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In Chapter 5, we introduced the basic concepts of inference. At the heart of the the-

ory of inference is the concept of the statistical model { fθ : θ ∈ �} that describes the

statistician’s uncertainty about how the observed data were produced. Chapter 6 dealt

with the analysis of this uncertainty based on the model and the data alone. In some

cases, this seemed quite successful, but we note that we only dealt with some of the

simpler contexts there.
If we accept the principle that, to be amenable to analysis, all uncertainties need to

be described by probabilities, then the prescription of a model alone is incomplete, as

this does not tell us how to make probability statements about the unknown true value

of θ. In this chapter, we complete the description so that all uncertainties are described

by probabilities. This leads to a probability distribution for θ, and, in essence, we are in

the situation of Section 5.2, with the parameter now playing the role of the unobserved

response. This is the Bayesian approach to inference.

Many statisticians prefer to develop statistical theory without the additional ingre-

dients necessary for a full probability description of the unknowns. In part, this is

motivated by the desire to avoid the prescription of the additional model ingredients

necessary for the Bayesian formulation. Of course, we would prefer to have our sta-

tistical analysis proceed based on the fewest and weakest model assumptions possible.

For example, in Section 6.4, we introduced distribution-free methods. A price is paid

for this weakening, however, and this typically manifests itself in ambiguities about

how inference should proceed. The Bayesian formulation in essence removes the am-

biguity, but at the price of a more involved model.

The Bayesian approach to inference is sometimes presented as antagonistic to meth-

ods that are based on repeated sampling properties (often referred to as frequentist
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374 Section 7.1: The Prior and Posterior Distributions

methods), as discussed, for example, in Chapter 6. The approach taken in this text,

however, is that the Bayesian model arises naturally from the statistician assuming

more ingredients for the model. It is up to the statistician to decide what ingredients

can be justified and then use appropriate methods. We must be wary of all model

assumptions, because using inappropriate ones may invalidate our inferences. Model

checking will be taken up in Chapter 9.

7.1 The Prior and Posterior Distributions
The Bayesian model for inference contains the statistical model { fθ : θ ∈ �} for the

data s ∈ S and adds to this the prior probability measure 5 for θ. The prior describes

the statistician’s beliefs about the true value of the parameter θ a priori, i.e., before

observing the data. For example, if � = [0, 1] and θ equals the probability of getting

a head on the toss of a coin, then the prior density π plotted in Figure 7.1.1 indicates

that the statistician has some belief that the true value of θ is around 0.5. But this

information is not very precise.
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Figure 7.1.1: A fairly diffuse prior on [0,1].

On the other hand, the prior density π plotted in Figure 7.1.2indicates that the statis-

tician has very precise information about the true value of θ. In fact, if the statistician

knows nothing about the true value of θ , then using the uniform distribution on [0, 1]

might be appropriate.
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Figure 7.1.2: A fairly precise prior on [0,1].

It is important to remember that the probabilities prescribed by the prior repre-

sent beliefs. They do not in general correspond to long-run frequencies, although they

could in certain circumstances. A natural question to ask is: Where do these beliefs

come from in an application? An easy answer is to say that they come from previous

experience with the random system under investigation or perhaps with related sys-

tems. To be honest, however, this is rarely the case, and one has to admit that the

prior, as well as the statistical model, is often a somewhat arbitrary construction used

to drive the statistician’s investigations. This raises the issue as to whether or not the

inferences derived have any relevance to the practical context, if the model ingredients

suffer from this arbitrariness. This is where the concept of model checking comes into

play, a topic we will discuss in Chapter 9. At this point, we will assume that all the

ingredients make sense, but remember that in an application, these must be checked if

the inferences taken are to be practically meaningful.

We note that the ingredients of the Bayesian formulation for inference prescribe a

marginal distribution for θ, namely, the prior 5, and a set of conditional distributions

for the data s given θ, namely, { fθ : θ ∈ �}. By the law of total probability (Theorems

2.3.1 and 2.8.1), these ingredients specify a joint distribution for (s, θ), namely,

π(θ) fθ (s),

where π denotes the probability or density function associated with5. When the prior

distribution is absolutely continuous, the marginal distribution for s is given by

m(s) =

∫
�
π(θ) fθ (s) dθ

and is referred to as the prior predictive distribution of the data. When the prior distri-

bution of θ is discrete, we replace (as usual) the integral by a sum.

If we did not observe any data, then the prior predictive distribution is the relevant

distribution for making probability statements about the unknown value of s. Similarly,
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the prior π is the relevant distribution to use in making probability statements about θ,
before we observe s. Inference about these unobserved quantities then proceeds as

described in Section 5.2.

Recall now the principle of conditional probability; namely, P(A) is replaced by

P(A |C) after we are told that C is true. Therefore, after observing the data, the rel-

evant distribution to use in making probability statements about θ is the conditional

distribution of θ given s. We denote this conditional probability measure by 5(· | s)
and refer to it as the posterior distribution of θ. Note that the density (or probability

function) of the posterior is obtained immediately by taking the joint density π(θ) fθ (s)
of (s, θ) and dividing it by the marginal m(s) of s.

Definition 7.1.1 The posterior distribution of θ is the conditional distribution of

θ , given s. The posterior density, or posterior probability function (whichever is

relevant), is given by

π(θ | s) =
π(θ) fθ (s)

m(s)
. (7.1.1)

Sometimes this use of conditional probability is referred to as an application of

Bayes’ theorem (Theorem 1.5.2). This is because we can think of a value of θ being

selected first according to π , and then s is generated from fθ . We then want to make

probability statements about the first stage, having observed the outcome of the sec-

ond stage. It is important to remember, however, that choosing to use the posterior

distribution for probability statements about θ is an axiom, or principle, not a theorem.

We note that in (7.1.1) the prior predictive of the data s plays the role of the inverse

normalizing constant for the posterior density. By this we mean that the posterior

density of θ is proportional to π(θ) fθ (s), as a function of θ ; to convert this into a

proper density function, we need only divide by m(s). In many examples, we do not

need to compute the inverse normalizing constant. This is because we recognize the

functional form, as a function of θ, of the posterior from the expression π(θ) fθ (s)
and so immediately deduce the posterior probability distribution of θ. Also, there are

Monte Carlo methods, such as those discussed in Chapter 4, that allow us to sample

from π(θ | s) without knowing m(s) (also see Section 7.3).

We consider some applications of Bayesian inference.

EXAMPLE 7.1.1 Bernoulli Model

Suppose that we observe a sample (x1, . . . , xn) from the Bernoulli(θ) distribution with

θ ∈ [0, 1] unknown. For the prior, we take π to be equal to a Beta(α, β) density (see

Problem 2.4.16). Then the posterior of θ is proportional to the likelihood

n∏
i=1

θ xi (1− θ)1−xi = θnx̄ (1− θ)n(1−x̄)

times the prior

B−1 (α, β) θα−1 (1− θ)β−1 .

This product is proportional to

θnx̄+α−1 (1− θ)n(1−x̄)+β−1 .
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We recognize this as the unnormalized density of a Beta(nx̄ + α, n (1− x̄)+ β) dis-

tribution. So in this example, we did not need to compute m(x1, . . . , xn) to obtain the

posterior.

As a specific case, suppose that we observe nx̄ = 10 in a sample of n = 40 and

α = β = 1, i.e., we have a uniform prior on θ. Then the posterior of θ is given by the

Beta(11, 31) distribution. We plot the posterior density in Figure 7.1.3 as well as the

prior.
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Figure 7.1.3: Prior (dashed line) and posterior densities (solid line) in Example 7.1.1.

The spread of the posterior distribution gives us some idea of the precision of any

probability statements we make about θ . Note how much information the data have

added, as reflected in the graphs of the prior and posterior densities.

EXAMPLE 7.1.2 Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1 is

unknown and σ 2
0 is known. The likelihood function is then given by

L (µ | x1, . . . , xn) = exp

(
−

n

2σ 2
0

(x̄ − µ)2
)
.

Suppose we take the prior distribution of µ to be an N (µ0, τ
2
0) for some specified

choice of µ0 and τ 2
0. The posterior density of µ is then proportional to
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We immediately recognize this, as a function of µ, as being proportional to the density

of an

N

( 1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
,

(
1

τ 2
0

+
n

σ 2
0

)−1


distribution.

Notice that the posterior mean is a weighted average of the prior mean µ0 and the

sample mean x̄ , with weights(
1

τ 2
0

+
n

σ 2
0

)−1
1

τ 2
0

and

(
1

τ 2
0

+
n

σ 2
0

)−1
n

σ 2
0

,

respectively. This implies that the posterior mean lies between the prior mean and the

sample mean.

Furthermore, the posterior variance is smaller than the variance of the sample mean.

So if the information expressed by the prior is accurate, inferences about µ based on

the posterior will be more accurate than those based on the sample mean alone. Note

that the more diffuse the prior is — namely, the larger τ 2
0 is — the less influence the

prior has. For example, when n = 20 and σ 2
0 = 1, τ 2

0 = 1, then the ratio of the

posterior variance to the sample mean variance is 20/21 ≈ 0.95. So there has been a

5% improvement due to the use of prior information.
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For example, suppose that σ 2
0 = 1, µ0 = 0, τ 2

0 = 2, and that for n = 10, we

observe x̄ = 1.2. Then the prior is an N (0, 2) distribution, while the posterior is an

N

((
1

2
+

10

1

)−1 (
0

2
+

10

1
1.2

)
,

(
1

2
+

10

1

)−1
)
= N (1.1429, 9.523 8× 10−2)

distribution. These densities are plotted in Figure 7.1.4. Notice that the posterior is

quite concentrated compared to the prior, so we have learned a lot from the data.
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Figure 7.1.4: Plot of the N (0, 2) prior (dashed line) and the N
(
1.1429, 9.523 8× 10−2

)
posterior (solid line) in Example 7.1.2.

EXAMPLE 7.1.3 Multinomial Model

Suppose we have a categorical response s that takes k possible values, say, s ∈ S =
{1, . . . , k}. For example, suppose we have a bowl containing chips labelled one of

1, . . . , k. A proportion θ i of the chips are labelled i , and we randomly draw a chip,

observing its label.

When the θ i are unknown, the statistical model is given by

{p(θ1,...,θk ) : (θ1, . . . , θk) ∈ �},

where p(θ1,...,θk ) (i) = P(s = i) = θ i and

� = {(θ1, . . . , θk) : 0 ≤ θ i ≤ 1, i = 1, . . . , k and θ1 + · · · + θk = 1} .

Note that the parameter space is really only (k− 1)-dimensional because, for example,

θk = 1 − θ1 − · · · − θk−1, namely, once we have determined k − 1 of the θ i , the

remaining value is specified.

Now suppose we observe a sample (s1, . . . , sn) from this model. Let the frequency

(count) of the i th category in the sample be denoted by xi . Then, from Example 2.8.5,

we see that the likelihood is given by

L (θ1, . . . , θk | (s1, . . . , sn)) = θ
x1

1 θ
x2

2 · · · θ
xk

k .
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For the prior we assume that (θ1, . . . , θk−1) ∼ Dirichlet(α1, α2, . . . , αk) with den-

sity (see Problem 2.7.13) given by

0(α1 + · · · + αk)

0(α1) · · ·0(αk)
θ
α1−1
1 θ

α2−1
2 · · · θαk−1

k (7.1.3)

for (θ1, . . . , θk) ∈ � (recall that θk = 1 − θ1 − · · · − θk−1). The αi are nonnega-

tive constants chosen by the statistician to reflect her beliefs about the unknown value

of (θ1, . . . , θk). The choice α1 = α2 = · · · = αk = 1 corresponds to a uniform

distribution, as then (7.1.3) is constant on �.

The posterior density of (θ1, . . . , θk−1) is then proportional to

θ
x1+α1−1
1 θ

x2+α2−1
2 · · · θ xk+αk−1

k

for (θ1, . . . , θk) ∈ �. From (7.1.3), we immediately deduce that the posterior distrib-

ution of (θ1, . . . , θk−1) is Dirichlet(x1 + α1, x2 + α2, . . . , xk + αk).

EXAMPLE 7.1.4 Location-Scale Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where µ ∈ R1

and σ > 0 are unknown. The likelihood function is then given by

L

(
µ, σ 2 | x1, . . . , xn

)
=
(

2πσ 2
)−n/2

exp
(
−

n

2σ 2
(x̄ − µ)2

)
exp

(
−

n − 1

2σ 2
s2

)
.

Suppose we put the following prior on (µ, σ 2). First, we specify that

µ | σ 2 ∼ N (µ0, τ
2
0σ

2),

i.e., the conditional prior distribution of µ given σ 2 is normal with mean µ0 and vari-

ance τ 2
0σ

2. Then we specify the marginal prior distribution of σ 2 as

1

σ 2
∼ Gamma(α0, β0). (7.1.4)

Sometimes (7.1.4) is referred to by saying that σ 2 is distributed inverse Gamma. The

values µ0, τ
2
0, α0, and β0 are selected by the statistician to reflect his prior beliefs.

From this, we can deduce (see Section 7.5 for the full derivation) that the posterior

distribution of (µ, σ 2) is given by

µ | σ 2, x1, . . . , xn ∼ N

µx ,

(
n +

1

τ 2
0

)−1

σ 2

 (7.1.5)

and
1

σ 2
| x1, . . . , xn ∼ Gamma(α0 + n/2, βx ) (7.1.6)

where

µx =

(
n +

1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)
(7.1.7)
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and

βx = β0 +
n − 1

2
s2 +

1

2

n(x̄ − µ0)
2

1+ nτ 2
0

. (7.1.8)

To generate a value (µ, σ 2) from the posterior, we can make use of the method of

composition (see Problem 2.10.13) by first generating σ 2 using (7.1.6) and then using

(7.1.5) to generate µ. We will discuss this further in Section 7.3.

Notice that as τ 0 → ∞, i.e., as the prior on µ becomes increasingly diffuse,

the conditional posterior distribution of µ given σ 2 converges in distribution to an

N (x̄, σ 2/n) distribution because

µx → x̄ (7.1.9)

and (
n +

1

τ 2
0

)−1

→
1

n
. (7.1.10)

Furthermore, as τ 0 → ∞ and β0 → 0, the marginal posterior of 1/σ 2 converges in

distribution to a Gamma
(
α0 + n/2, (n − 1) s2/2

)
distribution because

βx → (n − 1) s2/2. (7.1.11)

Actually, it does not really seem to make sense to let τ 0 → ∞ and β0 → 0 in

the prior distribution of (µ, σ 2), as the prior does not converge to a proper probability

distribution. The idea here, however, is that we think of taking τ 0 large and β0 small,

so that the posterior inferences are approximately those obtained from the limiting

posterior. There is still a need to choose α0, however, even in the diffuse case, as the

limiting inferences are dependent on this quantity.

Summary of Section 7.1

• Bayesian inference adds the prior probability distribution to the sampling model

for the data as an additional ingredient to be used in determining inferences about

the unknown value of the parameter.

• Having observed the data, the principle of conditional probability leads to the

posterior distribution of the parameter as the basis for inference.

• Inference about marginal parameters is handled by marginalizing the full poste-

rior.

EXERCISES

7.1.1 Suppose that S = {1, 2} , � = {1, 2, 3} , and the class of probability distributions

for the response s is given by the following table.

s = 1 s = 2

f1 (s) 1/2 1/2

f2 (s) 1/3 2/3

f3 (s) 3/4 1/4
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If we use the prior π(θ) given by the table

θ = 1 θ = 2 θ = 3

π (θ) 1/5 2/5 2/5
,

then determine the posterior distribution of θ for each possible sample of size 2.

7.1.2 In Example 7.1.1, determine the posterior mean and variance of θ .

7.1.3 In Example 7.1.2, what is the posterior probability that µ is positive, given that

n = 10, x̄ = 1 when σ 2
0 = 1, µ0 = 0, and τ 2

0 = 10? Compare this with the prior

probability of this event.

7.1.4 Suppose that (x1, . . . , xn) is a sample from a Poisson(λ) distribution with λ ≥ 0

unknown. If we use the prior distribution for λ given by the Gamma(α, β) distribution,

then determine the posterior distribution of λ.

7.1.5 Suppose that (x1, . . . , xn) is a sample from a Uniform[0, θ] distribution with

θ > 0 unknown. If the prior distribution of θ is Gamma(α, β) , then obtain the form of

the posterior density of θ .

7.1.6 Find the posterior mean and variance of θ i in Example 7.1.3 when k = 3. (Hint:

See Problems 3.2.16 and 3.3.20.)

