-hand side is a

polynomial in θ , which is bounded in [0, 1] . Therefore, an unbiased estimator of ψ
cannot exist.

If a characteristic ψ(θ) has an unbiased estimator, then it is said to be U-estimable.

It should be kept in mind, however, that just because a parameter is not U-estimable

does not mean that we cannot estimate it! For example, ψ in Example 8.1.2, is a 1–1

function of θ, so the MLE of ψ is given by x̄/ (1− x̄) (see Theorem 6.2.1); this seems

like a sensible estimator, even if it is biased.

8.1.2 Completeness and the Lehmann–Scheffé Theorem

In certain circumstances, if an unbiased estimator exists, and is a function of a sufficient

statistic U, then there is only one such estimator — so it must be UMVU. We need the

concept of completeness to establish this.

Definition 8.1.3 A statistic U is complete if any function h of U, which satisfies

Eθ (h(U )) = 0 for every θ ∈ �, also satisfies h(U (s)) = 0 with probability 1 for

each θ ∈ � (i.e., Pθ ({s : h(U (s)) = 0}) = 1 for every θ ∈ �).

In probability theory, we treat two functions as equivalent if they differ only on a set

having probability content 0, as the probability of the functions taking different values

at an observed response value is 0. So in Definition 8.1.3, we need not distinguish

between h and the constant 0. Therefore, a statistic U is complete if the only unbiased

estimator of 0, based on U, is given by 0 itself.

We can now derive the following result.

Theorem 8.1.5 (Lehmann–Scheffé) If U is a complete sufficient statistic, and if T

depends on the data only through the value of U, has finite second moment for every

θ, and is unbiased for ψ(θ), then T is UMVU.

PROOF Suppose that T ∗ is also an unbiased estimator of ψ(θ). By Theorem 8.1.4

we can assume that T ∗ depends on the data only through the value of U. Then there

exist functions h and h∗ such that T (s) = h(U (s)) and T ∗(s) = h∗(U (s)) and

0 = Eθ (T )− Eθ (T
∗) = Eθ (h(U ))− Eθ (h

∗(U )) = Eθ (h(U )− h∗(U )).

By the completeness of U , we have that h(U ) = h∗(U ) with probability 1 for each

θ ∈ �, which implies that T = T ∗ with probability 1 for each θ ∈ �. This says

there is essentially only one unbiased estimator for ψ(θ) based on U, and so it must be

UMVU.
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The Rao–Blackwell theorem for unbiased estimators (Theorem 8.1.4), together

with the Lehmann–Scheffé theorem, provide a method for obtaining a UMVU esti-

mator of ψ(θ). Suppose we can find an unbiased estimator T that has finite second

moment. If we also have a complete sufficient statistic U, then by Theorem 8.1.4

TU (s) = EP(· |U=U (s)) (T ) is unbiased for ψ(θ) and depends on the data only through

the value of U, because TU (s1) = TU (s2) whenever U (s1) = U (s2). Therefore, by

Theorem 8.1.5, TU is UMVU for ψ(θ).
It is not necessary, in a given problem, that a complete sufficient statistic exist.

In fact, it can be proved that the only candidate for this is a minimal sufficient statistic

(recall the definition in Section 6.1.1). So in a given problem, we must obtain a minimal

sufficient statistic and then determine whether or not it is complete. We illustrate this

via an example.

EXAMPLE 8.1.3 Location Normal

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1

is unknown and σ 2
0 > 0 is known. In Example 6.1.7, we showed that x̄ is a minimal

sufficient statistic for this model.

In fact, x̄ is also complete for this model. The proof of this is a bit involved and is

presented in Section 8.5.

Given that x̄ is a complete, minimal sufficient statistic, this implies that T (x̄) is a

UMVU estimator of its mean Eµ(T (X̄)) whenever T has a finite second moment for

every µ ∈ R1. In particular, x̄ is the UMVU estimator of µ because Eµ(X̄) = µ and

Eµ(X̄
2) = (σ 2

0/n) + µ2 < ∞. Furthermore, x̄ + σ 0z p is the UMVU estimator of

Eµ(X̄ + σ 0z p) = µ+ σ 0z p (the pth quantile of the true distribution).

The arguments needed to show the completeness of a minimal sufficient statistic in

a problem are often similar to the one required in Example 8.1.3 (see Challenge 8.1.27).

Rather than pursue such technicalities here, we quote some important examples in

which the minimal sufficient statistic is complete.

EXAMPLE 8.1.4 Location-Scale Normal

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where µ ∈ R1

and σ > 0 are unknown. The parameter in this model is two-dimensional and is given

by (µ, σ 2) ∈ R1 × (0,∞).
We showed, in Example 6.1.8, that (x̄, s2) is a minimal sufficient statistic for this

model. In fact, it can be shown that (x̄, s2) is a complete minimal sufficient statistic.

Therefore, T (x̄, s2) is a UMVU estimator of Eθ (T (X̄ , S2)) whenever the second mo-

ment of T (x̄, s2) is finite for every (µ, σ 2). In particular, x̄ is the UMVU estimator of

µ and s2 is UMVU for σ 2.

EXAMPLE 8.1.5 Distribution-Free Models

Suppose that (x1, . . . , xn) is a sample from some continuous distribution on R1. The

statistical model comprises all continuous distributions on R1.
It can be shown that the order statistics (x(1), . . . , x(n))make up a complete minimal

sufficient statistic for this model. Therefore, T (x(1), . . . , x(n)) is UMVU for

Eθ (T (X(1), . . . , X(n)))
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whenever

Eθ (T
2(X(1), . . . , X(n))) <∞ (8.1.6)

for every continuous distribution. In particular, if T : Rn → R1 is bounded, then this

is the case. For example, if

T (x(1), . . . , x(n)) =
1

n

n∑
i=1

IA(x(i)),

the relative frequency of the event A in the sample, then T (x(1), . . . , x(n)) is UMVU

for Eθ (T (X(1), . . . , X(n))) = Pθ (A).
Now change the model assumption so that (x1, . . . , xn) is a sample from some

continuous distribution on R1 that possesses its first m moments. Again, it can be

shown that the order statistics make up a complete minimal sufficient statistic. There-

fore, T (x(1), . . . , x(n)) is UMVU for Eθ (T (X(1), . . . , X(n)))whenever (8.1.6) holds for

every continuous distribution possessing its first m moments. For example, if m = 2,
then this implies that T (x(1), . . . , x(n)) = x̄ is UMVU for Eθ (X̄). When m = 4, we

have that s2 is UMVU for the population variance (see Exercise 8.1.2).

8.1.3 The Cramer–Rao Inequality (Advanced)

There is a fundamental inequality that holds for the variance of an estimator T . This is

given by the Cramer–Rao inequality (sometimes called the information inequality). It

is a corollary to the following inequality.

Theorem 8.1.6 (Covariance inequality) Suppose T,Uθ : S → R1 and Eθ (T
2) <

∞, 0 < Eθ (U
2
θ ) <∞ for every θ ∈ �. Then

Varθ (T ) ≥
(Covθ (T,Uθ ))

2

Varθ (Uθ )

for every θ ∈ �. Equality holds if and only if

T (s) = Eθ (T )+
Covθ (T,Uθ )

Varθ (Uθ )
(Uθ (s)− Eθ (Uθ (s)))

with probability 1 for every θ ∈ � (i.e., if and only if T (s) and Uθ (s) are linearly

related).

PROOF This result follows immediately from the Cauchy–Schwartz inequality (The-

orem 3.6.3).

Now suppose that � is an open subinterval of R1 and we take

Uθ (s) = S(θ | s) =
∂ ln fθ (s)

∂θ
, (8.1.7)

i.e., Uθ is the score function. Assume that the conditions discussed in Section 6.5 hold,

so that Eθ (S(θ | s)) = 0 for all θ, and, Fisher’s information I (θ) =Varθ (S(θ | s)) is
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finite. Then using
∂ ln fθ (s)

∂θ
=
∂ fθ (s)

∂θ

1

fθ (s)
,

we have

Covθ (T,Uθ )

= Eθ

(
T (s)

∂ ln fθ (s)

∂θ

)
= Eθ

(
T (s)

∂ fθ (s)

∂θ

1

fθ (s)

)
=
∑

s

(
T (s)

∂ fθ (s)

∂θ

1

fθ (s)

)
fθ (s) =

∂

∂θ

∑
s

T (s) fθ (s) =
∂Eθ (T )

∂θ
, (8.1.8)

in the discrete case, where we have assumed conditions like those discussed in Section

6.5, so we can pull the partial derivative through the sum. A similar argument gives the

equality (8.1.8) in the continuous case as well.

The covariance inequality, applied with Uθ specified as in (8.1.7) and using (8.1.8),

gives the following result.

Corollary 8.1.1 (Cramer–Rao or information inequality) Under conditions,

Varθ (T ) ≥

(
∂Eθ (T )

∂θ

)2

(I (θ))−1

for every θ ∈ �. Equality holds if and only if

T (s) = Eθ (T )+
∂Eθ (T )

∂θ
(I (θ))−1S(θ | s)

with probability 1 for every θ ∈ �.

The Cramer–Rao inequality provides a fundamental lower bound on the variance

of an estimator T . From (8.1.4), we know that the variance is a relevant measure of the

accuracy of an estimator only when the estimator is unbiased, so we restate Corollary

8.1.1 for this case.

Corollary 8.1.2 Under the conditions of Corollary 8.1.1, when T is an unbiased

estimator of ψ(θ),
Varθ (T ) ≥ (ψ

′(θ))2(I (θ))−1

for every θ ∈ �. Equality holds if and only if

T (s) = ψ(θ)+ ψ ′(θ)(I (θ))−1S(θ | s) (8.1.9)

with probability 1 for every θ ∈ �.

Notice that when ψ(θ) = θ, then Corollary 8.1.2 says that the variance of the

unbiased estimator T is bounded below by the reciprocal of the Fisher information.

More generally, when ψ is a 1–1, smooth transformation, we have (using Challenge

6.5.19) that the variance of an unbiased T is again bounded below by the reciprocal of
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the Fisher information, but this time the model uses the parameterization in terms of

ψ(θ).
Corollary 8.1.2 has several interesting implications. First, if we obtain an unbiased

estimator T with variance at the lower bound, then we know immediately that it is

UMVU. Second, we know that any unbiased estimator that achieves the lower bound

is of the form given in (8.1.9). Note that the right-hand side of (8.1.9) must be inde-

pendent of θ in order for this to be an estimator. If this is not the case, then there are no

UMVU estimators whose variance achieves the lower bound. The following example

demonstrates that there are cases in which UMVU estimators exist, but their variance

does not achieve the lower bound.

EXAMPLE 8.1.6 Poisson(λ) Model

Suppose that (x1, . . . , xn) is a sample from the Poisson(λ) distribution where λ > 0 is

unknown. The log-likelihood is given by l(λ | x1, . . . , xn) = nx̄ ln λ− nλ, so the score

function is given by S(λ | x1, . . . , xn) = nx̄/λ− n. Now

∂S(λ | x1, . . . , xn)

∂λ
= −

nx̄

λ2
,

and thus

I (λ) = Eλ

(
nx̄

λ2

)
=

n

λ
.

Suppose we are estimating λ. Then the Cramer–Rao lower bound is given by

I−1(λ) = λ/n. Noting that x̄ is unbiased for λ and that Varλ(X̄) = λ/n, we see

immediately that x̄ is UMVU and achieves the lower bound.

Now suppose that we are estimating ψ(λ) = e−λ = Pλ({0}). The Cramer–Rao

lower bound equals λe−2λ/n and

ψ(λ)+ ψ ′(λ)I−1(λ)S(λ | x1, . . . , xn) = e−λ − e−λ
(
λ

n

)(
nx̄

λ
− n

)
= e−λ(1− x̄ + λ),

which is clearly not independent of λ. So there does not exist a UMVU estimator for

ψ that attains the lower bound.

Does there exist a UMVU estimator for ψ? Observe that when n = 1, then I{0}(x1)
is an unbiased estimator of ψ . As it turns out, x̄ is (for every n) a complete mini-

mal sufficient statistic for this model, so by the Lehmann–Scheffé theorem I{0}(x1) is

UMVU for ψ. Furthermore, I{0}(X1) has variance

Pλ(X1 = 0) (1− Pλ(X1 = 0)) = e−λ(1− e−λ)

since I{0}(X1) ∼ Bernoulli(e−λ). This implies that e−λ(1− e−λ) > λe−2λ.

In general, we have that

1

n

n∑
i=1

I{0}(xi )

is an unbiased estimator of ψ , but it is not a function of x̄ . Thus we cannot apply the

Lehmann–Scheffé theorem, but we can Rao–Blackwellize this estimator. Therefore,



Chapter 8: Optimal Inferences 443

the UMVU estimator of ψ is given by

1

n

n∑
i=1

E(I{0}(X i ) | X̄ = x̄).

