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In this chapter, we discuss some of the most basic approaches to inference. In essence,
we want our inferences to depend only on the model P : and the data s.
These methods are very minimal in the sense that they require few assumptions. While
successful for certain problems, it seems that the additional structure of Chapter 7 or
Chapter 8 is necessary in more involved situations.

The likelihood function is one of the most basic concepts in statistical inference.
Entire theories of inference have been constructed based on it. We discuss likeli­
hood methods in Sections 6.1, 6.2, 6.3, and 6.5. In Section 6.4, we introduce some
distribution­free methods of inference. These are not really examples of likelihood
methods, but they follow the same basic idea of having the inferences depend on as
few assumptions as possible.

6.1 The Likelihood Function
Likelihood inferences are based only on the data s and the model P : — the
set of possible probability measures for the system under investigation From these
ingredients we obtain the basic entity of likelihood inference, namely, the likelihood
function.

To motivate the definition of the likelihood function, suppose we have a statistical
model in which each P is discrete, given by probability function f Having observed
s consider the function L s defined on the parameter space and taking values in
R1, given by

L s f s
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298 Section 6.1: The Likelihood Function

We refer to L s as the likelihood function determined by the model and the data.
The value L s is called the likelihood of Note that for the likelihood function,
we are fixing the data and varying the value of the parameter.

We see that f s is just the probability of obtaining the data s when the true value
of the parameter is This imposes a belief ordering on , namely, we believe in 1 as
the true value of over 2 whenever f 1 s f 2 s This is because the inequality
says that the data are more likely under 1 than 2 We are indifferent between 1 and

2 whenever f 1 s f 2 s . Likelihood inference about is based on this ordering.
It is important to remember the correct interpretation of L s The value L s

is the probability of s given that is the true value — it is not the probability of given
that we have observed s Also, it is possible that the value of L s is very small for
every value of So it is not the actual value of the likelihood that is telling us how
much support to give to a particular , but rather its value relative to the likelihoods of
other possible parameter values.

EXAMPLE 6.1.1
Suppose S 1 2 and that the statistical model is P : 1 2 where P1 is
the uniform distribution on the integers 1 103 and P2 is the uniform distribution
on 1 106 Further suppose that we observe s 10. Then L 1 10 1 103

and L 2 10 1 106. Both values are quite small, but note that the likelihood sup­
ports 1 a thousand times more than it supports 2.

Accordingly, we are only interested in likelihood ratios

L 1 s

L 2 s

for 1 2 when it comes to determining inferences for based on the likelihood
function This implies that any function that is a positive multiple of L s i.e.,
L s cL s for some fixed c 0 can serve equally well as a likelihood
function. We call two likelihoods equivalent if they are proportional in this way. In
general, we refer to any positive multiple of L s as a likelihood function.

EXAMPLE 6.1.2
Suppose that a coin is tossed n 10 times and that s 4 heads are observed. With
no knowledge whatsoever concerning the probability of getting a head on a single
toss, the appropriate statistical model for the data is the Binomial 10 model with

[0 1] The likelihood function is given by

L 4
10

4
4 1 6 (6.1.1)

which is plotted in Figure 6.1.1.
This likelihood peaks at 0 4 and takes the value 0.2508 there. We will ex­

amine uses of the likelihood to estimate the unknown and assess the accuracy of the
estimate. Roughly speaking, however, this is based on where the likelihood takes its
maximum and how much spread there is in the likelihood about its peak.
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Figure 6.1.1: Likelihood function from the Binomial 10 model when s 4 is observed.

There is a range of approaches to obtaining inferences via the likelihood function.
At one extreme is the likelihood principle.

Likelihood Principle: If two model and data combinations yield equivalent
likelihood functions, then inferences about the unknown parameter must
be the same.

This principle dictates that anything we want to say about the unknown value of
must be based only on L s For many statisticians, this is viewed as a very severe
proscription. Consider the following example.

EXAMPLE 6.1.3
Suppose a coin is tossed in independent tosses until four heads are obtained and the
number of tails observed until the fourth head is s 6 Then s is distributed Negative­
Binomial 4 , and the likelihood specified by the observed data is

L 6
9

6
4 1 6

Note that this likelihood function is a positive multiple of (6.1.1).
So the likelihood principle asserts that these two model and data combinations must

yield the same inferences about the unknown . In effect, the likelihood principle says
we must ignore the fact that the data were obtained in entirely different ways. If, how­
ever, we take into account additional model features beyond the likelihood function,
then it turns out that we can derive different inferences for the two situations. In partic­
ular, assessing a hypothesized value 0 can be carried out in different ways when
the sampling method is taken into account. Many statisticians believe this additional
information should be used when deriving inferences.
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As an example of an inference derived from a likelihood function, consider a set of
the form

C s : L s c

for some c 0 The set C s is referred to as a likelihood region. It contains all those
values for which their likelihood is at least c A likelihood region, for some c, seems

like a sensible set to quote as possibly containing the true value of . For, if C s ,
then L s L s for every C s and so is not as well­supported by the
observed data as any value in C s . The size of C s can then be taken as a measure of
how uncertain we are about the true value of .

We are left with the problem, however, of choosing a suitable value for c and, as
Example 6.1.1 seems to indicate, the likelihood itself does not suggest a natural way to
do this. In Section 6.3.2, we will discuss a method for choosing c that is based upon
additional model properties beyond the likelihood function.

So far in this section, we have assumed that our statistical models are comprised
of discrete distributions. The definition of the likelihood is quite natural, as L s
is simply the probability of s occurring when is the true value. This interpretation
is clearly not directly available, however, when we have a continuous model because
every data point has probability 0 of occurring. Imagine, however, that f 1 s f 2 s
and that s R1 Then, assuming the continuity of every f at s we have

P 1 V
b

a
f 1 s dx P 2 V

b

a
f 2 s dx

for every interval V a b containing s that is small enough. We interpret this to
mean that the probability of s occurring when 1 is true is greater than the probability
of s occurring when 2 is true. So the data s support 1 more than 2 A similar
interpretation applies when s Rn for n 1 and V is a region containing s

Therefore, in the continuous case, we again define the likelihood function by L s
f s and interpret the ordering this imposes on the values of exactly as we do

in the discrete case.1 Again, two likelihoods will be considered equivalent if one is a
positive multiple of the other.

Now consider a very important example.

EXAMPLE 6.1.4 Location Normal Model
Suppose that x1 xn is an observed independently and identically distributed
(i.i.d.) sample from an N 2

0 distribution where R1 is unknown and
2
0 0 is known. The likelihood function is given by

L x1 xn
n

i 1

f xi
n

i 1

2 2
0

1 2
exp

1

2 2
0

xi
2

1Note, however, that whenever we have a situation in which f 1 s f 2 s we could still have
P 1 V P 2 V for every V containing s and small enough. This implies that 1 is supported more
than 2 rather than these two values having equal support, as implied by the likelihood. This phenomenon
does not occur in the examples we discuss, so we will ignore it here.
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and clearly this simplifies to

L x1 xn 2 2
0

n 2
exp

1

2 2
0

n

i 1

xi 2

2 2
0

n 2
exp

n

2 2
0

x 2 exp
n 1

2 2
0

s2

An equivalent, simpler version of the likelihood function is then given by

L x1 xn exp
n

2 2
0

x 2

and we will use this version.
For example, suppose n 25 2

0 1 and we observe x 3 3 This function is
plotted in Figure 6.1.2.
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Figure 6.1.2: Likelihood from a location normal model based on a sample of 25 with x 3 3.

The likelihood peaks at x 3 3 and the plotted function takes the value 1
there. The likelihood interval

C x : L x1 xn 0 5 3 0645 3 53548

contains all those values whose likelihood is at least 0.5 of the value of the likelihood
at its peak.

The location normal model is impractical for many applications, as it assumes that
the variance is known, while the mean is unknown. For example, if we are interested
in the distribution of heights in a population, it seems unlikely that we will know the
population variance but not know the population mean. Still, it is an important statis­
tical model, as it is a context where inference methods can be developed fairly easily.
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The methodology developed for this situation is often used as a paradigm for inference
methods in much more complicated models.

The parameter need not be one­dimensional. The interpretation of the likelihood
is still the same, but it is not possible to plot it — at least not when the dimension of
is greater than 2.

EXAMPLE 6.1.5 Multinomial Models
In Example 2.8.5, we introduced multinomial distributions. These arise in applications
when we have a categorical response variable s that can take a finite number k of values,
say, 1 k and P s i i .

Suppose, then, that k 3 and we do not know the value of 1 2 3 In this
case, the parameter space is given by

1 2 3 : i 0 for i 1 2 3 and 1 2 3 1

Notice that it is really only two­dimensional, because as soon as we know the value of
any two of the i ’s say, 1 and 2 we immediately know the value of the remaining
parameter, as 3 1 1 2 This fact should always be remembered when we are
dealing with multinomial models.

Now suppose we observe a sample of n from this distribution, say, s1 sn .
The likelihood function for this sample is given by

L 1 2 3 s1 sn
x1
1

x2
2

x3
3 (6.1.2)

where xi is the number of i’s in the sample.
Using the fact that we can treat positive multiples of the likelihood as being equiv­

alent, we see that the likelihood based on the observed counts x1 x2 x3 (since they
arise from a Multinomial n 1 2 3 distribution) is given by

L 1 2 3 x1 x2 x3
x1
1

x2
2

x3
3 .

This is identical to the likelihood (as functions of 1 2 and 3) for the original sam­
ple. It is certainly simpler to deal with the counts rather than the original sample. This
is a very important phenomenon in statistics and is characterized by the concept of
sufficiency, discussed in the next section.

6.1.1 Sufficient Statistics

The equivalence for inference of positive multiples of the likelihood function leads to
a useful equivalence amongst possible data values coming from the same model. For
example, suppose data values s1 and s2 are such that L s1 cL s2 for some
c 0 From the point of view of likelihood, we are indifferent as to whether we
obtained the data s1 or the data s2 as they lead to the same likelihood ratios.

This leads to the definition of a sufficient statistic.
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Definition 6.1.1 A function T defined on the sample space S is called a sufficient
statistic for the model if, whenever T s1 T s2 then

L s1 c s1 s2 L s2

for some constant c s1 s2 0

The terminology is motivated by the fact that we need only observe the value t for the
function T as we can pick any value

s T 1 t s : T s t

and use the likelihood based on s All of these choices give the same likelihood ratios.
Typically, T s will be of lower dimension than s so we can consider replacing s by
T s as a data reduction which simplifies the analysis somewhat.

We illustrate the computation of a sufficient statistic in a simple context.

EXAMPLE 6.1.6
Suppose that S 1 2 3 4 a b and the two probability distributions are
given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 4 1 4 1 4 1 4

Then L 2 L 3 L 4 (e.g., L a 2 1 6 and L b 2 1 4), so the
data values in 2 3 4 all give the same likelihood ratios. Therefore, T : S 0 1
given by T 1 0 and T 2 T 3 T 4 1 is a sufficient statistic. The model
has simplified a bit, as now the sample space for T has only two elements instead of
four for the original model.

The following result helps identify sufficient statistics.

Theorem 6.1.1 (Factorization theorem) If the density (or probability function) for
a model factors as f s h s g T s , where g and h are nonnegative, then T
is a sufficient statistic.

PROOF By hypothesis, it is clear that, when T s1 T s2 we have

L s1 h s1 g T s1
h s1 g T s1

h s2 g T s2
h s2 g T s2

h s1

h s2
h s2 g T s2 c s1 s2 L s2

because g T s1 g T s2

Note that the name of this result is motivated by the fact that we have factored f
as a product of two functions. The important point about a sufficient statistic T is that
we are indifferent, at least when considering inferences about between observing the
full data s or the value of T s . We will see in Chapter 9 that there is information in
the data, beyond the value of T s that is useful when we want to check assumptions.
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Minimal Sufficient Statistics

Given that a sufficient statistic makes a reduction in the data, without losing relevant
information in the data for inferences about we look for a sufficient statistic that
makes the greatest reduction. Such a statistic is called a minimal sufficient statistic.

Definition 6.1.2 A sufficient statistic T for a model is a minimal sufficient statistic,
whenever the value of T s can be calculated once we know the likelihood function
L s .

So a relevant likelihood function can always be obtained from the value of any suffi­
cient statistic T but if T is minimal sufficient as well, then we can also obtain the value
of T from any likelihood function. It can be shown that a minimal sufficient statistic
gives the greatest reduction of the data in the sense that, if T is minimal sufficient and
U is sufficient, then there is a function h such that T h U Note that the definitions
of sufficient statistic and minimal sufficient statistic depend on the model, i.e., different
models can give rise to different sufficient and minimal sufficient statistics.

While the idea of a minimal sufficient statistic is a bit subtle, it is usually quite
simple to find one, as the following examples illustrate.

EXAMPLE 6.1.7 Location Normal Model
By the factorization theorem we see immediately, from the discussion in Example
6.1.4, that x is a sufficient statistic. Now any likelihood function for this model is a
positive multiple of

exp
n

2 2
0

x 2 .

Notice that any such function of is completely specified by the point where it takes
its maximum, namely, at x . So we have that x can be obtained from any likelihood
function for this model, and it is therefore a minimal sufficient statistic.

EXAMPLE 6.1.8 Location­Scale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution in which
R1 and 0 are unknown. Recall the discussion and application of this model in
Examples 5.3.4 and 5.5.6.

The parameter in this model is two­dimensional and is given by 2

R1 0 Therefore, the likelihood function is given by

L x1 xn 2 2
n 2

exp
1

2 2

n

i 1

xi 2

2 2
n 2

exp
n

2 2 x 2 exp
n 1

2 2 s2 .

We see immediately, from the factorization theorem, that x s2 is a sufficient statistic.
Now, fixing 2, any positive multiple of L x1 xn is maximized, as a func­

tion of , at x . This is independent of 2. Fixing at x we have that

L x 2 x1 xn 2 2
n 2

exp
n 1

2 2
s2
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is maximized, as a function of 2 at the same point as ln L x 2 x1 xn be­
cause ln is a strictly increasing function. Now

ln L x 2 x
2 2

n

2
ln 2 n 1

2 2 s2

n

2 2

n 1

2 4 s2.

Setting this equal to 0 yields the solution

2 n 1

n
s2,

which is a 1–1 function of s2 So, given any likelihood function for this model, we can
compute x s2 , which establishes that x s2 is a minimal sufficient statistic for the
model. In fact, the likelihood is maximized at x 2 (Problem 6.1.22).

EXAMPLE 6.1.9 Multinomial Models
We saw in Example 6.1.5 that the likelihood function for a sample is given by (6.1.2).
This makes clear that if two different samples have the same counts, then they have the
same likelihood, so the counts x1 x2 x3 comprise a sufficient statistic.

Now it turns out that this likelihood function is maximized by taking

1 2 3
x1

n

x2

n

x3

n

So, given the likelihood, we can compute the counts (the sample size n is assumed
known). Therefore, x1 x2 x3 is a minimal sufficient statistic.

Summary of Section 6.1

The likelihood function for a model and data shows how the data support the
various possible values of the parameter. It is not the actual value of the likeli­
hood that is important but the ratios of the likelihood at different values of the
parameter.

A sufficient statistic T for a model is any function of the data s such that once we
know the value of T s then we can determine the likelihood function L s
(up to a positive constant multiple).

A minimal sufficient statistic T for a model is any sufficient statistic such that
once we know a likelihood function L s for the model and data, then we can
determine T s .

EXERCISES

6.1.1 Suppose a sample of n individuals is being tested for the presence of an antibody
in their blood and that the number with the antibody present is recorded. Record an
appropriate statistical model for this situation when we assume that the responses from
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individuals are independent. If we have a sample of 10 and record 3 positives, graph a
representative likelihood function.
6.1.2 Suppose that suicides occur in a population at a rate p per person year and that
p is assumed completely unknown. If we model the number of suicides observed in a
population with a total of N person years as Poisson Np , then record a representative
likelihood function for p when we observe 22 suicides with N 30 345
6.1.3 Suppose that the lifelengths (in thousands of hours) of light bulbs are distributed
Exponential , where 0 is unknown. If we observe x 5 2 for a sample of 20
light bulbs, record a representative likelihood function. Why is it that we only need to
observe the sample average to obtain a representative likelihood?
6.1.4 Suppose we take a sample of n 100 students from a university with over
50 000 students enrolled. We classify these students as either living on campus, living
off campus with their parents, or living off campus independently. Suppose we observe
the counts x1 x2 x3 34 44 22 . Determine the form of the likelihood function
for the unknown proportions of students in the population that are in these categories.
6.1.5 Determine the constant that makes the likelihood functions in Examples 6.1.2
and 6.1.3 equal.
6.1.6 Suppose that x1 xn is a sample from the Bernoulli distribution, where

[0 1] is unknown. Determine the likelihood function and a minimal sufficient sta­
tistic for this model. (Hint: Use the factorization theorem and maximize the logarithm
of the likelihood function.)
6.1.7 Suppose x1 xn is a sample from the Poisson distribution where 0
is unknown. Determine the likelihood function and a minimal sufficient statistic for
this model. (Hint: the Factorization Theorem and maximization of the logarithm of the
likelihood function.)
6.1.8 Suppose that a statistical model is comprised of two distributions given by the
following table:

s 1 s 2 s 3
f1 s 0 3 0 1 0 6
f2 s 0 1 0 7 0 2

(a) Plot the likelihood function for each possible data value s
(b) Find a sufficient statistic that makes a reduction in the data.
6.1.9 Suppose a statistical model is given by f1 f2 , where fi is an N i 1 distribu­
tion. Compute the likelihood ratio L 1 0 L 2 0 and explain how you interpret this
number.
6.1.10 Explain why a likelihood function can never take negative values. Can a likeli­
hood function be equal to 0 at a parameter value?
6.1.11 Suppose we have a statistical model f : [0 1] and we observe x0 Is it
true that 1

0 L x0 d 1? Explain why or why not.

6.1.12 Suppose that x1 xn is a sample from a Geometric distribution, where
[0 1] is unknown. Determine the likelihood function and a minimal sufficient sta­

tistic for this model. (Hint: Use the factorization theorem and maximize the logarithm
of the likelihood.)
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6.1.13 Suppose you are told that the likelihood of a particular parameter value is 109

Is it possible to interpret this number in any meaningful way? Explain why or why not.
6.1.14 Suppose one statistician records a likelihood function as 2 for [0 1] while
another statistician records a likelihood function as 100 2 for [0 1] Explain why
these likelihood functions are effectively the same.