7.1.7 Suppose we have a sample

6.56 6.39 3.30 3.03 5.31 5.62 5.10 2.45 8.24 3.71

4.14 2.80 7.43 6.82 4.75 4.09 7.95 5.84 8.44 9.36

from an N (µ, σ 2) distribution and we determine that a prior specified by µ | σ 2 ∼
N (3, 4σ 2), σ−2 ∼ Gamma(1, 1) is appropriate. Determine the posterior distribution

of (µ, 1/σ 2).

7.1.8 Suppose that the prior probability of θ being in a set A ⊂ � is 0.25 and the

posterior probability of θ being in A is 0.80.

(a) Explain what effect the data have had on your beliefs concerning the true value of

θ being in A.

(b) Explain why a posterior probability is more relevant to report than is a prior proba-

bility.

7.1.9 Suppose you toss a coin and put a Uniform[0.4, 0.6] prior on θ , the probability

of getting a head on a single toss.

(a) If you toss the coin n times and obtain n heads, then determine the posterior density

of θ.

(b) Suppose the true value of θ is, in fact, 0.99. Will the posterior distribution of θ ever

put any probability mass around θ = 0.99 for any sample of n?

(c) What do you conclude from part (b) about how you should choose a prior ?

7.1.10 Suppose that for statistical model { fθ : θ ∈ R1}, we assign the prior density

π. Now suppose that we reparameterize the model via the function ψ = 9(θ), where

9 : R1 → R1 is differentiable and strictly increasing.

(a) Determine the prior density of ψ.

(b) Show that m(x) is the same whether we parameterize the model by θ or by ψ.



Chapter 7: Bayesian Inference 383

7.1.11 Suppose that for statistical model { fθ : θ ∈ �}, where� = {−2,−1, 0, 1, 2, 3},
we assign the prior probability function π , which is uniform on �. Now suppose we

are interested primarily in making inferences about |θ |.

(a) Determine the prior probability distribution of |θ |. Is this distribution uniform?

(b) A uniform prior distribution is sometimes used to express complete ignorance about

the value of a parameter. Does complete ignorance about the value of a parameter imply

complete ignorance about a function of a parameter? Explain.

7.1.12 Suppose that for statistical model { fθ : θ ∈ [0, 1]}, we assign the prior density

π , which is uniform on� = [0, 1].Now suppose we are interested primarily in making

inferences about θ2.

(a) Determine the prior density of θ2. Is this distribution uniform?

(b) A uniform prior distribution is sometimes used to express complete ignorance about

the value of a parameter. Does complete ignorance about the value of a parameter imply

complete ignorance about a function of a parameter? Explain.

COMPUTER EXERCISES

7.1.13 In Example 7.1.2, when µ0 = 2, τ 2
0 = 1, σ 2

0 = 1, n = 20, and x̄ = 8.2,

generate a sample of 104 (or as large as possible) from the posterior distribution of µ
and estimate the posterior probability that the coefficient of variation is greater than

0.125, i.e., the posterior probability that σ 0/µ > 0.125. Estimate the error in your

approximation.

7.1.14 In Example 7.1.2, when µ0 = 2, τ 2
0 = 1, σ 2

0 = 1, n = 20, and x̄ = 8.2,

generate a sample of 104 (or as large as possible) from the posterior distribution of µ
and estimate the posterior expectation of the coefficient of variation σ 0/µ. Estimate

the error in your approximation.

7.1.15 In Example 7.1.1, plot the prior and posterior densities on the same graph and

compare them when n = 30, x̄ = 0.73, α = 3, and β = 3. (Hint: Calculate the

logarithm of the posterior density and then exponentiate this. You will need the log-

gamma function defined by ln0 (α) for α > 0.)

PROBLEMS

7.1.16 Suppose the prior of a real-valued parameter θ is given by the N (θ0, τ
2) dis-

tribution. Show that this distribution does not converge to a probability distribution as

τ →∞. (Hint: Consider the limits of the distribution functions.)

7.1.17 Suppose that (x1, . . . , xn) is a sample from { fθ : θ ∈ �} and that we have a

prior π . Show that if we observe a further sample (xn+1, . . . , xn+m), then the posterior

you obtain from using the posterior π (· | x1, . . . , xn) as a prior, and then condition-

ing on (xn+1, . . . , xn+m), is the same as the posterior obtained using the prior π and

conditioning on (x1, . . . , xn, xn+1, . . . , xn+m) . This is the Bayesian updating property.

7.1.18 In Example 7.1.1, determine m(x). If you were asked to generate a value from

this distribution, how would you do it? (Hint: For the generation part, use the theorem

of total probability.)
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7.1.19 Prove that the posterior distribution depends on the data only through the value

of a sufficient statistic.

COMPUTER PROBLEMS

7.1.20 For the data of Exercise 7.1.7, plot the prior and posterior densities of σ 2 over

(0, 10) on the same graph and compare them. (Hint: Evaluate the logarithms of the

densities first and then plot the exponential of these values.)

7.1.21 In Example 7.1.4, when µ0 = 0, τ 2
0 = 1, α0 = 2, β0 = 1, n = 20, x̄ = 8.2,

and s2 = 2.1, generate a sample of 104 (or as large as is feasible) from the posterior

distribution of σ 2 and estimate the posterior probability that σ > 2. Estimate the error

in your approximation.

7.1.22 In Example 7.1.4, when µ0 = 0, τ 2
0 = 1, α0 = 2, β0 = 1, n = 20, x̄ = 8.2,

and s2 = 2.1, generate a sample of 104 (or as large as is feasible) from the posterior

distribution of
(
µ, σ 2

)
and estimate the posterior expectation of σ . Estimate the error

in your approximation.

DISCUSSION TOPICS

7.1.23 One of the objections raised concerning Bayesian inference methodology is

that it is subjective in nature. Comment on this and the role of subjectivity in scientific

investigations.

7.1.24 Two statisticians are asked to analyze a data set x produced by a system under

study. Statistician I chooses to use a sampling model { fθ : θ ∈ �} and prior π I , while

statistician II chooses to use a sampling model {gψ : ψ ∈ 9} and prior π I I . Comment

on the fact that these ingredients can be completely different and so the subsequent

analyses completely different. What is the relevance of this for the role of subjectivity

in scientific analyses of data?

7.2 Inferences Based on the Posterior
In Section 7.1, we determined the posterior distribution of θ as a fundamental object

of Bayesian inference. In essence, the principle of conditional probability asserts that

the posterior distribution π(θ | s) contains all the relevant information in the sampling

model { fθ : θ ∈ �} , the prior π and the data s, about the unknown true value of θ.
While this is a major step forward, it does not completely tell us how to make the types

of inferences we discussed in Section 5.5.3.

In particular, we must specify how to compute estimates, credible regions, and carry

out hypothesis assessment — which is what we will do in this section. It turns out that

there are often several plausible ways of proceeding, but they all have the common

characteristic that they are based on the posterior.

In general, we are interested in specifying inferences about a real-valued charac-

teristic of interest ψ(θ). One of the great advantages of the Bayesian approach is that

inferences about ψ are determined in the same way as inferences about the full para-

meter θ , but with the marginal posterior distribution for ψ replacing the full posterior.
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This situation can be compared with the likelihood methods of Chapter 6, where it

is not always entirely clear how we should proceed to determine inferences about ψ
based upon the likelihood. Still, we have paid a price for this in requiring the addition

of another model ingredient, namely, the prior.

So we need to determine the posterior distribution of ψ. This can be a difficult task

in general, even if we have a closed-form expression for π(θ | s). When the posterior

distribution of θ is discrete, the posterior probability function of ψ is given by

ω(ψ0 | s) =
∑

{θ :ψ(θ)=ψ0}
π(θ | s).

When the posterior distribution of θ is absolutely continuous, we can often find a

complementing function λ(θ) so that h(θ) = (ψ(θ), λ(θ)) is 1–1, and such that the

methods of Section 2.9.2 can be applied. Then, denoting the inverse of this transforma-

tion by θ = h−1(ψ, λ), the methods of Section 2.9.2 show that the marginal posterior

distribution of ψ has density given by

ω
(
ψ0 | s

)
=

∫
π(h−1(ψ0, λ) | s)|J (h

−1(ψ0, λ))|
−1 dλ, (7.2.1)

where J denotes the Jacobian derivative of this transformation (see Problem 7.2.35).

Evaluating (7.2.1) can be difficult, and we will generally avoid doing so here. An

example illustrates how we can sometimes avoid directly implementing (7.2.1) and

still obtain the marginal posterior distribution of ψ .

EXAMPLE 7.2.1 Location-Scale Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where µ ∈ R1

and σ > 0 are unknown, and we use the prior given in Example 7.1.4. The posterior

distribution for
(
µ, σ 2

)
is then given by (7.1.5) and (7.1.6).

Suppose we are primarily interested in ψ(µ, σ 2) = σ 2. We see immediately that

the marginal posterior of σ 2 is prescribed by (7.1.6) and thus have no further work to

do, unless we want a form for the marginal posterior density of σ 2. We can use the

methods of Section 2.6 for this (see Exercise 7.2.4).

If we want the marginal posterior distribution of ψ(µ, σ 2) = µ, then things are not

quite so simple because (7.1.5) only prescribes the conditional posterior distribution

of µ given σ 2. We can, however, avoid the necessity to implement (7.2.1). Note that

(7.1.5) implies that

Z =
µ− µx(

n + 1/τ 2
0

)−1/2
σ
| σ 2, x1, . . . , xn ∼ N (0, 1),

where µx is given in (7.1.7). Because this distribution does not involve σ 2, the pos-

terior distribution of Z is independent of the posterior distribution of σ . Now if X ∼
Gamma(α, β), then Y = 2βX ∼ Gamma(α, 1/2) = χ2(2α) (see Problem 4.6.16 for

the definition of the general chi-squared distribution) and so, from (7.1.6),

2
βx

σ 2
| x1, . . . , xn ∼ χ

2(2α0 + n),
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where βx is given in (7.1.8). Therefore (using Problem 4.6.14), as we are dividing an

N (0, 1) variable by the square root of an independent χ2 (2α0 + n) random variable

divided by its degrees of freedom, we conclude that the posterior distribution of

T =
Z√(

2
βx

σ 2

)
/ (2α0 + n)

=
µ− µx√

2βx

(2α0+n)
(
n+1/τ 2

0

)
is t (2α0 + n). Equivalently, we can say the posterior distribution of µ is the same as

µx +

√
1

2α0 + n

√
2βx

n + 1/τ 2
0

T ,

where T ∼ t (2α0 + n). By (7.1.9), (7.1.10), and (7.1.11), we have that the posterior

distribution of µ converges to the distribution of

x̄ +

√
n − 1

(2α0 + n)

s
√

n
T

as τ 0 →∞ and β0 → 0.

In other cases, we cannot avoid the use of (7.2.1) if we want the marginal posterior

density of ψ. For example, suppose we are interested in the posterior distribution of the

coefficient of variation (we exclude the line given by µ = 0 from the parameter space)

ψ = ψ(µ, σ−2) =
σ

µ
=

1

µ

(
1

σ 2

)−1/2

.

Then a complementing function to ψ is given by

λ = λ(µ, σ−2) =
1

σ 2
,

and it can be shown (see Section 7.5) that

J (θ(ψ, λ)) = ψ−2λ−1/2.

If we let π(· | λ−1, x1, . . . , xn) and ρ (· | x1, . . . , xn) denote the posterior densities of

µ given λ, and the posterior density of λ, respectively, then, from (7.2.1), the marginal

density of ψ is given by

ψ−2

∫ ∞
0

π(ψ−1λ−1/2 | λ−1, x1, . . . , xn)ρ (λ | x1, . . . , xn) λ
−1/2 dλ. (7.2.2)

Without writing this out (see Problem 7.2.22), we note that we are left with a rather

messy integral to evaluate.

In some cases, integrals such as (7.2.2) can be evaluated in closed form; in other

cases, they cannot. While it is convenient to have a closed form for a density, often

this is not necessary, as we can use Monte Carlo methods to approximate posterior
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probabilities and expectations of interest. We will return to this in Section 7.3. We

should always remember that our goal, in implementing Bayesian inference methods,

is not to find the marginal posterior densities of quantities of interest, but rather to have

a computational algorithm that allows us to implement our inferences.

Under fairly weak conditions, it can be shown that the posterior distribution of θ
converges, as the sample size increases, to a distribution degenerate at the true value.

This is very satisfying, as it indicates that Bayesian inference methods are consistent.

7.2.1 Estimation

Suppose now that we want to calculate an estimate of a characteristic of interest ψ(θ).
We base this on the posterior distribution of this quantity. There are several different

approaches to this problem.

Perhaps the most natural estimate is to obtain the posterior density (or probability

function when relevant) of ψ and use the posterior mode ψ̂, i.e., the point where the

posterior probability or density function of ψ takes its maximum. In the discrete case,

this is the value of ψ with the greatest posterior probability; in the continuous case,

it is the value that has the greatest amount of posterior probability in short intervals

containing it.

To calculate the posterior mode, we need to maximize ω(ψ | s) as a function of ψ.
Note that it is equivalent to maximize m(s)ω(ψ | s) so that we do not need to compute

the inverse normalizing constant to implement this. In fact, we can conveniently choose

to maximize any function that is a 1–1 increasing function of ω(· | s) and get the same

answer. In general, ω(· | s) may not have a unique mode, but typically there is only

one.

An alternative estimate is commonly used and has a natural interpretation. This is

given by the posterior mean

E(ψ(θ) | s),

whenever this exists. When the posterior distribution of ψ is symmetrical about its

mode, and the expectation exists, then the posterior expectation is the same as the

posterior mode; otherwise, these estimates will be different. If we want the estimate to

reflect where the central mass of probability lies, then in cases where ω(· | s) is highly

skewed, perhaps the mode is a better choice than the mean. We will see in Chapter 8,

however, that there are other ways of justifying the posterior mean as an estimate.

We now consider some examples.

EXAMPLE 7.2.2 Bernoulli Model

Suppose we observe a sample (x1, . . . , xn) from the Bernoulli(θ) distribution with θ ∈
[0, 1] unknown and we place a Beta(α, β) prior on θ . In Example 7.1.1, we determined

the posterior distribution of θ to be Beta(nx̄ + α, n (1− x̄)+ β). Let us suppose that

the characteristic of interest is ψ(θ) = θ.
The posterior expectation of θ is given by
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E(θ | x1, . . . , xn)

=

∫ 1

0

θ
0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)
θnx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)

∫ 1

0

θnx̄+α (1− θ)n(1−x̄)+β−1 dθ

=
0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)

0(nx̄ + α + 1)0(n(1− x̄)+ β)

0(n + α + β + 1)

=
nx̄ + α

n + α + β
.

When we have a uniform prior, i.e., α = β = 1 , the posterior expectation is given by

E(θ | x) =
nx̄ + 1

n + 2
.

To determine the posterior mode, we need to maximize

ln θnx̄+α−1 (1− θ)n(1−x̄)+β−1 = (nx̄ + α − 1) ln θ + (n (1− x̄)+ β − 1) ln (1− θ) .

This function has first derivative

nx̄ + α − 1

θ
−

n (1− x̄)+ β − 1

1− θ

and second derivative

−
nx̄ + α − 1

θ2
−

n (1− x̄)+ β − 1

(1− θ)2
.

Setting the first derivative equal to 0 and solving gives the solution

θ̂ =
nx̄ + α − 1

n + α + β − 2
.

Now, if α ≥ 1, β ≥ 1, we see that the second derivative is always negative, and so θ̂
is the unique posterior mode. The restriction on the choice of α ≥ 1, β ≥ 1 implies

that the prior has a mode in (0, 1) rather than at 0 or 1. Note that when α = 1, β = 1,
namely, when we put a uniform prior on θ, the posterior mode is θ̂ = x̄ . This is the

same as the maximum likelihood estimate (MLE).

The posterior is highly skewed whenever nx̄ + α and n (1− x̄) + β are far apart

(plot Beta densities to see this). Thus, in such a case, we might consider the posterior

mode as a more sensible estimate of θ . Note that when n is large, the mode and the

mean will be very close together and in fact very close to the MLE x̄ .

EXAMPLE 7.2.3 Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1 is

unknown and σ 2
0 is known, and we take the prior distribution on µ to be N (µ, τ 2

0). Let

us suppose, that the characteristic of interest is ψ(µ) = µ.
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In Example 7.1.2 we showed that the posterior distribution of µ is given by the

N

( 1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
,

(
1

τ 2
0

+
n

σ 2
0

)−1


distribution. Because this distribution is symmetric about its mode, and the mean exists,

the posterior mode and mean agree and equal(
1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
.

This is a weighted average of the prior mean and the sample mean and lies between

these two values.