To determine this estimator in closed form, we reason as follows. The condi-

tional probability function of (X1, . . . , Xn) given X̄ = x̄ , because n X̄ is distributed

Poisson(nλ) , is{
λx1

x1!
· · ·

λxn

xn!
e−nλ

}{
(nλ)nx̄

(nx̄)!
e−nλ

}−1

=

(
nx̄

x1 . . . xn

)(
1

n

)x1

· · ·

(
1

n

)xn

,

i.e., (X1, . . . , Xn) given X̄ = x̄ is distributed Multinomial(nx̄, 1/n, . . . , 1/n) . Ac-

cordingly, the UMVU estimator is given by

E(I{0}(X1) | X̄ = x̄) = P(X1 = 0 | X̄ = x̄) =

(
1−

1

n

)nx̄

because X i | X̄ = x̄ ∼ Binomial(nx̄, 1/n) for each i = 1, . . . , n.
Certainly, it is not at all obvious from the functional form that this estimator is

unbiased, let alone UMVU. So this result can be viewed as a somewhat remarkable

application of the theory.

Recall now Theorems 6.5.2 and 6.5.3. The implications of these results, with some

additional conditions, are that the MLE of θ is asymptotically unbiased for θ and that

the asymptotic variance of the MLE is at the information lower bound. This is often

interpreted to mean that, with large samples, the MLE makes full use of the information

about θ contained in the data.

Summary of Section 8.1

• An estimator comes closest (using squared distance) on average to its mean (see

Theorem 8.1.1), so we can restrict attention to unbiased estimators for quantities

of interest.

• The Rao–Blackwell theorem says that we can restrict attention to functions of a

sufficient statistic when looking for an estimator minimizing MSE.

• When a sufficient statistic is complete, then any function of that sufficient statis-

tic is UMVU for its mean.

• The Cramer–Rao lower bound gives a lower bound on the variance of an unbi-

ased estimator and a method for obtaining an estimator that has variance at this

lower bound when such an estimator exists.
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EXERCISES

8.1.1 Suppose that a statistical model is given by the two distributions in the following

table.
s = 1 s = 2 s = 3 s = 4

fa (s) 1/3 1/6 1/12 5/12

fb (s) 1/2 1/4 1/6 1/12

If T : {1, 2, 3, 4} → {1, 2, 3, 4} is defined by T (1) = T (2) = 1 and T (s) = s

otherwise, then prove that T is a sufficient statistic. Derive the conditional distributions

of s given T (s) and show that these are independent of θ.

8.1.2 Suppose that (x1, . . . , xn) is a sample from a distribution with mean µ and vari-

ance σ 2. Prove that s2 = (n − 1)−1
∑n

i=1 (xi − x̄)2 is unbiased for σ 2.

8.1.3 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈

R1 is unknown and σ 2
0 is known. Determine a UMVU estimator of the second moment

µ2 + σ 2
0.

8.1.4 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈

R1 is unknown and σ 2
0 is known. Determine a UMVU estimator of the first quartile

µ+ σ 0z0.25.

8.1.5 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈

R1 is unknown and σ 2
0 is known. Is 2x̄+3 a UMVU estimator of anything? If so, what

is it UMVU for? Justify your answer.

8.1.6 Suppose that (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution, where

θ ∈ [0, 1] is unknown. Determine a UMVU estimator of θ (use the fact that a minimal

sufficient statistic for this model is complete).

8.1.7 Suppose that (x1, . . . , xn) is a sample from a Gamma(α0, β) distribution, where

α0 is known and β > 0 is unknown. Using the fact that x̄ is a complete sufficient

statistic (see Challenge 8.1.27), determine a UMVU estimator of β−1.

8.1.8 Suppose that (x1, . . . , xn) is a sample from an N (µ0, σ
2) distribution, where µ0

is known and σ 2 > 0 is unknown. Show that
∑n

i=1

(
xi − µ0

)2
is a sufficient statistic

for this problem. Using the fact that it is complete, determine a UMVU estimator for

σ 2.

8.1.9 Suppose a statistical model comprises all continuous distributions on R1. Based

on a sample of n, determine a UMVU estimator of P((−1, 1)), where P is the true

probability measure. Justify your answer.

8.1.10 Suppose a statistical model comprises all continuous distributions on R1 that

have a finite second moment. Based on a sample of n, determine a UMVU estimator

of µ2, where µ is the true mean. Justify your answer. (Hint: Find an unbiased esti-

mator for n = 2, Rao–Blackwellize this estimator for a sample of n, and then use the

Lehmann–Scheffé theorem.)

8.1.11 The estimator determined in Exercise 8.1.10 is also unbiased for µ2 when the

statistical model comprises all continuous distributions on R1 that have a finite first

moment. Is this estimator still UMVU for µ2?
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PROBLEMS

8.1.12 Suppose that (x1, . . . , xn) is a sample from a Uniform[0, θ] distribution, where

θ > 0 is unknown. Show that x(n) is a sufficient statistic and determine its distribution.

Using the fact that x(n) is complete, determine a UMVU estimator of θ .

8.1.13 Suppose that (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution, where

θ ∈ [0, 1] is unknown. Then determine the conditional distribution of (x1, . . . , xn),
given the value of the sufficient statistic x̄ .

8.1.14 Prove that L(θ, a) = (θ − a)2 satisfies

L(θ, αa1 + (1− α)a2) ≤ αL(θ, a1)+ (1− α) L(θ, a2)

when a ranges in a subinterval of R1. Use this result together with Jensen’s inequality

(Theorem 3.6.4) to prove the Rao–Blackwell theorem.

8.1.15 Prove that L(θ, a) = |θ − a| satisfies

L(θ, αa1 + (1− α)a2) ≤ αL(θ, a1)+ (1− α)L(θ, a2)

when a ranges in a subinterval of R1. Use this result together with Jensen’s inequality

(Theorem 3.6.4) to prove the Rao–Blackwell theorem for absolute error. (Hint: First

show that |x + y| ≤ |x | + |y| for any x and y.)

8.1.16 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where

(µ, σ 2) ∈ R1 × (0,∞) is unknown. Show that the optimal estimator (in the sense

of minimizing the MSE), of the form cs2 for σ 2, is given by c = (n − 1)/ (n + 1).
Determine the bias of this estimator and show that it goes to 0 as n→∞.

8.1.17 Prove that if a statistic T is complete for a model and U = h(T ) for a 1–1

function h, then U is also complete.

8.1.18 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where

(µ, σ 2) ∈ R1 × (0,∞) is unknown. Derive a UMVU estimator of the standard devia-

tion σ . (Hint: Calculate the expected value of the sample standard deviation s.)

8.1.19 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where

(µ, σ 2) ∈ R1 × (0,∞) is unknown. Derive a UMVU estimator of the first quartile

µ+ σ z0.25. (Hint: Problem 8.1.17.)

8.1.20 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where

θ ∈ � = {µ1, µ2} is unknown and σ 2
0 > 0 is known. Establish that x̄ is a minimal

sufficient statistic for this model but that it is not complete.

8.1.21 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where

µ ∈ R1 is unknown and σ 2
0 is known. Determine the information lower bound, for an

unbiased estimator, when we consider estimating the second moment µ2 + σ 2
0. Does

the UMVU estimator in Exercise 8.1.3 attain the information lower bound?

8.1.22 Suppose that (x1, . . . , xn) is a sample from a Gamma(α0, β) distribution, where

α0 is known and β > 0 is unknown. Determine the information lower bound for the

estimation of β−1 using unbiased estimators, and determine if the UMVU estimator

obtained in Exercise 8.1.7 attains this.

8.1.23 Suppose that (x1, . . . , xn) is a sample from the distribution with density fθ
(x) = θxθ−1 for x ∈ [0, 1] and θ > 0 is unknown. Determine the information lower
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bound for estimating θ using unbiased estimators. Does a UMVU estimator with vari-

ance at the lower bound exist for this problem?

8.1.24 Suppose that a statistic T is a complete statistic based on some statistical model.

A submodel is a statistical model that comprises only some of the distributions in the

original model. Why is it not necessarily the case that T is complete for a submodel?

8.1.25 Suppose that a statistic T is a complete statistic based on some statistical model.

If we construct a larger model that contains all the distributions in the original model

and is such that any set that has probability content equal to 0 for every distribution in

the original model also has probability content equal to 0 for every distribution in the

larger model, then prove that T is complete for the larger model as well.

CHALLENGES

8.1.26 If X is a random variable such that E(X) either does not exist or is infinite, then

show that E((X − c)2) = ∞ for any constant c.

8.1.27 Suppose that (x1, . . . , xn) is a sample from a Gamma(α0, β) distribution, where

α0 is known and β > 0 is unknown. Show that x̄ is a complete minimal sufficient

statistic.

8.2 Optimal Hypothesis Testing
Suppose we want to assess a hypothesis about the real-valued characteristic ψ(θ) for

the model { fθ : θ ∈ �}. Typically, this will take the form H0 : ψ(θ) = ψ0, where we

have specified a value for ψ . After observing data s, we want to assess whether or not

we have evidence against H0.

In Section 6.3.3, we discussed methods for assessing such a hypothesis based on

the plug-in MLE for ψ(θ). These involved computing a P-value as a measure of how

surprising the data s are when the null hypothesis is assumed to be true. If s is sur-

prising for each of the distributions fθ for which ψ(θ) = ψ0, then we have evidence

against H0. The development of such procedures was largely based on the intuitive

justification for the likelihood function.

8.2.1 The Power Function of a Test

Closely associated with a specific procedure for computing a P-value is the concept

of a power function β(θ), as defined in Section 6.3.6. For this, we specified a critical

value α, such that we declare the results of the test statistically significant whenever the

P-value is less than or equal to α. The power β(θ) is then the probability of the P-value

being less than or equal to α when we are sampling from fθ . The greater the value

of β(θ), when ψ(θ) 6= ψ0, the better the procedure is at detecting departures from

H0. The power function is thus a measure of the sensitivity of the testing procedure to

detecting departures from H0.
Recall the following fundamental example.
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EXAMPLE 8.2.1 Location Normal Model

Suppose we have a sample (x1, . . . , xn) from the N (µ, σ 2
0) model, where µ ∈ R1 is

unknown and σ 2
0 > 0 is known, and we want to assess the null hypothesis H0 : µ = µ0.

In Example 6.3.9, we showed that a sensible test for this problem is based on the z-

statistic

z =
x̄ − µ0

σ 0/
√

n
,

with Z ∼ N (0, 1) under H0. The P-value is then given by

Pµ0

(
|Z | ≥

∣∣∣∣ x̄ − µ0

σ 0/
√

n

∣∣∣∣) = 2

[
1−8

(∣∣∣∣ x̄ − µ0

σ 0/
√

n

∣∣∣∣)] ,
where 8 denotes the N (0, 1) distribution function.

In Example 6.3.18, we showed that, for critical value α, the power function of the

z-test is given by

β(µ) = Pµ

(
2

[
1−8

(∣∣∣∣ X̄ − µ0

σ 0/
√

n

∣∣∣∣)] < α

)
= Pµ

(
8

(∣∣∣∣ X̄ − µ0

σ 0/
√

n

∣∣∣∣) > 1−
α

2

)
= 1−8

(
µ0 − µ

σ 0/
√

n
+ z1−(α/2)

)
+8

(
µ0 − µ

σ 0/
√

n
− z1−(α/2)

)
because X̄ ∼ N (µ, σ 2

0/n).
We see that specifying a value for α specifies a set of data values

R =

{
(x1, . . . , xn) : 8

(∣∣∣∣ x̄ − µ0

σ 0/
√

n

∣∣∣∣) > 1−
α

2

}
such that the results of the test are determined to be statistically significant whenever

(x1, . . . , xn) ∈ R. Using the fact that 8 is 1–1 increasing, we can also write R as

R =

{
(x1, . . . , xn) :

∣∣∣∣ x̄ − µ0

σ 0/
√

n

∣∣∣∣ > 8−1
(

1−
α

2

)}
=

{
(x1, . . . , xn) :

∣∣∣∣ x̄ − µ0

σ 0/
√

n

∣∣∣∣ > z1−(α/2)

}
.

Furthermore, the power function is given by β(µ) = Pµ(R) and β(µ0) = Pµ0
(R) = α.

8.2.2 Type I and Type II Errors

We now adopt a different point of view. We are going to look for tests that are optimal

for testing the null hypothesis H0 : ψ(θ) = ψ0. First, we will assume that, having

observed the data s, we will decide to either accept or reject H0. If we reject H0, then

this is equivalent to accepting the alternative Ha : ψ(θ) 6= ψ0. Our performance

measure for assessing testing procedures will then be the probability that the testing

procedure makes an error.



448 Section 8.2: Optimal Hypothesis Testing

There are two types of error. We can make a type I error — rejecting H0 when it is

true — or make a type II error — accepting H0 when H0 is false. Note that if we reject

H0, then this implies that we are accepting the alternative hypothesis Ha : ψ (θ) 6= ψ0.
It turns out that, except in very artificial circumstances, there are no testing proce-

dures that simultaneously minimize the probabilities of making the two kinds of errors.

Accordingly, we will place an upper bound α, called the critical value, on the proba-

bility of making a type I error. We then search among those tests whose probability of

making a type I error is less than or equal to α, for a testing procedure that minimizes

the probability of making a type II error.