PROBLEMS

6.1.15 Show that T defined in Example 6.1.6 is a minimal sufficient statistic. (Hint:
Show that once you know the likelihood function, you can determine which of the two
possible values for T has occurred.)
6.1.16 Suppose that S 1 2 3 4 a b c , where the three probability distri­
butions are given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 4 1 4 1 4 1 4
c 1 2 1 4 1 4 0

Determine a minimal sufficient statistic for this model. Is the minimal sufficient statis­
tic in Example 6.1.6 sufficient for this model?
6.1.17 Suppose that x1 xn is a sample from the N 2

0 distribution where
R1 is unknown. Determine the form of likelihood intervals for this model.

6.1.18 Suppose that x1 xn Rn is a sample from f , where is un­
known. Show that the order statistics x 1 x n comprise a sufficient statistic for
the model.
6.1.19 Determine a minimal sufficient statistic for a sample of n from the rate gamma
model, i.e.,

f x
0

0
x 0 1 exp x

for x 0 0 and where 0 0 is fixed.
6.1.20 Determine the form of a minimal sufficient statistic for a sample of size n from
the Uniform[0 ] model where 0

6.1.21 Determine the form of a minimal sufficient statistic for a sample of size n from
the Uniform[ 1 2] model where 1 2

6.1.22 For the location­scale normal model, establish that the point where the likeli­
hood is maximized is given by x 2 as defined in Example 6.1.8. (Hint: Show that
the second derivative of ln L x 2 x , with respect to 2, is negative at 2 and then
argue that x 2 is the maximum.)
6.1.23 Suppose we have a sample of n from a Bernoulli distribution where
[0 0 5]. Determine a minimal sufficient statistic for this model. (Hint: It is easy to
establish the sufficiency of x , but this point will not maximize the likelihood when
x 0 5, so x cannot be obtained from the likelihood by maximization, as in Exercise
6.1.6. In general, consider the second derivative of the log of the likelihood at any point



308 Section 6.2: Maximum Likelihood

0 0 5 and note that knowing the likelihood means that we can compute any of
its derivatives at any values where these exist.)
6.1.24 Suppose we have a sample of n from the Multinomial 1 2 1 3 distri­
bution, where [0 1 3] is unknown. Determine the form of the likelihood function
and show that x1 x2 is a minimal sufficient statistic where xi is the number of sample
values corresponding to an observation in the i th category. (Hint: Problem 6.1.23.)
6.1.25 Suppose we observe s from a statistical model with two densities, f1 and f2
Show that the likelihood ratio T s f1 s f2 s is a minimal sufficient statistic.
(Hint: Use the definition of sufficiency directly.)

CHALLENGES

6.1.26 Consider the location­scale gamma model, i.e.,

f x
1

0

x 0 1

exp
x 1

for x R1 0 and where 0 0 is fixed.
(a) Determine the minimal sufficient statistic for a sample of n when 0 1. (Hint:
Determine where the likelihood is positive and calculate the partial derivative of the
log of the likelihood with respect to .)
(b) Determine the minimal sufficient statistic for a sample of n when 0 1. (Hint:
Use Problem 6.1.18, the partial derivative of the log of the likelihood with respect to

, and determine where it is infinite.)

DISCUSSION TOPICS

6.1.27 How important do you think it is for a statistician to try to quantify how much
error there is in an inference drawn? For example, if an estimate is being quoted for
some unknown quantity, is it important that the statistician give some indication about
how accurate (or inaccurate) this inference is?

6.2 Maximum Likelihood Estimation
In Section 6.1, we introduced the likelihood function L s as a basis for making
inferences about the unknown true value We now begin to consider the specific
types of inferences discussed in Section 5.5.3 and start with estimation.

When we are interested in a point estimate of then a value s that maximizes
L s is a sensible choice, as this value is the best supported by the data, i.e.,

L s s L s (6.2.1)

for every

Definition 6.2.1 We call : S satisfying (6.2.1) for every a maximum
likelihood estimator, and the value s is called a maximum likelihood estimate,
or MLE for short.
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Notice that, if we use cL s as the likelihood function, for fixed c 0, then s
is also an MLE using this version of the likelihood. So we can use any version of the
likelihood to calculate an MLE.

EXAMPLE 6.2.1
Suppose the sample space is S 1 2 3 , the parameter space is 1 2 , and the
model is given by the following table.

s 1 s 2 s 3
f1 s 0 3 0 4 0 3
f2 s 0 1 0 7 0 2

Further suppose we observe s 1 So, for example, we could be presented with one of
two bowls of chips containing these proportions of chips labeled 1, 2, and 3. We draw
a chip, observe that it is labelled 1, and now want to make inferences about which bowl
we have been presented with.

In this case, the MLE is given by 1 1 since 0 3 L 1 1 0 1 L 2 1
If we had instead observed s 2, then 2 2; if we had observed s 3 then

3 1

Note that an MLE need not be unique. For example, in Example 6.2.1, if f2 was
defined by f2 1 0 f2 2 0 7 and f2 3 0 3 then an MLE is as given there,
but putting 3 2 also gives an MLE.

The MLE has a very important invariance property. Suppose we reparameterize a
model via a 1–1 function defined on . By this we mean that, instead of labelling the
individual distributions in the model using , we use :
For example, in Example 6.2.1, we could take 1 a and 2 b so that
a b So the model is now given by g : where g f for the unique

value such that We have a new parameter and a new parameter space
. Nothing has changed about the probability distributions in the statistical model,

only the way they are labelled. We then have the following result.

Theorem 6.2.1 If s is an MLE for the original parameterization and, if is a
1–1 function defined on , then s s is an MLE in the new parameter­
ization.

PROOF If we select the likelihood function for the new parameterization to be
L s g s and the likelihood for the original parameterization to be L s

f s then we have

L s s g s s f s s L s s L s L s

for every This implies that L s s L s for every and
establishes the result.

Theorem 6.2.1 shows that no matter how we parameterize the model, the MLE behaves
in a consistent way under the reparameterization. This is an important property, and
not all estimation procedures satisfy this.
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6.2.1 Computation of the MLE

An important issue is the computation of MLEs. In Example 6.2.1, we were able to
do this by simply examining the table giving the distributions. With more complicated
models, this approach is not possible. In many situations, however, we can use the
methods of calculus to compute s For this we require that f s be a continuously
differentiable function of so that we can use optimization methods from calculus

Rather than using the likelihood function, it is often convenient to use the log­
likelihood function.

Definition 6.2.2 For likelihood function L s , the log­likelihood function l s
defined on , is given by l s ln L s

Note that ln x is a 1–1 increasing function of x 0 and this implies that L s s
L s for every if and only if l s s l s for every So we
can maximize l s instead when computing an MLE. The convenience of the log­
likelihood arises from the fact that, for a sample s1 sn from f : the
likelihood function is given by

L s1 sn
n

i 1

f si

whereas the log­likelihood is given by

l s1 sn
n

i 1

ln f si

It is typically much easier to differentiate a sum than a product.
Because we are going to be differentiating the log­likelihood, it is convenient to

give a name to this derivative. We define the score function S s of a model to
be the derivative of its log­likelihood function whenever this exists. So when is a
one­dimensional real­valued parameter, then

S s
l s

provided this partial derivative exists (see Appendix A.5 for a definition of partial deriv­
ative). We restrict our attention now to the situation in which is one­dimensional.

To obtain the MLE, we must then solve the score equation

S s 0 (6.2.2)

for Of course, a solution to (6.2.2) is not necessarily an MLE, because such a point
may be a local minimum or only a local maximum rather than a global maximum. To
guarantee that a solution s is at least a local maximum, we must also check that

S s

s

2l s
2

s
0 (6.2.3)



Chapter 6: Likelihood Inference 311

Then we must evaluate l s at each local maximum in order to determine the global
maximum.

Let us compute some MLEs using calculus.

EXAMPLE 6.2.2 Location Normal Model
Consider the likelihood function

L x1 xn exp
n

2 2
0

x 2

obtained in Example 6.1.4 for a sample x1 xn from the N 2
0 model where

R1 is unknown and 2
0 is known. The log­likelihood function is then

l x1 xn
n

2 2
0

x 2

and the score function is

S x1 xn
n

2
0

x

The score equation is given by

n
2
0

x 0

Solving this for gives the unique solution x1 xn x To check that this is a
local maximum, we calculate

S x1 xn

x

n
2
0

which is negative, and thus indicates that x is a local maximum. Because we have only
one local maximum, it is also the global maximum and we have indeed obtained the
MLE.

EXAMPLE 6.2.3 Exponential Model
Suppose that a lifetime is known to be distributed Exponential 1 where 0 is
unknown. Then based on a sample x1 xn , the likelihood is given by

L x1 xn
1
n exp

nx

the log­likelihood is given by

l x1 xn n ln
nx

and the score function is given by

S x1 xn
n nx

2
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Solving the score equation gives x1 xn x and because x 0,

S x1 xn

x

n
2

2
nx

3
x

n

x2
0

so x is indeed the MLE.

In both examples just considered, we were able to derive simple formulas for the
MLE. This is not always possible. Consider the following example.

EXAMPLE 6.2.4
Consider a population in which individuals are classified according to one of three types
labelled 1, 2, and 3, respectively. Further suppose that the proportions of individuals
falling in these categories are known to follow the law p1 p2

2 p3 1
2 where

[0 5 1 2] [0 0 618 03]

is unknown. Here, pi denotes the proportion of individuals in the i th class Note that
the requirement that 0 2 1 imposes the upper bound on and the precise
bound is obtained by solving 2 1 0 for using the formula for the roots
of a quadratic. Relationships like this, amongst the proportions of the distribution of
a categorical variable, often arise in genetics. For example, the categorical variable
might serve to classify individuals into different genotypes.

For a sample of n (where n is small relative to the size of the population so that we
can assume observations are i.i.d.), the likelihood function is given by

L x1 xn
x1 2x2 1 2 x3

where xi denotes the sample count in the i th class. The log­likelihood function is then

l s1 sn x1 2x2 ln x3 ln 1 2 ,

and the score function is

S s1 sn
x1 2x2 x3 1 2

1 2
.

The score equation then leads to a solution being a root of the quadratic

x1 2x2 1 2 x3 2 2

x1 2x2 2x3
2 x1 2x2 x3 x1 2x2 .

Using the formula for the roots of a quadratic, we obtain

1

2 x1 2x2 2x3

x1 2x2 x3 5x2
1 20x1x2 10x1x3 20x2

2 20x2x3 x2
3

Notice that the formula for the roots does not determine the MLE in a clear way. In
fact, we cannot even tell if either of the roots lies in [0 1]! So there are four possible



Chapter 6: Likelihood Inference 313

values for the MLE at this point — either of the roots or the boundary points 0 and
0 61803.

We can resolve this easily in an application by simply numerically evaluating the
likelihood at the four points. For example, if x1 70 x2 5 and x3 25 then the
roots are 1 28616 and 0 47847 so it is immediate that the MLE is x1 xn
0 47847 We can see this graphically in the plot of the log­likelihood provided in Fig­
ure 6.2.1.
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 lnL

Figure 6.2.1: The log­likelihood function in Example 6.2.4 when x1 70 x2 5 and
x3 25.

In general, the score equation (6.2.2) must be solved numerically, using an iterative
routine like Newton–Raphson. Example 6.2.4 demonstrates that we must be very care­
ful not to just accept a solution from such a procedure as the MLE, but to check that the
fundamental defining property (6.2.1) is satisfied. We also have to be careful that the
necessary smoothness conditions are satisfied so that calculus can be used. Consider
the following example.

EXAMPLE 6.2.5 Uniform[0 ] Model
Suppose x1 xn is a sample from the Uniform[0 ] model where 0 is un­
known. Then the likelihood function is given by

L x1 xn
n xi for i 1 n

0 xi for some i
n I[x n

where x n is the largest order statistic from the sample. In Figure 6.2.2, we have
graphed this function when n 10 and x n 1 916 Notice that the maximum clearly
occurs at x n ; we cannot obtain this value via differentiation, as L x1 xn is not
differentiable there.
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Figure 6.2.2: Plot of the likelihood function in Example 6.2.5 when n 10 and
x 10 1 916.

The lesson of Examples 6.2.4 and 6.2.5 is that we have to be careful when com­
puting MLEs. We now look at an example of a two­dimensional problem in which the
MLE can be obtained using one­dimensional methods.

EXAMPLE 6.2.6 Location­Scale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The parameter in this model is two­dimensional, given by
2 R1 0 The likelihood function is then given by

L 2 x1 xn 2 2 n 2 exp
n

2 2 x 2 exp
n 1

2 2 s2

as shown in Example 6.1.8. The log­likelihood function is given by

l 2 x1 xn
n

2
ln 2

n

2
ln 2 n

2 2
x 2 n 1

2 2
s2 (6.2.4)

As discussed in Example 6.1.8, it is clear that, for fixed 2, (6.2.4) is maximized, as a
function of by x . Note that this does not involve 2, so this must be the first
coordinate of the MLE.

Substituting x into (6.2.4), we obtain

n

2
ln 2

n

2
ln 2 n 1

2 2
s2, (6.2.5)

and the second coordinate of the MLE must be the value of 2 that maximizes (6.2.5).
Differentiating (6.2.5) with respect to 2 and setting this equal to 0 gives

n

2 2

n 1

2 2 2
s2 0 (6.2.6)
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Solving (6.2.6) for 2 leads to the solution

2 n 1

n
s2 1

n

n

i 1

xi x 2

Differentiating (6.2.6) with respect to 2 and substituting in 2 we see that the second
derivative is negative, hence 2 is a point where the maximum is attained.

Therefore, we have shown that the MLE of 2 is given by

x
1

n

n

i 1

xi x 2

In the following section we will show that this result can also be obtained using multi­
dimensional calculus.

So far we have talked about estimating only the full parameter for a model. What
about estimating a general characteristic of interest for some function defined
on the parameter space ? Perhaps the obvious answer here is to use the estimate

s s where s is an MLE of This is sometimes referred to as the plug­
in MLE of Notice, however, that the plug­in MLE is not necessarily a true MLE, in
the sense that we have a likelihood function for a model indexed by and that takes
its maximum value at s If is a 1–1 function defined on then Theorem 6.2.1
establishes that s is a true MLE but not otherwise.

If is not 1–1, then we can often find a complementing function defined on so
that is a 1–1 function of . Then, by Theorem 6.2.1,

s s s s

is the joint MLE, but s is still not formally an MLE. Sometimes a plug­in MLE can
perform badly, as it ignores the information in s about the true value of An
example illustrates this phenomenon.

EXAMPLE 6.2.7 Sum of Squared Means
Suppose that Xi N i 1 for i 1 n and that these are independent with the

i completely unknown. So here, 1 n and Rn. Suppose we want
to estimate 2

1
2
n.

The log­likelihood function is given by

l x1 xn
1

2

n

i 1

xi i
2.

Clearly this is maximized by x1 xn x1 xn . So the plug­in MLE of
is given by n

i 1 x
2
i .

Now observe that

E
n

i 1

X2
i

n

i 1

E X2
i

n

i 1

Var X i
2
i n ,
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where E g refers to the expectation of g s when s f So when n is large, it is
likely that is far from the true value. An immediate improvement in this estimator is
to use n

i 1 x
2
i n instead.

There have been various attempts to correct problems such as the one illustrated in
Example 6.2.7. Typically, these involve modifying the likelihood in some way. We do
not pursue this issue further in this text but we do advise caution when using plug­in
MLEs. Sometimes, as in Example 6.2.6, where we estimate by x and 2 by s2, they
seem appropriate; other times, as in Example 6.2.7, they do not.

6.2.2 The Multidimensional Case (Advanced)

We now consider the situation in which 1 k Rk is multidimensional,
i.e., k 1 The likelihood and log­likelihood are then defined just as before, but the
score function is now given by

S s

l s
1

l s
2

l s
k

provided all these partial derivatives exist. For the score equation, we get

l s
1

l s
2

l s
k

0
0

0

and we must solve this k­dimensional equation for 1 k This is often much
more difficult than in the one­dimensional case, and we typically have to resort to
numerical methods.

A necessary and sufficient condition for 1 k to be a local maximum, when
the log­likelihood has continuous second partial derivatives, is that the matrix of second
partial derivatives of the log­likelihood, evaluated at 1 k , must be negative
definite (equivalently, all of its eigenvalues must be negative). We then must evaluate
the likelihood at each of the local maxima obtained to determine the global maximum
or MLE.

We will not pursue the numerical computation of MLEs in the multidimensional
case any further here, but we restrict our attention to a situation in which we carry out
the calculations in closed form.

EXAMPLE 6.2.8 Location­Scale Normal Model
We determined the log­likelihood function for this model in (6.2.4). The score function
is then
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S 2 x1 xn

S x1 xn

S x1 xn
2

n
2 x

n
2 2

n
2 4 x 2 n 1

2 4 s
2 .