When n is large, we see that this estimator is approximately equal to the sample

mean x̄, which we also know to be the MLE for this situation. Furthermore, when we

take the prior to be very diffuse, namely, when τ 2
0 is very large, then again this estimator

is close to the sample mean.

Also observe that the ratio of the sampling variance of x̄ to the posterior variance

of µ is

σ 2
0

n

(
1

τ 2
0

+
n

σ 2
0

)
= 1+

σ 2
0

nτ 2
0

,

is always greater than 1. The closer τ 2
0 is to 0, the larger this ratio is. Furthermore, as

τ 2
0 → 0, the Bayesian estimate converges to µ0.

If we are pretty confident that the population mean µ is close to the prior mean µ0,
we will take τ 2

0 small so that the bias in the Bayesian estimate will be small and its

variance will be much smaller than the sampling variance of x̄ . In such a situation, the

Bayesian estimator improves on accuracy over the sample mean. Of course, if we are

not very confident that µ is close to the prior mean µ0, then we choose a large value

for τ 2
0, and the Bayesian estimator is basically the MLE.

EXAMPLE 7.2.4 Multinomial Model

Suppose we have a sample (s1, . . . , sn) from the model discussed in Example 7.1.3

and we place a Dirichlet(α1, α2, . . . , αk) distribution on (θ1, . . . , θk−1). The posterior

distribution of (θ1, . . . , θk−1) is then

Dirichlet(x1 + α1, x2 + α2, . . . , xk + αk),

where xi is the number of responses in the i th category.

Now suppose we are interested in estimating ψ(θ) = θ1, the probability that

a response is in the first category. It can be shown (see Problem 7.2.25) that, if

(θ1, . . . , θk−1) is distributed Dirichlet(α1, α2, . . . , αk), then θ i is distributed

Dirichlet(αi , α−i ) = Beta(αi , α−i )

where α−i = α1 + α2 + · · · + αk − αi . This result implies that the marginal posterior

distribution of θ1 is

Beta(x1 + α1, x2 + · · · + xk + α2 + · · · + αk).
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Then, assuming that each αi ≥ 1, and using the argument in Example 7.2.2 and

x1 + · · · + xk = n, the marginal posterior mode of θ1 is

θ̂1 =
x1 + α1 − 1

n − 2+ α1 + · · · + αk

.

When the prior is the uniform, namely, α1 = · · · = αk = 1, then

θ̂1 =
x1

n + k − 2
.

As in Example 7.2.2, we compute the posterior expectation to be

E(θ1 | x) =
x1 + α1

n + α1 + · · · + αk

.

The posterior distribution is highly skewed whenever x1+α1 and x2+· · ·+ xk +α2+
· · · + αk are far apart.

From Problem 7.2.26, we have that the plug-in MLE of θ1 is x1/n. When n is

large, the Bayesian estimates are close to this value, so there is no conflict between the

estimates. Notice, however, that when the prior is uniform, then α1 + · · · + αk = k,

hence the plug-in MLE and the Bayesian estimates will be quite different when k is

large relative to n. In fact, the posterior mode will always be smaller than the plug-in

MLE when k > 2 and x1 > 0. This is a situation in which the Bayesian and frequentist

approaches to inference differ.

At this point, the decision about which estimate to use is left with the practitioner,

as theory does not seem to provide a clear answer. We can be comforted by the fact

that the estimates will not differ by much in many contexts of practical importance.

EXAMPLE 7.2.5 Location-Scale Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where µ ∈ R1

and σ > 0 are unknown, and we use the prior given in Example 7.1.4. Let us suppose

that the characteristic of interest is ψ(µ, σ 2) = µ.

In Example 7.2.1, we derived the marginal posterior distribution of µ to be the

same as the distribution of

µx +

√
1

2α0 + n

√
2βx

n + 1/τ 2
0

T ,

where T ∼ t (n + 2α0). This is a t (n + 2α0) distribution relocated to have its mode at

µx and rescaled by the factor √
1

2α0 + n

√
2βx

n + 1/τ 2
0

.

So the marginal posterior mode of µ is

µx =

(
n +

1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)
.
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Because a t distribution is symmetric about its mode, this is also the posterior mean of

µ, provided that n + 2α0 > 1, as a t (λ) distribution has a mean only when λ > 1 (see

Problem 4.6.16). This will always be the case as the sample size n ≥ 1. Again, µx is a

weighted average of the prior mean µ0 and the sample average x̄ .
The marginal posterior mode and expectation can also be obtained for ψ(µ, σ 2) =

σ 2. These computations are left to the reader (see Exercise 7.2.4).

One issue that we have not yet addressed is how we will assess the accuracy of

Bayesian estimates. Naturally, this is based on the posterior distribution and how con-

centrated it is about the estimate being used. In the case of the posterior mean, this

means that we compute the posterior variance as a measure of spread for the posterior

distribution of ψ about its mean. For the posterior mode, we will discuss this issue

further in Section 7.2.3.

EXAMPLE 7.2.6 Posterior Variances

In Example 7.2.2, the posterior variance of θ is given by (see Exercise 7.2.6)

(nx̄ + α) (n (1− x̄)+ β)

(n + α + β)2 (n + α + β + 1)
.

Notice that the posterior variance converges to 0 as n→∞.
In Example 7.2.3, the posterior variance is given by (1/τ 2

0 + n/σ 2
0)
−1. Notice that

the posterior variance converges to 0 as τ 2
0 → 0 and converges to σ 2

0/n, the sampling

variance of x̄ , as τ 2
0 →∞.

In Example 7.2.4, the posterior variance of θ1 is given by (see Exercise 7.2.7)

(x1 + α1) (x2 + · · · + xk + α2 + · · · + αk)

(n + α1 + · · · + αk)
2 (n + α1 + · · · + αk + 1)

.

Notice that the posterior variance converges to 0 as n→∞ .
In Example 7.2.5, the posterior variance of µ is given by (see Problem 7.2.28)(

1

n + 2α0

)(
2βx

n + 1/τ 2
0

)(
n + 2α0

n + 2α0 − 2

)
=

(
2βx

n + 1/τ 2
0

)(
1

n + 2α0 − 2

)
,

provided n + 2α0 > 2, because the variance of a t (λ) distribution is λ/(λ − 2) when

λ > 2 (see Problem 4.6.16). Notice that the posterior variance goes to 0 as n→∞.

7.2.2 Credible Intervals

A credible interval, for a real-valued parameterψ(θ), is an interval C(s) = [l(s), u(s)]
that we believe will contain the true value of ψ. As with the sampling theory approach,

we specify a probability γ and then find an interval C(s) satisfying

5(ψ(θ) ∈ C(s) | s) = 5({θ : l(s) ≤ ψ(θ) ≤ u(s)} | s) ≥ γ . (7.2.3)

We then refer to C(s) as a γ -credible interval for ψ.
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Naturally, we try to find a γ -credible interval C(s) so that 5(ψ(θ) ∈ C(s) | s) is

as close to γ as possible, and such that C(s) is as short as possible. This leads to the

consideration of highest posterior density (HPD) intervals, which are of the form

C(s) = {ψ : ω (ψ | s) ≥ c} ,

where ω (· | s) is the marginal posterior density of ψ and where c is chosen as large as

possible so that (7.2.3) is satisfied. In Figure 7.2.1, we have plotted an example of an

HPD interval for a given value of c.

ω(ψ  | s)

ψ

c

l(s) u(s)
[ ]

Figure 7.2.1: An HPD interval C(s) = [l(s), u(s)] = {ψ : ω (ψ | s) ≥ c} .

Clearly, C(s) contains the mode whenever c ≤ maxψ ω (ψ | s). We can take the

length of an HPD interval as a measure of the accuracy of the mode of ω (· | s) as an

estimator of ψ(θ). The length of a 0.95-credible interval for ψ will serve the same

purpose as the margin of error does with confidence intervals.

Consider now some applications of the concept of credible interval.

EXAMPLE 7.2.7 Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1 is

unknown and σ 2
0 is known, and we take the prior distribution on µ to be N (µ0, τ

2
0). In

Example 7.1.2, we showed that the posterior distribution of µ is given by the

N

( 1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
,

(
1

τ 2
0

+
n

σ 2
0

)−1


distribution. Since this distribution is symmetric about its mode (also mean) µ̂, a short-

est γ -HPD interval is of the form

µ̂±

(
1

τ 2
0

+
n

σ 2
0

)−1/2

c,
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where c is such that

γ = 5

µ ∈
µ̂± ( 1

τ 2
0

+
n

σ 2
0

)−1/2

c

 ∣∣∣∣∣∣ x1, . . . , xn


= 5

−c ≤

(
1

τ 2
0

+
n

σ 2
0

)1/2 (
µ− µ̂

)
≤ c

∣∣∣∣∣∣ x1, . . . , xn

 .
Since (

1

τ 2
0

+
n

σ 2
0

)1/2 (
µ− µ̂

)
| x1, . . . , xn ∼ N (0, 1),

we have γ = 8(c) −8(−c), where 8 is the standard normal cumulative distribution

function (cdf). This immediately implies that c = z(1+γ )/2 and the γ -HPD interval is

given by

(
1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
±

(
1

τ 2
0

+
n

σ 2
0

)−1/2

z(1+γ )/2.

Note that as τ 2
0 → ∞, namely, as the prior becomes increasingly diffuse, this

interval converges to the interval

x̄ ±
σ 0
√

n
z(1+γ )/2,

which is also the γ -confidence interval derived in Chapter 6 for this problem. So under

a diffuse normal prior, the Bayesian and frequentist approaches agree.

EXAMPLE 7.2.8 Location-Scale Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution, where µ ∈ R1

and σ ≥ 0 are unknown, and we use the prior given in Example 7.1.4. In Example

7.2.1, we derived the marginal posterior distribution of µ to be the same as

µx +

√
1

2α0 + n

√
2βx

n + 1/τ 2
0

T,

where T ∼ t (2α0 + n). Because this distribution is symmetric about its mode µx , a

γ -HPD interval is of the form

µx ±

√
1

2α0 + n

√
2βx

n + 1/τ 2
0

c,
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where c satisfies

γ = 5

(
µ ∈

[
µx ±

√
1

2α0 + n

√
2βx

n + 1/τ 2
0

c

] ∣∣∣∣∣ x1, . . . , xn

)

= 5

−c ≤

(
2βx

(2α0 + n)
(
n + 1/τ 2

0

))−1/2 (
µ− µ̂

)
≤ c

∣∣∣∣∣∣ x1, . . . , xn


= G2α0+n(c)− G2α0+n(−c).

Here, G2α0+n is the t (2α0 + n) cdf, and therefore c = t(1+γ )/2(2α0 + n).
Using (7.1.9), (7.1.10), and (7.1.11) we have that this interval converges to the

interval

x̄ ±

√
n − 1

(2α0 + n)

s
√

n
t (n + 2α0)

as τ 0 → ∞ and β0 → 0. Note that this is a little different from the γ -confidence

interval we obtained for µ in Example 6.3.8, but when α0/n is small, they are virtually

identical.

In the examples we have considered so far, we could obtain closed-form expres-

sions for the HPD intervals. In general, this is not the case. In such situations, we have

to resort to numerical methods to obtain the HPD intervals, but we do not pursue this

topic further here.

There are other methods of deriving credible intervals. For example, a common

method of obtaining a γ -credible interval for ψ is to take the interval [ψ l , ψr ] where

ψ l is a (1− γ ) /2 quantile for the posterior distribution of ψ and ψr is a 1−(1− γ ) /2
quantile for this distribution. Alternatively, we could form one-sided intervals. These

credible intervals avoid the more extensive computations that may be needed for HPD

intervals.

7.2.3 Hypothesis Testing and Bayes Factors

Suppose now that we want to assess the evidence in the observed data concerning

the hypothesis H0 : ψ(θ) = ψ0. It seems clear how we should assess this, namely,

compute the posterior probability

5(ψ(θ) = ψ0 | s). (7.2.4)

If this is small, then conclude that we have evidence against H0. We will see further

justification for this approach in Chapter 8.

EXAMPLE 7.2.9

Suppose we want to assess the evidence concerning whether or not θ ∈ A. If we let

ψ = IA, then we are assessing the hypothesis H0 : ψ(θ) = 1 and

5(ψ(θ) = 1 | s) = 5(A | s).

So in this case, we simply compute the posterior probability that θ ∈ A.
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There can be a problem, however, with using (7.2.4) to assess a hypothesis. For

when the prior distribution of ψ is absolutely continuous, then 5(ψ(θ) = ψ0 | s) = 0

for all data s. Therefore, we would always find evidence against H0 no matter what

is observed, which does not make sense. In general, if the value ψ0 is assigned small

prior probability, then it can happen that this value also has a small posterior probability

no matter what data are observed.

To avoid this problem, there is an alternative approach to hypothesis assessment that

is sometimes used. Recall that, if ψ0 is a surprising value for the posterior distribution

of ψ , then this is evidence that H0 is false. The value ψ0 is surprising whenever it

occurs in a region of low probability for the posterior distribution ofψ . A region of low

probability will correspond to a region where the posterior density ω (· | s) is relatively

low. So, one possible method for assessing this is by computing the (Bayesian) P-value

5({θ : ω(ψ(θ) | s) ≤ ω(ψ0 | s)} | s). (7.2.5)

Note that when ω(· | s) is unimodal, (7.2.5) corresponds to computing a tail probability.

If the probability (7.2.5) is small, then ψ0 is surprising, at least with respect to our

posterior beliefs. When we decide to reject H0 whenever the P-value is less than 1−γ ,
then this approach is equivalent to computing a γ -HPD region for ψ and rejecting H0

whenever ψ0 is not in the region.

EXAMPLE 7.2.10 (Example 7.2.9 continued)

Applying the P-value approach to this problem, we see that ψ(θ) = IA (θ) has pos-

terior given by the Bernoulli(5(A | s)) distribution. Therefore, ω(·| s) is defined by

ω(0| s) = 1−5(A | s) = 5(Ac | s) andω(1| s) = 5(A | s).
Now ψ0 = 1, so

{θ : ω(ψ(θ) | s) ≤ ω(1 | s)} = {θ : ω(IA (θ) | s) ≤ 5(A | s)}

=

{
� 5(A | s) ≥ 5(Ac | s)
A 5(A | s) < 5(Ac | s).

Therefore, (7.2.5) becomes

5({θ : ω(ψ(θ) | s) ≤ ω(1 | s)} | s) =

{
1 5(A | s) ≥ 5(Ac | s)
5 (A | s) 5(A | s) < 5(Ac | s),

so again we have evidence against H0 whenever 5(A | s) is small.

We see from Examples 7.2.9 and 7.2.10 that computing the P-value (7.2.5) is essen-

tially equivalent to using (7.2.4), whenever the marginal parameter ψ takes only two

values. This is not the case whenever ψ takes more than two values, however, and the

statistician has to decide which method is more appropriate in such a context.

As previously noted, when the prior distribution of ψ is absolutely continuous,

then (7.2.4) is always 0, no matter what data are observed. As the following example

illustrates, there is also a difficulty with using (7.2.5) in such a situation.

EXAMPLE 7.2.11

Suppose that the posterior distribution of θ is Beta(2, 1), i.e., ω (θ | s) = 2θ when

0 ≤ θ ≤ 1, and we want to assess H0 : θ = 3/4. Then ω(θ | s) ≤ ω(3/4 | s) if and
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only if θ ≤ 3/4, and (7.2.5) is given by∫ 3/4

0

2θ dθ = 9/16.

On the other hand, suppose we make a 1–1 transformation to ρ = θ2 so that

the hypothesis is now H0 : ρ = 9/16. The posterior distribution of ρ is Beta(1, 1).
Since the posterior density of ρ is constant, this implies that the posterior density at

every possible value is less than or equal to the posterior density evaluated at 9/16.

Therefore, (7.2.5) equals 1, and we would never find evidence against H0 using this

parameterization.
This example shows that our assessment of H0 via (7.2.5) depends on the parame-

terization used, which does not seem appropriate.

The difficulty in using (7.2.5), as demonstrated in Example 7.2.11, only occurs with

continuous posterior distributions. So, to avoid this problem, it is often recommended

that the hypothesis to be tested always be assigned a positive prior probability. As

demonstrated in Example 7.2.10, the approach via (7.2.5) is then essentially equivalent

to using (7.2.4) to assess H0.

In problems where it seems natural to use continuous priors, this is accomplished by

taking the prior 5 to be a mixture of probability distributions, as discussed in Section

2.5.4, namely, the prior distribution equals

5 = p51 + (1− p)52,

where 51(ψ(θ) = ψ0) = 1 and 52(ψ (θ) = ψ0) = 0, i.e., 51 is degenerate at ψ0

and 52 is continuous at ψ0. Then

5(ψ(θ) = ψ0) = p51(ψ(θ) = ψ0)+ (1− p)52(ψ(θ) = ψ0) = p > 0

is the prior probability that H0 is true.