Sometimes hypothesis testing problems for real-valued parameters are distinguished

as being one-sided or two-sided. For example, if θ is real-valued, then H0 : θ = θ0 ver-

sus Ha : θ 6= θ0 is a two-sided testing problem, while H0 : θ ≤ θ0 versus Ha : θ > θ0

or H0 : θ ≥ θ0 versus Ha : θ < θ0 are examples of one-sided problems. Notice,

however, that if we define

ψ(θ) = I(θ0,∞)(θ),

then H0 : θ ≤ θ0 versus Ha : θ > θ0 is equivalent to the problem H0 : ψ(θ) = 0

versus Ha : ψ(θ) 6= 0. Similarly, if we define

ψ(θ) = I(−∞,θ0)(θ),

then H0 : θ ≥ θ0 versus Ha : θ < θ0 is equivalent to the problem H0 : ψ(θ) = 0

versus Ha : ψ(θ) 6= 0. So the formulation we have adopted for testing problems about

a general ψ includes the one-sided problems as special cases.

8.2.3 Rejection Regions and Test Functions

One approach to specifying a testing procedure is to select a subset R ⊂ S before we

observe s. We then reject H0 whenever s ∈ R and accept H0 whenever s /∈ R. The

set R is referred to as a rejection region. Putting an upper bound on the probability of

rejecting H0 when it is true leads to the following.

Definition 8.2.1 A rejection region R satisfying

Pθ (R) ≤ α (8.2.1)

whenever ψ(θ) = ψ0 is called a size α rejection region for H0.

So (8.2.1) expresses the bound on the probability of making a type I error.

Among all size α rejection regions R, we want to find the one (if it exists) that will

minimize the probability of making a type II error. This is equivalent to finding the

size α rejection region R that maximizes the probability of rejecting the null hypothesis

when it is false. This probability can be expressed in terms of the power function of R

and is given by β(θ) = Pθ (R) whenever ψ(θ) 6= ψ0.
To fully specify the optimality approach to testing hypotheses, we need one addi-

tional ingredient. Observe that our search for an optimal size α rejection region R is

equivalent to finding the indicator function IR that satisfies β(θ) = Eθ (IR) = Pθ (R) ≤
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α, when ψ(θ) = ψ0, and maximizes β(θ) = Eθ (IR) = Pθ (R), when ψ(θ) 6= ψ0. It

turns out that, in a number of problems, there is no such rejection region.

On the other hand, there is often a solution to the more general problem of finding

a function ϕ : S→ [0, 1] satisfying

β(θ) = Eθ (ϕ) ≤ α, (8.2.2)

when ψ(θ) = ψ0, and maximizes

β(θ) = Eθ (ϕ),

when ψ(θ) 6= ψ0. We have the following terminology.

Definition 8.2.2 We call ϕ : S → [0, 1] a test function and β(θ) = Eθ (ϕ) the

power function associated with the test function ϕ. If ϕ satisfies (8.2.2) when

ψ(θ) = ψ0, it is called a size α test function. If ϕ satisfies Eθ (ϕ) = α when

ψ(θ) = ψ0, it is called an exact size α test function. A size α test function ϕ that

maximizes β(θ) = Eθ (ϕ) when ψ(θ) 6= ψ0 is called a uniformly most powerful

(UMP) size α test function.

Note that ϕ = IR is a test function with power function given by β(θ) = Eθ (IR) =
Pθ (R).

For observed data s, we interpret ϕ(s) = 0 to mean that we accept H0 and interpret

ϕ(s) = 1 to mean that we reject H0. In general, we interpret ϕ(s) to be the conditional

probability that we reject H0 given the data s. Operationally, this means that, after we

observe s, we generate a Bernoulli(ϕ(s)) random variable. If we get a 1, we reject

H0; if we get a 0, we accept H0. Therefore, by the theorem of total expectation, Eθ (ϕ)
is the unconditional probability of rejecting H0. The randomization that occurs when

0 < ϕ(s) < 1 may seem somewhat counterintuitive, but it is forced on us by our search

for a UMP size α test, as we can increase power by doing this in certain problems.

8.2.4 The Neyman–Pearson Theorem

For a testing problem specified by a null hypothesis H0 : ψ(θ) = ψ0 and a critical

value α, we want to find a UMP size α test function ϕ. Note that a UMP size α test

function ϕ0 for H0 : ψ(θ) = ψ0 is characterized (letting βϕ denote the power function

of ϕ) by

βϕ0
(θ) ≤ α,

when ψ(θ) = ψ0, and by

βϕ0
(θ) ≥ βϕ(θ),

when ψ(θ) 6= ψ0, for any other size α test function ϕ.
Still, this optimization problem does not have a solution in general. In certain prob-

lems, however, an optimal solution can be found. The following result gives one such

example. It is fundamental to the entire theory of optimal hypothesis testing.
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Theorem 8.2.1 (Neyman–Pearson) Suppose that � = {θ0, θ1} and that we want to

test H0 : θ = θ0. Then an exact size α test function ϕ0 exists of the form

ϕ0 (s) =


1 fθ1

(s) / fθ0
(s) > c0

γ fθ1
(s) / fθ0

(s) = c0

0 fθ1
(s) / fθ0

(s) < c0

(8.2.3)

for some γ ∈ [0, 1] and c0 ≥ 0. This test is UMP size α.

PROOF See Section 8.5 for the proof of this result.

The following result can be established by a simple extension of the proof of the

Neyman–Pearson theorem.

Corollary 8.2.1 If ϕ is a UMP size α test, then ϕ(s) = ϕ0(s) everywhere except

possibly on the boundary B = {s : fθ1
(s)/ fθ0

(s) = c0}. Furthermore, ϕ has exact

size α unless the power of a UMP size α test equals 1.

PROOF See Challenge 8.2.22.

Notice the intuitive nature of the test given by the Neyman–Pearson theorem, for

(8.2.3) indicates that we categorically reject H0 as being true when the likelihood ratio

of θ1 versus θ0 is greater than the constant c0, and we accept H0 when it is smaller.

When the likelihood ratio equals c0, we randomly decide to reject H0 with probability

γ . Also, Corollary 8.2.1 says that a UMP size α test is basically unique, although there

are possibly different randomization strategies on the boundary.

The proof of the Neyman–Pearson theorem reveals that c0 is the smallest real num-

ber such that

Pθ0

(
fθ1
(s)

fθ0
(s)

> c0

)
≤ α (8.2.4)

and

γ =


α−Pθ0

(
fθ1

(s)

fθ0
(s)>c0

)
Pθ0

(
fθ1

(s)

fθ0
(s)=c0

) Pθ0

(
fθ1
(s)

fθ0
(s) = c0

)
6= 0

0 otherwise.

(8.2.5)

We use (8.2.4) and (8.2.5) to calculate c0 and γ , and so determine the UMP size α test,

in a particular problem.

Note that the test is nonrandomized whenever Pθ0
( fθ1

(s)/ fθ0
(s) > c0) = α, as

then γ = 0, i.e., we categorically accept or reject H0 after seeing the data. This

always occurs whenever the distribution of fθ1
(s)/ fθ0

(s) is continuous when s ∼ Pθ0
.

Interestingly, it can happen that the distribution of the ratio is not continuous even when

the distribution of s is continuous (see Problem 8.2.17).

Before considering some applications of the Neyman–Pearson theorem, we estab-

lish the analog of the Rao–Blackwell theorem for hypothesis testing problems. Given
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the value of the sufficient statistic U (s) = u, we denote the conditional probability

measure for the response s by P(· |U = u) (by Theorem 8.1.2, this probability mea-

sure does not depend on θ ). For test function ϕ put ϕU (s) equal to the conditional

expectation of ϕ given the value of U (s), namely,

ϕU (s) = EP(· |U=U (s))(ϕ).

Theorem 8.2.2 Suppose that U is a sufficient statistic and ϕ is a size α test function

for H0 : ψ(θ) = ψ0. Then ϕU is a size α test function for H0 : ψ(θ) = ψ0 that

depends on the data only through the value of U. Furthermore, ϕ and ϕU have the

same power function.

PROOF It is clear that ϕU (s1) = ϕU (s2) whenever U (s1) = U (s2), and so ϕU

depends on the data only through the value of U. Now let Pθ,U denote the marginal

probability measure of U induced by Pθ . Then by the theorem of total expectation, we

have Eθ (ϕ) = EPθ,U (EP(· |U=u)(ϕ)) = EPθ,U (ϕU ) = Eθ (ϕU ). Now Eθ (ϕ) ≤ α when

ψ(θ) = ψ0, which implies that Eθ (ϕU ) ≤ α when ψ(θ) = ψ0, and β(θ) = Eθ (ϕ) =
Eθ (ϕU ) when ψ(θ) 6= ψ0.

This result allows us to restrict our search for a UMP size α test to those test functions

that depend on the data only through the value of a sufficient statistic.

We now consider some applications of the Neyman–Pearson theorem. The follow-

ing example shows that this result can lead to solutions to much more general problems

than the simple case being addressed.

EXAMPLE 8.2.2 Optimal Hypothesis Testing in the Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ � =

{µ0, µ1} and σ 2
0 > 0 is known, and we want to test H0 : µ = µ0 versus Ha : µ = µ1.

The likelihood function is given by

L(µ | x1, . . . , xn) = exp

(
−

n

2σ 2
0

(x̄ − µ)2
)

,

and x̄ is a sufficient statistic for this restricted model.

By Theorem 8.2.2, we can restrict our attention to test functions that depend on the

data through x̄ . Now X̄ ∼ N (µ, σ 2
0/n) so that

fµ1
(x̄)

fµ0
(x̄)

=

exp

(
− n

2σ 2
0

(x̄ − µ1)
2

)
exp

(
− n

2σ 2
0

(
x̄ − µ0

)2)
= exp

(
−

n

2σ 2
0

(
x̄2 − 2x̄µ1 + µ

2
1 − x̄2 + 2x̄µ0 − µ

2
0

))

= exp

(
n

σ 2
0

(
µ1 − µ0

)
x̄

)
exp

(
−

n

2σ 2
0

(
µ2

1 − µ
2
0

))
.
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Therefore,

Pµ0

(
fµ1
(X̄)

fµ0
(X̄)

> c0

)

= Pµ0

(
exp

(
n

σ 2
0

(
µ1 − µ0

)
X̄

)
exp

(
−

n

2σ 2
0

(
µ2

1 − µ
2
0

))
> c0

)

= Pµ0

(
exp

(
n

σ 2
0

(
µ1 − µ0

)
X̄

)
> c0 exp

(
n

2σ 2
0

(
µ2

1 − µ
2
0

)))

= Pµ0

((
µ1 − µ0

)
X̄ >

σ 2
0

n
ln

{
c0 exp

(
n

2σ 2
0

(
µ2

1 − µ
2
0

))})

=


Pµ0

(
X̄−µ0

σ 0/
√

n
> c′0

)
µ1 > µ0

Pµ0

(
X̄−µ0

σ 0/
√

n
< c′0

)
µ1 < µ0,

where

c′0 =

√
n

σ 0

{
σ 2

0

n
(
µ1 − µ0

) ln

{
c0 exp

(
n

2σ 2
0

(
µ2

1 − µ
2
0

))}
− µ0

}
.

Using (8.2.4), when µ1 > µ0, we select c0 so that c′0 = z1−α; when µ1 < µ0, we

select c0 so that c′0 = zα. These choices imply that

Pµ0

(
fµ1
(X̄)

fµ0
(X̄)

> c0

)
= α

and, by (8.2.5), γ = 0.

So the UMP size α test is nonrandomized. When µ1 > µ0, the test is given by

ϕ0 (x̄) =


1 x̄ ≥ µ0 +

σ 0√
n

z1−α

0 x̄ < µ0 +
σ 0√

n
z1−α.

(8.2.6)

When µ1 < µ0, the test is given by

ϕ∗0 (x̄) =


1 x̄ ≤ µ0 +

σ 0√
n

zα

0 x̄ > µ0 +
σ 0√

n
zα.

(8.2.7)

Notice that the test function in (8.2.6) does not depend on µ1 in any way. The

subsequent implication is that this test function is UMP size α for H0 : µ = µ0 versus

Ha : µ = µ1 for any µ1 > µ0. This implies that ϕ0 is UMP size α for H0 : µ = µ0

versus the alternative Ha : µ > µ0.
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Furthermore, we have

βϕ0
(µ) = Pµ

(
X̄ ≥ µ0 +

σ 0
√

n
z1−α

)
= Pµ

(
X̄ − µ

σ 0/
√

n
≥
µ0 − µ

σ 0/
√

n
+ z1−α

)
= 1−8

(
µ0 − µ

σ 0/
√

n
+ z1−α

)
.

Note that this is increasing in µ, which implies that ϕ0 is a size α test function for

H0 : µ ≤ µ0 versus Ha : µ > µ0. Observe that, if ϕ is a size α test function for

H0 : µ ≤ µ0 versus Ha : µ > µ0, then it is also a size α test for H0 : µ = µ0 versus

Ha : µ > µ0. From this, we conclude that ϕ0 is UMP size α for H0 : µ ≤ µ0 versus

Ha : µ > µ0. Similarly (see Problem 8.2.12), it can be shown that ϕ∗0 in (8.2.7) is

UMP size α for H0 : µ ≥ µ0 versus Ha : µ < µ0.
We might wonder if a UMP size α test exists for the two-sided problem H0 : µ =

µ0 versus Ha : µ 6= µ0. Suppose that ϕ is a size α UMP test for this problem. Then ϕ
is also size α for H0 : µ = µ0 versus Ha : µ = µ1 when µ1 > µ0. Using Corollary

8.2.1 and the preceding developments (which also shows that there does not exist a test

of the form (8.2.3) having power equal to 1 for this problem), this implies that ϕ = ϕ0

(the boundary B has probability 0 here). But ϕ is also UMP size α for H0 : µ = µ0

versus Ha : µ = µ1 when µ1 < µ0; thus, by the same reasoning, ϕ = ϕ∗0. But clearly

ϕ0 6= ϕ
∗
0, so there is no UMP size α test for the two-sided problem.