The score equation is

n
2 x

n
2 2

n
2 4 x 2 n 1

2 4 s
2

0
0

,

and the first of these equations immediately implies that x Substituting this value
for into the second equation and solving for 2 leads to the solution

2 n 1

n
s2 1

n

n

i 1

xi x 2

From Example 6.2.6, we know that this solution does indeed give the MLE.

Summary of Section 6.2

An MLE (maximum likelihood estimator) is a value of the parameter that max­
imizes the likelihood function. It is the value of that is best supported by the
model and data.

We can often compute an MLE by using the methods of calculus. When ap­
plicable, this leads to solving the score equation for either explicitly or using
numerical algorithms. Always be careful to check that these methods are ap­
plicable to the specific problem at hand. Furthermore, always check that any
solution to the score equation is a maximum and indeed an absolute maximum.

EXERCISES

6.2.1 Suppose that S 1 2 3 4 a b , where the two probability distribu­
tions are given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 3 1 3 1 3 0

Determine the MLE of for each possible data value.
6.2.2 If x1 xn is a sample from a Bernoulli distribution, where [0 1] is
unknown, then determine the MLE of .
6.2.3 If x1 xn is a sample from a Bernoulli distribution, where [0 1] is
unknown, then determine the MLE of 2.
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6.2.4 If x1 xn is a sample from a Poisson distribution, where 0 is
unknown, then determine the MLE of .
6.2.5 If x1 xn is a sample from a Gamma 0 distribution, where 0 0 and

0 is unknown, then determine the MLE of .
6.2.6 Suppose that x1 xn is the result of independent tosses of a coin where we
toss until the first head occurs and where the probability of a head on a single toss is

0 1]. Determine the MLE of .
6.2.7 If x1 xn is a sample from a Beta 1 distribution (see Problem 2.4.24)
where 0 is unknown, then determine the MLE of . (Hint: Assume is a
differentiable function of )
6.2.8 If x1 xn is a sample from a Weibull distribution (see Problem 2.4.19),
where 0 is unknown, then determine the score equation for the MLE of .
6.2.9 If x1 xn is a sample from a Pareto distribution (see Problem 2.4.20),
where 0 is unknown, then determine the MLE of .

6.2.10 If x1 xn is a sample from a Log­normal distribution (see Problem
2.6.17), where 0 is unknown, then determine the MLE of .

6.2.11 Suppose you are measuring the volume of a cubic box in centimeters by taking
repeated independent measurements of one of the sides. Suppose it is reasonable to as­
sume that a single measurement follows an N 2

0 distribution, where is unknown
and 2

0 is known. Based on a sample of measurements, you obtain the MLE of as 3.2
cm. What is your estimate of the volume of the box? How do you justify this in terms
of the likelihood function?
6.2.12 If x1 xn is a sample from an N 0

2 distribution, where 2 0 is
unknown and 0 is known, then determine the MLE of 2. How does this MLE differ
from the plug­in MLE of 2 computed using the location­scale normal model?

6.2.13 Explain why it is not possible that the function 3 exp 5 3 2 for R1

is a likelihood function.
6.2.14 Suppose you are told that a likelihood function has local maxima at the points

2 2 4 6 and 9.2, as determined using calculus. Explain how you would determine
the MLE.
6.2.15 If two functions of are equivalent versions of the likelihood when one is a
positive multiple of the other, then when are two log­likelihood functions equivalent?
6.2.16 Suppose you are told that the likelihood of at 2 is given by 1 4 Is this
the probability that 2? Explain why or why not.

COMPUTER EXERCISES

6.2.17 A likelihood function is given by exp 1 2 2 3 exp 2 2 2
for R1 Numerically approximate the MLE by evaluating this function at 1000
equispaced points in 10 10] Also plot the likelihood function.

6.2.18 A likelihood function is given by exp 1 2 2 3 exp 5 2 2
for R1 Numerically approximate the MLE by evaluating this function at 1000
equispaced points in 10 10] Also plot the likelihood function. Comment on the
form of likelihood intervals.
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PROBLEMS

6.2.19 (Hardy–Weinberg law) The Hardy–Weinberg law in genetics says that the pro­
portions of genotypes AA, Aa, and aa are 2, 2 1 , and 1 2, respectively,
where [0 1] Suppose that in a sample of n from the population (small relative
to the size of the population), we observe x1 individuals of type AA, x2 individuals of
type Aa and x3 individuals of type aa

(a) What distribution do the counts X1 X2 X3 follow?
(b) Record the likelihood function, the log­likelihood function, and the score function
for

(c) Record the form of the MLE for .
6.2.20 If x1 xn is a sample from an N 1 distribution where R1 is un­
known, determine the MLE of the probability content of the interval 1 . Justify
your answer.
6.2.21 If x1 xn is a sample from an N 1 distribution where 0 is un­
known, determine the MLE of .
6.2.22 Prove that, if s is the MLE for a model for response s and if T is a sufficient
statistic for the model, then s is also the MLE for the model for T s .
6.2.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 (see Example 6.1.5),
where

1 2 3 : 0 i 1 1 2 3 1

and we observe X1 X2 X3 x1 x2 x3 .
(a) Determine the MLE of 1 2 3 .
(b) What is the plug­in MLE of 1

2
2

2
3?

6.2.24 If x1 xn is a sample from a Uniform[ 1 2] distribution with

1 2 R2 : 1 2

determine the MLE of 1 2 . (Hint: You cannot use calculus. Instead, directly
determine the maximum over 1 when 2 is fixed, and then vary 2.)

COMPUTER PROBLEMS

6.2.25 Suppose the proportion of left­handed individuals in a population is . Based
on a simple random sample of 20, you observe four left­handed individuals.
(a) Assuming the sample size is small relative to the population size, plot the log­
likelihood function and determine the MLE.

(b) If instead the population size is only 50, then plot the log­likelihood function and
determine the MLE. (Hint: Remember that the number of left­handed individuals fol­
lows a hypergeometric distribution. This forces to be of the form i 50 for some
integer i between 4 and 34. From a tabulation of the log­likelihood, you can obtain the
MLE.)
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CHALLENGES

6.2.26 If x1 xn is a sample from a distribution with density

f x 1 2 exp x

for x R1 and where R1 is unknown, then determine the MLE of . (Hint:
You cannot use calculus. Instead, maximize the log­likelihood in each of the intervals

x 1 , [x 1 x 2 etc.).

DISCUSSION TOPICS

6.2.27 One approach to quantifying the uncertainty in an MLE s is to report the
MLE together with a likelihood interval : L s cL s s for some constant
c 0 1 What problems do you see with this approach? In particular, how would
you choose c?

6.3 Inferences Based on the MLE
In Table 6.3.1. we have recorded n 66 measurements of the speed of light (pas­
sage time recorded as deviations from 24 800 nanoseconds between two mirrors 7400
meters apart) made by A. A. Michelson and S. Newcomb in 1882.

28 26 33 24 34 44 27 16 40 2 29
22 24 21 25 30 23 29 31 19 24 20
36 32 36 28 25 21 28 29 37 25 28
26 30 32 36 26 30 22 36 23 27 27
28 27 31 27 26 33 26 32 32 24 39
28 24 25 32 25 29 27 28 29 16 23

Table 6.3.1: Speed of light measurements.

Figure 6.3.1 is a boxplot of these data with the variable labeled as x . Notice there
are two outliers at x 2 and x 44 We will presume there is something very
special about these observations and discard them for the remainder of our discussion.
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Figure 6.3.1: Boxplot of the data values in Table 6.3.1.
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Figure 6.3.2 presents a histogram of these data minus the two data values identified
as outliers. Notice that the histogram looks reasonably symmetrical, so it seems plau­
sible to assume that these data are from an N 2 distribution for some values of
and 2 Accordingly, a reasonable statistical model for these data would appear to be
the location­scale normal model. In Chapter 9, we will discuss further how to assess
the validity of the normality assumption.
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Figure 6.3.2: Density histogram of the data in Table 6.3.1 with the outliers removed.

If we accept that the location­scale normal model makes sense, the question arises
concerning how to make inferences about the unknown parameters and 2. The
purpose of this section is to develop methods for handling problems like this. The
methods developed in this section depend on special features of the MLE in a given
context. In Section 6.5, we develop a more general approach based on the MLE.

6.3.1 Standard Errors, Bias, and Consistency

Based on the justification for the likelihood, the MLE s seems like a natural estimate
of the true value of Let us suppose that we will then use the plug­in MLE estimate

s s for a characteristic of interest (e.g., might be the first
quartile or the variance).

In an application, we want to know how reliable the estimate s is. In other
words, can we expect s to be close to the true value of , or is there a reasonable
chance that s is far from the true value? This leads us to consider the sampling
distribution of s , as this tells us how much variability there will be in s under
repeated sampling from the true distribution f Because we do not know what the true
value of is, we have to look at the sampling distribution of s for every

To simplify this, we substitute a numerical measure of how concentrated these sam­
pling distributions are about Perhaps the most commonly used measure of the
accuracy of a general estimator T s of i.e., we are not restricting ourselves to
plug­in MLEs, is the mean­squared error.
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Definition 6.3.1 The mean­squared error (MSE) of the estimator T of R1

is given by MSE T E T 2 for each

Clearly, the smaller MSE T is, the more concentrated the sampling distribution of
T s is about the value

Looking at MSE T as a function of gives us some idea of how reliable T s
is as an estimate of the true value of Because we do not know the true value of

and thus the true value of MSE T statisticians record an estimate of the mean­
squared error at the true value. Often

MSE s T

is used for this. In other words, we evaluate MSE T at s as a measure of the
accuracy of the estimate T s .

The following result gives an important identity for the MSE.

Theorem 6.3.1 If R1 and T is a real­valued function defined on S such
that E T exists, then

MSE T Var T E T 2 (6.3.1)

PROOF We have

E T 2 E T E T E T 2

E T E T 2

2E T E T E T E T 2

Var T E T 2

because

E T E T E T E T E T E T

0

The second term in (6.3.1) is the square of the bias in the estimator T

Definition 6.3.2 The bias in the estimator T of is given by E T
whenever E T exists. When the bias in an estimator T is 0 for every , we call T
an unbiased estimator of , i.e., T is unbiased whenever E T for every

Note that when the bias in an estimator is 0, then the MSE is just the variance.
Unbiasedness tells us that, in a sense, the sampling distribution of the estimator is

centered on the true value. For unbiased estimators,

MSE s T Var s T
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and
Sd s T Var s T

is an estimate of the standard deviation of T and is referred to as the standard error
of the estimate T s . As a principle of good statistical practice, whenever we quote
an estimate of a quantity, we should also provide its standard error — at least when
we have an unbiased estimator, as this tells us something about the accuracy of the
estimate.

We consider some examples.

EXAMPLE 6.3.1 Location Normal Model
Consider the likelihood function

L x1 xn exp
n

2 2
0

x 2

obtained in Example 6.1.4 for a sample x1 xn from the N 2
0 model, where

R1 is unknown and 2
0 0 is known. Suppose we want to estimate The MLE

of was computed in Example 6.2.2 to be x
In this case, we can determine the sampling distribution of the MLE exactly from

the results in Section 4.6. We have that X N 2
0 n and so X is unbiased, and

MSE X Var X
2
0

n

which is independent of So we do not need to estimate the MSE in this case The
standard error of the estimate is given by

Sd X 0

n

Note that the standard error decreases as the population variance 2
0 decreases and as

the sample size n increases

EXAMPLE 6.3.2 Bernoulli Model
Suppose x1 xn is a sample from a Bernoulli distribution where [0 1] is
unknown. Suppose we wish to estimate . The likelihood function is given by

L x1 xn nx 1 n 1 x

and the MLE of is x (Exercise 6.2.2), the proportion of successes in the n perfor­
mances. We have E X for every [0 1] so the MLE is an unbiased estimator
of

Therefore,

MSE X Var X
1

n
and the estimated MSE is

MSE X
x 1 x

n
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The standard error of the estimate x is then given by

Sd X
x 1 x

n

Note how this standard error is quite different from the standard error of x in Example
6.3.1.

EXAMPLE 6.3.3 Application of the Bernoulli Model
A polling organization is asked to estimate the proportion of households in the pop­
ulation in a specific district who will participate in a proposed recycling program by
separating their garbage into various components. The pollsters decided to take a sam­
ple of n 1000 from the population of approximately 1.5 million households (we will
say more on how to choose this number later).

Each respondent will indicate either yes or no to a question concerning their par­
ticipation. Given that the sample size is small relative to the population size, we can
assume that we are sampling from a Bernoulli model where [0 1] is the pro­
portion of individuals in the population who will respond yes.

After conducting the sample, there were 790 respondents who replied yes and 210
who responded no. Therefore, the MLE of is

x
790

1000
0 79

and the standard error of the estimate is

x 1 x

1000

0 79 1 0 79

1000
0 01288

Notice that it is not entirely clear how we should interpret the value 0 01288 Does
it mean our estimate 0 79 is highly accurate, modestly accurate, or not accurate at all?
We will discuss this further in Section 6.3.2.

EXAMPLE 6.3.4 Location­Scale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution where R1

and 2 0 are unknown. The parameter in this model is given by 2

R1 0 . Suppose that we want to estimate 2 i.e., just the first
coordinate of the full model parameter.

In Example 6.1.8, we determined that the likelihood function is given by

L 2 x1 xn 2 2 n 2 exp
n

2 2
x 2 exp

n 1

2 2
s2

In Example 6.2.6 we showed that the MLE of is

x
n 1

n
s2

Furthermore, from Theorem 4.6.6, the sampling distribution of the MLE is given by
X N 2 n independent of n 1 S2 2 2 n 1 .
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The plug­in MLE of is x This estimator is unbiased and has

MSE X Var X
2

n

Since 2 is unknown we estimate MSE X by

MSE X
n 1
n s2

n

n 1

n2
s2 s2

n

The value s2 n is commonly used instead of MSE X , because (Corollary 4.6.2)

E S2 2

i.e., S2 is an unbiased estimator of 2. The quantity s n is referred to as the standard
error of the estimate x

EXAMPLE 6.3.5 Application of the Location­Scale Normal Model
In Example 5.5.6, we have a sample of n 30 heights (in inches) of students. We
calculated x 64 517 as our estimate of the mean population height . In addition, we
obtained the estimate s 2 379 of Therefore, the standard error of the estimate x
64 517 is s 30 2 379 30 0 43434 As in Example 6.3.3, we are faced with
interpreting exactly what this number means in terms of the accuracy of the estimate.

Consistency of Estimators

Perhaps the most important property that any estimator T of a characteristic can
have is that it be consistent. Broadly speaking, this means that as we increase the
amount of data we collect, then the sequence of estimates should converge to the true
value of . To see why this is a necessary property of any estimation procedure,
consider the finite population sampling context discussed in Section 5.4.1. When the
sample size is equal to the population size, then of course we have the full information
and can compute exactly every characteristic of the distribution of any measurement
defined on the population. So it would be an error to use an estimation procedure for a
characteristic of interest that did not converge to the true value of the characteristic as
we increase the sample size.

Fortunately, we have already developed the necessary mathematics in Chapter 4 to
define precisely what we mean by consistency.

Definition 6.3.3 A sequence of of estimates T1 T2 is said to be consistent (in

probability) for if Tn
P

as n for every A sequence of
estimates T1 T2 is said to be consistent (almost surely) for if Tn

a s

as n for every

Notice that Theorem 4.3.1 says that if the sequence is consistent almost surely, then it
is also consistent in probability.

Consider now a sample x1 xn from a model f : and let Tn
n 1 n

i 1 xi be the nth sample average as an estimator of E X which
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we presume exists. The weak and strong laws of large numbers immediately give us
the consistency of the sequence T1 T2 for We see immediately that this gives
the consistency of some of the estimators discussed in this section. In fact, Theorem
6.5.2 gives the consistency of the MLE in very general circumstances. Furthermore,
the plug­in MLE will also be consistent under weak restrictions on Accordingly, we
can think of maximum likelihood estimation as doing the right thing in a problem at
least from the point of view of consistency.

More generally, we should always restrict our attention to statistical procedures
that perform correctly as the amount of data increases. Increasing the amount of data
means that we are acquiring more information and thus reducing our uncertainty so that
in the limit we know everything. A statistical procedure that was inconsistent would be
potentially misleading.

6.3.2 Confidence Intervals

While the standard error seems like a reasonable quantity for measuring the accuracy
of an estimate of , its interpretation is not entirely clear at this point. It turns out
that this is intrinsically tied up with the idea of a confidence interval.

Consider the construction of an interval

C s l s u s

based on the data s that we believe is likely to contain the true value of To do
this, we have to specify the lower endpoint l s and upper endpoint u s for each data
value s How should we do this?

One approach is to specify a probability [0 1] and then require that random
interval C have the confidence property, as specified in the following definition.

Definition 6.3.4 An interval C s l s u s is a ­confidence interval for
if P C s P l s u s for every

We refer to as the confidence level of the interval.

So C is a ­confidence interval for if, whenever we are sampling from P the
probability that is in the interval is at least equal to For a given data set, such
an interval either covers or it does not. So note that it is not correct to say that
a particular instance of a ­confidence region has probability of containing the true
value of .

If we choose to be a value close to 1, then we are highly confident that the
true value of is in C s Of course, we can always take C s R1 (a very big
interval!), and we are then 100% confident that the interval contains the true value. But
this tells us nothing we did not already know. So the idea is to try to make use of the
information in the data to construct an interval such that we have a high confidence,
say, 0 95 or 0 99 that it contains the true value and is not any longer than
necessary. We then interpret the length of the interval as a measure of how accurately
the data allow us to know the true value of
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z­Confidence Intervals

Consider the following example, which provides one approach to the construction of
confidence intervals.