The prior predictive for the data s is then given by

m(s) = pm1(s)+ (1− p)m2(s),

where mi is the prior predictive obtained via prior 5i (see Problem 7.2.34). This im-

plies (see Problem 7.2.34) that the posterior probability measure for θ, when using the

prior 5, is

5(A | s)

=
pm1(s)

pm1(s)+ (1− p)m2(s)
51(A | s)+

(1− p)m2(s)

pm1(s)+ (1− p)m2(s)
52(A | s) (7.2.6)

where 5i (· | s) is the posterior measure obtained via the prior 5i . Note that this a

mixture of the posterior probability measures51(· | s) and52(· | s) with mixture prob-

abilities
pm1(s)

pm1(s)+ (1− p)m2(s)
and

(1− p)m2(s)

pm1(s)+ (1− p)m2(s)
.
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Now51(· | s) is degenerate at ψ0 (if the prior is degenerate at a point then the posterior

must be degenerate at that point too) and 52(· | s) is continuous at ψ0. Therefore,

5(ψ(θ) = ψ0 | s) =
pm1(s)

pm1(s)+ (1− p)m2(s)
, (7.2.7)

and we use this probability to assess H0.
The following example illustrates this approach.

EXAMPLE 7.2.12 Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ R1

is unknown and σ 2
0 is known, and we want to assess the hypothesis H0 : µ = µ0. As

in Example 7.1.2, we will take the prior for µ to be an N (µ0, τ
2
0) distribution. Given

that we are assessing whether or not µ = µ0, it seems reasonable to place the mode of

the prior at the hypothesized value. The choice of the hyperparameter τ 2
0 then reflects

the degree of our prior belief that H0 is true. We let 52 denote this prior probability

measure, i.e., 52 is the N (µ0, σ
2
0) probability measure.

If we use52 as our prior, then, as shown in Example 7.1.2, the posterior distribution

ofµ is absolutely continuous. This implies that (7.2.4) is 0. So, following the preceding

discussion, we consider instead the prior 5 = p51 + (1− p)52 obtained by mixing

52 with a probability measure 51 degenerate at µ0. Then 51(
{
µ0

}
) = 1 and so

5(
{
µ0

}
) = p. As shown in Example 7.1.2, under 52 the posterior distribution of µ is

N

( 1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)
,

(
1

τ 2
0

+
n

σ 2
0

)−1
 ,

while the posterior under 51 is the distribution degenerate at µ0. We now need to

evaluate (7.2.7), and we will do this in Example 7.2.13.

Bayes Factors

Bayes factors comprise another method of hypothesis assessment and are defined in

terms of odds.

Definition 7.2.1 In a probability model with sample space S and probability mea-

sure P, the odds in favor of event A ⊂ S is defined to be P(A)/P(Ac), namely, the

ratio of the probability of A to the probability of Ac.

Obviously, large values of the odds in favor of A indicate a strong belief that A is true.

Odds represent another way of presenting probabilities that are convenient in certain

contexts, e.g., horse racing. Bayes factors compare posterior odds with prior odds.

Definition 7.2.2 The Bayes factor BFH0
in favor of the hypothesis H0 : ψ(θ) = ψ0

is defined, whenever the prior probability of H0 is not 0 or 1, to be the ratio of the

posterior odds in favor of H0 to the prior odds in favor of H0, or

BFH0
=

{
5(ψ(θ) = ψ0 | s)

1−5(ψ(θ) = ψ0 | s)

}/{
5(ψ(θ) = ψ0)

1−5(ψ(θ) = ψ0)

}
. (7.2.8)



398 Section 7.2: Inferences Based on the Posterior

So the Bayes factor in favor of H0 is measuring the degree to which the data have

changed the odds in favor of the hypothesis. If BFH0
is small, then the data are provid-

ing evidence against H0 and evidence in favor of H0 when BFH0
is large.

There is a relationship between the posterior probability of H0 being true and

BFH0
. From (7.2.8), we obtain

5(ψ(θ) = ψ0 | s) =
r BFH0

1+ r BFH0

, (7.2.9)

where

r =
5(ψ(θ) = ψ0)

1−5(ψ(θ) = ψ0)

is the prior odds in favor of H0. So, when BFH0
is small, then 5(ψ(θ) = ψ0| s) is

small and conversely.

One reason for using Bayes factors to assess hypotheses is the following result.

This establishes a connection with likelihood ratios.

Theorem 7.2.1 If the prior5 is a mixture5 = p51+(1− p)52, where51(A) =
1,52(A

C ) = 1, and we want to assess the hypothesis H0 : θ ∈ A, then

BFH0
= m1(s)/m2(s),

where mi is the prior predictive of the data under 5i .

PROOF Recall that, if a prior concentrates all of its probability on a set, then the

posterior concentrates all of its probability on this set, too. Then using (7.2.6), we have

BFH0
=

5(A | s)

1−5(A | s)

/
5(A)

1−5(A)
=

pm1(s)

(1− p)m2(s)

/
p

1− p
=

m1(s)

m2(s)
.

Interestingly, Theorem 7.2.1 indicates that the Bayes factor is independent of p.We

note, however, that it is not immediately clear how to interpret the value of BFH0
. In

particular, how large does BFH0
have to be to provide strong evidence in favor of H0?

One approach to this problem is to use (7.2.9), as this gives the posterior probability

of H0, which is directly interpretable. So we can calibrate the Bayes factor. Note,

however, that this requires the specification of p.

EXAMPLE 7.2.13 Location Normal Model (Example 7.2.12 continued)

We now compute the prior predictive under 52. We have that the joint density of

(x1, . . . , xn) given µ equals

(2πσ 2
0)
−n/2 exp

(
−

n − 1

2σ 2
0

s2

)
exp

(
−

n

2σ 2
0

(x̄ − µ)2
)
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and so

m2(x1, . . . , xn)

=

∫ ∞
−∞


(
2πσ 2

0

)−n/2
exp

(
− n−1

2σ 2
0

s2

)
exp

(
− n

2σ 2
0

(x̄ − µ)2
)

×
(
2πτ 2

0

)−1/2
exp

(
− 1

2τ 2
0

(
µ− µ0

)2)
 dµ

= (2πσ 2
0)
−n/2 exp

(
−

n − 1

2σ 2
0

s2

)

× τ−1
0 (2π)−1/2

∫ ∞
−∞

exp

(
−

n

2σ 2
0

(x̄ − µ)2
)

exp

(
−

1

2τ 2
0

(
µ− µ0

)2)
dµ.

Then using (7.1.2), we have

τ−1
0 (2π)−1/2

∫ ∞
−∞

exp

(
−

n

2σ 2
0

(x̄ − µ)2
)

exp

(
−

1

2τ 2
0

(
µ− µ0

)2)
dµ

= τ−1
0 exp

1

2

(
1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)2


× exp

(
−

1

2

(
µ2

0

τ 2
0

+
nx̄2

σ 2
0

))(
n

σ 2
0

+
1

τ 2
0

)−1/2

. (7.2.10)

Therefore,

m2(x1, . . . , xn)

= (2πσ 2
0)
−n/2 exp

(
−

n − 1

2σ 2
0

s2

)
τ−1

0 exp

1

2

(
1

τ 2
0

+
n

σ 2
0

)−1 (
µ0

τ 2
0

+
n

σ 2
0

x̄

)2


× exp

(
−

1

2

(
µ2

0

τ 2
0

+
nx̄2

σ 2
0

))(
n

σ 2
0

+
1

τ 2
0

)−1/2

.

Because 51 is degenerate at µ0, it is immediate that the prior predictive under 51

is given by

m1(x1, . . . , xn) = (2πσ
2
0)
−n/2 exp

(
−

n − 1

2σ 2
0

s2

)
exp

(
−

n

2σ 2
0

(
x̄ − µ0

)2)
.

Therefore, BFH0
equals

exp

(
−

n

2σ 2
0

(
x̄ − µ0

)2)
divided by (7.2.10).
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For example, suppose that µ0 = 0, τ 2
0 = 2, σ 2

0 = 1, n = 10, and x̄ = 0.2. Then

exp

(
−

n

2σ 2
0

(
x̄ − µ0

)2)
= exp

(
−

10

2
(0.2)2

)
= 0.81873,

while (7.2.10) equals

1
√

2
exp

(
1

2

(
1

2
+ 10

)−1

(10 (0.2))2

)
exp

(
−

10 (0.2)2

2

)(
10+

1

2

)−1/2

= 0.21615.

So

BFH0
=

0.81873

0.21615
= 3.7878,

which gives some evidence in favor of H0 : µ = µ0. If we suppose that p = 1/2,
so that we are completely indifferent between H0 being true and not being true, then

r = 1, and (7.2.9) gives

5(µ = 0 | x1, . . . , xn) =
3.7878

1+ 3.7878
= 0.79114,

indicating a large degree of support for H0.

7.2.4 Prediction

Prediction problems arise when we have an unobserved response value t in a sample

space T and observed response s ∈ S. Furthermore, we have the statistical model

{Pθ : θ ∈ �} for s and the conditional statistical model {Qθ (· | s) : θ ∈ �} for t given

s. We assume that both models have the same true value of θ ∈ �. The objective is to

construct a prediction t̃(s) ∈ T, of the unobserved value t, based on the observed data

s. The value of t could be unknown simply because it represents a future outcome.

If we denote the conditional density or probability function (whichever is relevant)

of t by qθ (· | s), the joint distribution of (θ, s, t) is given by

qθ (t | s) fθ (s)π(θ).

Then, once we have observed s (assume here that the distributions of θ and t are ab-

solutely continuous; if not, we replace integrals by sums), the conditional density of

(t, θ), given s, is

qθ (t | s) fθ (s)π(θ)∫
�

∫
T

qθ (t | s) fθ (s)π(θ) dt dθ
=

qθ (t | s) fθ (s)π(θ)∫
� fθ (s)π(θ) dθ

=
qθ (t | s) fθ (s)π(θ)

m(s)
.

Then the marginal posterior distribution of t, known as the posterior predictive of t, is

q(t | s) =

∫
�

qθ (t | s) fθ (s)π(θ)

m(s)
dθ =

∫
�

qθ (t | s)π(θ | s) dθ.
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Notice that the posterior predictive of t is obtained by averaging the conditional density

of t, given (θ, s) , with respect to the posterior distribution of θ.
Now that we have obtained the posterior predictive distribution of t,we can use it to

select an estimate of the unobserved value. Again, we could choose the posterior mode

t̂ or the posterior expectation E(t | x) =
∫

T
tq(t | s) dt as our prediction, whichever is

deemed most relevant.

EXAMPLE 7.2.14 Bernoulli Model

Suppose we want to predict the next independent outcome Xn+1, having observed

a sample (x1, . . . , xn) from the Bernoulli(θ) and θ ∼ Beta(α, β). Here, the future

observation is independent of the observed data. The posterior predictive probability

function of Xn+1 at t is then given by

q(t | x1, . . . , xn)

=

∫ 1

0

θ t (1− θ)1−t 0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)
θnx̄+α−1 (1− θ)n(1−x̄)+β−1 dθ

=
0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)

∫ 1

0

θnx̄+α+t−1 (1− θ)n(1−x̄)+β+(1−t)−1 dθ

=
0(n + α + β)

0(nx̄ + α)0(n(1− x̄)+ β)

0(nx̄ + α + t)0(n(1− x̄)+ β + 1− t)

0(n + α + β + 1)

=

{
nx̄+α

n+α+β t = 1

n(1−x̄)+β
n+α+β t = 0,

which is the probability function of a Bernoulli((nx̄ + α) / (n + α + β)) distribution.

Using the posterior mode as the predictor, i.e., maximizing q(t | x1, . . . , xn) for t,
leads to the prediction

t̂ =

{
1 if nx̄+α

n+α+β ≥
n(1−x̄)+β

n+α+β ,

0 otherwise.

The posterior expectation predictor is given by

E(t | x1, . . . , xn) =
nx̄ + α

n + α + β
.

Note that the posterior mode takes a value in {0, 1}, and the future Xn+1 will be in this

set, too. The posterior mean can be any value in [0, 1].

EXAMPLE 7.2.15 Location Normal Model

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where

µ ∈ R1 is unknown and σ 2
0 is known, and we use the prior given in Example 7.1.2.

Suppose we want to predict a future observation Xn+1, but this time Xn+1 is from the

N

x̄,

(
1

τ 2
0

+
n

σ 2
0

)−1

σ 2
0

 (7.2.11)
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distribution. So, in this case, the future observation is not independent of the observed

data, but it is independent of the parameter. A simple calculation (see Exercise 7.2.9)

shows that (7.2.11) is the posterior predictive distribution of t and so we would predict

t by x̄ , as this is both the posterior mode and mean.

We can also construct a γ -prediction region C(s) for a future value t from the

model {qθ (· | s) : θ ∈ �} . A γ -prediction region for t satisfies Q(C(s) | s ≥ γ ), where

Q(· | s) is the posterior predictive measure for t. One approach to constructing C(s) is

to apply the HPD concept to q(t | s). We illustrate this via several examples.

EXAMPLE 7.2.16 Bernoulli Model (Example 7.2.14 continued)

Suppose we want a γ -prediction region for a future value Xn+1. In Example 7.2.14,

we derived the posterior predictive distribution of Xn+1 to be

Bernoulli

(
nx̄ + α

n + α + β

)
.

Accordingly, a γ -prediction region for t , derived via the HPD concept, is given by

C(x1, . . . , xn) =


{0, 1} if max

{
nx̄+α

n+α+β ,
n(1−x̄)+β

n+α+β

}
≤ γ ,

{1} if γ ≤ max
{

nx̄+α
n+α+β ,

n(1−x̄)+β
n+α+β

}
= nx̄+α

n+α+β ,

{0} if γ ≤ max
{

nx̄+α
n+α+β ,

n(1−x̄)+β
n+α+β

}
= n(1−x̄)+β

n+α+β .

We see that this predictive region contains just the mode or encompasses all possible

values for Xn+1. In the latter case, this is not an informative inference.

EXAMPLE 7.2.17 Location Normal Model (Example 7.2.15 continued)

Suppose we want a γ -prediction interval for a future observation Xn+1 from a

N

x̄,

(
1

τ 2
0

+
n

σ 2
0

)−1

σ 2
0


distribution. As this is also the posterior predictive distribution of Xn+1 and is sym-

metric about x̄, a γ -prediction interval for Xn+1, derived via the HPD concept, is given

by

x̄ ±

(
1

τ 2
0

+
n

σ 2
0

)−1/2

σ 0 z(1+γ )/2.

Summary of Section 7.2

• Based on the posterior distribution of a parameter, we can obtain estimates of

the parameter (posterior modes or means), construct credible intervals for the

parameter (HPD intervals), and assess hypotheses about the parameter (posterior

probability of the hypothesis, Bayesian P-values, Bayes factors).
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• A new type of inference was discussed in this section, namely, prediction prob-

lems where we are concerned with predicting an unobserved value from a sam-

pling model.

EXERCISES

7.2.1 For the model discussed in Example 7.1.1, derive the posterior mean of ψ = θm

where m > 0.

7.2.2 For the model discussed in Example 7.1.2, determine the posterior distribution

of the third quartile ψ = µ+ σ 0z0.75. Determine the posterior mode and the posterior

expectation of ψ.

7.2.3 In Example 7.2.1, determine the posterior expectation and mode of 1/σ 2.

7.2.4 In Example 7.2.1, determine the posterior expectation and mode of σ 2. (Hint:

You will need the posterior density of σ 2 to determine the mode.)

7.2.5 Carry out the calculations to verify the posterior mode and posterior expectation

of θ1 in Example 7.2.4.

7.2.6 Establish that the variance of the θ in Example 7.2.2 is as given in Example 7.2.6.

Prove that this goes to 0 as n→∞.

7.2.7 Establish that the variance of θ1 in Example 7.2.4 is as given in Example 7.2.6.

Prove that this goes to 0 as n→∞.

7.2.8 In Example 7.2.14, which of the two predictors derived there do you find more

sensible? Why?

7.2.9 In Example 7.2.15, prove that the posterior predictive distribution for Xn+1 is as

stated. (Hint: Write the posterior predictive distribution density as an expectation.)

7.2.10 Suppose that (x1, . . . , xn) is a sample from the Exponential(λ) distribution,

where λ > 0 is unknown and λ ∼ Gamma(α0, β0). Determine the mode of posterior

distribution of λ. Also determine the posterior expectation and posterior variance of λ.