Intuitively, we would expect that the size α test given by

ϕ (x̄) =


1

∣∣∣ x̄−µ0

σ 0/
√

n

∣∣∣ ≥ z1−α/2

0

∣∣∣ x̄−µ0

σ 0/
√

n

∣∣∣ < z1−α/2

(8.2.8)

would be a good test to use, but it is not UMP size α. It turns out, however, that the test

in (8.2.8) is UMP size α among all tests satisfying βϕ(µ0) ≤ α and βϕ(µ) ≥ α when

µ 6= µ0.

Example 8.2.2 illustrated a hypothesis testing problem for which no UMP size α
test exists. Sometimes, however, by requiring that the test possess another very natural

property, we can obtain an optimal test.

Definition 8.2.3 A test ϕ that satisfies βϕ(θ) ≤ α, when ψ(θ) = ψ0, and βϕ(θ) ≥
α, when ψ(θ) 6= ψ0, is said to be an unbiased size α test for the hypothesis testing

problem H0 : ψ(θ) = ψ0.

So (8.2.8) is a UMP unbiased size α test. An unbiased test has the property that the

probability of rejecting the null hypothesis, when the null hypothesis is false, is always

greater than the probability of rejecting the null hypothesis, when the null hypothesis

is true. This seems like a very reasonable property. In particular, it can be proved that

any UMP size α is always an unbiased size α test (Problem 8.2.14). We do not pursue

the theory of unbiased tests further in this text.

We now consider an example which shows that we cannot dispense with the use of

randomized tests.
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EXAMPLE 8.2.3 Optimal Hypothesis Testing in the Bernoulli(θ) Model

Suppose that (x1, . . . , xn) is a sample from a Bernoulli(θ) distribution, where θ ∈ � =
{θ0, θ1}, and we want to test H0 : θ = θ0 versus Ha : θ = θ1, where θ1 > θ0. Then

nx̄ is a minimal sufficient statistic and, by Theorem 8.2.2, we can restrict our attention

to test functions that depend on the data only through nx̄ .
Now n X̄ ∼ Binomial(n, θ) , so

fθ1
(nx̄)

fθ0
(nx̄)

=
θnx̄

1 (1− θ1)
n−nx̄

θnx̄
0 (1− θ0)n−nx̄

=

(
θ1

θ0

)nx̄ (
1− θ1

1− θ0

)n−nx̄

.

Therefore,

Pθ0

(
fθ1
(n X̄)

fθ0
(n X̄)

> c0

)

= Pθ0

((
θ1

θ0

)n X̄ (
1− θ1

1− θ0

)n−n X̄

> c0

)

= Pθ0

((
θ1

1− θ1

1− θ0

θ0

)n X̄

> c0

(
1− θ1

1− θ0

)−n
)

= Pθ0

(
n X̄

[
ln

(
θ1

1− θ1

1− θ0

θ0

)]
> ln c0

(
1− θ1

1− θ0

)−n
)

= Pθ0

n X̄ >
ln c0

(
1−θ1

1−θ0

)−n

ln
(

θ1

1−θ1

1−θ0

θ0

)
 = Pθ0

(n X̄ > c′0)

because

ln

(
θ1

1− θ1

1− θ0

θ0

)
> 0

as θ/ (1− θ) is increasing in θ, which implies θ1/(1− θ1) > θ0/(1− θ0).
Now, using (8.2.4), we choose c0 so that c′0 is an integer satisfying

Pθ0
(n X̄ > c′0) ≤ α and Pθ0

(n X̄ > c′0 − 1) > α.

Because n X̄ ∼ Binomial(n, θ0) is a discrete distribution, we see that, in general, we

will not be able to achieve Pθ0
(n X̄ > c′0) = α exactly. So, using (8.2.5),

γ =
α − Pθ0

(n X̄ > c′0)

Pθ0
(n X̄ = c′0)

will not be equal to 0. Then

ϕ0 (nx̄) =


1 nx̄ > c′0

γ nx̄ = c′0

0 nx̄ < c′0
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is UMP size α for H0 : θ = θ0 versus Ha : θ = θ1. Note that we can use statistical

software (or Table D.6) for the binomial distribution to obtain c′0.
For example, suppose n = 6 and θ0 = 0.25. The following table gives the values

of the Binomial(6, 0.25) distribution function to three decimal places.

x 0 1 2 3 4 5 6

F(x) 0.178 0.534 0.831 0.962 0.995 1.000 1.000

Therefore, if α = 0.05, we have that c′0 = 3 because P0.25

(
n X̄ > 3

)
= 1 − 0.962 =

0.038 and P0.25

(
n X̄ > 2

)
= 1− 0.831 = 0.169. This implies that

γ =
0.05− (1− 0.962)

0.962
= 0.012.

So with this test, we reject H0 : θ = θ0 categorically if the number of successes is

greater than 3, accept H0 : θ = θ0 categorically when the number of successes is less

than 3, and when the number of 1’s equals 3, we randomly reject H0 : θ = θ0 with

probability 0.012 (e.g., generate U ∼ Uniform[0, 1] and reject whenever U ≤ 0.012).
Notice that the test ϕ0 does not involve θ1, so indeed it is UMP size α for H0 : θ =

θ0 versus Ha : θ > θ0. Furthermore, using Problem 8.2.18, we have

Pθ (n X̄ > c′0) =
n∑

k=c′0+1

(
n

k

)
θk (1− θ)n−k

= 1−
0 (n + 1)

0
(
c′0 + 1

)
0
(
n − c′0

) ∫ 1

θ
uc′0 (1− u)n−c′0−1 du.

Because ∫ 1

θ
uc′0 (1− u)n−c′0−1 du

is decreasing in θ, we must have that Pθ (n X̄ > c′0) is increasing in θ. Arguing as in

Example 8.2.2, we conclude that ϕ0 is UMP size α for H0 : θ ≤ θ0 versus Ha : θ > θ0.
Similarly, we obtain a UMP size α test for H0 : θ ≤ θ0 versus Ha : θ > θ0. As in

Example 8.2.2, there is no UMP size α test for H0 : θ = θ0 versus Ha : θ 6= θ0, but

there is a UMP unbiased size α test for this problem.

8.2.5 Likelihood Ratio Tests (Advanced)

In the examples considered so far, the Neyman–Pearson theorem has led to solutions

to problems in which H0 or Ha are not just single values of the parameter, even though

the theorem was only stated for the single-value case. We also noted, however, that

this is not true in general (for example, the two-sided problems discussed in Examples

8.2.2 and 8.2.3).

The method of generalized likelihood ratio tests for H0 : ψ(θ) = ψ0 has been

developed to deal with the general case. This is motivated by the Neyman–Pearson
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theorem, for observe that in (8.2.3),

fθ1
(s)

fθ0
(s)
=

L(θ1 | s)

L(θ0 | s)
.

Therefore, (8.2.3) can be thought of as being based on the ratio of the likelihood at θ1

to the likelihood at θ0, and we reject H0 : θ = θ0 when the likelihood gives much more

support to θ1 than to θ0. The amount of the additional support required for rejection is

determined by c0. The larger c0 is, the larger the likelihood L(θ1 | s) has to be relative

to L(θ0 | s) before we reject H0 : θ = θ0.
Denote the overall MLE of θ by θ̂ (s), and the MLE, when θ ∈ H0, by θ̂H0

(s). So

we have

L(θ | s) ≤ L(θ̂H0
(s) | s)

for all θ such that ψ(θ) = ψ0. The generalized likelihood ratio test then rejects H0

when

L(θ̂(s) | s)

L(θ̂H0
(s) | s)

(8.2.9)

is large, as this indicates evidence against H0 being true.

How do we determine when (8.2.9) is large enough to reject? Denoting the ob-

served data by s0, we do this by computing the P-values

Pθ

(
L(θ̂(s) | s)

L(θ̂H0
(s) | s)

>
L(θ̂(s0) | s0)

L(θ̂H0
(s0) | s0)

)
(8.2.10)

when θ ∈ H0. Small values of (8.2.10) are evidence against H0. Of course, when

ψ(θ) = ψ0 for more than one value of θ, then it is not clear which value of (8.2.10) to

use. It can be shown, however, that under conditions such as those discussed in Section

6.5, if s corresponds to a sample of n values from a distribution, then

2 ln
L(θ̂(s) | s)

L(θ̂H0
(s) | s)

D
→ χ2(dim�− dim H0)

as n → ∞, whenever the true value of θ is in H0. Here, dim� and dim H0 are the

dimensions of these sets. This leads us to a test that rejects H0 whenever

2 ln
L(θ̂(s) | s)

L(θ̂H0
(s) | s)

(8.2.11)

is greater than a particular quantile of the χ2(dim�− dim H0) distribution.

For example, suppose that in a location-scale normal model, we are testing H0 :

µ = µ0. Then � = R1 × [0,∞), H0 = {µ0} × [0,∞), dim� = 2, dim H0 = 1, and,

for a size 0.05 test, we reject whenever (8.2.11) is greater than χ2
0.95 (1). Note that,

strictly speaking, likelihood ratio tests are not derived via optimality considerations.

We will not discuss likelihood ratio tests further in this text.
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Summary of Section 8.2

• In searching for an optimal hypothesis testing procedure, we place an upper

bound on the probability of making a type I error (rejecting H0 when it is true)

and search for a test that minimizes the probability of making a type II error

(accepting H0 when it is false).

• The Neyman–Pearson theorem prescribes an optimal size α test when H0 and

Ha each specify a single value for the full parameter θ .

• Sometimes the Neyman–Pearson theorem leads to solutions to hypothesis test-

ing problems when the null or alternative hypotheses allow for more than one

possible value for θ, but in general we must resort to likelihood ratio tests for

such problems.

EXERCISES

8.2.1 Suppose that a statistical model is given by the two distributions in the following

table.
s = 1 s = 2 s = 3 s = 4

fa (s) 1/3 1/6 1/12 5/12

fb (s) 1/2 1/4 1/6 1/12

Determine the UMP size 0.10 test for testing H0 : θ = a versus Ha : θ = b. What is

the power of this test? Repeat this with the size equal to 0.05.

8.2.2 Suppose for the hypothesis testing problem of Exercise 8.2.1, a statistician de-

cides to generate U ∼ Uniform[0, 1] and reject H0 whenever U ≤ 0.05. Show that

this test has size 0.05. Explain why this is not a good choice of test and why the test

derived in Exercise 8.2.1 is better. Provide numerical evidence for this.

8.2.3 Suppose an investigator knows that an industrial process yields a response vari-

able that follows an N (1, 2) distribution. Some changes have been made in the indus-

trial process, and the investigator believes that these have possibly made a change in

the mean of the response (not the variance), increasing its value. The investigator wants

the probability of a type I error occurring to be less than 1%. Determine an appropriate

testing procedure for this problem based on a sample of size 10.

8.2.4 Suppose you have a sample of 20 from an N (µ, 1) distribution. You form a

0.975-confidence interval for µ and use it to test H0 : µ = 0 by rejecting H0 whenever

0 is not in the confidence interval.

(a) What is the size of this test?

(b) Determine the power function of this test.

8.2.5 Suppose you have a sample of size n = 1 from a Uniform[0, θ] distribution,

where θ > 0 is unknown. You test H0 : θ ≤ 1 by rejecting H0 whenever the sampled

value is greater than 1.

(a) What is the size of this test?

(b) Determine the power function of this test.

8.2.6 Suppose you are testing a null hypothesis H0 : θ = 0, where θ ∈ R1. You use a

size 0.05 testing procedure and accept H0. You feel you have a fairly large sample, but
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when you compute the power at ±0.2, you obtain a value of 0.10 where 0.2 represents

the smallest difference from 0 that is of practical importance. Do you believe it makes

sense to conclude that the null hypothesis is true? Justify your conclusion.

8.2.7 Suppose you want to test the null hypothesis H0 : µ = 0 based on a sample of

n from an N (µ, 1) distribution, where µ ∈ {0, 2}. How large does n have to be so that

the power at µ = 2, of the optimal size 0.05 test, is equal to 0.99?

8.2.8 Suppose we have available two different test procedures in a problem and these

have the same power function. Explain why, from the point of view of optimal hypoth-

esis testing theory, we should not care which test is used.

8.2.9 Suppose you have a UMP size α test ϕ for testing the hypothesis H0 : ψ(θ) =
ψ0, where ψ is real-valued. Explain how the graph of the power function of another

size α test that was not UMP would differ from the graph of the power function of ϕ.