EXAMPLE 6.3.6 Location Normal Model and z­Confidence Intervals
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known. The likelihood function is as specified in Example
6.3.1. Suppose we want a confidence interval for

The reasoning that underlies the likelihood function leads naturally to the following
restriction for such a region: If 1 C x1 xn and

L 2 x1 xn L 1 x1 xn

then we should also have 2 C x1 xn . This restriction is implied by the like­
lihood because the model and the data support 2 at least as well as 1 Thus, if we
conclude that 1 is a plausible value, so is 2

Therefore, C x1 xn is of the form

C x1 xn : L x1 xn k x1 xn

for some k x1 xn i.e., C x1 xn is a likelihood interval for . Then

C x1 xn : exp
n

2 2
0

x 2 k x1 xn

:
n

2 2
0

x 2 ln k x1 xn

: x 2 2 2
0

n
ln k x1 xn

x k x1 xn
0

n
x k x1 xn

0

n

where k x1 xn 2 ln k x1 xn
We are now left to choose k or equivalently k , so that the interval C is a ­

confidence interval for Perhaps the simplest choice is to try to choose k so that
k x1 xn is constant and is such that the interval as short as possible. Because

Z
X

0 n
N 0 1 (6.3.2)

we have

P C x1 xn P X k 0

n
X k 0

n

P k
X

0 n
c P

X

0 n
k

1 2 1 k (6.3.3)
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for every R1 where is the N 0 1 cumulative distribution function. We have
equality in (6.3.3) whenever

k
1

2
and so k z 1 2 where z denotes the th quantile of the N 0 1 distribution.
This is the smallest constant k satisfying (6.3.3).

We have shown that the likelihood interval given by

x z 1 2
0

n
x z 1 2

0

n
(6.3.4)

is an exact ­confidence interval for As these intervals are based on the z­statistic,
given by (6.3.2), they are called z­confidence intervals. For example, if we take
0 95 then 1 2 0 975 and, from a statistical package (or Table D.2 in Appen­
dix D), we obtain z0 975 1 96 Therefore, in repeated sampling, 95% of the intervals
of the form

x 1 96 0

n
x 1 96 0

n
will contain the true value of .

This is illustrated in Figure 6.3.3. Here we have plotted the upper and lower end­
points of the 0 95­confidence intervals for for each of N 25 samples of size
n 10 generated from an N 0 1 distribution. The theory says that when N is large,
approximately 95% of these intervals will contain the true value 0 In the plot,
coverage means that the lower endpoint (denoted by ) must be below the horizontal
line at 0 and that the upper endpoint (denoted by ) must be above this horizontal line.
We see that only the fourth and twenty­third confidence intervals do not contain 0, so
23 25 92% of the intervals contain 0. As N , this proportion will converge to
0.95.
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Figure 6.3.3: Plot of 0.95­confidence intervals for 0 (lower endpoint upper endpoint
) for N 25 samples of size n 10 from an N 0 1 distribution.

Notice that interval (6.3.4) is symmetrical about x . Accordingly, the half­length of
this interval,

z 1 2
0

n
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is a measure of the accuracy of the estimate x . The half­length is often referred to as
the margin of error.

From the margin of error, we now see how to interpret the standard error; the stan­
dard error controls the lengths of the confidence intervals for the unknown For ex­
ample, we know that with probability approximately equal to 1 (actually 0 9974),
the interval [x 3 0 n] contains the true value of .

Example 6.3.6 serves as a standard example for how confidence intervals are often
constructed in statistics. Basically, the idea is that we take an estimate and then look at
the intervals formed by taking symmetrical intervals around the estimate via multiples
of its standard error. We illustrate this via some further examples.

EXAMPLE 6.3.7 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution where [0 1]
is unknown and we want a ­confidence interval for . Following Example 6.3.2, we
have that the MLE is x (see Exercise 6.2.2) and the standard error of this estimate is

x 1 x

n
For this model, likelihood intervals take the form

C x1 xn : nx 1 n 1 x k x1 xn

for some k x1 xn Again restricting to constant k we see that to determine these
intervals, we have to find the roots of equations of the form

nx 1 n 1 x k x1 xn

While numerical root­finding methods can handle this quite easily, this approach is not
very tractable when we want to find the appropriate value of k x1 xn to give a

­confidence interval.
To avoid these computational complexities, it is common to use an approximate

likelihood and confidence interval based on the central limit theorem. The central limit
theorem (see Example 4.4.9) implies that

n X

1
D

N 0 1

as n . Furthermore, a generalization of the central limit theorem (see Section
4.4.2), shows that

Z
n X

X 1 X

D
N 0 1

Therefore, we have

lim
n

P z 1 2

n X

X 1 X
z 1 2

lim
n

P X z 1 2

X 1 X

n
X z 1 2

X 1 X

n
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and

x z 1 2

x 1 x

n
x z 1 2

x 1 x

n
(6.3.5)

is an approximate ­confidence interval for Notice that this takes the same form as
the interval in Example 6.3.6, except that the standard error has changed.

For example, if we want an approximate 0.95­confidence interval for in Example
6.3.3, then based on the observed x 0 79 we obtain

0 79 1 96
0 79 1 0 79

1000
[0 76475 0 81525]

The margin of error in this case equals 0 025245 so we can conclude that we know
the true proportion with reasonable accuracy based on our sample. Actually, it may be
that this accuracy is not good enough or is even too good. We will discuss methods for
ensuring that we achieve appropriate accuracy in Section 6.3.5.

The ­confidence interval derived here for is one of many that you will see rec­
ommended in the literature. Recall that (6.3.5) is only an approximate ­confidence
interval for and n may need to be large for the approximation to be accurate. In
other words, the true confidence level for (6.3.5) will not equal and could be far from
that value if n is too small. In particular, if the true is near 0 or 1, then n may need
to be very large. In an actual application, we usually have some idea of a small range
of possible values a population proportion can take. Accordingly, it is advisable to
carry out some simulation studies to assess whether or not (6.3.5) is going to provide
an acceptable approximation for in that range (see Computer Exercise 6.3.21).

t­Confidence Intervals

Now we consider confidence intervals for in an N 2 model when we drop the
unrealistic assumption that we know the population variance.

EXAMPLE 6.3.8 Location­Scale Normal Model and t­Confidence Intervals
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The parameter in this model is given by 2

R1 0 . Suppose we want to form confidence intervals for 2 .
The likelihood function in this case is a function of two variables, and 2, and so

the reasoning we employed in Example 6.3.6 to determine the form of the confidence
interval is not directly applicable. In Example 6.3.4, we developed s n as the stan­
dard error of the estimate x of . Accordingly, we restrict our attention to confidence
intervals of the form

C x1 xn x k
s

n
x k

s

n

for some constant k
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We then have

P 2 X k
S

n
X k

S

n
P 2 k

X

S n
k

P 2
X

S n
k 1 2 1 G k n 1

where G n 1 is the distribution function of

T
X

S n
(6.3.6)

Now, by Theorem 4.6.6,
X

n
N 0 1

independent of n 1 S2 2 2 n 1 . Therefore, by Definition 4.6.2,

T
X

n

n 1 S2

2

X

S n
t n 1

So if we take
k t 1 2 n 1

where t is the th quantile of the t distribution,

x t 1 2 n 1
s

n
x t 1 2 n 1

s

n

is an exact ­confidence interval for The quantiles of the t distributions are available
from a statistical package (or Table D.4 in Appendix D). As these intervals are based
on the t­statistic, given by (6.3.6), they are called t­confidence intervals.

These confidence intervals for tend to be longer than those obtained in Example
6.3.6, and this reflects the greater uncertainty due to being unknown. When n 5,
then it can be shown that x 3s n is a 0 97­confidence interval. When we replace s
by the true value of then x 3 n is a 0 9974­confidence interval.

As already noted, the intervals x ks n are not likelihood intervals for So the
justification for using these must be a little different from that given in Example 6.3.6.
In fact, the likelihood is defined for the full parameter 2 , and it is not entirely
clear how to extract inferences from it when our interest is in a marginal parameter like

. There are a number of different attempts at resolving this issue. Here, however,
we rely on the intuitive reasonableness of these intervals. In Chapter 7, we will see
that these intervals also arise from another approach to inference, which reinforces our
belief that the use of these intervals is appropriate.

In Example 6.3.5, we have a sample of n 30 heights (in inches) of students. We
calculated x 64 517 as our estimate of with standard error s 30 0 43434.
Using software (or Table D.4), we obtain t0 975 29 2 0452 So a 0 95­confidence
interval for is given by

[64 517 2 0452 0 43434 ] [63 629 65 405]
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The margin of error is 0 888 so we are very confident that the estimate x 64 517 is
within an inch of the true mean height.

6.3.3 Testing Hypotheses and P­Values

As discussed in Section 5.5.3, another class of inference procedures is concerned with
what we call hypothesis assessment. Suppose there is a theory, conjecture, or hypoth­
esis that specifies a value for a characteristic of interest say 0 Often
this hypothesis is written H0 : 0 and is referred to as the null hypothesis.

The word null is used because, as we will see in Chapter 10, the value specified
in H0 is often associated with a treatment having no effect. For example, if we want
to assess whether or not a proposed new drug does a better job of treating a particular
condition than a standard treatment does, the null hypothesis will often be equivalent
to the new drug providing no improvement. Of course, we have to show how this can
be expressed in terms of some characteristic of an unknown distribution, and we
will do so in Chapter 10.

The statistician is then charged with assessing whether or not the observed s is in ac­
cord with this hypothesis. So we wish to assess the evidence in s for 0 being
true. A statistical procedure that does this can be referred to as a hypothesis assessment,
a test of significance, or a test of hypothesis. Such a procedure involves measuring how
surprising the observed s is when we assume H0 to be true. It is clear that s is surprising
whenever s lies in a region of low probability for each of the distributions specified by
the null hypothesis, i.e., for each of the distributions in the model for which 0
is true. If we decide that the data are surprising under H0, then this is evidence against
H0 This assessment is carried out by calculating a probability, called a P­value, so that
small values of the P­value indicate that s is surprising.

It is important to always remember that while a P­value is a probability, this prob­
ability is a measure of surprise. Small values of the P­value indicate to us that a sur­
prising event has occurred if the null hypothesis H0 was true. A large P­value is not
evidence that the null hypothesis is true. Moreover, a P­value is not the probability that
the null hypothesis is true. The power of a hypothesis assessment method (see Section
6.3.6) also has a bearing on how we interpret a P­value.

z­Tests

We now illustrate the computation and use of P­values via several examples.

EXAMPLE 6.3.9 Location Normal Model and the z­Test
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known, and we have a theory that specifies a value for the
unknown mean, say, H0 : 0 Note that, by Corollary 4.6.1, when H0 is true, the
sampling distribution of the MLE is given by X N 0

2
0 n .

So one method of assessing whether or not the hypothesis H0 makes sense is to
compare the observed value x with this distribution. If x is in a region of low probabil­
ity for the N 0

2
0 n distribution, then this is evidence that H0 is false. Because the

density of the N 0
2
0 n distribution is unimodal, the regions of low probability for
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this distribution occur in its tails. The farther out in the tails x lies, the more surprising
this will be when H0 is true, and thus the more evidence we will have against H0.

In Figure 6.3.4, we have plotted a density of the MLE together with an observed
value x that lies far in the right tail of the distribution. This would clearly be a surprising
value from this distribution.

So we want to measure how far out in the tails of the N 0
2
0 n distribution the

value x is. We can do this by computing the probability of observing a value of x as
far, or farther, away from the center of the distribution under H0 as x . The center of
this distribution is given by 0. Because

Z
X 0

0 n
N 0 1 (6.3.7)

under H0 the P­value is then given by

P 0 X 0 x 0 P 0

X 0

0 n

x 0

0 n

2 1
x 0

0 n
,

where denotes the N 0 1 distribution function. If the P­value is small, then we
have evidence that x is a surprising value because this tells us that x is out in a tail of
the N 0

2
0 n distribution. Because this P­value is based on the statistic Z defined

in (6.3.7), this is referred to as the z­test procedure.
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Figure 6.3.4: Plot of the density of the MLE in Example 6.3.9 when 0 3 2
0 1 and

n 10 together with the observed value x 4 2 ( )

EXAMPLE 6.3.10 Application of the z­Test
We generated the following sample of n 10 from an N 26 4 distribution.

29 0651 27 3980 23 4346 26 3665 23 4994
28 6592 25 5546 29 4477 28 0979 25 2850
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Even though we know the true value of , let us suppose we do not and test the hypoth­
esis H0 : 25 To assess this, we compute (using a statistical package to evaluate

) the P­value

2 1
x 0

0 n
2 1

26 6808 25

2 10

2 1 2 6576 0 0078

which is quite small. For example, if the hypothesis H0 is correct, then, in repeated
sampling, we would see data giving a value of x at least as surprising as what we have
observed only 0 78% of the time. So we conclude that we have evidence against H0
being true, which, of course, is appropriate in this case.

If you do not use a statistical package for the evaluation of 2 6576 then you
will have to use Table D.2 of Appendix D to get an approximation. For example,
rounding 2 6576 to 2 66, Table D.2 gives 2 66 0 9961 and the approximate
P­value is 2 1 0 9961 0 0078 In this case, the approximation is exact to four
decimal places.

EXAMPLE 6.3.11 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution, where
[0 1] is unknown, and we want to test H0 : 0 As in Example 6.3.7, when H0 is
true, we have

Z
n X 0

0 1 0

D
N 0 1

as n So we can test this hypothesis by computing the approximate P­value

P Z
n x 0

0 1 0
2 1

n x 0

0 1 0

when n is large.
As a specific example, suppose that a psychic claims the ability to predict the value

of a randomly tossed fair coin. To test this, a coin was tossed 100 times and the psy­
chic’s guesses were recorded as successes or failures. A total of 54 successes were
observed.

If the psychic has no predictive ability, then we would expect the successes to occur
randomly, just as heads occur when we toss the coin. Therefore, we want to test the
null hypothesis that the probability of a success occurring is equal to 0 1 2. This
is equivalent to saying that the psychic has no predictive ability. The MLE is 0.54 and
the approximate P­value is given by

2 1
100 0 54 0 5

0 5 1 0 5
2 1 0 8 2 1 0 7881 0 4238

and we would appear to have no evidence that H0 is false, i.e., no reason to doubt that
the psychic has no predictive ability.

Often cutoff values like 0.05 or 0.01 are used to determine whether the results
of a test are significant or not. For example, if the P­value is less than 0.05, then
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the results are said to be statistically significant at the 5% level. There is nothing
sacrosanct about the 0.05 level, however, and different values can be used depending on
the application. For example, if the result of concluding that we have evidence against
H0 is that something very expensive or important will take place, then naturally we
might demand that the cutoff value be much smaller than 0.05.

When Is Statistical Significance Practically Significant?

It is also important to point out here the difference between statistical significance
and practical significance. Consider the situation in Example 6.3.9, when the true
value of is 1 0 but 1 is so close to 0 that, practically speaking, they are

indistinguishable. By the strong law of large numbers, we have that X
a s

1 as
n and therefore

X 0

0 n
a s

This implies that

2 1
X 0

0 n
a s

0

We conclude that, if we take a large enough sample size n we will inevitably conclude
that 0 because the P­value of the z­test goes to 0. Of course, this is correct
because the hypothesis is false.

In spite of this, we do not want to conclude that just because we have statistical sig­
nificance, the difference between the true value and 0 is of any practical importance.
If we examine the observed absolute difference x 0 as an estimate of 0 ,
however, we will not make this mistake. If this absolute difference is smaller than some
threshold that we consider represents a practically significant difference, then even
if the P­value leads us to conclude that difference exists, we might conclude that no
difference of any importance exists. Of course, the value of is application dependent.
For example, in coin tossing, where we are testing 1 2 we might not care if the
coin is slightly unfair, say, 0 0 01 In testing the abilities of a psychic, as in Ex­
ample 6.3.11, however, we might take much lower, as any evidence of psychic powers
would be an astounding finding. The issue of practical significance is something we
should always be aware of when conducting a test of significance.

Hypothesis Assessment via Confidence Intervals

Another approach to testing hypotheses is via confidence intervals. For example, if we
have a ­confidence interval C s for and 0 C s then this seems like clear
evidence against H0 : 0 at least when is close to 1. It turns out that in
many problems, the approach to testing via confidence intervals is equivalent to using
P­values with a specific cutoff for the P­value to determine statistical significance. We
illustrate this equivalence using the z­test and z­confidence intervals.
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EXAMPLE 6.3.12 An Equivalence Between z­Tests and z­Confidence Intervals
We develop this equivalence by showing that obtaining a P­value less than 1 for
H0 : 0 is equivalent to 0 not being in a ­confidence interval for Observe
that

1 2 1
x 0

0 n

if and only if
x 0

0 n

1

2

This is true if and only if
x 0

0 n
z 1 2

which holds if and only if

0 x z 1 2
0

n
x z 1 2

0

n

This implies that the ­confidence interval for comprises those values 0 for which
the P­value for the hypothesis H0 : 0 is greater than 1 .

Therefore, the P­value, based on the z­statistic, for the null hypothesis H0 :

0, will be smaller than 1 if and only if 0 is not in the ­confidence interval
for derived in Example 6.3.6. For example, if we decide that for any P­values less
than 1 0 05 we will declare the results statistically significant, then we know
the results will be significant whenever the 0.95­confidence interval for does not
contain 0 For the data of Example 6.3.10, a 0.95­confidence interval is given by
[25 441 27 920]. As this interval does not contain 0 25 we have evidence against
the null hypothesis at the 0.05 level.