7.2.11 Suppose that (x1, . . . , xn) is a sample from the Exponential(λ) distribution

where λ > 0 is unknown and λ ∼ Gamma(α0, β0). Determine the mode of poste-

rior distribution of a future independent observation Xn+1. Also determine the poste-

rior expectation of Xn+1 and posterior variance of Xn+1. (Hint: Problems 3.2.16 and

3.3.20.)

7.2.12 Suppose that in a population of students in a course with a large enrollment, the

mark, out of 100, on a final exam is approximately distributed N (µ, 9). The instructor

places the prior µ ∼ N (65, 1) on the unknown parameter. A sample of 10 marks is

obtained as given below.

46 68 34 86 75 56 77 73 53 64

(a) Determine the posterior mode and a 0.95-credible interval for µ. What does this

interval tell you about the accuracy of the estimate?

(b) Use the 0.95-credible interval for µ to test the hypothesis H0 : µ = 65.

(c) Suppose we assign prior probability 0.5 to µ = 65. Using the mixture prior 5 =
0.551+0.552, where51 is degenerate at µ = 65 and52 is the N (65, 1) distribution,

compute the posterior probability of the null hypothesis.
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(d) Compute the Bayes factor in favor of H0 : µ = 65 when using the mixture prior.

7.2.13 A manufacturer believes that a machine produces rods with lengths in centime-

ters distributed N (µ0, σ
2), where µ0 is known and σ 2 > 0 is unknown, and that the

prior distribution 1/σ 2 ∼ Gamma(α0, β0) is appropriate.

(a) Determine the posterior distribution of σ 2 based on a sample (x1, . . . , xn).

(b) Determine the posterior mean of σ 2.

(c) Indicate how you would assess the hypothesis H0 : σ 2 ≤ σ 2
0.

7.2.14 Consider the sampling model and prior in Exercise 7.1.1.

(a) Suppose we want to estimate θ based upon having observed s = 1. Determine the

posterior mode and posterior mean. Which would you prefer in this situation? Explain

why.

(b) Determine a 0.8 HPD region for θ based on having observed s = 1.

(c) Suppose instead interest was in ψ(θ) = I{1,2}(θ). Identify the prior distribution of

ψ. Identify the posterior distribution of ψ based on having observed s = 1. Determine

a 0.5 HPD region for ψ.

7.2.15 For an event A, we have that P(Ac) = 1− P(A).

(a) What is the relationship between the odds in favor of A and the odds in favor of Ac?

(b) When A is a subset of the parameter space, what is the relationship between the

Bayes factor in favor of A and the Bayes factor in favor of Ac?

7.2.16 Suppose you are told that the odds in favor of a subset A are 3 to 1. What is the

probability of A? If the Bayes factor in favor of A is 10 and the prior probability of A

is 1/2, then determine the posterior probability of A.

7.2.17 Suppose data s is obtained. Two statisticians analyze these data using the same

sampling model but different priors, and they are asked to assess a hypothesis H0. Both

statisticians report a Bayes factor in favor of H0 equal to 100. Statistician I assigned

prior probability 1/2 to H0 whereas statistician II assigned prior probability 1/4 to H0.
Which statistician has the greatest posterior degree of belief in H0 being true?

7.2.18 You are told that a 0.95-credible interval, determined using the HPD criterion,

for a quantity ψ(θ) is given by (−3.3, 2.6). If you are asked to assess the hypothesis

H0 : ψ(θ) = 0, then what can you say about the Bayesian P-value? Explain your

answer.

7.2.19 What is the range of possible values for a Bayes factor in favor of A ⊂ �?

Under what conditions will a Bayes factor in favor of A ⊂ � take its smallest value?

PROBLEMS

7.2.20 Suppose that (x1, . . . , xn) is a sample from the Uniform[0, θ] distribution, where

θ > 0 is unknown, and we have θ ∼ Gamma(α0, β0). Determine the mode of the pos-

terior distribution of θ . (Hint: The posterior is not differentiable at θ = x(n).)

7.2.21 Suppose that (x1, . . . , xn) is a sample from the Uniform[0, θ] distribution, where

θ ∈ (0, 1) is unknown, and we have θ ∼ Uniform[0, 1]. Determine the form of the γ -

credible interval for θ based on the HPD concept.

7.2.22 In Example 7.2.1, write out the integral given in (7.2.2).
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7.2.23 (MV) In Example 7.2.1, write out ithe integral that you would need to evaluate

if you wanted to compute the posterior density of the third quartile of the population

distribution, i.e., ψ = µ+ σ z0.75.

7.2.24 Consider the location normal model discussed in Example 7.1.2 and the popu-

lation coefficient of variation ψ = σ 0/µ.

(a) Show that the posterior expectation of ψ does not exist. (Hint: Show that we can

write the posterior expectation as

∫ ∞
−∞

σ 0

a + bz

1
√

2π
e−z2/2 dz,

where b > 0, and show that this integral does not exist by considering the behavior of

the integrand at z = −a/b.)

(b) Determine the posterior density of ψ.

(c) Show that you can determine the posterior mode of ψ by evaluating the posterior

density at two specific points. (Hint: Proceed by maximizing the logarithm of the pos-

terior density using the methods of calculus.)

7.2.25 (MV) Suppose that (θ1, . . . , θk−1) ∼ Dirichlet(α1, α2, . . . , αk).

(a) Prove that (θ1, . . . , θk−2) ∼ Dirichlet(α1, α2, . . . , αk−1 + αk). (Hint: In the inte-

gral to integrate out θk−1,make the transformation θk−1 → θk−1/(1−θ1−· · ·−θk−2).)

(b) Prove that θ1 ∼ Beta(α1, α2 + · · · + αk). (Hint: Use part (a).)

(c) Suppose (i1, . . . , ik) is a permutation of (1, . . . , k). Prove that (θ i1 , . . . , θ ik−1
) ∼

Dirichlet(αi1 , αi2 , . . . , αik ). (Hint: What is the Jacobian of this transformation?)

(d) Prove that θ i ∼ Beta(αi , α−i ). (Hint: Use parts (b) and (c).)

7.2.26 (MV) In Example 7.2.4, show that the plug-in MLE of θ1 is given by x1/n, i.e.,

find the MLE of (θ1, . . . , θk) and determine the first coordinate. (Hint: Show there is

a unique solution to the score equations and then use the facts that the log-likelihood is

bounded above and goes to −∞ whenever θ i → 0.)

7.2.27 Compare the results obtained in Exercises 7.2.3 and 7.2.4. What do you con-

clude about the invariance properties of these estimation procedures? (Hint: Consider

Theorem 6.2.1.)

7.2.28 In Example 7.2.5, establish that the posterior variance of µ is as stated in Ex-

ample 7.2.6. (Hint: Problem 4.6.16.)

7.2.29 In a prediction problem, as described in Section 7.2.4, derive the form of the

prior predictive density for t when the joint density of (θ, s, t) is qθ (t | s) fθ (s)π(θ)
(assume s and θ are real-valued).

7.2.30 In Example 7.2.16, derive the posterior predictive probability function of

(Xn+1, Xn+2), having observed x1, . . . , xn when X1, . . . , Xn, Xn+1, Xn+2 are inde-

pendently and identically distributed (i.i.d.) Bernoulli(θ).

7.2.31 In Example 7.2.15, derive the posterior predictive distribution for Xn+1, having

observed x1, . . . , xn when X1, . . . , Xn, Xn+1 are i.i.d. N (µ, σ 2
0). (Hint: We can write

Xn+1 = µ + σ 0 Z , where Z ∼ N (0, 1) is independent of the posterior distribution of

µ.)
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7.2.32 For the context of Example 7.2.1, prove that the posterior predictive distribution

of an additional future observation Xn+1 from the population distribution has the same

distribution as

µx +

√√√√2βx

((
n + 1/τ 2

0

)−1
+ 1

)
(2α0 + n)

T ,

where T ∼ t (2α0 + n). (Hint: Note that we can write Xn+1 = µ + σU , where

U ∼ N (0, 1) independent of X1, . . . , Xn, µ, σ and then reason as in Example 7.2.1.)

7.2.33 In Example 7.2.1, determine the form of an exact γ -prediction interval for an

additional future observation Xn+1 from the population distribution, based on the HPD

concept. (Hint: Use Problem 7.2.32.)

7.2.34 Suppose that 51 and 52 are discrete probability distributions on the parameter

space �. Prove that when the prior 5 is a mixture 5 = p51 + (1− p)52, then the

prior predictive for the data s is given by m(s) = pm1(s) + (1 − p)m2(s), and the

posterior probability measure is given by (7.2.6).

7.2.35 (MV) Suppose that θ = (θ1, θ2) ∈ R2 and h(θ1, θ2) = (ψ(θ), λ(θ)) ∈ R2.

Assume that h satisfies the necessary conditions and establish (7.2.1). (Hint: Theorem

2.9.2.)

CHALLENGES

7.2.36 Another way to assess the null hypothesis H0 : ψ(θ) = ψ0 is to compute the

P-value

5

(
ω(ψ(θ) | s)

ω(ψ(θ))
≤
ω(ψ0 | s)

ω(ψ0)

∣∣∣∣ s

)
(7.2.12)

where ω is the marginal prior density or probability function of ψ.We call (7.2.12) the

observed relative surprise ofH0.

The quantity ω(ψ0 | s)/ω(ψ0) is a measure of how the data s have changed our a

priori belief that ψ0 is the true value of ψ. When (7.2.12) is small, ψ0 is a surprising

value for ψ , as this indicates that the data have increased our belief more for other

values of ψ.

(a) Prove that (7.2.12) is invariant under 1–1 continuously differentiable transforma-

tions of ψ.

(b) Show that a value ψ0 that makes (7.2.12) smallest, maximizes ω(ψ0 | s)/ω(ψ0).
We call such a value a least relative suprise estimate of ψ.

(c) Indicate how to use (7.2.12) to form a γ -credible region, known as a γ -relative

surprise region, for ψ.

(d) Suppose that ψ is real-valued with prior density ω and posterior density ω(· | s)
both continuous and positive at ψ0. Let Aε = (ψ0 − ε, ψ0 + ε). Show that BFAε →
ω(ψ0 | s)/ω(ψ0) as ε ↓ 0. Generalize this to the case where ψ takes its values in an

open subset of Rk . This shows that we can think of the observed relative surprise as a

way of calibrating Bayes factors.
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7.3 Bayesian Computations
In virtually all the examples in this chapter so far, we have been able to work out the

exact form of the posterior distributions and carry out a number of important com-

putations using these. It often occurs, however, that we cannot derive any convenient

form for the posterior distribution. Furthermore, even when we can derive the posterior

distribution, there computations might arise that cannot be carried out exactly — e.g.,

recall the discussion in Example 7.2.1 that led to the integral (7.2.2). These calculations

involve evaluating complicated sums or integrals. Therefore, when we apply Bayesian

inference in a practical example, we need to have available methods for approximating

these quantities.

The subject of approximating integrals is an extensive topic that we cannot deal

with fully here.1 We will, however, introduce several approximation methods that arise

very naturally in Bayesian inference problems.

7.3.1 Asymptotic Normality of the Posterior

In many circumstances, it turns out that the posterior distribution of θ ∈ R1 is approx-

imately normally distributed. We can then use this to compute approximate credible

regions for the true value of θ , carry out hypothesis assessment, etc. One such re-

sult says that, under conditions that we will not describe here, when (x1, . . . , xn) is a

sample from fθ , then

5

(
θ − θ̂ (x1, . . . , xn)

σ̂ (x1, . . . , xn)
≤ z

∣∣∣∣∣ x1, . . . , xn

)
→ 8(z)

as n→∞, where θ̂ (x1, . . . , xn) is the posterior mode, and

σ̂ 2(x1, . . . , xn) =

(
−
∂2 ln(L(θ | x1, . . . , xn)π(θ))

∂θ2

∣∣∣∣
θ=θ̂

)−1

.

Note that this result is similar to Theorem 6.5.3 for the MLE. Actually, we can replace

θ̂ (x1, . . . , xn) by the MLE and replace σ̂ 2(x1, . . . , xn) by the observed information

(see Section 6.5), and the result still holds. When θ is k-dimensional, there is a similar

but more complicated result.

7.3.2 Sampling from the Posterior

Typically, there are many things we want to compute as part of implementing a Bayesian

analysis. Many of these can be written as expectations with respect to the posterior dis-

tribution of θ. For example, we might want to compute the posterior probability content

of a subset A ⊂ �, namely,

5(A | s) = E(IA(θ) | s).

1See, for example, Approximating Integrals via Monte Carlo and Deterministic Methods, by M. Evans

and T. Swartz (Oxford University Press, Oxford, 2000).
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More generally, we want to be able to compute the posterior expectation of some arbi-

trary function w (θ), namely

E(w(θ) | s). (7.3.1)

It would certainly be convenient if we could compute all these quantities exactly,

but quite often we cannot. In fact, it is not really necessary that we evaluate (7.3.1)

exactly. This is because we naturally expect any inference we make about the true

value of the parameter to be subject (different data sets of the same size lead to different

inferences) to sampling error. It is not necessary to carry out our computations to a

much higher degree of precision than what sampling error contributes. For example, if

the sampling error only allows us to know the value of a parameter to within only±0.1
units, then there is no point in computing an estimate to many more digits of accuracy.

In light of this, many of the computational problems associated with implementing

Bayesian inference are effectively solved if we can sample from the posterior for θ.
For when this is possible, we simply generate an i.i.d. sequence θ1, θ2, . . . , θN from

the posterior distribution of θ and estimate (7.3.1) by

w̄ =
1

N

N∑
i=1

w(θ i ).

We know then, from the strong law of large numbers (see Theorem 4.3.2), that w̄
a.s.
→

E(w(θ) | x) as N →∞.
Of course, for any given N , the value of w̄ only approximates (7.3.1); we would like

to know that we have chosen N large enough so that the approximation is appropriately

accurate. When E(w2 (θ) | s) <∞, then the central limit theorem (see Theorem 4.4.3)

tells us that
w̄ − E(w(θ) | s)

σw/
√

N

D
→ N (0, 1)

as N → ∞, where σ 2
w =Var(w(θ) | s). In general, we do not know the value of σ 2

w,

but we can estimate it by

s2
w =

1

N − 1

N∑
i=1

(w(θ i )− w̄)
2

when w (θ) is a quantitative variable, and by s2
w = w̄(1− w̄) when w = IA for A ⊂ �.

As shown in Section 4.4.2, in either case, s2
w is a consistent estimate of σ 2

w. Then, by

Corollary 4.4.4, we have that

w̄ − E(w(θ) | s)

sw/
√

N

D
→ N (0, 1)

as N →∞.

From this result we know that

w̄ ± 3
sw
√

N
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is an approximate 100% confidence interval for E(w(θ) | s), so we can look at 3sw/
√

N

to determine whether or not N is large enough for the accuracy required.

One caution concerning this approach to assessing error is that 3sw/
√

N is itself

subject to error, as sw is an estimate of σw, so this could be misleading. A common

recommendation then is to monitor the value of 3sw/
√

N for successively larger values

of N and stop the sampling only when it is clear that the value of 3sw/
√

N is small

enough for the accuracy desired and appears to be declining appropriately. Even this

approach, however, will not give a guaranteed bound on the accuracy of the computa-

tions, so it is necessary to be cautious.

It is also important to remember that application of these results requires that σ 2
w <

∞. For a bounded w, this is always true, as any bounded random variable always has

a finite variance. For an unbounded w, however, this must be checked — sometimes

this is very difficult to do.

We consider an example where it is possible to exactly sample from the posterior.

EXAMPLE 7.3.1 Location-Scale Normal

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2) distribution where µ ∈ R1

and σ > 0 are unknown, and we use the prior given in Example 7.1.4. The posterior

distribution for (µ, σ 2) developed there is

µ | σ 2, x1, . . . , xn ∼ N

(
µx , (n + 1/τ 2

0)
−1σ 2

)
(7.3.2)

and

1/σ 2 | x1, . . . , xn ∼ Gamma(α0 + n/2, βx ), (7.3.3)

where µx is given by (7.1.7) and βx is given by (7.1.8).

Most statistical packages have built-in generators for gamma distributions and for

the normal distribution. Accordingly, it is very easy to generate a sample (µ1, σ
2
1), . . . ,

(µN , σ
2
N ) from this posterior. We simply generate a value for 1/σ 2

i from the specified

gamma distribution; then, given this value, we generate the value of µi from the speci-

fied normal distribution.

Suppose, then, that we want to derive the posterior distribution of the coefficient

of variation ψ = σ/µ. To do this we generate N values from the joint posterior of

(µ, σ 2), using (7.3.2) and (7.3.3), and compute ψ for each of these. We then know

immediately that ψ1, . . . , ψN is a sample from the posterior distribution of ψ.
As a specific numerical example, suppose that we observed the following sample

(x1, . . . , x15) .