COMPUTER EXERCISES

8.2.10 Suppose you have a coin and you want to test the hypothesis that the coin is

fair, i.e., you want to test H0 : θ = 1/2 where θ is the probability of getting a head

on a single toss. You decide to reject H0 using the rejection region R = {0, 1, 7, 8}
based on n = 10 tosses. Tabulate the power function for this procedure for θ ∈
{0, 1/8, 2/8, . . . , 7/8, 1}.

8.2.11 On the same graph, plot the power functions for the two-sided z-test of H0 :

µ = 0 for samples of sizes n = 1, 4, 10, 20, and 100 based on α = 0.05.

(a) What do you observe about these graphs?

(b) Explain how these graphs demonstrate the unbiasedness of this test.

PROBLEMS

8.2.12 Prove that ϕ∗0 in (8.2.7) is UMP size α for H0 : µ ≥ µ0 versus Ha : µ < µ0.

8.2.13 Prove that the test function ϕ (s) = α for every s ∈ S is an exact size α test

function. What is the interpretation of this test function?

8.2.14 Using the test function in Problem 8.2.13, show that a UMP size α test is also a

UMP unbiased size α test.

8.2.15 Suppose that (x1, . . . , xn) is a sample from a Gamma(α0, β) distribution, where

α0 is known and β > 0 is unknown. Determine the UMP size α test for testing H0 :

β = β0 versus Ha : β = β1, where β1 > β0. Is this test UMP size α for H0 : β ≤ β0

versus Ha : β > β0?

8.2.16 Suppose that (x1, . . . , xn) is a sample from an N (µ0, σ
2) distribution, where

µ0 is known and σ 2 > 0 is unknown. Determine the UMP size α test for testing

H0 : σ 2 = σ 2
0 versus Ha : σ 2 = σ 2

1 where σ 2
0 < σ 2

1. Is this test UMP size α for

H0 : σ 2 ≤ σ 2
0 versus Ha : σ 2 > σ 2

0?

8.2.17 Suppose that (x1, . . . , xn) is a sample from a Uniform[0, θ] distribution, where

θ > 0 is unknown. Determine the UMP size α test for testing H0 : θ = θ0 versus

Ha : θ = θ1, where θ0 < θ1. Is this test function UMP size α for H0 : θ ≤ θ0 versus

Ha : θ > θ0?
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8.2.18 Suppose that F is the distribution function for the Binomial(n, θ) distribution.

Then prove that

F(x) =
0(n + 1)

0(x + 1)0(n − x)

∫ 1

θ
yx (1− y)n−x−1 dy

for x = 0, 1, . . . , n−1. This establishes a relationship between the binomial probability

distribution and the beta function. (Hint: Integration by parts.)

8.2.19 Suppose that F is the distribution function for the Poisson(λ) distribution. Then

prove that

F(x) =
1

x!

∫ ∞
λ

yx e−y dy

for x = 0, 1, . . . . This establishes a relationship between the Poisson probability

distribution and the gamma function. (Hint: Integration by parts.)

8.2.20 Suppose that (x1, . . . , xn) is a sample from a Poisson(λ) distribution, where

λ > 0 is unknown. Determine the UMP size α test for H0 : λ = λ0 versus Ha : λ = λ1,

where λ0 < λ1. Is this test function UMP size α for H0 : λ ≤ λ0 versus Ha : λ > λ0?

(Hint: You will need the result of Problem 8.2.19.)

8.2.21 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where(
µ, σ 2

)
∈ R1 × (0,∞) is unknown. Derive the form of the exact size α likelihood

ratio test for testing H0 : µ = µ0 versus H0 : µ 6= µ0.

8.2.22 (Optimal confidence intervals) Suppose that for model { fθ : θ ∈ �} we have a

UMP size α test function ϕψ0
for H0 : ψ(θ) = ψ0, for each possible value of ψ0. Sup-

pose further that each ϕψ0
only takes values in {0, 1}, i.e., each ϕψ0

is a nonrandomized

size α test function.

(a) Prove that

C(s) = {ψ0 : ϕψ0
(s) = 0}

satisfies

Pθ (ψ(θ) ∈ C(s)) ≥ 1− α

for every θ ∈ �. Conclude that C(s) is a (1− α)-confidence set for ψ(θ).

(b) If C∗ is a (1− α)-confidence set for ψ(θ), then prove that the test function defined

by

ϕ∗ψ0
(s) =


1 ψ0 /∈ C(s)

0 ψ0 ∈ C(s)

is size α for H0 : ψ(θ) = ψ0.

(c) Suppose that for each value ψ0, the test function ϕψ0
is UMP size α for testing

H0 : ψ(θ) = ψ0 versus H0 : ψ(θ) 6= ψ0. Then prove that

Pθ (ψ(θ
∗) ∈ C(s)) (8.2.12)

is minimized, when ψ(θ) 6= ψ0, among all (1 − α)-confidence sets for ψ(θ). The

probability (8.2.12) is the probability of C containing the false value ψ(θ∗), and a
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(1− α)-confidence region that minimizes this probability when ψ(θ) 6= ψ0 is called a

uniformly most accurate (UMA) (1− α)-confidence region for ψ(θ).

CHALLENGES

8.2.23 Prove Corollary 8.2.1 in the discrete case.

8.3 Optimal Bayesian Inferences
We now add the prior probability measure 5 with density π . As we will see, this

completes the specification of an optimality problem, as now there is always a solution.

Solutions to Bayesian optimization problems are known as Bayes rules.

In Section 8.1, the unrestricted optimization problem was to find the estimator T

of ψ(θ) that minimizes MSEθ (T ) = Eθ ((T −ψ(θ))2), for each θ ∈ �. The Bayesian

version of this problem is to minimize

E5(MSEθ (T )) = E5(Eθ ((T − ψ(θ))
2)). (8.3.1)

By the theorem of total expectation (Theorem 3.5.2), (8.3.1) is the expected value of

the squared error (T (s)− ψ(θ))2 under the joint distribution on (θ, s) induced by the

conditional distribution for s, given θ (the sampling model), and by the marginal dis-

tribution for θ (the prior distribution of θ ). Again, by the theorem of total expectation,

we can write this as

E5(MSEθ (T )) = EM (E5(· | s)((T − ψ(θ))
2)), (8.3.2)

where 5(· | s) denotes the posterior probability measure for θ, given the data s (the

conditional distribution of θ given s), and M denotes the prior predictive probability

measure for s (the marginal distribution of s).

We have the following result.

Theorem 8.3.1 When (8.3.1) is finite, a Bayes rule is given by

T (s) = E5(· | s) (ψ(θ)) ,

namely, the posterior expectation of ψ(θ).

PROOF First, consider the expected posterior squared error

E5(· | s)

(
(T ′(s)− ψ(θ))2

)
of an estimate T ′(s). By Theorem 8.1.1 this is minimized by taking T ′(s) equal to

T (s) = E5(· | s) (ψ(θ)) (note that the “random” quantity here is θ ).

Now suppose that T ′ is any estimator of ψ(θ). Then we have just shown that

0 ≤ E5(· | s)

(
(T (s)− ψ(θ))2

)
≤ E5(· | s)

(
(T ′(s)− ψ(θ))2

)
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and thus,

E5 (MSEθ (T )) = EM

(
E5(· | s)((T (s)− ψ(θ))

2)
)

≤ EM

(
E5(· | s)((T

′(s)− ψ(θ))2)
)
= E5(MSEθ (T

′)).

Therefore, T minimizes (8.3.1) and is a Bayes rule.

So we see that, under mild conditions, the optimal Bayesian estimation problem

always has a solution and there is no need to restrict ourselves to unbiased estimators,

etc.

For the hypothesis testing problem H0 : ψ(θ) = ψ0, we want to find the test

function ϕ that minimizes the prior probability of making an error (type I or type II).

Such a ϕ is a Bayes rule. We have the following result.

Theorem 8.3.2 A Bayes rule for the hypothesis testing problem H0 : ψ(θ) = ψ0

is given by

ϕ0(s) =


1 5({ψ(θ) = ψ0} | s) ≤ 5({ψ(θ) 6= ψ0} | s)

0 otherwise.

PROOF Consider test function ϕ and let I{ψ(θ)=ψ0}(θ) denote the indicator function

of the set {θ : ψ(θ) = ψ0} (so I{ψ(θ)=ψ0}(θ) = 1 when ψ(θ) = ψ0 and equals 0

otherwise). Observe that ϕ(s) is the probability of rejecting H0, having observed s,
which is an error when I{ψ(θ)=ψ0}(θ) = 1; 1− ϕ(s) is the probability of accepting H0,
having observed s, which is an error when I{ψ(θ)=ψ0}(θ) = 0. Therefore, given s and

θ, the probability of making an error is

e(θ, s) = ϕ(s)I{ψ(θ)=ψ0}(θ)+ (1− ϕ(s)) (1− I{ψ(θ)=ψ0}(θ)).

By the theorem of total expectation, the prior probability of making an error (taking

the expectation of e(θ, s) under the joint distribution of (θ, s)) is

EM

(
E5(· | s) (e(θ, s))

)
. (8.3.3)

As in the proof of Theorem 8.3.1, if we can find ϕ that minimizes E5(· | s) (e(θ, s)) for

each s, then ϕ also minimizes (8.3.3) and is a Bayes rule.

Using Theorem 3.5.4 to pull ϕ(s) through the conditional expectation, and the fact

that E5(· | s) (IA(θ)) = 5(A | s) for any event A, then

E5(· | s) (e(θ, s)) = ϕ(s)5({ψ(θ) = ψ0} | s)+ (1− ϕ(s)) (1−5({ψ(θ) = ψ0} | s)).

Because ϕ(s) ∈ [0, 1] , we have

min{5({ψ(θ) = ψ0} | s), 1−5({ψ(θ) = ψ0} | s)}

≤ ϕ(s)5({ψ(θ) = ψ0} | s)+ (1− ϕ(s)) (1−5({ψ(θ) = ψ0} | s)).
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Therefore, the minimum value of E5(· | s) (e(θ, s)) is attained by ϕ(s) = ϕ0(s).

Observe that Theorem 8.3.2 says that the Bayes rule rejects H0 whenever the pos-

terior probability of the null hypothesis is less than or equal to the posterior probability

of the alternative. This is an intuitively satisfying result.

The following problem does arise with this approach, however. We have

5({ψ(θ) = ψ0} | s) =
E5(I{θ :ψ(θ)=ψ0}(θ) fθ (s))

m(s)

≤
max{θ :ψ(θ)=ψ0} fθ (s)5({ψ(θ) = ψ0})

m(s)
. (8.3.4)

When 5({ψ(θ) = ψ0}) = 0, (8.3.4) implies that 5({ψ(θ) = ψ0} | s = 0) for every s.

Therefore, using the Bayes rule, we would always reject H0 no matter what data s are

obtained, which does not seem sensible. As discussed in Section 7.2.3, we have to be

careful to make sure we use a prior 5 that assigns positive mass to H0 if we are going

to use the optimal Bayes approach to a hypothesis testing problem.

Summary of Section 8.3

• Optimal Bayesian procedures are obtained by minimizing the expected perfor-

mance measure using the posterior distribution.

• In estimation problems, when using squared error as the performance measure,

the posterior mean is optimal.

• In hypothesis testing problems, when minimizing the probability of making an

error as the performance measure, then computing the posterior probability of

the null hypothesis and accepting H0 when this is greater than 1/2 is optimal.

EXERCISES

8.3.1 Suppose that S = {1, 2, 3} , � = {1, 2}, with data distributions given by the

following table. We place a uniform prior on θ and want to estimate θ.

s = 1 s = 2 s = 3

f1(s) 1/6 1/6 2/3
f2(s) 1/4 1/4 1/2

Using a Bayes rule, test the hypothesis H0 : θ = 2 when s = 2 is observed.

8.3.2 For the situation described in Exercise 8.3.1, determine the Bayes rule estimator

of θ when using expected squared error as our performance measure for estimators.

8.3.3 Suppose that we have a sample (x1, . . . , xn) from an N (µ, σ 2
0) distribution,

where µ is unknown and σ 2
0 is known, and we want to estimate µ using expected

squared error as our performance measure for estimators. If we use the prior distrib-

ution µ ∼ N (µ, τ 2
0), then determine the Bayes rule for this problem. Determine the

limiting Bayes rule as τ 0 →∞.
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8.3.4 Suppose that we observe a sample (x1, . . . , xn) from a Bernoulli(θ) distribution,

where θ is completely unknown, and we want to estimate θ using expected squared

error as our performance measure for estimators. If we use the prior distribution θ ∼
Beta(α, β), then determine a Bayes rule for this problem.

8.3.5 Suppose that (x1, . . . , xn) is a sample from a Gamma(α0, β) distribution, where

α0 is known, and β ∼ Gamma(τ 0, υ0), where τ 0 and υ0 are known. If we want to

estimate β using expected squared error as our performance measure for estimators,

then determine the Bayes rule. Use the weak (or strong) law of large numbers to

determine what this estimator converges to as n→∞.

8.3.6 For the situation described in Exercise 8.3.5, determine the Bayes rule for esti-

mating β−1 when using expected squared error as our performance measure for esti-

mators.