We can apply the same reasoning for tests about when we are sampling from a
Bernoulli model. For the data in Example 6.3.11, we obtain the 0.95­confidence
interval

x z0 975
x 1 x

n
0 54 1 96

0 54 1 0 54

100
[0 44231 0 63769]

which includes the value 0 0 5. So we have no evidence against the null hypothesis
of no predictive ability for the psychic at the 0.05 level.

t­Tests

We now consider an example pertaining to the important location­scale normal model.

EXAMPLE 6.3.13 Location­Scale Normal Model and t­Tests
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and suppose we want to test the null hypothesis H0 : 0
In Example 6.3.8, we obtained a ­confidence interval for This was based on the
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t­statistic given by (6.3.6). So we base our test on this statistic also. In fact, it can
be shown that the test we derive here is equivalent to using the confidence intervals to
assess the hypothesis as described in Example 6.3.12.

As in Example 6.3.8, we can prove that when the null hypothesis is true, then

T
X 0

S n
(6.3.8)

is distributed t n 1 . The t distributions are unimodal, with the mode at 0, and the
regions of low probability are given by the tails. So we test, or assess, this hypothesis
by computing the probability of observing a value as far or farther away from 0 as
(6.3.8). Therefore, the P­value is given by

P
0

2 T
x 0

s n
2 1 G

x 0

s n
n 1

where G n 1 is the distribution function of the t n 1 distribution. We then
have evidence against H0 whenever this probability is small. This procedure is called
the t ­test. Again, it is a good idea to look at the difference x 0 , when we conclude
that H0 is false, to determine whether or not the detected difference is of practical
importance.

Consider now the data in Example 6.3.10 and let us pretend that we do not know
or 2. Then we have x 26 6808 and s 4 8620 2 2050 so to test H0 : 25
the value of the t­statistic is

t
x 0

s n

26 6808 25

2 2050 10
2 4105

From a statistics package (or Table D.4) we obtain t0 975 9 2 2622 so we have
a statistically significant result at the 5% level and conclude that we have evidence
against H0 : 25 Using a statistical package, we can determine the precise value
of the P­value to be 0.039 in this case.

One­Sided Tests

All the tests we have discussed so far in this section for a characteristic of interest
have been two­sided tests. This means that the null hypothesis specified the value of

to be a single value 0 Sometimes, however, we want to test a null hypothesis
of the form H0 : 0 or H0 : 0 To carry out such tests, we use
the same test statistics as we have developed in the various examples here but compute
the P­value in a way that reflects the one­sided nature of the null. These are known as
one­sided tests. We illustrate a one­sided test using the location normal model.

EXAMPLE 6.3.14 One­Sided Tests
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known. Suppose further that it is hypothesized that H0 :

0 is true, and we wish to assess this after observing the data.
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We will base our test on the z­statistic

Z
X 0

0 n

X 0

0 n

X

0 n
0

0 n

So Z is the sum of a random variable having an N 0 1 distribution and the constant
n 0 0 which implies that

Z N 0

0 n
1 .

Note that
0

0 n
0

if and only if H0 is true.
This implies that, when the null hypothesis is false, we will tend to see values of

Z in the right tail of the N 0 1 distribution; when the null hypothesis is true, we will
tend to see values of Z that are reasonable for the N 0 1 distribution, or in the left tail
of this distribution. Accordingly, to test H0 we compute the P­value

P Z
x 0

0 n
1

x 0

0 n

with Z N 0 1 and conclude that we have evidence against H0 when this is small.
Using the same reasoning, the P­value for the null hypothesis H0 : 0 equals

P Z
x 0

0 n

x 0

0 n
.

For more discussion of one­sided tests and confidence intervals, see Problems 6.3.25
through 6.3.32.

6.3.4 Inferences for the Variance

In Sections 6.3.1, 6.3.2, and 6.3.3, we focused on inferences for the unknown mean of a
distribution, e.g., when we are sampling from an N 2 distribution or a Bernoulli
distribution and our interest is in or respectively. In general, location parameters
tend to play a much more important role in a statistical analysis than other characteris­
tics of a distribution. There are logical reasons for this, discussed in Chapter 10, when
we consider regression models. Sometimes we refer to a parameter such as 2 as a nui­
sance parameter because our interest is in Note that the variance of a Bernoulli
distribution is 1 so that inferences about are logically inferences about the
variance too, i.e., there are no nuisance parameters.

But sometimes we are primarily interested in making inferences about 2 in the
N 2 distribution when it is unknown. For example, suppose that previous expe­
rience with a system under study indicates that the true value of the variance is well­
approximated by 2

0 i.e., the true value does not differ from 2
0 by an amount having



Chapter 6: Likelihood Inference 339

any practical significance. Now based on the new sample, we may want to assess the
hypothesis H0 : 2 2

0 i.e., we wonder whether or not the basic variability in the
process has changed.

The discussion in Section 6.3.1 led to consideration of the standard error s n as
an estimate of the standard deviation n of x In many ways s2 seems like a very
natural estimator of 2 even when we aren’t sampling from a normal distribution.

The following example develops confidence intervals and P­values for 2

EXAMPLE 6.3.15 Location­Scale Normal Model and Inferences for the Variance
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and we want to make inferences about the population variance
2 The plug­in MLE is given by n 1 s2 n which is the average of the squared

deviations of the data values from x Often s2 is recommended as the estimate because
it has the unbiasedness property, and we will use this here. An expression can be
determined for the standard error of this estimate, but, as it is somewhat complicated,
we will not pursue this further here.

We can form a ­confidence interval for 2 using n 1 S2 2 2 n 1
(Theorem 4.6.6). There are a number of possibilities for this interval, but one is to note
that, letting 2 denote the th quantile for the 2 distribution, then

P 2
2
1 2 n 1

n 1 S2

2
2
1 2

n 1

P 2
n 1 S2

2
1 2

n 1
2 n 1 S2

2
1 2 n 1

for every 2 R1 0 So

n 1 s2

2
1 2

n 1

n 1 s2

2
1 2 n 1

is an exact ­confidence interval for 2 To test a hypothesis such as H0 : 0 at
the 1 level, we need only see whether or not 2

0 is in the interval. The smallest
value of such that 2

0 is in the interval is the P­value for this hypothesis assessment
procedure.

For the data in Example 6.3.10, let us pretend that we do not know that 2 4.
Here, n 10 and s2 4 8620 From a statistics package (or Table D.3 in Appendix
D) we obtain 2

0 025 9 2 700 2
0 975 9 19 023 So a 0.95­confidence interval

for 2 is given by

n 1 s2

2
1 2

n 1

n 1 s2

2
1 2 n 1

9 4 8620

19 023

9 4 8620

2 700

[2 300 3 16 207]

The length of the interval indicates that there is a reasonable degree of uncertainty
concerning the true value of 2. We see, however, that a test of H0 : 2 4 would
not reject this hypothesis at the 5% level because the value 4 is in the 0.95­confidence
interval.
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6.3.5 Sample­Size Calculations: Confidence Intervals

Quite often a statistician is asked to determine the sample size n to ensure that with
a very high probability the results of a statistical analysis will yield definitive results.
For example, suppose we are going to take a sample of size n from a population and
want to estimate the population mean so that the estimate is within 0.5 of the true
mean with probability at least 0.95. This means that we want the half­length, or margin
of error, of the 0.95­confidence interval for the mean to be guaranteed to be less than
0.5.

We consider such problems in the following examples. Note that in general, sample­
size calculations are the domain of experimental design, which we will discuss more
extensively in Chapter 10.

First, we consider the problem of selecting the sample size to ensure that a confi­
dence interval is shorter than some prescribed value.

EXAMPLE 6.3.16 The Length of a Confidence Interval for a Mean
Suppose we are in the situation described in Example 6.3.6, in which we have a sample
x1 xn from the N 2

0 model, with R1 unknown and 2
0 0 known.

Further suppose that the statistician is asked to determine n so that the margin of error
for a ­confidence interval for the population mean is no greater than a prescribed
value 0 This entails that n be chosen so that

z 1 2
0

n

or, equivalently, so that

n 2
0

z 1 2
2

For example, if 2
0 10 0 95 and 0 5 then the smallest possible value for

n is 154.
Now consider the situation described in Example 6.3.8, in which we have a sample

x1 xn from the N 2 model with R1 and 2 0 both unknown. In this
case, we want n so that

t 1 2 n 1
s

n

which entails

n s2 t 1 2 n 1 2

But note this also depends on the unobserved value of s so we cannot determine an
appropriate value of n.

Often, however, we can determine an upper bound on the population standard de­
viation, say, b For example, suppose we are measuring human heights in cen­
timeters. Then we have a pretty good idea of upper and lower bounds on the possible
heights we will actually obtain. Therefore, with the normality assumption, the interval
given by the population mean, plus or minus three standard deviations, must be con­
tained within the interval given by the upper and lower bounds. So dividing the length
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of this interval by 6 gives a plausible upper bound b for the value of In any case,
when we have such an upper bound, we can expect that s b at least if we choose b
conservatively Therefore, we take n to satisfy

n b2 t 1 2 n 1 2

.

Note that we need to evaluate t 1 2 n 1 for each n as well. It is wise to be fairly
conservative in our choice of n in this case, i.e., do not choose the smallest possible
value.

EXAMPLE 6.3.17 The Length of a Confidence Interval for a Proportion
Suppose we are in the situation described in Example 6.3.2, in which we have a sample
x1 xn from the Bernoulli model and [0 1] is unknown. The statistician

is required to specify the sample size n so that the margin of error of a ­confidence
interval for is no greater than a prescribed value So, from Example 6.3.7, we want
n to satisfy

z 1 2
x 1 x

n
(6.3.9)

and this entails

n x 1 x
z 1 2 2

.

Because this also depends on the unobserved x , we cannot determine n. Note, however,
that 0 x 1 x 1 4 for every x (plot this function) and that this upper bound is
achieved when x 1 2. Therefore, if we determine n so that

n
1

4

z 1 2 2
,

then we know that (6.3.9) is satisfied. For example, if 0 95 0 1 the smallest
possible value of n is 97; if 0 95 0 01, the smallest possible value of n is
9604.

6.3.6 Sample­Size Calculations: Power

Suppose the purpose of a study is to assess a specific hypothesis H0 : 0 and
it is has been decided that the results will be declared statistically significant whenever
the P­value is less than Suppose that the statistician is asked to choose n so that
the P­value obtained is smaller than with probability at least 0 at some specific

1 such that 1 0 The probability that the P­value is less than for a specific
value of is called the power of the test at We will denote this by and call
the power function of the test. The notation is not really complete, as it suppresses
the dependence of on 0 n and the test procedure, but we will assume that
these are clear in a particular context. The problem the statistician is presented with
can then be stated as: Find n so that 1 0

The power function of a test is a measure of the sensitivity of the test to detect
departures from the null hypothesis. We choose small ( 0 05 0 01 etc.) so that
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we do not erroneously declare that we have evidence against the null hypothesis when
the null hypothesis is in fact true. When 0 then is the probability that
the test does the right thing and detects that H0 is false.

For any test procedure, it is a good idea to examine its power function, perhaps
for several choices of , to see how good the test is at detecting departures. For it
can happen that we do not find any evidence against a null hypothesis when it is false
because the sample size is too small. In such a case, the power will be small at values
that represent practically significant departures from H0 To avoid this problem, we
should always choose a value 1 that represents a practically significant departure from

0 and then determine n so that we reject H0 with high probability when 1
We consider the computation and use of the power function in several examples.

EXAMPLE 6.3.18 The Power Function in the Location Normal Model
For the two­sided z­test in Example 6.3.9, we have

P 2 1
X 0

0 n

P
X 0

0 n
1

2
P

X 0

0 n
z 1 2

P
X 0

0 n
z 1 2 P

X 0

0 n
z 1 2

P
X

0 n
0

0 n
z 1 2 P

X

0 n
0

0 n
z 1 2

1 0

0 n
z 1 2

0

0 n
z 1 2 . (6.3.10)

Notice that

0 0 0 0

so is symmetric about 0 (put 0 and 0 in the expression for
and we get the same value)

Differentiating (6.3.10) with respect to n we obtain

0

0 n
z 1 2

0

0 n
z 1 2

0

0
(6.3.11)

where is the density of the N 0 1 distribution. We can establish that (6.3.11) is
always nonnegative (see Challenge 6.3.34). This implies that is increasing in
n so we need only solve 1 0 for n (the solution may not be an integer) to
determine a suitable sample size (all larger values of n will give a larger power).

For example, when 0 1 0 05 0 0 99 and 1 0 0 1 we must
find n satisfying

1 n 0 1 1 96 n 0 1 1 96 0 99 (6.3.12)

(Note that the symmetry of about 0 means we will get the same answer if we use

0 0 1 here instead of 0 0 1 ) Tabulating (6.3.12) as a function of n using a
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statistical package determines that n 785 is the smallest value achieving the required
bound.

Also observe that the derivative of (6.3.10) with respect to is given by

0

0 n
z 1 2

0

0 n
z 1 2

n

0
(6.3.13)

This is positive when 0, negative when 0 and takes the value 0 when

0 (see Challenge 6.3.35) From (6.3.10) we have that 1 as
These facts establish that takes its minimum value at 0 and that it is increasing as
we move away from 0 Therefore, once we have determined n so that the power is at
least 0 at some 1 we know that the power is at least 0 for all values of satisfying

0 0 1
As an example of this, consider Figure 6.3.5, where we have plotted the power

function when n 10 0 0 0 1 and 0 05 so that

1 10 1 96 10 1 96

Notice the symmetry about 0 0 and the fact that increases as moves away
from 0. We obtain 1 2 0 967 so that when 1 2 the probability that the
P­value for testing H0 : 0 will be less than 0 05 is 0 967. Of course, as we increase
n this graph will rise even more steeply to 1 as we move away from 0.
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Figure 6.3.5: Plot of the power function for Example 6.3.18 when 0 05 0 0
and 0 1 is assumed known.

Many statistical packages contain the power function as a built­in function for var­
ious tests. This is very convenient for examining the sensitivity of the test and deter­
mining sample sizes.

EXAMPLE 6.3.19 The Power Function for in the Bernoulli Model
For the two­sided test in Example 6.3.11, we have that the power function is given by

P 2 1
n X 0

0 1 0
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Under the assumption that we choose n large enough so that X is approximately dis­
tributed N 1 n the approximate calculation of this power function can be
approached as in Example 6.3.18, when we put 0 1 . We do not pursue
this calculation further here but note that many statistical packages will evaluate as a
built­in function.

EXAMPLE 6.3.20 The Power Function in the Location­Scale Normal Model
For the two­sided t­test in Example 6.3.13, we have

n
2 P 2 2 1 G

X 0

S n
n 1

P 2
X 0

S n
t 1 2 n 1

where G n 1 is the cumulative distribution function of the t n 1 distribution.
Notice that it is a function of both and 2. In particular, we have to specify both

and 2 and then determine n so that n
2

0 Many statistical packages
will have the calculation of this power function built­in so that an appropriate n can be
determined using this. Alternatively, we can use Monte Carlo methods to approximate
the distribution function of

X 0

S n

when sampling from the N 2 for a variety of values of n to determine an appro­
priate value.

Summary of Section 6.3

The MLE is the best­supported value of the parameter by the model and
data. As such, it makes sense to base the derivation of inferences about some
characteristic on the MLE. These inferences include estimates and their
standard errors, confidence intervals, and the assessment of hypotheses via P­
values.

An important aspect of the design of a sampling study is to decide on the size n
of the sample to ensure that the results of the study produce sufficiently accurate
results. Prescribing the half­lengths of confidence intervals (margins of error) or
the power of a test are two techniques for doing this.