11.6714 1.8957 2.1228 2.1286 1.0751

8.1631 1.8236 4.0362 6.8513 7.6461

1.9020 7.4899 4.9233 8.3223 7.9486

Here, x̄ = 5.2 and s = 3.3. Suppose further that the prior is specified by µ0 = 4, τ 2
0 =

2, α0 = 2, and β0 = 1.
From (7.1.7), we have

µx =

(
15+

1

2

)−1 (
4

2
+ 15 · 5.2

)
= 5.161,
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and from (7.1.8),

βx = 1+
15

2
(5.2)2 +

42

2 · 2
+

14

2
(3.3)2 −

1

2

(
15+

1

2

)−1 (
4

2
+ 15 · 5.2

)2

= 77.578.

Therefore, we generate

1/σ 2 | x1, . . . , xn ∼ Gamma(9.5, 77.578),

followed by

µ | σ 2, x1, . . . , xn ∼ N (5.161, (15.5)−1 σ 2).

See Appendix B for some code that can be used to generate from this joint distribution.

In Figure 7.3.1, we have plotted a sample of N = 200 values of (µ, σ 2) from this

joint posterior. In Figure 7.3.2, we have plotted a density histogram of the 200 values

of ψ that arise from this sample.

76543
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Figure 7.3.1: A sample of 200 values of (µ, σ 2) from the joint posterior in Example 7.3.1

when n = 15, x̄ = 5.2, s = 3.3, µ0 = 4, τ 2
0 = 2, α0 = 2, and β0 = 1.
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Figure 7.3.2: A density histogram of 200 values from the posterior distribution of ψ in

Example 7.3.1.

A sample of 200 is not very large, so we next generated a sample of N = 103 values

from the posterior distribution of ψ. A density histogram of these values is provided

in Figure 7.3.3. In Figure 7.3.4, we have provided a density histogram based on a

sample of N = 104 values. We can see from this that at N = 103, the basic shape of

the distribution has been obtained, although the right tail is not being very accurately

estimated. Things look better in the right tail for N = 104, but note there are still some

extreme values quite disconnected from the main mass of values. As is characteristic

of most distributions, we will need very large values of N to accurately estimate the

tails. In any case, we have learned that this distribution is skewed to the right with a

long right tail.
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Figure 7.3.3: A density histogram of 1000 values from the posterior distribution of ψ in

Example 7.3.1.
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Figure 7.3.4: A density histogram of N = 104 values from the posterior distribution of ψ in

Example 7.3.1.

Suppose we want to estimate

5(ψ ≤ 0.5 | x1, . . . , xn) = E(I(−∞,0.5)(ψ) | x1, . . . , xn).

Now w = I(−∞,0.5) is bounded so its posterior variance exists. In the following table,

we have recorded the estimates for each N together with the standard error based on

each of the generated samples. We have included some code for computing these

estimates and their standard errors in Appendix B. Based on the results from N = 104,
it would appear that this posterior probability is in the interval 0.289 ± 3 (0.0045) =
[0.2755, 0.3025].

N Estimate of 5(ψ ≤ 0.5 | x1, . . . , xn) Standard Error

200 0.265 0.0312

103 0.271 0.0141

104 0.289 0.0045

This example also demonstrates an important point. It would be very easy for us to

calculate the sample mean of the values of ψ generated from its posterior distribution

and then consider this as an estimate of the posterior mean of ψ. But Problem 7.2.24

suggests (see Problem 7.3.15) that this mean will not exist. Accordingly, a Monte Carlo

estimate of this quantity does not make any sense! So we must always check first that

any expectation we want to estimate exists, before we proceed with some estimation

procedure.

When we cannot sample directly from the posterior, then the methods of the fol-

lowing section are needed.

7.3.3 Sampling from the Posterior Via Gibbs Sampling (Advanced)

Sampling from the posterior, as described in Section 7.3.2, is very effective, when it

can be implemented. Unfortunately, it is often difficult or even impossible to do this
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directly, as we did in Example 7.3.1. There are, however, a number of algorithms that

allow us to approximately sample from the posterior. One of these, known as Gibbs

sampling, is applicable in many statistical contexts.

To describe this algorithm, suppose we want to generate samples from the joint

distribution of (Y1, . . . , Yk) ∈ Rk . Further suppose that we can generate from each of

the full conditional distributions Yi | Y−i = y−i , where

Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yk),

namely, we can generate from the conditional distribution of Yi given the values of all

the other coordinates. The Gibbs sampler then proceeds iteratively as follows.

1. Specify an initial value (y1(0), . . . , yk(0)) for (Y1, . . . , Yk).

2. For N > 0, generate Yi(N ) from its conditional distribution given

(y1(N ), . . . , yi−1(N ), yi+1(N−1), . . . , yk(N−1)) for each i = 1, . . . , k.

For example, if k = 3, we first specify (y1(0), y2(0), y3(0)). Then we generate

Y1(1) | Y2(0) = y2(0), Y3(0) = y3(0)

Y2(1) | Y1(1) = y1(1), Y3(0) = y3(0)

Y3(1) | Y1(1) = y1(1), Y2(1) = y2(1)

to obtain (Y1(1), Y2(1), Y3(1)). Next we generate

Y1(2) | Y2(1) = y2(1), Y3(1) = y3(1)

Y2(2) | Y1(2) = y1(2), Y3(1) = y3(1)

Y3(2) | Y1(2) = y1(2), Y2(2) = y2(2)

to obtain (Y1(2), Y2(2), Y3(2)), etc. Note that we actually did not need to specify Y1(0),
as it is never used.

It can then be shown (see Section 11.3) that, in fairly general circumstances, (Y1(N ),
. . . , Yk(N )) converges in distribution to the joint distribution of (Y1, . . . , Yk) as N →
∞. So for large N , we have that the distribution of (Y1(N ), . . . , Yk(N )) is approximately

the same as the joint distribution of (Y1, . . . , Yk) from which we want to sample. So

Gibbs sampling provides an approximate method for sampling from a distribution of

interest.

Furthermore, and this is the result that is most relevant for simulations, it can be

shown that, under conditions,

w̄ =
1

N

N∑
i=1

w(Y1(i), . . . , Yk(i)

a.s.
)→ E(w(Y1, . . . , Yk)).

Estimation of the variance of w̄ is different than in the i.i.d. case, where we used the

sample variance, because now the w(Y1(i), . . . , Yk(i)) terms are not independent.

There are several approaches to estimating the variance of w̄, but perhaps the most

commonly used is the technique of batching. For this we divide the sequence

w(Y1(0), . . . , Yk(0)), . . . , w(Y1(N ), . . . , Yk(N ))
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into N/m nonoverlapping sequential batches of size m (assuming here that N is divisi-

ble by m), calculate the mean in each batch obtaining w̄1, . . . , w̄N/m , and then estimate

the variance of w̄ by

s2
b

N/m
, (7.3.4)

where s2
b is the sample variance obtained from the batch means, i.e.,

s2
b =

1

N/m − 1

N/m∑
i=1

(w̄i − w̄)
2 .

It can be shown that (Y1(i), . . . , Yk(i)) and (Y1(i+m), . . . , Yk(i+m)) are approximately

independent for m large enough. Accordingly, we choose the batch size m large enough

so that the batch means are approximately independent, but not so large as to leave

very few degrees of freedom for the estimation of the variance. Under ideal conditions,

w̄1, . . . , w̄N/m is an i.i.d. sequence with sample mean

w̄ =
1

N/m

N/m∑
i=1

w̄i ,

and, as usual, we estimate the variance of w̄ by (7.3.4).

Sometimes even Gibbs sampling cannot be directly implemented because we can-

not obtain algorithms to generate from all the full conditionals. There are a variety

of techniques for dealing with this, but in many statistical applications the technique

of latent variables often works. For this, we search for some random variables, say

(V1, . . . , Vl) , where each Yi is a function of (V1, . . . , Vl) and such that we can apply

Gibbs sampling to the joint distribution of (V1, . . . , Vl) . We illustrate Gibbs sampling

via latent variables in the following example.

EXAMPLE 7.3.2 Location-Scale Student

Suppose now that (x1, . . . , xn) is a sample from a distribution that is of the form X =
µ + σ Z , where Z ∼ t (λ) (see Section 4.6.2 and Problem 4.6.14). If λ > 2, then µ is

the mean and σ(λ/(λ−2))1/2 is the standard deviation of the distribution (see Problem

4.6.16). Note that λ = ∞ corresponds to normal variation, while λ = 1 corresponds to

Cauchy variation.

We will fix λ at some specified value to reflect the fact that we are interested in

modeling situations in which the variable under consideration has a distribution with

longer tails than the normal distribution. Typically, this manifests itself in a histogram

of the data with a roughly symmetric shape but exhibiting a few extreme values out in

the tails, so a t (λ) distribution might be appropriate.

Suppose we place the prior on (µ, σ 2), given byµ | σ 2 ∼ N (µ0, τ
2
0σ

2) and 1/σ 2 ∼
Gamma

(
α0, β0

)
. The likelihood function is given by

(
1

σ 2

)n/2 n∏
i=1

[
1+

1

λ

(
xi − µ

σ

)2
]−(λ+1)/2

, (7.3.5)
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hence the posterior density of
(
µ, 1/σ 2

)
is proportional to

(
1

σ 2

)n/2 n∏
i=1

[
1+

1

λ

(
xi − µ

σ

)2
]−(λ+1)/2

×

(
1

σ 2

)1/2

exp

(
−

1

2τ 2
0σ

2

(
µ− µ0

)2)( 1

σ 2

)α0−1

exp

(
−
β0

σ 2

)
.

This distribution is not immediately recognizable, and it is not at all clear how to gen-

erate from it.

It is natural, then, to see if we can implement Gibbs sampling. To do this directly,

we need an algorithm to generate from the posterior of µ given the value of σ 2, and

an algorithm to generate from the posterior of σ 2 given µ. Unfortunately, neither of

these conditional distributions is amenable to the techniques discussed in Section 2.10,

so we cannot implement Gibbs sampling directly.

Recall, however, that when V ∼ χ2(λ) = Gamma(λ/2, 1/2) (see Problem 4.6.13)

independent of Y ∼ N (µ, σ 2), then (Problem 4.6.14)

Z =
Y − µ

σ
√

V/λ
∼ t (λ).

Therefore, writing

X = µ+ σ Z = µ+ σ
Y − µ

σ
√

V/λ
= µ+

Y − µ
√

V/λ
,

we have that X | V = v ∼ N (µ, σ 2λ/v).
We now introduce the n latent or hidden variables (V1, . . . , Vn) , which are i.i.d.

χ2(λ) and suppose X i | Vi = υi ∼ N (µ, σ 2λ/υi ). The Vi are considered latent be-

cause they are not really part of the problem formulation but have been added here for

convenience (as we shall see). Then, noting that there is a factor v
1/2
i associated with

the density of X i | Vi = υi , the joint density of the values (X1, V1) , . . . , (Xn, Vn) is

proportional to

(
1

σ 2

)n/2 n∏
i=1

exp
(
−

υi

2σ 2λ
(xi − µ)

2
)
υ
(λ/2)−(1/2)
i exp

(
−
υi

2

)
.

From the above argument, the marginal joint density of (X1, . . . , Xn) (after integrating

out the υi ’s) is proportional to (7.3.5), namely, a sample of n from the distribution

specified by X = µ + σ Z , where Z ∼ t (λ). With the same prior structure as before,

we have that the joint density of

(X1, V1) , . . . , (Xn, Vn) , µ, 1/σ 2
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is proportional to(
1

σ 2

)n/2 n∏
i=1

exp
(
−

υi

2σ 2λ
(xi − µ)

2
)
υ
(λ/2)−(1/2)
i exp

(
−
υi

2

)
×

(
1

σ 2

)1/2

exp

(
−

1

2τ 2
0σ

2

(
µ− µ0

)2)( 1

σ 2

)α0−1

exp

(
−
β0

σ 2

)
. (7.3.6)

In (7.3.6), treat x1, . . . , xn as constants (we observed these values) and consider

the conditional distributions of each of the variables V1, . . . , Vn, µ, 1/σ 2 given all the

other variables. From (7.3.6), we have that the full conditional density of µ is propor-

tional to

exp

{
−

1

2σ 2

(
n∑

i=1

υi

λ
(xi − µ)

2 +
1

τ 2
0

(
µ− µ0

)2)}
,

which is proportional to

exp

{
−

1

2σ 2

[(
n∑

i=1

υi

λ

)
+

1

τ 2
0

]
µ2 +

2

2σ 2

[(
n∑

i=1

υi

λ
xi

)
+
µ0

τ 2
0

]
µ

}
.

From this, we immediately deduce that

µ | x1, . . . , xn, υ1, . . . , υn, σ
2

∼ N

(
r(υ1, . . . , υn)

[(
n∑

i=1

υi

λ
xi

)
+
µ0

τ 2
0

]
, r(υ1, . . . , υn)σ

2

)
,

where

r(υ1, . . . , υn) =

[(
n∑

i=1

υi

λ

)
+

1

τ 2
0

]−1

.

From (7.3.6), we have that the conditional density of 1/σ 2 is proportional to(
1

σ 2

)(n/2)+α0−(1/2)

exp

{
−

( ∑n
i=1

υi

λ (xi − µ)2

+ 1

τ 2
0

(
µ− µ0

)2
+ 2β0

)
1

2σ 2

}
,

and we immediately deduce that

1

σ 2
| x1, . . . , xn, υ1, . . . , υn, µ

∼ Gamma

(
n

2
+ α0 +

1

2
,

1

2

(
n∑

i=1

υi

λ
(xi − µ)

2 +
1

τ 2
0

(
µ− µ0

)2
+ 2β0

))
.

Finally, the conditional density of Vi is proportional to

υ
(λ/2)−(1/2)
i exp

{
−

[
(xi − µ)2

2σ 2λ
+

1

2

]
υi

}
,
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and it is immediate that

Vi |x1, . . . , xn, υ1, . . . , υi−1, υi+1, . . . , υn, µ, σ
2

∼ Gamma

(
λ

2
+

1

2
,

1

2

(
(xi − µ)2

σ 2λ
+ 1

))
.

We can now easily generate from all these distributions and implement a Gibbs

sampling algorithm. As we are not interested in the values of V1, . . . , Vn, we simply

discard these as we iterate.

Let us now consider a specific computation using the same data and prior as in

Example 7.3.1. The analysis of Example 7.3.1 assumed that the data were coming from

a normal distribution, but now we are going to assume that the data are a sample from

a µ + σ t (3) distribution, i.e., λ = 3. We again consider approximating the posterior

distribution of the coefficient of variation ψ = σ/µ.
We carry out the Gibbs sampling iteration in the order υ1, . . . , υn, µ, 1/σ 2. This

implies that we need starting values only for µ and σ 2 (the full conditionals of the υi

do not depend on the other υ j ). We take the starting value of µ to be x̄ = 5.2 and the

starting value of σ to be s = 3.3. For each generated value of (µ, σ 2), we calculate ψ
to obtain the sequence ψ1, ψ2, . . . , ψN .

The values ψ1, ψ2, . . . , ψN are not i.i.d. from the posterior of ψ . The best we can

say is that

ψm

D
→ ψ ∼ ω(· | x1, . . . , xn)

as m → ∞, where ω (· | x1, . . . , xn) is the posterior density of ψ . Also, values suf-

ficiently far apart in the sequence, will be like i.i.d. values from ω(· | x1, . . . , xn). Thus,

one approach is to determine an appropriate value m and then extractψm, ψ2m, ψ3m, . . .
as an approximate i.i.d. sequence from the posterior. Often it is difficult to determine

an appropriate value for m, however.

In any case, it is known that, under fairly weak conditions,

w̄ =
1

N

N∑
i=1

w(ψ i

a.s.
)→ E(w(ψ) | x1, . . . , xn)

as N →∞. So we can use the whole sequence ψ1, ψ2, . . . , ψN and record a density

histogram for ψ, just as we did in Example 7.3.1. The value of the density histogram

between two cut points will converge almost surely to the correct value as N → ∞.
However, we will have to take N larger when using the Gibbs sampling algorithm than

with i.i.d. sampling, to achieve the same accuracy. For many examples, the effect of the

deviation of the sequence from being i.i.d. is very small, so N will not have to be much

larger. We always need to be cautious, however, and the general recommendation is to

compute estimates for successively higher values of N , only stopping when the results

seem to have stabilized.