8.3.7 Suppose that we have a sample (x1, . . . , xn) from an N (µ, σ 2
0) distribution,

where µ is unknown and σ 2
0 is known, and we want to find the test of H0 : µ = µ0

that minimizes the prior probability of making an error (type I or type II). If we use the

prior distribution µ ∼ p0 I{µ0} + (1− p0)N (µ0, τ
2
0), where p0 ∈ (0, 1) is known (i.e.,

the prior is a mixture of a distribution degenerate at µ0 and an N (µ0, τ
2
0) distribution),

then determine the Bayes rule for this problem. Determine the limiting Bayes rule as

τ 0 →∞. (Hint: Make use of the computations in Example 7.2.13.)

8.3.8 Suppose that we have a sample (x1, . . . , xn) from a Bernoulli(θ) distribution,

where θ is unknown, and we want to find the test of H0 : θ = θ0 that minimizes the

prior probability of making an error (type I or type II). If we use the prior distribution

θ ∼ p0 I{θ0} + (1 − p0)Uniform[0, 1], where p0 ∈ (0, 1) is known (i.e., the prior is a

mixture of a distribution degenerate at θ0 and a uniform distribution), then determine

the Bayes rule for this problem.

PROBLEMS

8.3.9 Suppose that � = {θ1, θ2}, that we put a prior π on �, and that we want to esti-

mate θ. Suppose our performance measure for estimators is the probability of making

an incorrect choice of θ . If the model is denoted { fθ : θ ∈ �}, then obtain the form of

the Bayes rule when data s are observed.

8.3.10 For the situation described in Exercise 8.3.1, use the Bayes rule obtained via the

method of Problem 8.3.9 to estimate θ when s = 2. What advantage does this estimate

have over that obtained in Exercise 8.3.2?

8.3.11 Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution where

(µ, σ 2) ∈ R1 × (0,∞) is unknown, and want to estimate µ using expected squared

error as our performance measure for estimators. Using the prior distribution given by

µ | σ 2 ∼ N (µ0, τ
2
0σ

2),

and using
1

σ 2
∼ Gamma

(
α0, β0

)
,

where µ0, τ
2
0, α0, and β0 are fixed and known, then determine the Bayes rule for µ.
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8.3.12 (Model selection) Generalize Problem 8.3.9 to the case � = {θ1, . . . , θk}.

CHALLENGES

8.3.13 In Section 7.2.4, we described the Bayesian prediction problem. Using the

notation found there, suppose we wish to predict t ∈ R1 using a predictor T̃ (s). If we

assess the accuracy of a predictor by

E((T̃ (s)− t)2) = E5(EPθ (EQθ (· | s)((T̃ (s)− t)2))),

then determine the prior predictor that minimizes this quantity (assume all relevant

expectations are finite). If we observe s0, then determine the best predictor. (Hint:

Assume all the probability measures are discrete.)

8.4 Decision Theory (Advanced)
To determine an optimal inference, we chose a performance measure and then at-

tempted to find an inference, of a given type, that has optimal performance with respect

to this measure. For example, when considering estimates of a real-valued character-

istic of interest ψ(θ), we took the performance measure to be MSE and then searched

for the estimator that minimizes this for each value of θ.
Decision theory is closely related to the optimal approach to deriving inferences,

but it is a little more specialized. In the decision framework, we take the point of view

that, in any statistical problem, the statistician is faced with making a decision, e.g.,

deciding on a particular value for ψ(θ). Furthermore, associated with a decision is

the notion of a loss incurred whenever the decision is incorrect. A decision rule is a

procedure, based on the observed data s, that the statistician uses to select a decision.

The decision problem is then to find a decision rule that minimizes the average loss

incurred.

There are a number of real-world contexts in which losses are an obvious part of

the problem, e.g., the monetary losses associated with various insurance plans that an

insurance company may consider offering. So the decision theory approach has many

applications. It is clear in many practical problems, however, that losses (as well as

performance measures) are somewhat arbitrary components of a statistical problem,

often chosen simply for convenience. In such circumstances, the approaches to deriv-

ing inferences described in Chapters 6 and 7 are preferred by many statisticians.

So the decision theory model for inference adds another ingredient to the sampling

model (or to the sampling model and prior) to derive inferences — the loss function. To

formalize this, we conceive of a set of possible actions or decisions that the statistician

could take after observing the data s. This set of possible actions is denoted by A and

is called the action space. To connect these actions with the statistical model, there

is a correct action function A : �→ A such that A(θ) is the correct action to take

when θ is the true value of the parameter. Of course, because we do not know θ, we

do not know the correct action A(θ), so there is uncertainty involved in our decision.

Consider a simple example.
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EXAMPLE 8.4.1

Suppose you are told that an urn containing 100 balls has either 50 white and 50 black

balls or 60 white and 40 black balls. Five balls are drawn from the urn without replace-

ment and their colors are observed. The statistician’s job is to make a decision about

the true proportion of white balls in the urn based on these data.

The statistical model then comprises two distributions {P1, P2} where, using para-

meter space � = {1, 2} , P1 is the Hypergeometric(100, 50, 5) distribution (see Exam-

ple 2.3.7) and P2 is the Hypergeometric(100, 60, 5) distribution. The action space is

A = {0.5, 0.6}, and A : �→ A is given by A(1) = 0.5 and A(2) = 0.6. The data are

given by the colors of the five balls drawn.

We suppose now that there is also a loss or penalty L(θ, a) incurred when we select

action a ∈ A and θ is true. If we select the correct action, then the loss is 0; it is greater

than 0 otherwise.

Definition 8.4.1 A loss function is a function L defined on�×A and taking values

in [0,∞) such that L(θ, a) = 0 if and only if a = A(θ).

Sometimes the loss can be an actual monetary loss. Actually, decision theory is a

little more general than what we have just described, as we can allow for negative

losses (gains or profits), but the restriction to nonnegative losses is suitable for purely

statistical applications.

In a specific problem, the statistician chooses a loss function that is believed to

lead to reasonable statistical procedures. This choice is dependent on the particular

application. Consider some examples.

EXAMPLE 8.4.2 (Example 8.4.1 continued)

Perhaps a sensible choice in this problem would be

L(θ, a) =


1 θ = 1, a = 0.6
2 θ = 2, a = 0.5
0 otherwise.

Here we have decided that selecting a = 0.5 when it is not correct is a more serious

error than selecting a = 0.6 when it is not correct. If we want to treat errors symmetri-

cally, then we could take

L(θ, a) = I{(1,0.6),(2,0.5)}(θ, a),

i.e., the losses are 1 or 0.

EXAMPLE 8.4.3 Estimation as a Decision Problem

Suppose we have a marginal parameter ψ(θ) of interest, and we want to specify an

estimate T (s) after observing s ∈ S. Here, the action space is A = {ψ(θ) : θ ∈ �}
and A(θ) = ψ(θ). Naturally, we want T (s) ∈ A.

For example, suppose (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution,

where (µ, σ 2) ∈ � = R1×R+ is unknown, and we want to estimateψ(µ, σ 2) = µ. In
this case, A = R1 and a possible estimator is the sample average T (x1, . . . , xn) = x̄ .
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There are many possible choices for the loss function. Perhaps a natural choice is

to use

L(θ, a) = |ψ(θ)− a| , (8.4.1)

the absolute deviation between ψ(θ) and a. Alternatively, it is common to use

L(θ, a) = (ψ(θ)− a)2 , (8.4.2)

the squared deviations between ψ(θ) and a.
We refer to (8.4.2) as squared error loss. Notice that (8.4.2) is just the square of

the Euclidean distance between ψ(θ) and a. It might seem more natural to actually use

the distance (8.4.1) as the loss function. It turns out, however, that there are a number

of mathematical conveniences that arise from using squared distance.

EXAMPLE 8.4.4 Hypothesis Testing as a Decision Problem

In this problem, we have a characteristic of interest ψ(θ) and want to assess the plau-

sibility of the value ψ0 after viewing the data s. In a hypothesis testing problem, this is

written as H0 : ψ(θ) = ψ0 versus Ha : ψ(θ) 6= ψ0. As in Section 8.2, we refer to H0

as the null hypothesis and to Ha as the alternative hypothesis.

The purpose of a hypothesis testing procedure is to decide which of H0 or Ha is

true based on the observed data s. So in this problem, the action space isA ={H0, Ha}
and the correct action function is

A(θ) =

{
H0 ψ(θ) = ψ0

Ha ψ(θ) 6= ψ0.

An alternative, and useful, way of thinking of the two hypotheses is as subsets of

�. We write H0 = ψ−1{ψ0} as the subset of all θ values that make the null hypothesis

true, and Ha = H c
0 is the subset of all θ values that make the null hypothesis false.

Then, based on the data s, we want to decide if the true value of θ is in H0 or if θ is in

Ha . If H0 (or Ha) is composed of a single point, then it is called a simple hypothesis or

a point hypothesis; otherwise, it is referred to as a composite hypothesis.

For example, suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution

where θ = (µ, σ 2) ∈ � = R1×R+, ψ(θ) = µ, and we want to test the null hypothesis

H0 : µ = µ0 versus the alternative Ha : µ 6= µ0. Then H0 = {µ0} × R+ and

Ha = {µ0}
c × R+. For the same model, let

ψ(θ) = I(−∞,µ0]×R+(µ, σ
2),

i.e., ψ is the indicator function for the subset (−∞, µ0]×R+. Then testing H0 : ψ = 1

versus the alternative Ha : ψ = 0 is equivalent to testing that the mean is less than or

equal to µ0 versus the alternative that it is greater than µ0. This one-sided hypothesis

testing problem is often denoted as H0 : µ ≤ µ0 versus Ha : µ > µ0.
There are a number of possible choices for the loss function, but the most com-

monly used is of the form

L(θ, a) =


0 θ ∈ H0, a = H0 or θ ∈ Ha, a = Ha

b θ /∈ H0, a = H0

c θ /∈ Ha, a = Ha .



Chapter 8: Optimal Inference Methods 467

If we reject H0 when H0 is true (a type I error), we incur a loss of c; if we accept H0

when H0 is false (a type II error), we incur a loss of b. When b = c, we can take

b = c = 1 and produce the commonly used 0–1 loss function.

A statistician faced with a decision problem — i.e., a model, action space, correct

action function, and loss function — must now select a rule for choosing an element of

the action space A when the data s are observed. A decision function is a procedure

that specifies how an action is to be selected in the action space A.

Definition 8.4.2 A nonrandomized decision function d is a function d : S→ A.

So after observing s, we decide that the appropriate action is d(s).
Actually, we will allow our decision procedures to be a little more general than this,

as we permit a random choice of an action after observing s.

Definition 8.4.3 A decision function δ is such that δ(s, ·) is a probability measure

on the action space A for each s ∈ S (so δ(s, A) is the probability that the action

taken is in A ⊂ A).

Operationally, after observing s, a random mechanism with distribution specified by

δ (s, ·) is used to select the action from the set of possible actions. Notice that if δ (s, ·)
is a probability measure degenerate at the point d(s) (so δ(s, {d(s)}) = 1) for each

s, then δ is equivalent to the nonrandomized decision function d and conversely (see

Problem 8.4.8).

The use of randomized decision procedures may seem rather unnatural, but, as

we will see, sometimes they are an essential ingredient of decision theory. In many

estimation problems, the use of randomized procedures provides no advantage, but this

is not the case in hypothesis testing problems. We let D denote the set of all decision

functions δ for the specific problem of interest.

The decision problem is to choose a decision function δ ∈ D. The selected δ will

then be used to generate decisions in applications. We base this choice on how the

various decision functions δ perform with respect to the loss function. Intuitively, we

want to choose δ to make the loss as small as possible. For a particular δ, because

s ∼ fθ and a ∼ δ(s, ·), the loss L(θ, a) is a random quantity. Therefore, rather

than minimizing specific losses, we speak instead about minimizing some aspect of the

distribution of the losses for each θ ∈ �. Perhaps a reasonable choice is to minimize

the average loss. Accordingly, we define the risk function associated with δ ∈ D as

the average loss incurred by δ. The risk function plays a central role in determining an

appropriate decision function for a problem.

Definition 8.4.4 The risk function associated with decision function δ is given by

Rδ(θ) = Eθ (Eδ(s,·)(L(θ, a))). (8.4.3)

Notice that to calculate the risk function we first calculate the average of L(θ, a),
based on s fixed and a ∼ δ(s, ·). Then we average this conditional average with respect

to s ∼ f . By the theorem of total expectation, this is the average loss. When δ(s, ·) is
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degenerate at d(s) for each s, then (8.4.3) simplifies (see Problem 8.4.8) to

Rδ (θ) = Eθ (L(θ, d (s))).

Consider the following examples.

EXAMPLE 8.4.5

Suppose that S = {1, 2, 3} , � = {1, 2}, and the distributions are given by the following

table.
s = 1 s = 2 s = 3

f1(s) 1/3 1/3 1/3
f2(s) 1/2 1/2 0

Further suppose thatA = �, A (θ) = θ, and the loss function is given by L (θ, a) = 1

when θ 6= a but is 0 otherwise.

Now consider the decision function δ specified by the following table.

a = 1 a = 2

δ(1, {a}) 1/4 3/4
δ(2, {a}) 1/4 3/4
δ(3, {a}) 1 0

So when we observe s = 1, we randomly choose the action a = 1 with probability 1/4

and choose the action a = 2 with probability 3/4, etc. Notice that this decision function

does the sensible thing and selects the decision a = 1 when we observe s = 3, as we

know unequivocally that θ = 1 in this case.