EXERCISES

6.3.1 Suppose measurements (in centimeters) are taken using an instrument. There
is error in the measuring process and a measurement is assumed to be distributed
N 2

0 , where is the exact measurement and 2
0 0 5 If the (n 10) measure­

ments 4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3 were obtained, assess the hypothesis
H0 : 5 by computing the relevant P­value. Also compute a 0.95­confidence
interval for the unknown
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6.3.2 Suppose in Exercise 6.3.1, we drop the assumption that 2
0 0 5 Then assess

the hypothesis H0 : 5 and compute a 0.95­confidence interval for
6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
with unknown mean but with variance equal to 5. A sample of four students is selected,
and their marks are 52, 63, 64, 84. Assess the hypothesis H0 : 60 by computing
the relevant P­value and compute a 0.95­confidence interval for the unknown
6.3.4 Suppose in Exercise 6.3.3 that we drop the assumption that the population vari­
ance is 5. Assess the hypothesis H0 : 60 by computing the relevant P­value and
compute a 0.95­confidence interval for the unknown
6.3.5 Suppose that in Exercise 6.3.3 we had observed only one mark and that it was
52. Assess the hypothesis H0 : 60 by computing the relevant P­value and compute
a 0.95­confidence interval for the unknown Is it possible to compute a P­value and
construct a 0.95­confidence interval for without the assumption that we know the
population variance? Explain your answer and, if your answer is no, determine the
minimum sample size n for which inference is possible without the assumption that
the population variance is known.
6.3.6 Assume that the speed of light data in Table 6.3.1 is a sample from an N 2

distribution for some unknown values of and 2 Determine a 0.99­confidence inter­
val for Assess the null hypothesis H0 : 24
6.3.7 A manufacturer wants to assess whether or not rods are being constructed appro­
priately, where the diameter of the rods is supposed to be 1 0 cm and the variation in the
diameters is known to be distributed N 0 1 . The manufacturer is willing to tolerate
a deviation of the population mean from this value of no more than 0 1 cm, i.e., if the
population mean is within the interval 1 0 0 1 cm, then the manufacturing process is
performing correctly. A sample of n 500 rods is taken, and the average diameter
of these rods is found to be x 1 05 cm, with s2 0 083 cm2. Are these results
statistically significant? Are the results practically significant? Justify your answers.
6.3.8 A polling firm conducts a poll to determine what proportion of voters in a given
population will vote in an upcoming election. A random sample of n 250 was taken
from the population, and the proportion answering yes was 0.62. Assess the hypothesis
H0 : 0 65 and construct an approximate 0.90­confidence interval for
6.3.9 A coin was tossed n 1000 times, and the proportion of heads observed was
0.51. Do we have evidence to conclude that the coin is unfair?
6.3.10 How many times must we toss a coin to ensure that a 0.95­confidence interval
for the probability of heads on a single toss has length less than 0.1, 0.05, and 0 .01,
respectively?
6.3.11 Suppose a possibly biased die is rolled 30 times and that the face containing
two pips comes up 10 times. Do we have evidence to conclude that the die is biased?
6.3.12 Suppose a measurement on a population is assumed to be distributed N 2
where R1 is unknown and that the size of the population is very large. A researcher
wants to determine a 0.95­confidence interval for that is no longer than 1. What is
the minimum sample size that will guarantee this?
6.3.13 Suppose x1 xn is a sample from a Bernoulli with [0 1] unknown.
(a) Show that n

i 1 xi x 2 nx 1 x (Hint: x2
i xi )
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(b) If X Bernoulli then 2 Var X 1 Record the relationship
between the plug­in estimate of 2 and that given by s2 in (5.5.5).
(c) Since s2 is an unbiased estimator of 2 (see Problem 6.3.23), use the results in part
(b) to determine the bias in the plug­in estimate. What happens to this bias as n ?
6.3.14 Suppose you are told that, based on some data, a 0 95­confidence interval for
a characteristic is given by 1 23 2 45 You are then asked if there is any evi­
dence against the hypothesis H0 : 2 State your conclusion and justify your
reasoning.
6.3.15 Suppose that x1 is a value from a Bernoulli with [0 1] unknown.
(a) Is x1 an unbiased estimator of ?

(b) Is x2
1 an unbiased estimator of 2?

6.3.16 Suppose a plug­in MLE of a characteristic is given by 5.3. Also a P­value
was computed to assess the hypothesis H0 : 5 and the value was 0 000132 If
you are told that differences among values of less than 0 5 are of no importance
as far as the application is concerned, then what do you conclude from these results?
Suppose instead you were told that differences among values of less than 0 25
are of no importance as far as the application is concerned, then what do you conclude
from these results?
6.3.17 A P­value was computed to assess the hypothesis H0 : 0 and the value
0 22 was obtained. The investigator says this is strong evidence that the hypothesis is
correct. How do you respond?
6.3.18 A P­value was computed to assess the hypothesis H0 : 1 and the value
0 55 was obtained. You are told that differences in greater than 0 5 are considered
to be practically significant but not otherwise. The investigator wants to know if enough
data were collected to reliably detect a difference of this size or greater. How would
you respond?

COMPUTER EXERCISES

6.3.19 Suppose a measurement on a population can be assumed to follow the N 2

distribution, where 2 R1 0 is unknown and the size of the population is
very large. A very conservative upper bound on is given by 5. A researcher wants to
determine a 0.95­confidence interval for that is no longer than 1. Determine a sample
size that will guarantee this. (Hint: Start with a large sample approximation.)
6.3.20 Suppose a measurement on a population is assumed to be distributed N 2 ,
where R1 is unknown and the size of the population is very large. A researcher
wants to assess a null hypothesis H0 : 0 and ensure that the probability is at
least 0.80 that the P­value is less than 0.05 when 0 0 5 What is the minimum
sample size that will guarantee this? (Hint: Tabulate the power as a function of the
sample size n )

6.3.21 Generate 103 samples of size n 5 from the Bernoulli 0 5 distribution. For
each of these samples, calculate (6.3.5) with 0 95 and record the proportion of
intervals that contain the true value. What do you notice? Repeat this simulation with
n 20 What do you notice?
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6.3.22 Generate 104 samples of size n 5 from the N 0 1 distribution. For each of
these samples, calculate the interval x s 5 x s 5 where s is the sample stan­
dard deviation, and compute the proportion of times this interval contains . Repeat
this simulation with n 10 and 100 and compare your results.

PROBLEMS

6.3.23 Suppose that x1 xn is a sample from a distribution with mean and
variance 2

(a) Prove that s2 given by (5.5.5) is an unbiased estimator of 2

(b) If instead we estimate 2 by n 1 s2 n, then determine the bias in this estimate
and what happens to it as n
6.3.24 Suppose we have two unbiased estimators T1 and T2 of R1.

(a) Show that T1 1 T2 is also an unbiased estimator of whenever
[0 1]
(b) If T1 and T2 are also independent, e.g., determined from independent samples, then
calculate Var T1 1 T2 in terms of Var T1 and Var T2

(c) For the situation in part (b), determine the best choice of in the sense that for this
choice Var T1 1 T2 is smallest. What is the effect on this combined estimator
of T1 having a very large variance relative to T2?
(d) Repeat parts (b) and (c), but now do not assume that T1 and T2 are independent, so
Var T1 1 T2 will also involve Cov T1 T2

6.3.25 (One­sided confidence intervals for means) Suppose that x1 xn is a sam­
ple from an N 2

0 distribution, where R1 is unknown and 2
0 is known. Sup­

pose we want to make inferences about the interval . Consider the
problem of finding an interval C x1 xn u x1 xn that covers the
interval with probability at least So we want u such that for every ,

P u X1 Xn

Note that u x1 xn if and only if u x1 xn , so
C x1 xn is called a left­sided ­confidence interval for Obtain an exact left­
sided ­confidence interval for using u x1 xn x k 0 n , i.e., find the
k that gives this property
6.3.26 (One­sided hypotheses for means ) Suppose that x1 xn is a sample from
a N 2

0 distribution, where is unknown and 2
0 is known. Suppose we want

to assess the hypothesis H0 : 0. Under these circumstances, we say that the
observed value x is surprising if x occurs in a region of low probability for every
distribution in H0. Therefore, a sensible P­value for this problem is max H0 P X
x . Show that this leads to the P­value 1 x 0 0 n
6.3.27 Determine the form of the power function associated with the hypothesis assess­
ment procedure of Problem 6.3.26, when we declare a test result as being statistically
significant whenever the P­value is less than
6.3.28 Repeat Problems 6.3.25 and 6.3.26, but this time obtain a right­sided ­confidence
interval for and assess the hypothesis H0 : 0.
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6.3.29 Repeat Problems 6.3.25 and 6.3.26, but this time do not assume the population
variance is known. In particular, determine k so that u x1 xn x k s n
gives an exact left­sided ­confidence interval for and show that the P­value for
testing H0 : 0 is given by

1 G
x 0

0 n
n 1

6.3.30 (One­sided confidence intervals for variances) Suppose that x1 xn is a
sample from the N 2 distribution, where 2 R1 0 is unknown, and
we want a ­confidence interval of the form

C x1 xn 0 u x1 xn

for 2 If u x1 xn ks2 then determine k so that this interval is an exact ­
confidence interval.
6.3.31 (One­sided hypotheses for variances) Suppose that x1 xn is a sample
from the N 2 distribution, where 2 R1 0 is unknown, and we
want to assess the hypothesis H0 : 2 2

0 Argue that the sample variance s2 is
surprising if s2 is large and that, therefore, a sensible P­value for this problem is to
compute max 2 H0

P S2 s2 Show that this leads to the P­value

1 H
n 1 s2

2
0

n 1

where H n 1 is the distribution function of the 2 n 1 distribution.

6.3.32 Determine the form of the power function associated with the hypothesis as­
sessment procedure of Problem 6.3.31, for computing the probability that the P­value
is less than
6.3.33 Repeat Exercise 6.3.7, but this time do not assume that the population variance
is known. In this case, the manufacturer deems the process to be under control if the
population standard deviation is less than or equal to 0.1 and the population mean is in
the interval 1 0 0 1 cm. Use Problem 6.3.31 for the test concerning the population
variance.

CHALLENGES

6.3.34 Prove that (6.3.11) is always nonnegative. (Hint: Use the facts that is sym­
metric about 0, increases to the left of 0, and decreases to the right of 0.)
6.3.35 Establish that (6.3.13) is positive when 0, negative when 0 and
takes the value 0 when 0

DISCUSSION TOPICS

6.3.36 Discuss the following statement: The accuracy of the results of a statistical
analysis is so important that we should always take the largest possible sample size.
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6.3.37 Suppose we have a sequence of estimators T1 T2 for and Tn
P

as n for each Discuss under what circumstances you
might consider Tn a useful estimator of

6.4 Distribution­Free Methods
The likelihood methods we have been discussing all depend on the assumption that the
true distribution lies in P : . There is typically nothing that guarantees that
the assumption P : is correct. If the distribution we are sampling from is far
different from any of the distributions in P : , then methods of inference that
depend on this assumption, such as likelihood methods, can be very misleading. So
it is important in any application to check that our assumptions make sense. We will
discuss the topic of model checking in Chapter 9.

Another approach to this problem is to take the model P : as large as
possible, ref lecting the fact that we may have very little information about what the
true distribution is like. For example, inferences based on the Bernoulli model with

[0 1] really specify no information about the true distribution because this
model includes all the possible distributions on the sample space S 0 1 . Infer­
ence methods that are suitable when P : is very large are sometimes called
distribution­free, to reflect the fact that very little information is specified in the model
about the true distribution.

For finite sample spaces, it is straightforward to adopt the distribution­free ap­
proach, as with the just cited Bernoulli model, but when the sample space is infinite,
things are more complicated. In fact, sometimes it is very difficult to determine infer­
ences about characteristics of interest when the model is very big. Furthermore, if we
have

P : 1 P :

then, when the smaller model contains the true distribution, methods based on the
smaller model will make better use of the information in the data about the true value
in 1 than will methods using the bigger model P : . So there is a trade­off
between taking too big a model and taking too precise a model. This is an issue that a
statistician must always address.

We now consider some examples of distribution­free inferences. In some cases, the
inferences have approximate sampling properties, while in other cases the inferences
have exact sampling properties for very large models.

6.4.1 Method of Moments

Suppose we take P : to be the set of all distributions on R1 that have their
first l moments, and we want to make inferences about the moments

i E X i
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for i 1 l based on a sample x1 xn . The natural sample analog of the
population moment i is the i th sample moment

mi
1

n

n

j 1

x ij

which would seem to be a sensible estimator.
In particular, we have that E Mi i for every so mi is unbiased,

and the weak and strong laws of large numbers establish that mi converges to i as n
increases Furthermore, the central limit theorem establishes that

Mi i

Var Mi

D
N 0 1

as n provided that Var Mi Now, because X1 Xn are i.i.d., we
have that

Var Mi
1

n2

n

j 1

Var X i
j

1

n
Var X i

1
1

n
E X i

1 i
2

1

n
E X2i

1 2 i X
i
1

2
i

1

n 2i
2
i

so we have that Var Mi provided that i l 2 In this case, we can estimate

2i
2
i by

s2
i

1

n 1

n

j 1

x ij mi
2

as we can simply treat x i1 x in as a sample from a distribution with mean i

and variance 2i
2
i Problem 6.3.23 establishes that s2

i is an unbiased estimate of
Var Mi . So, as with inferences for the population mean based on the z­statistic, we
have that

mi z 1 2
si
n

is an approximate ­confidence interval for i whenever i l 2 and n is large. Also,
we can test hypothesis H0 : i i0 in exactly the same fashion, as we did this for
the population mean using the z­statistic.

Notice that the model P : is very large (all distributions on R1 having their
first l 2 moments finite), and these approximate inferences are appropriate for every
distribution in the model. A cautionary note is that estimation of moments becomes
more difficult as the order of the moments rises. Very large sample sizes are required
for the accurate estimation of high­order moments.

The general method of moments principle allows us to make inference about char­
acteristics that are functions of moments. This takes the following form:

Method of moments principle: A function 1 k of the first k l
moments is estimated by m1 mk
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When is continuously differentiable and nonzero at 1 k and k l 2, then
it can be proved that M1 Mk converges in distribution to a normal with mean
given by 1 k and variance given by an expression involving the variances
and covariances of M1 Mk and the partial derivatives of We do not pursue this
topic further here but note that, in the case k 1 and l 2 these conditions lead to
the so­called delta theorem, which says that

n X 1

X s

D
N 0 1 (6.4.1)

as n provided that is continuously differentiable at 1 and 1 0 see
Approximation Theorems of Mathematical Statistics, by R. J. Serfling (John Wiley &
Sons, New York, 1980), for a proof of this result. This result provides approximate
confidence intervals and tests for 1 .

EXAMPLE 6.4.1 Inference about a Characteristic Using the Method of Moments
Suppose x1 xn is a sample from a distribution with unknown mean and vari­
ance 2 and we want to construct a ­confidence interval for 1 2 Then

2 3 so the delta theorem says that

n 1 X2 1 2

2s X3

D
N 0 1

as n Therefore,
1

x

2

2
s

nx3
z 1 2

is an approximate ­confidence interval for 1 2

Notice that if 0 then this confidence interval is not valid because is not
continuously differentiable at 0. So if you think the population mean could be 0, or
even close to 0, this would not be an appropriate choice of confidence interval for .

6.4.2 Bootstrapping

Suppose that P : is the set of all distributions on R1 and that x1 xn is
a sample from some unknown distribution with cdf F . Then the empirical distribution
function

F x
1

n

n

i 1

I x] xi ,

introduced in Section 5.4.1, is a natural estimator of the cdf F x .
We have

E F x
1

n

n

i 1

E I x] Xi
1

n

n

i 1

F x F x

for every so that F is unbiased for F The weak and strong laws of large
numbers then establish the consistency of F x for F x as n Observing that
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the I x] xi constitute a sample from the Bernoulli F x distribution, we have
that the standard error of F x is given by

F x 1 F x

n
.

These facts can be used to form approximate confidence intervals and test hypotheses
for F x , just as in Examples 6.3.7 and 6.3.11.

Observe that F x prescribes a distribution on the set x1 xn , e.g., if the sam­
ple values are distinct, this probability distribution puts mass 1 n on each xi . Note that
it is easy to sample a value from F , as we just select a value from x1 xn where
each point has probability 1 n of occurring. When the xi are not distinct, then this is
changed in an obvious way, namely, xi has probability fi n, where fi is the number of
times xi occurs in x1 xn .

Suppose we are interested in estimating T F , where T is a function
of the distribution F We use this notation to emphasize that corresponds to
some characteristic of the distribution rather than just being an arbitrary mathematical
function of For example, T F could be a moment of F a quantile of F etc.

Now suppose we have an estimator x1 xn that is being proposed for in­
ferences about . Naturally, we are interested in the accuracy of , and we could
choose to measure this by

MSE E
2

Var . (6.4.2)

Then, to assess the accuracy of our estimate x1 xn , we need to estimate (6.4.2).
When n is large, we expect F to be close to F , so a natural estimate of is

T F i.e., simply compute the same characteristic of the empirical distribution. This
is the approach adopted in Chapter 5 when we discussed descriptive statistics. Then
we estimate the square of the bias in by

T F 2. (6.4.3)

To estimate the variance of , we use

VarF EF
2

E2
F

1

nn

n

i1 1

n

in 1

2
xi1 xin

1

nn

n

i1 1

n

in 1

xi1 xin

2

, (6.4.4)

i.e., we treat x1 xn as i.i.d. random values with cdf given by F So to calculate
an estimate of (6.4.2), we simply have to calculate VarF . This is rarely feasible,
however, because the sums in (6.4.4) involve nn terms. For even very modest sample
sizes, like n 10 this cannot be carried out, even on a computer.

The solution to this problem is to approximate (6.4.4) by drawing m indepen­
dent samples of size n from F evaluating for each of these samples to obtain



Chapter 6: Likelihood Inference 353

1 m and then using the sample variance

VarF
1

m 1

m

i 1

2
i

1

m

m

i 1
i

2

(6.4.5)

as the estimate. The m samples from F are referred to as bootstrap samples or re­
samples, and this technique is referred to as bootstrapping or resampling. Combining
(6.4.3) and (6.4.5) gives an estimate of MSE Furthermore, m 1 m

i 1 i is called
the bootstrap mean, and

VarF
is the bootstrap standard error. Note that the bootstrap standard error is a valid estimate
of the error in whenever has little or no bias.

Consider the following example.

EXAMPLE 6.4.2 The Sample Median as an Estimator of the Population Mean
Suppose we want to estimate the location of a unimodal, symmetric distribution. While
the sample mean might seem like the obvious choice for this, it turns out that for some
distributions there are better estimators. This is because the distribution we are sam­
pling may have long tails, i.e., may produce extreme values that are far from the center
of the distribution. This implies that the sample average itself could be highly inf lu­
enced by a few extreme observations and would thus be a poor estimate of the true
mean.

Not all estimators suffer from this defect. For example, if we are sampling from a
symmetric distribution, then either the sample mean or the sample median could serve
as an estimator of the population mean. But, as we have previously discussed, the
sample median is not influenced by extreme values, i.e., it does not change as we move
the smallest (or largest) values away from the rest of the data, and this is not the case
for the sample mean.