In Figure 7.3.5, we have plotted the density histogram of the ψ values that resulted

from 104 iterations of the Gibbs sampler. In this case, plotting the density histogram of

ψ based upon N = 5 × 104 and N = 8 × 104 resulted in only minor deviations from

this plot. Note that this density looks very similar to that plotted in Example 7.3.1, but

it is not quite so peaked and it has a shorter right tail.
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Figure 7.3.5: A density histogram of N = 104 values of ψ generated sequentially via Gibbs

sampling in Example 7.3.2.

We can also estimate 5(ψ ≤ 0.5 | x1, . . . , xn), just as we did in Example 7.3.1,

by recording the proportion of values in the sequence that are smaller than 0.5, i.e.,

w(ψ) = IA(ψ), where A = {θ : ψ ≤ 0.5}. In this case, we obtained the estimate

0.5441, which is quite different from the value obtained in Example 7.3.1. So using a

t (3) distribution to describe the variation in the response has made a big difference in

the results.

Of course, we must also quantify how accurate we believe our estimate is. Using

a batch size of m = 10, we obtained the standard error of the estimate 0.5441 to be

0.00639. When we took the batch size to be m = 20, the standard error of the mean

is 0.00659; with a batch size of m = 40, the standard error of the mean is 0.00668.

So we feel quite confident that we are assessing the error in the estimate appropriately.

Again, under conditions, we have that w̄ is asymptotically normal so that in this case

we can assert that the interval 0.5441±3(0.0066) = [0.5243, 0.5639] contains the true

value of 5(ψ ≤ 0.5 | x1, . . . , xn) with virtual certainty.

See Appendix B for some code that was used to implement the Gibbs sampling

algorithm described here.

It is fair to say that the introduction of Gibbs sampling has resulted in a revolution

in statistical applications due to the wide variety of previously intractable problems

that it successfully handles. There are a number of modifications and closely related

algorithms. We refer the interested reader to Chapter 11, where the general theory of

what is called Markov chain Monte Carlo (MCMC) is discussed.

Summary of Section 7.3

• Implementation of Bayesian inference often requires the evaluation of compli-

cated integrals or sums.
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• If, however, we can sample from the posterior of the parameter, this will often

lead to sufficiently accurate approximations to these integrals or sums via Monte

Carlo.

• It is often difficult to sample exactly from a posterior distribution of interest.

In such circumstances, Gibbs sampling can prove to be an effective method for

generating an approximate sample from this distribution.

EXERCISES

7.3.1 Suppose we have the following sample from an N (µ, 2) distribution, where µ is

unknown.

2.6 4.2 3.1 5.2 3.7 3.8 5.6 1.8 5.3 4.0
3.0 4.0 4.1 3.2 2.2 3.4 4.5 2.9 4.7 5.2

If the prior on µ is Uniform(2, 6), determine an approximate 0.95-credible interval for

µ based on the large sample results described in Section 7.3.1.

7.3.2 Determine the form of the approximate 0.95-credible interval of Section 7.3.1,

for the Bernoulli model with a Beta(α, β) prior, discussed in Example 7.2.2.

7.3.3 Determine the form of the approximate 0.95-credible intervals of Section 7.3.1,

for the location-normal model with an N (µ0, τ
2
0) prior, discussed in Example 7.2.3.

7.3.4 Suppose that X ∼ Uniform[0, 1/θ ] and θ ∼ Exponential(1). Derive a crude

Monte Carlo algorithm, based on generating from a gamma distribution, to generate a

value from the conditional distribution θ | X = x . Generalize this to a sample of n from

the Uniform[0, 1/θ ] distribution. When will this algortithm be inefficient in the sense

that we need a lot of computation to generate a single value?

7.3.5 Suppose that X ∼ N (θ, 1) and θ ∼ Uniform[0, 1]. Derive a crude Monte Carlo

algorithm, based on generating from a normal distribution, to generate from the con-

ditional distribution θ | X = x . Generalize this to a sample of n from the N (θ, 1)
distribution. When will this algortithm be inefficient in the sense that we need a lot of

computation to generate a single value?

7.3.6 Suppose that X ∼ 0.5N (θ, 1) + 0.5N (θ, 2) and θ ∼ Uniform[0, 1]. Derive a

crude Monte Carlo algorithm, based on generating from a mixure of normal distrib-

utions, to generate from the conditional distribution θ | X = x . Generalize this to a

sample of n = 2 from the 0.5N (θ, 1)+ 0.5N (θ, 2) distribution.
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COMPUTER EXERCISES

7.3.7 In the context of Example 7.3.1, construct a density histogram of the posterior

distribution of ψ = µ + σ z0.25, i.e., the population first quartile, using N = 5 × 103

and N = 104, and compare the results. Estimate the posterior mean of this distribution

and assess the error in your approximation. (Hint: Modify the program in Appendix

B.)

7.3.8 Suppose that a manufacturer takes a random sample of manufactured items and

tests each item as to whether it is defective or not. The responses are felt to be i.i.d.

Bernoulli(θ), where θ is the probability that the item is defective. The manufacturer

places a Beta(0.5, 10) distribution on θ. If a sample of n = 100 items is taken and 5

defectives are observed, then, using a Monte Carlo sample with N = 1000, estimate

the posterior probability that θ < 0.1 and assess the error in your estimate.

7.3.9 Suppose that lifelengths (in years) of a manufactured item are known to follow

an Exponential(λ) distribution, where λ > 0 is unknown and for the prior we take λ ∼
Gamma(10, 2). Suppose that the lifelengths 4.3, 6.2, 8.4, 3.1, 6.0, 5.5, and 7.8 were

observed.

(a) Using a Monte Carlo sample of size N = 103, approximate the posterior probability

that λ ∈ [3, 6] and assess the error of your estimate.

(b) Using a Monte Carlo sample of size N = 103, approximate the posterior probability

function of b1/λc (bxc equals the greatest integer less than or equal to x).

(c) Using a Monte Carlo sample of size N = 103, approximate the posterior expecta-

tion of b1/λc and assess the error in your approximation.

7.3.10 Generate a sample of n = 10 from a Pareto(2) distribution. Now pretend you

only know that you have a sample from a Pareto(α) distribution, where α > 0 is

unknown, and place a Gamma(2, 1) prior on α. Using a Monte Carlo sample of size

N = 104, approximate the posterior expectation of 1/ (α + 1) based on the observed

sample, and assess the accuracy of your approximation by quoting an interval that

contains the exact value with virtual certainty. (Hint: Problem 2.10.15.)

PROBLEMS

7.3.11 Suppose X1, . . . , Xn is a sample from the model { fθ : θ ∈ �} and all the reg-

ularity conditions of Section 6.5 apply. Assume that the prior π(θ) is a continuous

function of θ and that the posterior mode θ̂ (X1, . . . , Xn)
a.s.
→ θ when X1, . . . , Xn is a

sample from fθ (the latter assumption holds under very general conditions).

(a) Using the fact that, if Yn
a.s.
→ Y and g is a continuous function, then g(Yn)

a.s.
→ g (Y ),

prove that

−
1

n

∂2 ln(L(θ | x1, . . . , xn)π(θ))

∂θ2

∣∣∣∣
θ=θ̂

a.s.
→ I (θ)

when X1, . . . , Xn is a sample from fθ .

(b) Explain to what extent the large sample approximate methods of Section 7.3.1 de-

pend on the prior if the assumptions just described apply.
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7.3.12 In Exercise 7.3.10, explain why the interval you constructed to contain the pos-

terior mean of 1/ (α + 1) with virtual certainty may or may not contain the true value

of 1/ (α + 1).

7.3.13 Suppose that (X, Y ) is distributed Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ). Deter-

mine a Gibbs sampling algorithm to generate from this distribution. Assume that you

have an algorithm for generating from univariate normal distributions. Is this the best

way to sample from this distribution? (Hint: Problem 2.8.27.)

7.3.14 Suppose that the joint density of (X, Y ) is given by fX,Y (x, y) = 8xy for

0 < x < y < 1. Fully describe a Gibbs sampling algorithm for this distribution. In

particular, indicate how you would generate all random variables. Can you design an

algorithm to generate exactly from this distribution?

7.3.15 In Example 7.3.1, prove that the posterior mean of ψ = σ/µ does not exist.

(Hint: Use Problem 7.2.24 and the theorem of total expectation to split the integral into

two parts, where one part has value∞ and the other part has value −∞.)

7.3.16 (Importance sampling based on the prior) Suppose we have an algorithm to

generate from the prior.

(a) Indicate how you could use this to approximate a posterior expectation using im-

portance sampling (see Problem 4.5.21).

(b) What do you suppose is the major weakness is of this approach?

COMPUTER PROBLEMS

7.3.17 In the context of Example 7.3.2, construct a density histogram of the posterior

distribution of ψ = µ+ σ z0.25, i.e., the population first quartile, using N = 104. Esti-

mate the posterior mean of this distribution and assess the error in your approximation.

7.4 Choosing Priors
The issue of selecting a prior for a problem is an important one. Of course, the idea is

that we choose a prior to reflect our a priori beliefs about the true value of θ. Because

this will typically vary from statistician to statistician, this is often criticized as being

too subjective for scientific studies. It should be remembered, however, that the sam-

pling model { fθ : θ ∈ �} is also a subjective choice by the statistician. These choices

are guided by the statistician’s judgment. What then justifies one choice of a statistical

model or prior over another?

In effect, when statisticians choose a prior and a model, they are prescribing a joint

distribution for (θ, s). The only way to assess whether or not an appropriate choice

was made is to check whether the observed s is reasonable given this choice. If s is

surprising, when compared to the distribution prescribed by the model and prior, then

we have evidence against the statistician’s choices. Methods designed to assess this

are called model-checking procedures, and are discussed in Chapter 9. At this point,

however, we should recognize the subjectivity that enters into statistical analyses, but

take some comfort that we have a methodology for checking whether or not the choices

made by the statistician make sense.
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Often a statistician will consider a particular family {πλ : λ ∈ 3} of priors for a

problem and try to select a suitable prior πλ0
∈ {πλ : λ ∈ 3}. In such a context the

parameter λ is called a hyperparameter. Note that this family could be the set of all

possible priors, so there is no restriction in this formulation. We now discuss some

commonly used families {πλ : λ ∈ 3} and methods for selecting λ0 ∈ 3.

7.4.1 Conjugate Priors

Depending on the sampling model, the family may be conjugate.

Definition 7.4.1 The family of priors {πλ : λ ∈ 3} for the parameter θ of the model

{ fθ : θ ∈ �} is conjugate, if for all data s ∈ S and all λ ∈ 3 the posterior πλ (· | s) ∈
{πλ : λ ∈ 3}.

Conjugacy is usually a great convenience as we start with some choice λ0 ∈ 3 for

the prior, and then we find the relevant λs ∈ 3 for the posterior, often without much

computation. While conjugacy can be criticized as a mere mathematical convenience,

it has to be acknowledged that many conjugate families offer sufficient variety to allow

for the expression of a wide spectrum of prior beliefs.

EXAMPLE 7.4.1 Conjugate Families

In Example 7.1.1, we have effectively shown that the family of all Beta distributions is

conjugate for sampling from the Bernoulli model. In Example 7.1.2, it is shown that

the family of normal priors is conjugate for sampling from the location normal model.

In Example 7.1.3, it is shown that the family of Dirichlet distributions is conjugate for

Multinomial models. In Example 7.1.4, it is shown that the family of priors specified

there is conjugate for sampling from the location-scale normal model.

Of course, using a conjugate family does not tell us how to select λ0. Perhaps the

most justifiable approach is to use prior elicitation.

7.4.2 Elicitation

Elicitation involves explicitly using the statistician’s beliefs about the true value of θ
to select a prior in {πλ : λ ∈ 3} that reflects these beliefs. Typically, these involve the

statistician asking questions of himself, or of experts in the application area, in such a

way that the answers specify a prior from the family.

EXAMPLE 7.4.2 Location Normal

Suppose we are sampling from an N (µ, σ 2
0) distribution with µ unknown and σ 2

0

known, and we restrict attention to the family {N (µ0, τ
2
0) : µ0 ∈ R1, τ 2

0 > 0} of

priors for µ. So here, λ = (µ0, τ
2
0) and there are two degrees of freedom in this family.

Thus, specifying two independent characteristics specifies a prior.

Accordingly, we could ask an expert to specify two quantiles of his or her prior

distribution for µ (see Exercise 7.4.10), as this specifies a prior in the family. For

example, we might ask an expert to specify a number µ0 such that the true value of µ
was as likely to be greater than as less than µ0, so that µ0 is the median of the prior.
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We might also ask the expert to specify a value υ0 such that there is 99% certainty that

the true value of µ is less than υ0. This of course is the 0.99-quantile of their prior.

Alternatively, we could ask the expert to specify the center µ0 of their prior dis-

tribution and for a constant τ 0 such that µ0 ± 3τ 0 contains the true value of µ with

virtual certainty. Clearly, in this case, µ0 is the prior mean and τ 0 is the prior standard

deviation.

Elicitation is an important part of any Bayesian statistical analysis. If the experts

used are truly knowledgeable about the application, then it seems intuitively clear that

we will improve a statistical analysis by including such prior information.

The process of elicitation can be somewhat involved, however, for complicated

problems. Furthermore, there are various considerations that need to be taken into ac-

count involving, prejudices and flaws in the way we reason about probability outside of

a mathematical formulation. See Garthwaite, Kadane and O’Hagan (2005), “Statisti-

cal methods for eliciting probability distributions”, Journal of the American Statistical

Association (Vol. 100, No. 470, pp. 680–700), for a deeper discussion of these issues.

7.4.3 Empirical Bayes

When the choice of λ0 is based on the data s, these methods are referred to as empirical

Bayesian methods. Logically, such methods would seem to violate a basic principle

of inference, namely, the principle of conditional probability. For when we compute

the posterior distribution of θ using a prior based on s, in general this is no longer

the conditional distribution of θ given the data. While this is certainly an important

concern, in many problems the application of empirical Bayes leads to inferences with

satisfying properties.

For example, one empirical Bayesian method is to compute the prior predictive

mλ(s) for the data s, and then base the choice of λ on these values. Note that the

prior predictive is like a likelihood function for λ (as it is the density or probability

function for the observed s), and so the methods of Chapter 6 apply for inference about

λ. For example, we could select the value of λs that maximizes mλ(s). The required

computations can be extensive, as λ is typically multidimensional. We illustrate with a

simple example.

EXAMPLE 7.4.3 Bernoulli

Suppose we have a sample x1, . . . , xn from a Bernoulli(θ) distribution and we contem-

plate putting a Beta(λ, λ) prior on θ for some λ > 0. So the prior is symmetric about

1/2 and the spread in this distribution is controlled by λ. Since the prior mean is 1/2

and the prior variance is λ2/[(2λ + 1)(2λ)2] = 1/4(2λ + 1)→ 0 as λ→∞, we see

that choosing λ large leads to a very precise prior. Then we have that

mλ(x1, . . . , xn) =
0(2λ)

02(λ)

∫ 1

0

θnx̄+λ−1(1− θ)n(1−x̄)+λ−1 dθ

=
0(2λ)

02(λ)

0(nx̄ + λ)0(n(1− x̄)+ λ)

0(n + 2λ)
.
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It is difficult to find the value of λ that maximizes this, but for real data we can tabulate

and plot mλ(x1, . . . , xn) to obtain this value. More advanced computational methods

can also be used.

For example, suppose that n = 20 and we obtained nx̄ = 5 as the number of 1’s

observed. In Figure 7.4.1 we have plotted the graph of mλ(x1, . . . , xn) as a function of

λ. We can see from this that the maximum occurs near λ = 2. More precisely, from a

tabulation we determine that λ = 2.3 is close to the maximum. Accordingly, we use

the Beta(5+ 2.3, 15+ 2.3) = Beta(7.3, 17.3) distribution for inferences about θ.

20151050

0.000004

0.000003

0.000002

0.000001

0.000000

lambda

pr
io

r
pr

ed
ic

tiv
e

Figure 7.4.1: Plot of mλ(x1, . . . , xn) in Example 7.4.3.

There are many issues concerning empirical Bayes methods. This represents an

active area of statistical research.

7.4.4 Hierarchical Bayes

An alternative to choosing a prior for θ in {πλ : λ ∈ 3} consists of putting yet another

prior distribution ω, called a hyperprior, on λ. This approach is commonly called hi-

erarchical Bayes. The prior for θ basically becomes π(θ) =
∫
3 πλ(θ)ω(λ) dλ, so we

have in effect integrated out the hyperparameter. The problem then is how to choose

the prior ω. In essence, we have simply replaced the problem of choosing the prior

on θ with choosing the hyperprior on λ. It is common, in applications using hierarchi-

cal Bayes, that default choices are made for ω, although we could also make use of

elicitation techniques. We will discuss this further in Section 7.4.5.