We have

Eδ(1,·)(L(θ, a)) =
1

4
L(θ, 1)+

3

4
L(θ, 2)

Eδ(2,·)(L(θ, a)) =
1

4
L(θ, 1)+

3

4
L(θ, 2)

Eδ(3,·)(L(θ, a)) = L(θ, 1),

so the risk function of δ is then given by

Rδ(1) = E1(Eδ(s,·) (L(1, a)))

=
1

3

(
1

4
L(1, 1)+

3

4
L(1, 2)

)
+

1

3

(
1

4
L(1, 1)+

3

4
L(1, 2)

)
+

1

3
L(1, 1)

=
3

12
+

3

12
+ 0 =

1

2

and

Rδ(2) = E2(Eδ(s,·) (L (2, a)))

=
1

2

(
1

4
L(2, 1)+

3

4
L(2, 2)

)
+

1

2

(
1

4
L(2, 1)+

3

4
L(2, 2)

)
+ 0L(2, 1)

=
1

8
+

1

8
+ 0 =

1

4
.
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EXAMPLE 8.4.6 Estimation

We will restrict our attention to nonrandomized decision functions and note that these

are also called estimators. The risk function associated with estimator T and loss func-

tion (8.4.1) is given by

RT (θ) = Eθ (|ψ(θ)− T |)

and is called the mean absolute deviation (MAD). The risk function associated with

the estimator T and loss function (8.4.2) is given by

RT (θ) = Eθ ((ψ(θ)− T )2)

and is called the MSE.

We want to choose the estimator T to minimize RT (θ) for every θ ∈ �. Note that,

when using (8.4.2), this decision problem is exactly the same as the optimal estimation

problem discussed in Section 8.1.

EXAMPLE 8.4.7 Hypothesis Testing

We note that for a given decision function δ for this problem, and a data value s,
the distribution δ (s, ·) is characterized by ϕ(s) = δ(s, Ha), which is the probability

of rejecting H0 when s has been observed. This is because the probability measure

δ(s, ·) is concentrated on two points, so we need only give its value at one of these to

completely specify it. We call ϕ the test function associated with δ and observe that a

decision function for this problem is also specified by a test function ϕ.
We have immediately that

Eδ(s,·)(L(θ, a)) = (1− ϕ(s)) L(θ, H0)+ ϕ(s)L(θ, Ha). (8.4.4)

Therefore, when using the 0–1 loss function,

Rδ(θ) = Eθ ((1− ϕ(s)) L(θ, H0)+ ϕ(s)L(θ, Ha))

= L(θ, H0)+ Eθ (ϕ(s)) (L(θ, Ha)− L(θ, H0))

=

{
Eθ (ϕ(s)) θ ∈ H0

1− Eθ (ϕ(s)) θ ∈ Ha .

Recall that in Section 6.3.6, we introduced the power function associated with a

hypothesis assessment procedure that rejected H0 whenever the P-value was smaller

than some prescribed value. The power function, evaluated at θ, is the probability that

such a procedure rejects H0 when θ is the true value. Because ϕ(s) is the conditional

probability, given s, that H0 is rejected, the theorem of total expectation implies that

Eθ (ϕ(s)) equals the unconditional probability that we reject H0 when θ is the true

value. So in general, we refer to the function

βϕ(θ) = Eθ (ϕ(s))

as the power function of the decision procedure δ or, equivalently, as the power function

of the test function ϕ.
Therefore, minimizing the risk function in this case is equivalent to choosing ϕ

to minimize βϕ(θ) for every θ ∈ H0 and to maximize βϕ(θ) for every θ ∈ Ha . Ac-

cordingly, this decision problem is exactly the same as the optimal inference problem

discussed in Section 8.2.
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Once we have written down all the ingredients for a decision problem, it is then

clear what form a solution to the problem will take. In particular, any decision function

δ0 that satisfies

Rδ0
(θ) ≤ Rδ(θ)

for every θ ∈ � and δ ∈ D is an optimal decision function and is a solution. If

two decision functions have the same risk functions, then, from the point of view of

decision theory, they are equivalent. So it is conceivable that there might be more than

one solution to a decision problem.

Actually, it turns out that an optimal decision function exists only in extremely

unrealistic cases, namely, the data always tell us categorically what the correct decision

is (see Problem 8.4.9). We do not really need statistical inference for such situations.

For example, suppose we have two coins — coin A has two heads and coin B has two

tails. As soon as we observe an outcome from a coin toss, we know exactly which coin

was tossed and there is no need for statistical inference.

Still, we can identify some decision rules that we do not want to use. For example,

if δ ∈ D is such that there exists δ0 ∈ D satisfying Rδ0
(θ) ≤ Rδ(θ) for every θ, and if

there is at least one θ for which Rδ0
(θ) < Rδ(θ), then naturally we strictly prefer δ0 to

δ.

Definition 8.4.5 A decision function δ is said to be admissible if there is no δ0 that

is strictly preferred to it.

A consequence of decision theory is that we should use only admissible decision

functions. Still, there are many admissible decision functions and typically none is

optimal. Furthermore, a procedure that is only admissible may be a very poor choice

(see Challenge 8.4.11).

There are several routes out of this impasse for decision theory. One approach is

to use reduction principles. By this we mean that we look for an optimal decision

function in some subclass D0 ⊂ D that is considered appropriate. So we then look for

a δ0 ∈ D0 such that Rδ0
(θ) ≤ Rδ(θ) for every θ ∈ � and δ ∈ D0, i.e., we look for an

optimal decision function in D0. Consider the following example.

EXAMPLE 8.4.8 Size α Tests for Hypothesis Testing

Consider a hypothesis testing problem H0 versus Ha . Recall that in Section 8.2, we

restricted attention to those test functions ϕ that satisfy Eθ (ϕ) ≤ α for every θ ∈ H0.
Such a ϕ is called a size α test function for this problem. So in this case, we are

restricting to the class D0 of all decision functions δ for this problem, which correspond

to size α test functions.

In Section 8.2, we showed that sometimes there is an optimal δ ∈ D0. For example,

when H0 and Ha are simple, the Neyman–Pearson theorem (Theorem 8.2.1) provides

an optimal ϕ; thus, δ, defined by δ(s, Ha) = ϕ(s), is optimal. We also showed in

Section 8.2, however, that in general there is no optimal size α test function ϕ and so

there is no optimal δ ∈ D0. In this case, further reduction principles are necessary.

Another approach to selecting a δ ∈ D is based on choosing one particular real-

valued characteristic of the risk function of δ and ordering the decision functions based

on that. There are several possibilities.
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One way is to introduce a prior π into the problem and then look for the decision

procedure δ ∈ D that has smallest prior risk

rδ = Eπ (Rδ(θ)).

We then look for a rule that has prior risk equal to minδ∈D rδ (or infδ∈D rδ). This ap-

proach is called Bayesian decision theory.

Definition 8.4.6 The quantity rδ is called the prior risk of δ, minδ∈D rδ is called the

Bayes risk, and a rule with prior risk equal to the Bayes risk is called a Bayes rule.

We derived Bayes rules for several problems in Section 8.3. Interestingly, Bayesian

decision theory always effectively produces an answer to a decision problem. This is a

very desirable property for any theory of statistics.

Another way to order decision functions uses the maximum (or supremum) risk.

So for a decision function δ, we calculate

max
θ∈�

Rδ(θ)

(or supθ∈� Rδ(θ)) and then select a δ ∈ D that minimizes this quantity. Such a δ has

the smallest, largest risk or the smallest, worst behavior.

Definition 8.4.7 A decision function δ0 satisfying

max
θ∈�

Rδ0
(θ) = min

δ∈D
max
θ∈�

Rδ(θ) (8.1)

is called a minimax decision function.

Again, this approach will always effectively produce an answer to a decision problem

(see Problem 8.4.10).

Much more can be said about decision theory than this brief introduction to the

basic concepts. Many interesting, general results have been established for the decision

theoretic approach to statistical inference.

Summary of Section 8.4

• The decision theoretic approach to statistical inference introduces an action space

A and a loss function L .

• A decision function δ prescribes a probability distribution δ(s, ·) on A. The

statistician generates a decision in A using this distribution after observing s.

• The problem in decision theory is to select δ; for this, the risk function Rδ(θ)
is used. The value Rδ(θ) is the average loss incurred when using the decision

function δ, and the goal is to minimize risk.

• Typically, no optimal decision function δ exists. So, to select a δ, various re-

duction criteria are used to reduce the class of possible decision functions, or the

decision functions are ordered using some real-valued characteristic of their risk

functions, e.g., maximum risk or average risk with respect to some prior.
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EXERCISES

8.4.1 Suppose we observe a sample (x1, . . . , xn) from a Bernoulli(θ) distribution,

where θ is completely unknown, and we want to estimate θ using squared error loss.

Write out all the ingredients of this decision problem. Calculate the risk function of the

estimator T (x1, . . . , xn) = x̄ . Graph the risk function when n = 10.

8.4.2 Suppose we have a sample (x1, . . . , xn) from a Poisson(λ) distribution, where λ
is completely unknown, and we want to estimate λ using squared error loss. Write out

all the ingredients of this decision problem. Consider the estimator T (x1, . . . , xn) = x̄

and calculate its risk function. Graph the risk function when n = 25.

8.4.3 Suppose we have a sample (x1, . . . , xn) from an N (µ, σ 2
0) distribution, where µ

is unknown and σ 2
0 is known, and we want to estimateµ using squared error loss. Write

out all the ingredients of this decision problem. Consider the estimator T (x1, . . . , xn) =
x̄ and calculate its risk function. Graph the risk function when n = 25, σ 2

0 = 2.

8.4.4 Suppose we observe a sample (x1, . . . , xn) from a Bernoulli(θ) distribution,

where θ is completely unknown, and we want to test the null hypothesis that θ = 1/2
versus the alternative that it is not equal to this quantity, and we use 0-1 loss. Write

out all the ingredients of this decision problem. Suppose we reject the null hypothesis

whenever we observe nx̄ ∈ {0, 1, n − 1, n}. Determine the form of the test function

and its associated power function. Graph the power function when n = 10.

8.4.5 Consider the decision problem with sample space S = {1, 2, 3, 4}, parameter

space � = {a, b}, with the parameter indexing the distributions given in the following

table.
s = 1 s = 2 s = 3 s = 4

fa(s) 1/4 1/4 0 1/2
fb(s) 1/2 0 1/4 1/4

Suppose that the action space A = �, with A(θ) = θ, and the loss function is given

by L(θ, a) = 1 when a 6= A(θ) and is equal to 0 otherwise.

(a) Calculate the risk function of the deterministic decision function given by d(1) =
d(2) = d(3) = a and d(4) = b.

(b) Is d in part (a) optimal?

COMPUTER EXERCISES

8.4.6 Suppose we have a sample (x1, . . . , xn) from a Poisson(λ) distribution, where

λ is completely unknown, and we want to test the hypothesis that λ ≤ λ0 versus the

alternative that λ > λ0, using the 0–1 loss function. Write out all the ingredients

of this decision problem. Suppose we decide to reject the null hypothesis whenever

nx̄ > bnλ0 + 2
√

nλ0c and randomly reject the null hypothesis with probability 1/2

when nx̄ = bnλ0+ 2
√

nλ0c. Determine the form of the test function and its associated

power function. Graph the power function when λ0 = 1 and n = 5.

8.4.7 Suppose we have a sample (x1, . . . , xn) from an N (µ, σ 2
0) distribution, where

µ is unknown and σ 2
0 is known, and we want to test the null hypothesis that the mean

response is µ0 versus the alternative that the mean response is not equal to µ0, using

the 0–1 loss function. Write out all the ingredients of this decision problem. Suppose
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that we decide to reject whenever x̄ /∈ [µ0 − 2σ 0/
√

n, µ0 + 2σ 0/
√

n]. Determine the

form of the test function and its associated power function. Graph the power function

when µ0 = 0, σ 0 = 3, and n = 10.

PROBLEMS

8.4.8 Prove that a decision function δ that gives a probability measure δ(s, ·) degen-

erate at d(s) for each s ∈ S is equivalent to specifying a function d : S → A and

conversely. For such a δ, prove that Rδ(θ) = Eθ (L(θ, d(s))).

8.4.9 Suppose we have a decision problem and that each probability distribution in the

model is discrete.

(a) Prove that δ is optimal in D if and only if δ (s, ·) is degenerate at A(θ) for each s

for which Pθ ({s}) > 0.

(b) Prove that if there exist θ1, θ2 ∈ � such that A(θ1) 6= A(θ2), and Pθ1
, Pθ2

are not

concentrated on disjoint sets, then there is no optimal δ ∈ D.

8.4.10 If decision function δ has constant risk and is admissible, then prove that δ is

minimax.

CHALLENGES

8.4.11 Suppose we have a decision problem in which θ0 ∈ � is such that Pθ0
(C) = 0

implies that Pθ (C) = 0 for every θ ∈ �. Further assume that there is no optimal

decision function (see Problem 8.4.9). Then prove that the nonrandomized decision

function d given by d(s) ≡ A(θ0) is admissible. What does this result tell you about

the concept of admissibility?