A problem with working with the sample median x0 5 rather than the sample mean
x is that the sampling distribution for x0 5 is typically more difficult to study than
that of x . In this situation, bootstrapping becomes useful. If we are estimating the
population mean T F by using the sample median (which is appropriate when we
know the distribution we were sampling from is symmetric), then the estimate of the
squared bias in the sample median is given by

T F 2 x0 5 x 2

because x0 5 and T F x (the mean of the empirical distribution is x). This
should be close to 0, or else our assumption of a symmetric distribution would seem
to be incorrect. To calculate (6.4.5), we have to generate m samples of size n from
x1 xn (with replacement) and calculate x0 5 for each sample.

To illustrate, suppose we have a sample of size n 15 given by the following
table.

2 0 0 2 5 2 3 5 3 9
0 6 4 3 1 7 9 5 1 6
2 9 0 9 1 0 2 0 3 0
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Then, using the definition of x0 5 given by (5.5.4) (denoted x0 5 there), 2 000
and x 2 087 The estimate of the squared bias (6.4.3) equals 2 000 2 087 2

7 569 10 3, which is appropriately small. Using a statistical package, we generated
m 103 samples of size n 15 from the distribution that has probability 1 15 at each
of the sample points and obtained

VarF 0 770866

Based on m 104 samples, we obtained

VarF 0 718612

and based on m 105 samples we obtained

VarF 0 704928

Because these estimates appear to be stabilizing, we take this as our estimate. So in
this case, the bootstrap estimate of the MSE of the sample median at the true value of

is given by

MSE 0 007569 0 704928 0 71250

Note that the estimated MSE of the sample average is given by s2 0 62410 so
the sample mean and sample median appear to be providing similar accuracy in this
problem. In Figure 6.4.1, we have plotted a density histogram of the sample medians
obtained from the m 105 bootstrap samples. Note that the histogram is very skewed.
See Appendix B for more details on how these computations were carried out.
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Figure 6.4.1: A density histogram of m 105 sample medians, each obtained from a bootstrap
sample of size n 15 from the data in Example 6.4.2.

Even with the very small sample size here, it was necessary to use the computer to
carry out our calculations. To evaluate (6.4.4) exactly would have required computing
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the median of 1515 (roughly 4 4 1017) samples, which is clearly impossible even
using a computer. So the bootstrap is a very useful device.

The validity of the bootstrapping technique depends on having its first two mo­
ments. So the family P : must be appropriately restricted, but we can see that
the technique is very general.

Broadly speaking, it is not clear how to choose m Perhaps the most direct method
is to implement bootstrapping for successively higher values of m and stop when we
see that the results stabilize for several values. This is what we did in Example 6.4.2,
but it must be acknowledged that this approach is not foolproof, as we could have a
sample x1 xn such that the estimate (6.4.5) is very slowly convergent.

Bootstrap Confidence Intervals

Bootstrap methods have also been devised to obtain approximate ­confidence inter­
vals for characteristics such as T F One very simple method is to simply
form the bootstrap t ­confidence interval

t 1 2 n 1 VarF ,

where t 1 2 n 1 is the 1 2th quantile of the t n 1 distribution. Another
possibility is to compute a bootstrap percentile confidence interval given by

1 2 1 2 ,

where p denotes the pth empirical quantile of in the bootstrap sample of m
It should be noted that to be applicable, these intervals require some conditions to

hold. In particular, should be at least approximately unbiased for and the boot­
strap distribution should be approximately normal. Looking at the plot of the bootstrap
distribution in Figure 6.4.1 we can see that the median does not have an approximately
normal bootstrap distribution, so these intervals are not applicable with the median.

Consider the following example.

EXAMPLE 6.4.3 The 0.25­Trimmed Mean as an Estimator of the Population Mean
One of the virtues of the sample median as an estimator of the population mean is
that it is not affected by extreme values in the sample. On the other hand, the sample
median discards all but one or two of the data values and so seems to be discarding
a lot of information. Estimators known as trimmed means can be seen as an attempt
at retaining the virtues of the median while at the same time not discarding too much
information. Let x denote the greatest integer less than or equal to x R1

Definition 6.4.1 For [0 1] a sample ­trimmed mean is given by

x
1

n 2 n

n n

i n 1

x i

where x i is the i th­order statistic.
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Thus for a sample ­trimmed mean, we toss out (approximately) n of the smallest
data values and n of the largest data values and calculate the average of the n 2 n
of the data values remaining. We need the greatest integer function because in general,
n will not be an integer. Note that the sample mean arises with 0 and the sample

median arises with 0 5
For the data in Example 6.4.1 and 0 25, we have 0 25 15 3 75, so we

discard the three smallest and three largest observations leaving the nine data val­
ues 3 9 3 5 2 9 2 0 2 0 1 7 1 0 0 6 0 2 The average of these nine
values gives x0 25 1 97778, which we note is close to both the sample median
and the sample mean.

Now suppose we use a 0.25­trimmed mean as an estimator of a population mean
where we believe the population distribution is symmetric. Consider the data in Ex­
ample 6.4.1 and suppose we generated m 104 bootstrap samples. We have plotted a
histogram of the 104 values of in Figure 6.4.2. Notice that it is very normal looking,
so we feel justified in using the confidence intervals associated with the bootstrap. In
this case, we obtained

VarF 0 7380

so the bootstrap t 0 95­confidence interval for the mean is given by 1 97778
2 14479 0 7380 3 6 0 4 Sorting the bootstrap sample gives a bootstrap

percentile 0 95­confidence interval as 3 36667 0 488889 3 4 0 5 which
shows that the two intervals are very similar.
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Figure 6.4.2: A density histogram of m 104 sample 0.25­trimmed means, each obtained
from a bootstrap sample of size n 15 from the data in Example 6.4.3

More details about the bootstrap can be found in An Introduction to the Bootstrap,
by B. Efron and R. J. Tibshirani (Chapman and Hall, New York, 1993).
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6.4.3 The Sign Statistic and Inferences about Quantiles

Suppose that P : is the set of all distributions on R1 such that the associated
distribution functions are continuous. Suppose we want to make inferences about a pth
quantile of P We denote this quantile by xp so that, when the distribution function
associated with P is denoted by F , we have p F x p Note that continuity
implies there is always a solution in x to p F x and that x p is the smallest
solution.

Recall the definitions and discussion of estimation of these quantities in Example
5.5.2 based on a sample x1 xn . For simplicity, let us restrict attention to the
cases where p i n for some i 1 n . In this case, we have that x p x i is
the natural estimate of xp.

Now consider assessing the evidence in the data concerning the hypothesis H0 :
xp x0. For testing this hypothesis, we can use the sign test statistic, given by
S n

i 1 I x0] xi . So S is the number of sample values less than or equal to x0
Notice that when H0 is true, I x0] x1 I x0] xn is a sample from the

Bernoulli p distribution. This implies that, when H0 is true, S Binomial n p
Therefore, we can test H0 by computing the observed value of S denoted So and

seeing whether this value lies in a region of low probability for the Binomial n p dis­
tribution. Because the binomial distribution is unimodal, the regions of low probability
correspond to the left and right tails of this distribution. See, for example, Figure 6.4.3,
where we have plotted the probability function of a Binomial 20 0 7 distribution.

The P­value is therefore obtained by computing the probability of the set

i :
n

i
pi 1 p n i n

So
pSo 1 p n So (6.4.6)

using the Binomial n p probability distribution. This is a measure of how far out in
the tails the observed value So is (see Figure 6.4.3). Notice that this P­value is com­
pletely independent of and is thus valid for the entire model. Tables of binomial
probabilities (Table D.6 in Appendix D), or built­in functions available in most statis­
tical packages, can be used to calculate this P­value.

20100

0.2

0.1

0.0

x

Figure 6.4.3: Plot of the Binomial 20 0 7 probability function.

When n is large, we have that, under H0

Z
S np

np 1 p
D

N 0 1
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as n Therefore, an approximate P­value is given by

2 1
So 0 5 np

np 1 p

(as in Example 6.3.11), where we have replaced So by So 0 5 as a correction for
continuity (see Example 4.4.9 for discussion of the correction for continuity).

A special case arises when p 1 2 i.e., when we are making inferences about
an unknown population median x0 5 . In this case, the distribution of S under H0 is
Binomial n 1 2 . Because the Binomial n 1 2 is unimodal and symmetrical about
n 2 (6.4.6) becomes

i : So n 2 i n 2

If we want a ­confidence interval for x0 5 , then we can use the equivalence
between tests, which we always reject when the P­value is less than or equal to 1 ,
and ­confidence intervals (see Example 6.3.12). For this, let j be the smallest integer
greater than n 2 satisfying

P i : i n 2 j n 2 1 (6.4.7)

where P is the Binomial n 1 2 distribution. If S i : i n 2 j n 2 , we
will reject H0 : x0 5 x0 at the 1 level and will not otherwise. This leads
to the ­confidence interval, namely, the set of all those values x0 5 such that the null
hypothesis H0 : x0 5 x0 5 is not rejected at the 1 level, equaling

C x1 xn x0 :
n

i 1

I x0] xi n 2 j n 2

x0 : n j
n

i 1

I x0] xi j [x n j 1 x j (6.4.8)

because, for example, n j n
i 1 I x0] xi if and only if x0 x n j 1

EXAMPLE 6.4.4 Application of the Sign Test
Suppose we have the following sample of size n 10 from a continuous random
variable X and we wish to test the hypothesis H0 : x0 5 0

0 44 0 06 0 43 0 16 2 13
1 15 1 08 5 67 4 97 0 11

The boxplot in Figure 6.4.4 indicates that it is very unlikely that this sample came from
a normal distribution, as there are two extreme observations. So it is appropriate to
measure the location of the distribution of X by the median.
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x

Figure 6.4.4: Boxplot of the data in Example 6.4.4.

In this case, the sample median (using (5.5.4)) is given by 0 11 0 43 2 0 27.
The sign statistic for the null is given by

S
10

i 1

I 0] xi 4

The P­value is given by

P i : 4 5 i 5 P i : i 5 1 1 P i : i 5 1

1 P 5 1
10

5

1

2

10

1 0 24609 0 75391,

and we have no reason to reject the null hypothesis.
Now suppose that we want a 0 95­confidence interval for the median. Using soft­

ware (or Table D.6), we calculate

10
5

1
2

10
0 24609 10

4
1
2

10
0 20508

10
3

1
2

10
0 11719 10

2
1
2

10
4 3945 10 2

10
1

1
2

10
9 7656 10 3 10

0
1
2

10
9 7656 10 4

We will use these values to compute the value of j in (6.4.7).
We can use the symmetry of the Binomial 10 1 2 distribution about n 2 to com­

pute the values of P i : i n 2 j n 2 as follows. For j 10 we have that
(6.4.7) equals

P i : i 5 5 P 0 10 2
10

0

1

2

10

1 9531 10 3

and note that 1 9531 10 3 1 0 95 0 05 For j 9 we have that (6.4.7) equals

P i : i 5 4 P 0 1 9 10 2
10

0

1

2

10

2
10

1

1

2

10

2 148 4 10 2
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which is also less than 0.05. For j 8 we have that (6.4.7) equals

P i : i 5 3 P 0 1 2 8 9 10

2
10

0

1

2

10

2
10

1

1

2

10

2
10

2

1

2

10

0 10938

and this is greater than 0.05. Therefore, the appropriate value is j 9 and a 0.95­
confidence interval for the median is given by [x 2 x 9 [ 0 16 1 15 .

There are many other distribution­free methods for a variety of statistical situations.
While some of these are discussed in the problems, we leave a thorough study of such
methods to further courses in statistics.

Summary of Section 6.4

Distribution­free methods of statistical inference are appropriate methods when
we feel we can make only very minimal assumptions about the distribution from
which we are sampling.

The method of moments, bootstrapping, and methods of inference based on the
sign statistic are three distribution­free methods that are applicable in different
circumstances.

EXERCISES

6.4.1 Suppose we obtained the following sample from a distribution that we know has
its first six moments. Determine an approximate 0 95­confidence interval for 3.

3 27 1 24 3 97 2 25 3 47 0 09 7 45 6 20 3 74 4 12
1 42 2 75 1 48 4 97 8 00 3 26 0 15 3 64 4 88 4 55

6.4.2 Determine the method of moments estimator of the population variance. Is this
estimator unbiased for the population variance? Justify your answer.
6.4.3 (Coefficient of variation) The coefficient of variation for a population measure­
ment with nonzero mean is given by where is the population mean and is the
population standard deviation. What is the method of moments estimate of the coeffi­
cient of variation? Prove that the coefficient of variation is invariant under rescalings of
the distribution, i.e., under transformations of the form T x cx for constant c 0.
It is this invariance that leads to the coefficient of variation being an appropriate mea­
sure of sampling variability in certain problems, as it is independent of the units we use
for the measurement.
6.4.4 For the context described in Exercise 6.4.1, determine an approximate 0.95­
confidence interval for exp 1

6.4.5 Verify that the third moment of an N 2 distribution is given by 3
3 3 2 Because the normal distribution is specified by its first two moments,

any characteristic of the normal distribution can be estimated by simply plugging in
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the MLE estimates of and 2. Compare the method of moments estimator of 3
with this plug­in MLE estimator, i.e., determine whether they are the same or not.
6.4.6 Suppose we have the sample data 1.48, 4.10, 2.02, 56.59, 2.98, 1.51, 76.49,
50.25, 43.52, 2.96. Consider this as a sample from a normal distribution with unknown
mean and variance, and assess the hypothesis that the population median (which is
the same as the mean in this case) is 3. Also carry out a sign test that the population
median is 3 and compare the results. Plot a boxplot for these data. Does this support
the assumption that we are sampling from a normal distribution? Which test do you
think is more appropriate? Justify your answer.
6.4.7 Determine the empirical distribution function based on the sample given below.

1 06 1 28 0 40 1 36 0 35
1 42 0 44 0 58 0 24 1 34
0 00 1 02 1 35 2 05 1 06
0 98 0 38 2 13 0 03 1 29

Using the empirical cdf, determine the sample median, the first and third quartiles, and
the interquartile range. What is your estimate of F 2 ?
6.4.8 Suppose you obtain the sample of n 3 distinct values given by 1, 2, and 3.
(a) Write down all possible bootstrap samples.

(b) If you are bootstrapping the sample median, what are the possible values for the
sample median for a bootstrap sample?
(c) If you are bootstrapping the sample mean, what are the possible values for the
sample mean for a bootstrap sample?
(d) What do you conclude about the bootstrap distribution of the sample median com­
pared to the bootstrap distribution of the sample mean?
6.4.9 Explain why the central limit theorem justifies saying that the bootstrap distri­
bution of the sample mean is approximately normal when n and m are large. What
result justifies the approximate normality of the bootstrap distribution of a function of
the sample mean under certain conditions?
6.4.10 For the data in Exercise 6.4.1, determine an approximate 0.95­confidence inter­
val for the population median when we assume the distribution we are sampling from
is symmetric with finite first and second moments. (Hint: Use large sample results.)

6.4.11 Suppose you have a sample of n distinct values and are interested in the boot­
strap distribution of the sample range given by x n x 1 What is the maximum
number of values that this statistic can take over all bootstrap samples? What are the
largest and smallest values that the sample range can take in a bootstrap sample? Do
you think the bootstrap distribution of the sample range will be approximately normal?
Justify your answer.
6.4.12 Suppose you obtain the data 1 1 1 0 1 1 3 1 2 2, and 3 1. How many dis­
tinct bootstrap samples are there?
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COMPUTER EXERCISES

6.4.13 For the data of Exercise 6.4.7, assess the hypothesis that the population median
is 0. State a 0.95­confidence interval for the population median. What is the exact
coverage probability of this interval?
6.4.14 For the data of Exercise 6.4.7, assess the hypothesis that the first quartile of the
distribution we are sampling from is 1 0.
6.4.15 With a bootstrap sample size of m 1000, use bootstrapping to estimate the
MSE of the plug­in MLE estimator of 3 for the normal distribution, using the sample
data in Exercise 6.4.1. Determine whether m 1000 is a large enough sample for
accurate results.
6.4.16 For the data of Exercise 6.4.1, use the plug­in MLE to estimate the first quartile
of an N 2 distribution. Use bootstrapping to estimate the MSE of this estimate
for m 103 and m 104 (use (5.5.3) to compute the first quartile of the empirical
distribution).

6.4.17 For the data of Exercise 6.4.1, use the plug­in MLE to estimate F 3 for an
N 2 distribution. Use bootstrapping to estimate the MSE of this estimate for
m 103 and m 104.
6.4.18 For the data of Exercise 6.4.1, form a 0.95­confidence interval for assuming
that this is a sample from an N 2 distribution. Also compute a 0.95­confidence
interval for based on the sign statistic, a bootstrap t 0.95­confidence interval, and
a bootstrap percentile 0.95­confidence interval using m 103 for the bootstrapping.
Compare the four intervals.
6.4.19 For the data of Exercise 6.4.1, use the plug­in MLE to estimate the first quintile,
i.e., x0 2 of an N 2 distribution. Plot a density histogram estimate of the bootstrap
distribution of this estimator for m 103 and compute a bootstrap t 0.95­confidence
interval for x0 2, if you think it is appropriate.
6.4.20 For the data of Exercise 6.4.1, use the plug­in MLE to estimate 3 of an
N 2 distribution. Plot a density histogram estimate of the bootstrap distribu­
tion of this estimator for m 103 and compute a bootstrap percentile 0.95­confidence
interval for 3 if you think it is appropriate.