So in this situation, the posterior density of θ is equal to

π(θ | s) =
fθ (s)

∫
3 πλ(θ)ω(λ) dλ

m(s)
=

∫
3

fθ (s)πλ(θ)

mλ(s)

mλ(s)ω(λ)

m(s)
dλ,

where m(s) =
∫
3

∫
� fθ (s)πλ(θ)ω (λ) dθ dλ =

∫
3 mλ(s)ω(λ) dλ and, for fixed λ,

mλ(s) =
∫

fθ (s)πλ(θ) dθ (assuming λ is continuous with prior density given by ω).
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Note that the posterior density of λ is mλ(s)ω(λ)/m(s) while fθ (s)πλ(θ)/mλ(s) is the

posterior density of θ given λ.
Therefore, we can use π(θ | s) for inferences about the model parameter θ (e.g.,

estimation, credible regions, and hypothesis assessment) and mλ(s)ω(λ)/m(s) for in-

ferences about λ. Typically, however, we are not interested in λ and in fact it doesn’t

really make sense to talk about the “true” value of λ. The true value of θ corresponds

to the distribution that actually produced the observed data s, at least when the model

is correct, while we are not thinking of λ as being generated from ω. This also implies

another distinction between θ and λ. For θ is part of the likelihood function based on

how the data was generated, while λ is not.

EXAMPLE 7.4.4 Location-Scale Normal

Suppose the situation is as is discussed in Example 7.1.4. In that case, both µ and

σ 2 are part of the likelihood function and so are model parameters, while µ0, τ
2
0, α0,

and β0 are not, and so they are hyperparameters. To complete this specification as a

hierarchical model, we need to specify a prior ω(µ0, τ
2
0, α0, β0), a task we leave to a

higher-level course.

7.4.5 Improper Priors and Noninformativity

One approach to choosing a prior, and to stop the chain of priors in a hierarchical Bayes

approach, is to prescribe a noninformative prior based on ignorance. Such a prior is

also referred to as a default prior or reference prior. The motivation is to specify a

prior that puts as little information into the analysis as possible and in some sense

characterizes ignorance. Surprisingly, in many contexts, statisticians have been led to

choose noninformative priors that are improper, i.e.,
∫
� π(θ) dθ = ∞, so they do not

correspond to probability distributions.

The idea here is to give a rule such that, if a statistician has no prior beliefs about

the value of a parameter or hyperparameter, then a prior is prescribed that reflects this.

In the hierarchical Bayes approach, one continues up the chain until the statistician

declares ignorance, and a default prior completes the specification.

Unfortunately, just how ignorance is to be expressed turns out to be a rather subtle

issue. In many cases, the default priors turn out to be improper, i.e., the integral or

sum of the prior over the whole parameter space equals∞, e.g.,
∫
� π(θ) dθ = ∞, so

the prior is not a probability distribution. The interpretation of an improper prior is not

at all clear, and their use is somewhat controversial. Of course, (s, θ) no longer has a

joint probability distribution when we are using improper priors, and we cannot use the

principle of conditional probability to justify basing our inferences on the posterior.

There have been numerous difficulties associated with the use of improper priors,

which is perhaps not surprising. In particular, it is important to note that there is no

reason in general for the posterior of θ to exist as a proper probability distribution

when π is improper. If an improper prior is being used, then we should always check

to make sure the posterior is proper, as inferences will not make sense if we are using

an improper posterior.
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When using an improper prior π , it is completely equivalent to instead use the prior

cπ for any c > 0, for the posterior under π is proper if and only if the posterior under

cπ is proper; then the posteriors are identical (see Exercise 7.4.6).

The following example illustrates the use of an improper prior.

EXAMPLE 7.4.5 Location Normal Model with an Improper Prior

Suppose that (x1, . . . , xn) is a sample from an N (µ, σ 2
0) distribution, where µ ∈ � =

R1 is unknown and σ 2
0 is known.Many arguments for default priors in this context lead

to the choice π(µ) = 1, which is clearly improper.

Proceeding as in Example 7.1.2, namely, pretending that this π is a proper proba-

bility density, we get that the posterior density of µ is proportional to

exp

(
−

n

2σ 2
0

(x̄ − µ)2
)

.

This immediately implies that the posterior distribution of µ is N (x̄, σ 2
0/n). Note

that this is the same as the limiting posterior obtained in Example 7.1.2 as τ 0 → ∞,
although the point of view is quite different.

One commonly used method of selecting a default prior is to use, when it is avail-

able, the prior given by I 1/2 (θ) when θ ∈ R1 (and by (det I (θ))1/2 in the multidimen-

sional case), where I is the Fisher information for the statistical model as defined in

Section 6.5. This is referred to as Jeffreys’ prior. Note that Jeffreys’ prior is dependent

on the model.

Jeffreys’ prior has an important invariance property. From Challenge 6.5.19, we

have that, under some regularity conditions, if we make a 1–1 transformation of the

real-valued parameter θ via ψ = 9(θ), then the Fisher information of ψ is given by

I

(
9−1 (ψ)

)((
9−1

)′
(ψ)

)2

.

Therefore, the default Jeffreys’ prior for ψ is

I 1/2
(
9−1 (ψ)

) ∣∣∣∣(9−1
)′
(ψ)

∣∣∣∣ . (7.4.1)

Now we see that, if we had started with the default prior I 1/2(θ) for θ and made the

change of variable to ψ, then this prior transforms to (7.4.1) by Theorems 2.6.2 and

2.6.3. A similar result can be obtained when θ is multidimensional.

Jeffreys’ prior often turns out to be improper, as the next example illustrates.

EXAMPLE 7.4.6 Location Normal (Example 7.4.5 continued)

In this case, Jeffreys’ prior is given by π(θ) =
√

n/σ 0, which gives the same posterior

as in Example 7.4.5. Note that Jeffreys’ prior is effectively a constant and hence the

prior of Example 7.4.5 is equivalent to Jeffreys’ prior.

Research into rules for determining noninformative priors and the consequences of

using such priors is an active area in statistics. While the impropriety seems counterin-

tuitive, their usage often produces inferences with good properties.
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Summary of Section 7.4

• To implement Bayesian inference, the statistician must choose a prior as well as

the sampling model for the data.

• These choices must be checked if the inferences obtained are supposed to have

practical validity. This topic is discussed in Chapter 9.

• Various techniques have been devised to allow for automatic selection of a prior.

These include empirical Bayes methods, hierarchical Bayes, and the use of non-

informative priors to express ignorance.

• Noninformative priors are often improper. We must always check that an im-

proper prior leads to a proper posterior.

EXERCISES

7.4.1 Prove that the family {Gamma(α, β) : α > 0, β > 0} is a conjugate family of

priors with respect to sampling from the model given by Pareto(λ) distributions with

λ > 0.

7.4.2 Prove that the family {πα,β(θ) : α > 1, β > 0} of priors given by

πα,β(θ) =
θ−α I[β,∞)(θ)

(α − 1)βα−1

is a conjugate family of priors with respect to sampling from the model given by the

Uniform[0, θ] distributions with θ > 0.

7.4.3 Suppose that the statistical model is given by

pθ (1) pθ (2) pθ (3) pθ (4)

θ = a 1/3 1/6 1/3 1/6
θ = b 1/2 1/4 1/8 1/8

and that we consider the family of priors given by

π τ (a) π τ (b)

τ = 1 1/2 1/2
τ = 2 1/3 2/3

and we observe the sample x1 = 1, x2 = 1, x2 = 3.

(a) If we use the maximum value of the prior predictive for the data to determine the

value of τ , and hence the prior, which prior is selected here?

(b) Determine the posterior of θ based on the selected prior.

7.4.4 For the situation described in Exercise 7.4.3, put a uniform prior on the hyperpa-

rameter τ and determine the posterior of θ. (Hint: Theorem of total probability.)

7.4.5 For the model for proportions described in Example 7.1.1, determine the prior

predictive density. If n = 10 and nx̄ = 7, which of the priors given by (α, β) = (1, 1)
or (α, β) = (5, 5) would the prior predictive criterion select for further inferences

about θ?
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7.4.6 Prove that when using an improper prior π, the posterior under π is proper if and

only if the posterior under cπ is proper for c > 0, and then the posteriors are identical.

7.4.7 Determine Jeffreys’ prior for the Bernoulli(θ)model and determine the posterior

distribution of θ based on this prior.

7.4.8 Suppose we are sampling from a Uniform[0, θ], θ > 0 model and we want to

use the improper prior π(θ) ≡ 1.

(a) Does the posterior exist in this context?

(b) Does Jeffreys’ prior exist in this context?

7.4.9 Suppose a student wants to put a prior on the mean grade out of 100 that their

class will obtain on the next statistics exam. The student feels that a normal prior

centered at 66 is appropriate and that the interval (40, 92) should contain 99% of the

marks. Fully identify the prior.

7.4.10 A lab has conducted many measurements in the past on water samples from

a particular source to determine the existence of a certain contaminant. From their

records, it was determined that 50% of the samples had contamination less than 5.3

parts per million, while 95% had contamination less than 7.3 parts per million. If a

normal prior is going to be used for a future analysis, what prior do these data deter-

mine?

7.4.11 Suppose that a manufacturer wants to construct a 0.95-credible interval for the

mean lifetime θ of an item sold by the company. A consulting engineer is 99% certain

that the mean lifetime is less than 50 months. If the prior on θ is an Exponential(λ),
then determine λ based on this information.

7.4.12 Suppose the prior on a model parameter µ is taken to be N (µ0, σ
2
0), where µ0

and σ 2
0 are hyperparameters. The statistician is able to elicit a value for µ0 but feels

unable to do this for σ 2
0. Accordingly, the statistician puts a hyperprior on σ 2

0 given by

1/σ 2
0 ∼ Gamma(α0, 1) for some value of α0. Determine the prior on µ. (Hint: Write

µ = µ0 + σ 0z, where z ∼ N (0, 1).)

COMPUTER EXERCISES

7.4.13 Consider the situation discussed in Exercise 7.4.5.

(a) If we observe n = 10, nx̄ = 7, and we are using a symmetric prior, i.e., α = β, plot

the prior predictive as a function of α in the range (0, 20) (you will need a statistical

package that provides evaluations of the gamma function for this). Does this graph

clearly select a value for α?

(b) If we observe n = 10, nx̄ = 9, plot the prior predictive as a function of α in the

range (0, 20). Compare this plot with that in part (a).

7.4.14 Reproduce the plot given in Example 7.4.3 and verify that the maximum occurs

near λ = 2.3.

PROBLEMS

7.4.15 Show that a distribution in the family {N (µ0, τ
2
0) : µ0 ∈ R1, τ 2

0 > 0} is com-

pletely determined once we specify two quantiles of the distribution.
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7.4.16 (Scale normal model) Consider the family of N (µ0, σ
2) distributions, where

µ0 is known and σ 2 > 0 is unknown. Determine Jeffreys’ prior for this model.

7.4.17 Suppose that for the location-scale normal model described in Example 7.1.4,

we use the prior formed by the Jeffreys’ prior for the location model (just a constant)

times the Jeffreys’ prior for the scale normal model. Determine the posterior distribu-

tion of (µ, σ 2).

7.4.18 Consider the location normal model described in Example 7.1.2.

(a) Determine the prior predictive density m. (Hint: Write down the joint density of

the sample and µ. Use (7.1.2) to integrate out µ and do not worry about getting m into

a recognizable form.)

(b) How would you generate a value (X1, . . . , Xn) from this distribution?

(c) Are X1, . . . , Xn mutually independent? Justify your answer. (Hint: Write X i =
µ+ σ 0 Zi , µ = µ0 + τ 0 Z , where Z , Z1, . . . , Zn are i.i.d. N (0, 1).)

7.4.19 Consider Example 7.3.2, but this time use the prior π(µ, σ 2) = 1/σ 2. De-

velop the Gibbs sampling algorithm for this situation. (Hint: Simply adjust each full

conditional in Example 7.3.2 appropriately.)

COMPUTER PROBLEMS

7.4.20 Use the formulation described in Problem 7.4.17 and the data in the following

table
2.6 4.2 3.1 5.2 3.7 3.8 5.6 1.8 5.3 4.0

3.0 4.0 4.1 3.2 2.2 3.4 4.5 2.9 4.7 5.2

generate a sample of size N = 104 from the posterior. Plot a density histogram estimate

of the posterior density of ψ = σ/µ based on this sample.

CHALLENGES

7.4.21 When θ = (θ1, θ2), the Fisher information matrix I (θ1, θ2) is defined in Prob-

lem 6.5.15. The Jeffreys’ prior is then defined as (det I (θ1, θ2))
1/2. Determine Jef-

freys’ prior for the location-scale normal model and compare this with the prior used

in Problem 7.4.17.

DISCUSSION TOPICS

7.4.22 Using empirical Bayes methods to determine a prior violates the Bayesian prin-

ciple that all unknowns should be assigned probability distributions. Comment on this.

Is the hierarchical Bayesian approach a solution to this problem?
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7.5 Further Proofs (Advanced)
Derivation of the Posterior Distribution for the Location-Scale
Normal Model

In Example 7.1.4, the likelihood function is given by

L(θ | x1, . . . , xn) = (2πσ
2)−n/2 exp

(
−

n

2σ 2
(x̄ − µ)2

)
exp

(
−

n − 1

2σ 2
s2

)
.

The prior on (µ, σ 2) is given by µ | σ 2 ∼ N(µ0, τ
2
0σ

2) and 1/σ 2 ∼Gamma(α0, β0),

where µ0, τ
2
0, α0 and β0 are fixed and known.

The posterior density of (µ, σ−2) is then proportional to the likelihood times the

joint prior. Therefore, retaining only those parts of the likelihood and the prior that

depend on µ and σ 2, the joint posterior density is proportional to{(
1

σ 2

)n/2

exp
(
−

n

2σ 2
(x̄ − µ)2

)
exp

(
−

n − 1

2σ 2
s2

)}
×{(

1

σ 2

)1/2

exp

(
−

1

2τ 2
0σ

2

(
µ− µ0

)2)}{( 1

σ 2

)α0−1

exp

(
−
β0

σ 2

)}

= exp

(
−

n

2σ 2
(x̄ − µ)2 −

1

2τ 2
0σ

2

(
µ− µ0

)2)( 1

σ 2

)α0+n/2−1/2

×

exp

(
−

[
β0 +

n − 1

2
s2

]
1

σ 2

)
= exp

(
−

1

2σ 2

[(
n +

1

τ 2
0

)
µ2 − 2

(
nx̄ +

µ0

τ 2
0

)
µ

])
×

(
1

σ 2

)α0+n/2−1/2

exp

(
−

[
β0 +

n

2
x̄2 +

1

2τ 2
0

µ2
0 +

n − 1

2
s2

]
1

σ 2

)

=

(
1

σ 2

)1/2

exp

− 1

2σ 2

(
n +

1

τ 2
0

)µ− (n +
1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)2
×

(
1

σ 2

)α0+n/2−1

exp

−
 β0 +

n
2
x̄2 + 1

2τ 2
0

µ2
0 +

n−1
2

s2

− 1
2

(
n + 1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)2

 1

σ 2


From this, we deduce that the posterior distribution of

(
µ, σ 2

)
is given by

µ | σ 2, x ∼ N

µx ,

(
n +

1

τ 2
0

)−1

σ 2
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and
1

σ 2
| x ∼ Gamma(α0 + n/2, βx ),

where

µx =

(
n +

1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)
and

βx = β0 +
n

2
x̄2 +

µ2
0

2τ 2
0

+
n − 1

2
s2 −

1

2

(
n +

1

τ 2
0

)−1 (
µ0

τ 2
0

+ nx̄

)2

= β0 +
n − 1

2
s2 +

1

2

n(x̄ − µ0)
2

1+ nτ 2
0

.

Derivation of J (θ(ψ0, λ)) for the Location-Scale Normal

Here we have that

ψ = ψ(µ, σ−2) =
σ

µ
=

1

µ

(
1

σ 2

)−1/2

and

λ = λ(µ, σ−2) =
1

σ 2
.

We have that∣∣∣∣∣∣∣∣det


∂ψ
∂µ

∂ψ

∂
(

1

σ2

)
∂λ
∂µ

∂λ

∂
(

1

σ2

)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 −µ−2
(

1

σ 2

)−1/2
− 1

2
µ−1

(
1

σ 2

)−3/2

0 1

∣∣∣∣∣∣
=

∣∣∣∣∣det

(
−ψ2λ1/2 − 1

2
ψλ−1

0 1

)∣∣∣∣∣ = ψ2λ1/2,

and so

J (θ(ψ0, λ)) = (ψ
2λ1/2)−1.