DISCUSSION TOPICS

8.4.12 Comment on the following statement: A natural requirement for any theory of

inference is that it produce an answer for every inference problem posed. Have we

discussed any theories so far that you believe will satisfy this?

8.4.13 Decision theory produces a decision in a given problem. It says nothing about

how likely it is that the decision is in error. Some statisticians argue that a valid ap-

proach to inference must include some quantification of our uncertainty concerning any

statement we make about an unknown, as only then can a recipient judge the reliability

of the inference. Comment on this.

8.5 Further Proofs (Advanced)
Proof of Theorem 8.1.2

We want to show that a statistic U is sufficient for a model if and only if the conditional

distribution of the data s given U = u is the same for every θ ∈ �.
We prove this in the discrete case so that fθ (s) = Pθ ({s}). The general case re-

quires more mathematics, and we leave that to a further course.
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Let u be such that Pθ (U
−1{u}) > 0 where U−1{u} = {s : U (s) = u}, so U−1{u}

is the set of values of s such that U (s) = u. We have

Pθ (s = s1 |U = u) =
Pθ (s = s1,U = u)

Pθ (U = u)
. (8.5.1)

Whenever s1 /∈ U−1{u},

Pθ (s = s1,U = u) = Pθ ({s1} ∩ {s : U (s) = u}) = Pθ (φ) = 0

independently of θ. Therefore, Pθ (s = s1 |U = u) = 0 independently of θ.
So let us suppose that s1 ∈ U−1{u}. Then

Pθ (s = s1,U = u) = Pθ ({s1} ∩ {s : U (s) = u}) = Pθ ({s1}) = fθ (s1).

If U is a sufficient statistic, the factorization theorem (Theorem 6.1.1) implies fθ (s) =
h(s)gθ (U (s)) for some h and g. Therefore, since

Pθ (U = u) =
∑

s∈U−1{u}

fθ (s),

(8.5.1) equals

fθ (s1)∑
s∈U−1{u} fθ (s)

=
fθ (s1)∑

s∈U−1{u} c(s, s1) fθ (s1)
=

1∑
s∈U−1{u} c(s, s1)

where
fθ (s)

fθ (s1)
=

h(s)

h(s1)
= c(s, s1).

We conclude that (8.5.1) is independent of θ.
Conversely, if (8.5.1) is independent of θ, then for s1, s2 ∈ U−1{u} we have

Pθ (U = u) =
Pθ (s = s2)

Pθ (s = s2 |U = u)
.

Thus

fθ (s1) = Pθ (s = s1) = Pθ (s = s1 |U = u)Pθ (U = u)

= Pθ (s = s1 |U = u)
Pθ (s = s2)

Pθ (s = s2 |U = u)

=
Pθ (s = s1 |U = u)

Pθ (s = s2 |U = u)
fθ (s2) = c(s1, s2) fθ (s2),

where

c(s1, s2) =
Pθ (s = s1 |U = u)

Pθ (s = s2 |U = u)
.

By the definition of sufficiency in Section 6.1.1, this establishes the sufficiency of U.
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Establishing the Completeness of x̄ in Example 8.1.3

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1

is unknown and σ 2
0 > 0 is known. In Example 6.1.7, we showed that x̄ is a minimal

sufficient statistic.

Suppose that the function h is such that Eµ(h(x̄)) = 0 for every µ ∈ R1. Then

defining

h+(x̄) = max (0, h(x̄)) and h−(x̄) = max (0,−h(x̄)) ,

we have h(x̄) = h+(x̄)− h−(x̄). Therefore, setting

c+(µ) = Eµ(h
+(X̄)) and c−(µ) = Eµ(h

−(X̄)),

we must have

Eµ(h(X̄)) = Eµ(h
+(X̄))− Eµ(h

−(X̄)) = c+(µ)− c−(µ) = 0,

and so c+(µ) = c−(µ). Because h+ and h− are nonnegative functions, we have that

c+(µ) ≥ 0 and c−(µ) ≥ 0.
If c+(µ) = 0, then we have that h+(x̄) = 0 with probability 1, because a non-

negative function has mean 0 if and only if it is 0 with probability 1 (see Challenge

3.3.22). Then h−(x̄) = 0 with probability 1 also, and we conclude that h(x̄) = 0 with

probability 1.

If c+(µ0) > 0, then h+(x̄) > 0 for all x̄ in a set A having positive probability

with respect to the N (µ0, σ
2
0/n) distribution (otherwise h+(x̄) = 0 with probability 1,

which implies, as above, that c+(µ0) = 0). This implies that c+(µ) > 0 for every µ
because every N (µ, σ 2

0/n) distribution assigns positive probability to A as well (you

can think of A as a subinterval of R1).

Now note that

g+(x̄) = h+(x̄)
1

√
2πσ 0

exp(−nx̄2/2σ 2
0)

is nonnegative and is strictly positive on A. We can write

c+(µ) = Eµ(h
+(X̄)) =

∫ ∞
−∞

h+(x̄)
1

√
2πσ 0

exp(−n (x̄ − µ)2 /2σ 2
0) dx̄

= exp(−nµ2/2σ 2
0)

∫ ∞
−∞

exp(nµx̄/σ 2
0)g
+(x̄) dx̄ . (8.5.2)

Setting µ = 0 establishes that 0 <
∫∞
−∞ g+(x̄) dx̄ <∞, because 0 < c+(µ) <∞ for

every µ. Therefore,

g+(x̄)∫∞
−∞ g+(x̄) dx̄

is a probability density of a distribution concentrated on A+ = {x̄ : h(x̄) > 0}. Fur-

thermore, using (8.5.2) and the definition of moment-generating function in Section

3.4,

c+(µ) exp(nµ2/2σ 2
0)∫∞

−∞ g+(x̄) dx̄
(8.5.3)



476 Section 8.5: Further Proofs (Advanced)

is the moment-generating function of this distribution evaluated at nµ/σ 2
0.

Similarly, we define

g−(x̄) = h−(x̄)
1

√
2πσ 0

exp(−nx̄2/2σ 2
0)

so that
g−(x̄)∫∞

−∞ g−(x̄) dx̄

is a probability density of a distribution concentrated on A− = {x̄ : h (x̄) < 0} . Also,

c−(µ) exp(nµ2/2σ 2
0)∫∞

−∞ g−(x̄) dx̄
(8.5.4)

is the moment-generating function of this distribution evaluated at nµ/σ 2
0.

Because c+(µ) = c−(µ), we have that (setting µ = 0)∫ ∞
−∞

g+(x̄) dx̄ =

∫ ∞
−∞

g−(x̄) dx̄ .

This implies that (8.5.3) equals (8.5.4) for every µ, and so the moment-generating

functions of these two distributions are the same everywhere. By Theorem 3.4.6, these

distributions must be the same. But this is impossible, as the distribution given by g+

is concentrated on A+ whereas the distribution given by g− is concentrated on A− and

A+ ∩ A− = φ. Accordingly, we conclude that we cannot have c+(µ) > 0, and we are

done.

The Proof of Theorem 8.2.1 (the Neyman–Pearson Theorem)

We want to prove that when � = {θ0, θ1}, and we want to test H0 : θ = θ0, then an

exact size α test function ϕ0 exists of the form

ϕ0(s) =


1 fθ1

(s)/ fθ0
(s) > c0

γ fθ1
(s)/ fθ0

(s) = c0

0 fθ1
(s)/ fθ0

(s) < c0

(8.5.5)

for some γ ∈ [0, 1] and c0 ≥ 0, and this test is UMP size α.

We develop the proof of this result in the discrete case. The proof in the more

general context is similar.

First, we note that {s : fθ0
(s) = fθ1

(s) = 0} has Pθ measure equal to 0 for

both θ = θ0 and θ = θ1. Accordingly, without loss we can remove this set from the

sample space and assume hereafter that fθ0
(s) and fθ1

(s) cannot be simultaneously 0.

Therefore, the ratio fθ1
(s)/ fθ0

(s) is always defined.

Suppose that α = 1. Then setting c = 0 and γ = 1 in (8.5.5), we see that ϕ0(s) ≡
1, and so Eθ1

(ϕ0) = 1. Therefore, ϕ0 is UMP size α, because no test can have power

greater than 1.
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Suppose that α = 0. Setting c0 = ∞ and γ = 1 in (8.5.5), we see that ϕ0(s) = 0 if

and only if fθ0
(s) > 0 (if fθ0

(s) = 0, then fθ1
(s)/ fθ0

(s) = ∞ and conversely). So ϕ0

is the indicator function for the set A = {s : fθ0
(s) = 0}, and therefore Eθ0

(ϕ0) = 0.
Further, any size 0 test function ϕ must be 0 on Ac to have Eθ0

(ϕ) = 0. On A we have

that 0 ≤ ϕ(s) ≤ 1 = ϕ0(s) and so Eθ1
(ϕ) ≤ Eθ1

(ϕ0). Therefore, ϕ0 is UMP size α.
Now assume that 0 < α < 1. Consider the distribution function of the likelihood

ratio when θ = θ0, namely,

1− α∗(c) = Pθ0
( fθ1

(s)/ fθ0
(s) ≤ c).

So 1−α∗(c) is a nondecreasing function of c with 1−α∗(−∞) = 0 and 1−α∗(∞) = 1.
Let c0 be the smallest value of c such that 1− α ≤ 1− α∗(c) (recall that 1− α∗(c)

is right continuous because it is a distribution function). Then we have that 1−α∗(c0−
0) = 1 − limε↘0 α

∗(c0 − ε) ≤ 1 − α ≤ 1 − α∗(c0) and (using the fact that the jump

in a distribution function at a point equals the probability of the point)

Pθ0
( fθ1

(s)/ fθ0
(s) = c0) = (1− α∗(c0))− (1− α

∗(c0 − 0))

= α∗(c0 − 0)− α∗(c0).

Using this value of c0 in (8.5.5), put

γ =


α−α∗(c0)

α∗(c0−0)−α∗(c0)
α∗(c0 − 0) 6= α∗(c0)

0 otherwise,

and note that γ ∈ [0, 1]. Then we have

Eθ0
(ϕ0) = γ Pθ0

( fθ1
(s)/ fθ0

(s) = c0)+ Pθ0
( fθ1

(s)/ fθ0
(s) > c0)

= α − α∗(c0)+ α
∗(c0) = α,

so ϕ0 has exact size α.
Now suppose that ϕ is another size α test and Eθ1

(ϕ) ≥ Eθ1
(ϕ0). We partition the

sample space as S = S0 ∪ S1 ∪ S2 where

S0 = {s : ϕ0(s)− ϕ(s) = 0},

S1 = {s : ϕ0(s)− ϕ(s) < 0},

S2 = {s : ϕ0(s)− ϕ(s) > 0}.

Note that

S1 = {s : ϕ0(s)− ϕ(s) < 0, fθ1
(s)/ fθ0

(s) ≤ c0}

because fθ1
(s)/ fθ0

(s) > c0 implies ϕ0(s) = 1, which implies ϕ0(s) − ϕ(s) = 1 −
ϕ(s) ≥ 0 as 0 ≤ ϕ(s) ≤ 1. Also

S2 = {s : ϕ0(s)− ϕ(s) > 0, fθ1
(s)/ fθ0

(s) ≥ c0}

because fθ1
(s)/ fθ0

(s) < c0 implies ϕ0(s) = 0,which implies ϕ0(s)−ϕ(s) = −ϕ(s) ≤
0 as 0 ≤ ϕ(s) ≤ 1.
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Therefore,

0 ≥ Eθ1
(ϕ0)− Eθ1

(ϕ) = Eθ1
(ϕ0 − ϕ)

= Eθ1
(IS1

(s)(ϕ0(s)− ϕ(s)))+ Eθ1
(IS2

(s)(ϕ0(s)− ϕ(s))).

Now note that

Eθ1
(IS1

(s)(ϕ0(s)− ϕ(s))) =
∑
s∈S1

(ϕ0(s)− ϕ(s)) fθ1
(s)

≥ c0

∑
s∈S1

(ϕ0(s)− ϕ(s)) fθ0
(s) = c0 Eθ0

(IS1
(s)(ϕ0(s)− ϕ(s)))

because ϕ0(s) − ϕ(s) < 0 and fθ1
(s)/ fθ0

(s) ≤ c0 when s ∈ S1. Similarly, we have

that

Eθ1
(IS2

(s)(ϕ0(s)− ϕ(s))) =
∑
s∈S2

(ϕ0(s)− ϕ(s)) fθ1
(s)

≥ c0

∑
s∈S2

(ϕ0(s)− ϕ(s)) fθ0
(s) = c0 Eθ0

(IS2
(s)(ϕ0(s)− ϕ(s)))

because ϕ0(s)− ϕ(s) > 0 and fθ1
(s)/ fθ0

(s) ≥ c0 when s ∈ S2.
Combining these inequalities, we obtain

0 ≥ Eθ1
(ϕ0)− Eθ1

(ϕ) ≥ c0 Eθ0
(ϕ0 − ϕ)

= c0(Eθ0
(ϕ0)− Eθ0

(ϕ)) = c0(α − Eθ0
(ϕ)) ≥ 0

because Eθ0
(ϕ) ≤ 0. Therefore, Eθ1

(ϕ0) = Eθ1
(ϕ), which proves that ϕ0 is UMP

among all size α tests.