PROBLEMS

6.4.21 Prove that when x1 xn is a sample of distinct values from a distribution
on R1 then the i th moment of the empirical distribution on R1 (i.e., the distribution
with cdf given by F is mi

6.4.22 Suppose that x1 xn is a sample from a distribution on R1. Determine the
general form of the i th moment of F i.e., in contrast to Problem 6.4.21, we are now
allowing for several of the data values to be equal
6.4.23 (Variance stabilizing transformations) From the delta theorem, we have that

M1 is asymptotically normal with mean 1 and variance 1
2 2 n when

is continuously differentiable, 1 0 and M1 is asymptotically normal with
mean 1 and variance 2 n In some applications, it is important to choose the trans­
formation so that the asymptotic variance does not depend on the mean 1 i.e.,
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1
2 2 is constant as 1 varies (note that 2 may change as 1 changes). Such

transformations are known as variance stabilizing transformations.
(a) If we are sampling from a Poisson distribution, then show that x x is
variance stabilizing.
(b) If we are sampling from a Bernoulli distribution, show that x arcsin x
is variance stabilizing.
(c) If we are sampling from a distribution on 0 whose variance is proportional
to the square of its mean (like the Gamma distribution), then show that x
ln x is variance stabilizing.

CHALLENGES

6.4.24 Suppose that X has an absolutely continuous distribution on R1 with density f
that is symmetrical about its median. Assuming that the median is 0, prove that X
and

sgn X
1 x 0
0 x 0
1 x 0

are independent, with X having density 2 f and sgn X uniformly distributed on
1 1

6.4.25 (Fisher signed deviation statistic) Suppose that x1 xn is a sample from
an absolutely continuous distribution on R1 with density that is symmetrical about its
median. Suppose we want to assess the hypothesis H0 : x0 5 x0

One possibility for this is to use the Fisher signed deviation test based on the sta­
tistic S . The observed value of S is given by So

n
i 1 xi x0 sgn xi x0

We then assess H0 by comparing So with the conditional distribution of S given the
absolute deviations x1 x0 xn x0 . If a value So occurs near the smallest or
largest possible value for S under this conditional distribution, then we assert that
we have evidence against H0 We measure this by computing the P­value given by the
conditional probability of obtaining a value as far, or farther, from the center of the
conditional distribution of S using the conditional mean as the center. This is an ex­
ample of a randomization test, as the distribution for the test statistic is determined by
randomly modifying the observed data (in this case, by randomly changing the signs
of the deviations of the xi from x0).
(a) Prove that So n x x0 .
(b) Prove that the P­value described above does not depend on which distribution we
are sampling from in the model. Prove that the conditional mean of S is 0 and the
conditional distribution of S is symmetric about this value.
(c) Use the Fisher signed deviation test statistic to assess the hypothesis H0 : x0 5
2 when the data are 2.2, 1.5, 3.4, 0.4, 5.3, 4.3, 2.1, with the results declared to be
statistically significant if the P­value is less than or equal to 0.05. (Hint: Based on the
results obtained in part (b), you need only compute probabilities for the extreme values
of S .)
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(d) Show that using the Fisher signed deviation test statistic to assess the hypothesis
H0 : x0 5 x0 is equivalent to the following randomized t­test statistic hypothesis
assessment procedure. For this, we compute the conditional distribution of

T
X x0

S n

when the X i x0 xi x0 are fixed and the sgn Xi x0 are i.i.d. uniform on
1 1 . Compare the observed value of the t­statistic with this distribution, as we

did for the Fisher signed deviation test statistic. (Hint: Show that n
i 1 xi x 2

n
i 1 xi x0

2 n x x0
2 and that large absolute values of T correspond to large

absolute values of S )

6.5 Asymptotics for the MLE (Advanced)
As we saw in Examples 6.3.7 and 6.3.11, implementing exact sampling procedures
based on the MLE can be difficult. In those examples, because the MLE was the sample
average and we could use the central limit theorem, large sample theory allowed us to
work out approximate procedures. In fact, there is some general large sample theory
available for the MLE that allows us to obtain approximate sampling inferences. This
is the content of this section. The results we develop are all for the case when is one­
dimensional. Similar results exist for the higher­dimensional problems, but we leave
those to a later course.

In Section 6.3, the basic issue was the need to measure the accuracy of the MLE.
One approach is to plot the likelihood and examine how concentrated it is about its
peak, with a more highly concentrated likelihood implying greater accuracy for the
MLE. There are several problems with this. In particular, the appearance of the likeli­
hood will depend greatly on how we choose the scales for the axes. With appropriate
choices, we can make a likelihood look as concentrated or as diffuse as we want. Also,
when is more than two­dimensional, we cannot even plot the likelihood. One solu­
tion, when the likelihood is a smooth function of is to compute a numerical measure
of how concentrated the log­likelihood is at its peak. The quantity typically used for
this is called the observed Fisher information.

Definition 6.5.1 The observed Fisher information is given by

I s
2l s

2
s

(6.5.1)

where s is the MLE.

The larger the observed Fisher information is, the more peaked the likelihood func­
tion is at its maximum value. We will show that the observed Fisher information is
estimating a quantity of considerable importance in statistical inference.
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Suppose that response X is real­valued, is real­valued, and the model f :
satisfies the following regularity conditions:

2 ln f x
2 exists for each x (6.5.2)

E S X
ln f x

f x dx 0 (6.5.3)

ln f x
f x dx 0 (6.5.4)

and
2 ln f x

2 f x dx (6.5.5)

Note that we have
f x ln f x

f x

so we can write (6.5.3) equivalently as

f x
dx 0

Also note that (6.5.4) can be written as

0
l x

f x dx

2l x
2

l x 2

f x dx

2l x
2

S2 x f x dx E
2l x

2
S2 X

This together with (6.5.3) and (6.5.5), implies that we can write (6.5.4) equivalently as

Var S X E S2 X E
2

2 l X .

We give a name to the quantity on the left.

Definition 6.5.2 The function I Var S X is called the Fisher informa­
tion of the model.

Our developments above have proven the following result.

Theorem 6.5.1 If (6.5.2) and (6.5.3) are satisfied, then E S X 0 If, in
addition, (6.5.4) and (6.5.5) are satisfied, then

I Var S X E
2l X

2
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Now we see why I is called the observed Fisher information, as it is a natural estimate
of the Fisher information at the true value We note that there is another natural
estimate of the Fisher information at the true value, given by I We call this the
plug­in Fisher information.

When we have a sample x1 xn from f then

S x1 xn ln
n

i 1

f xi
n

i 1

ln f xi
n

i 1

S xi .

So, if (6.5.3) holds for the basic model, then E S X1 Xn 0 and (6.5.3)
also holds for the sampling model. Furthermore, if (6.5.4) holds for the basic model,
then

0
n

i 1

E
2

2 ln f X i

n

i 1

E S2 X i

E
2

2 l X1 Xn Var S X1 Xn

which implies

Var S X1 Xn E
2

2 l X1 Xn nI

because l x1 xn
n
i 1 ln f xi . Therefore, (6.5.4) holds for the sampling

model as well, and the Fisher information for the sampling model is given by the sam­
ple size times the Fisher information for the basic model. We have established the
following result.

Corollary 6.5.1 Under i.i.d. sampling from a model with Fisher information I .
the Fisher information for a sample of size n is given by nI

The conditions necessary for Theorem 6.5.1 to apply do not hold in general and
have to be checked in each example. There are, however, many models where these
conditions do hold.

EXAMPLE 6.5.1 Nonexistence of the Fisher Information
If X U [0 ] then f x 1 I[0 ] x which is not differentiable at x for
any x Indeed, if we ignored the lack of differentiability at x and wrote

f x 1
2
I[0 ] x

then
f x

dx
1
2 I[0 ] x dx

1
0

So we cannot define the Fisher information for this model.
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EXAMPLE 6.5.2 Location Normal
Suppose we have a sample x1 xn from an N 2

0 distribution where R1

is unknown and 2
0 is known. We saw in Example 6.2.2 that

S x1 xn
n

2
0

x

and therefore
2

2 l x1 xn
n

2
0

nI E
2

2 l X1 Xn
n

2
0

We also determined in Example 6.2.2 that the MLE is given by x1 xn x
Then the plug­in Fisher information is

nI x
n

2
0

while the observed Fisher information is

I x1 xn
2l x1 xn

2
x

n
2
0

In this case, there is no need to estimate the Fisher information, but it is comforting
that both of our estimates give the exact value.

We now state, without proof, some theorems about the large sample behavior of the
MLE under repeated sampling from the model. First, we have a result concerning the
consistency of the MLE as an estimator of the true value of

Theorem 6.5.2 Under regularity conditions (like those specified above) for the
model f : , the MLE exists a.s. and

a s
as n

PROOF See Approximation Theorems of Mathematical Statistics, by R. J. Serfling
(John Wiley & Sons, New York, 1980), for the proof of this result.

We see that Theorem 6.5.2 serves as a kind of strong law for the MLE. It also turns
out that when the sample size is large, the sampling distribution of the MLE is approx­
imately normal.

Theorem 6.5.3 Under regularity conditions (like those specified above) for the

model f : then nI 1 2 D
N 0 1 as n

PROOF See Approximation Theorems of Mathematical Statistics, by R. J. Serfling
(John Wiley & Sons, New York, 1980), for the proof of this result.
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We see that Theorem 6.5.3 serves as a kind of central limit theorem for the MLE. To
make this result fully useful to us for inference, we need the following corollary to this
theorem.

Corollary 6.5.2 When I is a continuous function of then

nI 1 2 D
N 0 1

In Corollary 6.5.2, we have estimated the Fisher information I by the plug­in
Fisher estimation I . Often it is very difficult to evaluate the function I In such a
case, we instead estimate nI by the observed Fisher information I x1 xn A
result such as Corollary 6.5.2 again holds in this case.

From Corollary 6.5.2, we can devise large sample approximate inference methods
based on the MLE. For example, the approximate standard error of the MLE is

nI 1 2.

An approximate ­confidence interval is given by

nI 1 2z 1 2.

Finally, if we want to assess the hypothesis H0 : 0 we can do this by computing
the approximate P­value

2 1 nI 0
1 2

0

Notice that we are using Theorem 6.5.3 for the P­value, rather than Corollary 6.5.2, as,
when H0 is true, we know the asymptotic variance of the MLE is nI 0

1. So we
do not have to estimate this quantity.

When evaluating I is difficult, we can replace nI by I x1 xn in the above
expressions for the confidence interval and P­value. We now see very clearly the sig­
nificance of the observed information. Of course, as we move from using nI to
nI to I x1 xn we expect that larger sample sizes n are needed to make the
normality approximation accurate.

We consider some examples.

EXAMPLE 6.5.3 Location Normal Model
Using the Fisher information derived in Example 6.5.2, the approximate ­confidence
interval based on the MLE is

nI 1 2z 1 2 x 0 n z 1 2

This is just the z­confidence interval derived in Example 6.3.6. Rather than being an
approximate ­confidence interval, the coverage is exact in this case. Similarly, the
approximate P­value corresponds to the z­test and the P­value is exact.
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EXAMPLE 6.5.4 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution, where
[0 1] is unknown. The likelihood function is given by

L x1 xn nx 1 n 1 x ,

and the MLE of is x . The log­likelihood is

l x1 xn nx ln n 1 x ln 1 ,

the score function is given by

S x1 xn
nx n 1 x

1
,

and

S x1 xn
nx

2

n 1 x

1 2 .

Therefore, the Fisher information for the sample is

nI E S X1 Xn E
nX

2

n 1 X

1 2

n

1
,

and the plug­in Fisher information is

nI x
n

x 1 x

Note that the plug­in Fisher information is the same as the observed Fisher information
in this case.

So an approximate ­confidence interval is given by

nI 1 2z 1 2 x z 1 2 x 1 x n,

which is precisely the interval obtained in Example 6.3.7 using large sample consider­
ations based on the central limit theorem. Similarly, we obtain the same P­value as in
Example 6.3.11 when testing H0 : 0

EXAMPLE 6.5.5 Poisson Model
Suppose that x1 xn is a sample from a Poisson distribution, where 0 is
unknown. The likelihood function is given by

L x1 xn nxe n

The log­likelihood is
l x1 xn nx ln n

the score function is given by

S x1 xn
nx

n
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and

S x1 xn
nx

2

From this we deduce that the MLE of is x .
Therefore, the Fisher information for the sample is

nI E S X1 Xn E
nX

2

n

and the plug­in Fisher information is

nI x
n

x

Note that the plug­in Fisher information is the same as the observed Fisher information
in this case.

So an approximate ­confidence interval is given by

nI 1 2z 1 2 x z 1 2 x n

Similarly, the approximate P­value for testing H0 : 0 is given by

2 1 nI 0
1 2

0 2 1 n 0
1 2 x 0 .

Note that we have used the Fisher information evaluated at 0 for this test.

Summary of Section 6.5

Under regularity conditions on the statistical model with parameter we can
define the Fisher information I for the model.

Under regularity conditions on the statistical model, it can be proved that, when
is the true value of the parameter, the MLE is consistent for and the MLE

is approximately normally distributed with mean given by and with variance
given by nI 1.

The Fisher information I can be estimated by plugging in the MLE or by
using the observed Fisher information. These estimates lead to practically useful
inferences for in many problems.

EXERCISES

6.5.1 If x1 xn is a sample from an N 0
2 distribution, where 0 is known

and 2 0 is unknown, determine the Fisher information
6.5.2 If x1 xn is a sample from a Gamma 0 distribution, where 0 is known
and 0 is unknown, determine the Fisher information
6.5.3 If x1 xn is a sample from a Pareto distribution (see Exercise 6.2.9),
where 0 is unknown, determine the Fisher information.
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6.5.4 Suppose the number of calls arriving at an answering service during a given
hour of the day is Poisson , where 0 is unknown. The number of calls
actually received during this hour was recorded for 20 days and the following data
were obtained.

9 10 8 12 11 12 5 13 9 9
7 5 16 13 9 5 13 8 9 10

Construct an approximate 0.95­confidence interval for Assess the hypothesis that
this is a sample from a Poisson 11 distribution. If you are going to decide that the
hypothesis is false when the P­value is less than 0.05, then compute an approximate
power for this procedure when 10
6.5.5 Suppose the lifelengths in hours of lightbulbs from a manufacturing process are
known to be distributed Gamma 2 , where 0 is unknown. A random
sample of 27 bulbs was taken and their lifelengths measured with the following data
obtained.

336 87 2750 71 2199 44 292 99 1835 55 1385 36 2690 52
710 64 2162 01 1856 47 2225 68 3524 23 2618 51 361 68
979 54 2159 18 1908 94 1397 96 914 41 1548 48 1801 84

1016 16 1666 71 1196 42 1225 68 2422 53 753 24

Determine an approximate 0.90­confidence interval for

6.5.6 Repeat the analysis of Exercise 6.5.5, but this time assume that the lifelengths
are distributed Gamma 1 . Comment on the differences in the two analyses.

6.5.7 Suppose that incomes (measured in thousands of dollars) above $20K can be
assumed to be Pareto , where 0 is unknown, for a particular population. A
sample of 20 is taken from the population and the following data obtained.

21 265 20 857 21 090 20 047 20 019 32 509 21 622 20 693
20 109 23 182 21 199 20 035 20 084 20 038 22 054 20 190
20 488 20 456 20 066 20 302

Construct an approximate 0.95­confidence interval for Assess the hypothesis that
the mean income in this population is $25K.
6.5.8 Suppose that x1 xn is a sample from an Exponential distribution. Con­
struct an approximate left­sided ­confidence interval for (See Problem 6.3.25.)
6.5.9 Suppose that x1 xn is a sample from a Geometric distribution. Con­
struct an approximate left­sided ­confidence interval for (See Problem 6.3.25.)
6.5.10 Suppose that x1 xn is a sample from a Negative­Binomial r distrib­
ution. Construct an approximate left­sided ­confidence interval for (See Problem
6.3.25.)

PROBLEMS

6.5.11 In Exercise 6.5.1, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.
6.5.12 In Exercise 6.5.2, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.
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6.5.13 In Exercise 6.5.3, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.

6.5.14 Suppose that sampling from the model f : satisfies (6.5.2), (6.5.3),
(6.5.4), and (6.5.5). Prove that n 1 I

a s
I as n

6.5.15 (MV) When 1 2 then, under appropriate regularity conditions for the
model f : the Fisher information matrix is defined by

I

E
2

2
1
l X E

2

1 2
l X

E
2

1 2
l X E

2

2
2
l X

If X1 X2 X3 Multinomial 1 1 2 3 (Example 6.1.5), then determine the
Fisher information for this model. Recall that 3 1 1 2 and so is determined
from 1 2 .

6.5.16 (MV) Generalize Problem 6.5.15 to the case where

X1 Xk Multinomial 1 1 k

6.5.17 (MV) Using the definition of the Fisher information matrix in Exercise 6.5.15,
determine the Fisher information for the Bivariate Normal 1 2 1 1 0 model, where

1 2 R1 are unknown.
6.5.18 (MV) Extending the definition in Exercise 6.5.15 to the three­dimensional case,
determine the Fisher information for the Bivariate Normal 1 2

2 2 0 model
where 1 2 R1 and 2 0 are unknown.

CHALLENGES

6.5.19 Suppose that model f : satisfies (6.5.2), (6.5.3), (6.5.4), (6.5.5), and
has Fisher information I If : R1 is 1–1, and and 1 are continuously
differentiable, then, putting : , prove that the model given by g :

satisfies the regularity conditions and that its Fisher information at is given
by I 1 1 2.

DISCUSSION TOPICS

6.5.20 The method of moments inference methods discussed in Section 6.4.1 are es­
sentially large sample methods based on the central limit theorem. The large sample
methods in Section 6.5 are based on the form of the likelihood function. Which meth­
ods do you think are more likely to be correct when we know very little about the form
of the distribution from which we are sampling? In what sense will your choice be
“more correct”?


