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In many applications of probability theory, we will be faced with the following prob­
lem. Suppose that X1 X2 Xn is an identically and independently distributed
(i.i.d.) sequence, i.e., X1 X2 Xn is a sample from some distribution, and we
are interested in the distribution of a new random variable Y h X1 X2 Xn for
some function h In particular, we might want to compute the distribution function of
Y or perhaps its mean and variance. The distribution of Y is sometimes referred to as
its sampling distribution, as Y is based on a sample from some underlying distribution.

We will see that some of the methods developed in earlier chapters are useful in
solving such problems — especially when it is possible to compute an exact solution,
e.g., obtain an exact expression for the probability or density function of Y Section
4.6 contains a number of exact distribution results for a variety of functions of normal
random variables. These have important applications in statistics.

Quite often, however, exact results are impossible to obtain, as the problem is just
too complex. In such cases, we must develop an approximation to the distribution of
Y

For many important problems, a version of Y is defined for each sample size n (e.g.,
a sample mean or sample variance), so that we can consider a sequence of random
variables Y1 Y2 etc. This leads us to consider the limiting distribution of such
a sequence so that, when n is large, we can approximate the distribution of Yn by the
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200 Section 4.1: Sampling Distributions

limit, which is often much simpler. This approach leads to a famous result, known as
the central limit theorem, discussed in Section 4.4.

Sometimes we cannot even develop useful approximations for large n due to the
difficulty of the problem or perhaps because n is just too small in a particular applica­
tion. Fortunately, however, we can then use the Monte Carlo approach where the power
of the computer becomes available. This is discussed in Section 4.5.

In Chapter 5 we will see that, in statistical applications, we typically do not know
much about the underlying distribution of the Xi from which we are sampling. We then
collect a sample and a value, such as Y that will serve as an estimate of a characteristic
of the underlying distribution, e.g., the sample mean X will serve as an estimate of
the mean of the distribution of the Xi We then want to know what happens to these
estimates as n grows. If we have chosen our estimates well, then the estimates will
converge to the quantities we are estimating as n increases. Such an estimate is called
consistent. In Sections 4.2 and 4.3, we will discuss the most important consistency
theorems — namely, the weak and strong laws of large numbers.

4.1 Sampling Distributions
Let us consider a very simple example.

EXAMPLE 4.1.1
Suppose we obtain a sample X1 X2 of size n 2 from the discrete distribution with
probability function given by

pX x

1 2 x 1
1 4 x 2
1 4 x 3
0 otherwise

Let us take Y2 X1X2
1 2 This is the geometric mean of the sample values (the

geometric mean of n positive numbers x1 xn is defined as x1 xn 1 n).
To determine the distribution of Y2 we first list the possible values for Y2 the

samples that give rise to these values, and their probabilities of occurrence. The values
of these probabilities specify the sampling distribution of Y We have the following
table.

y Sample pY2 y
1 1 1 1 2 1 2 1 4
2 1 2 2 1 1 2 1 4 1 4 1 2 1 4
3 1 3 1 3 1 2 1 4 1 4 1 2 1 4
2 2 2 1 4 1 4 1 16
6 2 3 3 2 1 4 1 4 1 4 1 4 1 8
3 3 3 1 4 1 4 1 16

Now suppose instead we have a sample X1 X20 of size n 20 and we want to
find the distribution of Y20 X1 X20

1 20 Obviously, we can proceed as above,
but this time the computations are much more complicated, as there are now 320

3,486,784,401 possible samples, as opposed to the 32 9 samples used to form the
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previous table. Directly computing pY20 , as we have done for pY2 , would be onerous
— even for a computer! So what can we do here?

One possibility is to look at the distribution of Yn X1 Xn
1 n when n is large

and see if we can approximate this in some fashion. The results of Section 4.4.1 show
that

ln Yn
1

n

n

i 1

ln X i

has an approximate normal distribution when n is large. In fact, the approximating nor­
mal distribution when n 20 turns out to be an N 0 447940 0 105167 distribution.
We have plotted this density in Figure 4.1.1.

Another approach is to use the methods of Section 2.10 to generate N samples of
size n 20 from pX , calculate ln Y20 for each (ln is a 1­1 transformation, and we
transform to avoid the potentially large values assumed by Y20), and then use these
N values to approximate the distribution of ln Y20 For example, in Figure 4.1.2 we
have provided a plot of a density histogram (see Section 5.4.3 for more discussion of
histograms) of N 104 values of ln Y20 calculated from N 104 samples of size n
20 generated (using the computer) from pX The area of each rectangle corresponds
to the proportion of values of lnY20 that were in the interval given by the base of the
rectangle. As we will see in Sections 4.2, 4.3, and 4.4, these areas approximate the
actual probabilities that lnY20 falls in these intervals. These approximations improve
as we increase N

Notice the similarity in the shapes of Figures 4.1.1 and 4.1.2. Figure 4.1.2 is not
symmetrical about its center, however, as it is somewhat skewed. This is an indication
that the normal approximation is not entirely adequate when n 20
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Figure 4.1.1: Plot of the approximating N 0 447940 0 105167 density to the distribution of
lnY20 in Example 4.1.1.



202 Section 4.1: Sampling Distributions

1.00.50.0

4

3

2

1

0

lnY

D
en

si
ty

Figure 4.1.2: Plot of N 104 values of ln Y20 obtained by generating N 104 samples from
pX in Example 4.1.1.

Sometimes we are lucky and can work out the sampling distribution of

Y h X1 X2 Xn

exactly in a form useful for computing probabilities and expectations for Y In general,
however, when we want to compute P Y B PY B we will have to determine
the set of samples X1 X2 Xn such that Y B as given by

h 1B x1 x2 xn : h x1 x2 xn B ,

and then compute P X1 X2 Xn h 1B . This is typically an intractable prob­
lem and approximations or simulation (Monte Carlo) methods will be essential. Tech­
niques for deriving such approximations will be discussed in subsequent sections of
this chapter. In particular, we will develop an important approximation to the sampling
distribution of the sample mean

X h X1 X2 Xn
1

n

n

i 1

X i

Summary of Section 4.1

A sampling distribution is the distribution of a random variable corresponding to
a function of some i.i.d. sequence.

Sampling distributions can sometimes be computed by direct computation or by
approximations such as the central limit theorem.
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EXERCISES

4.1.1 Suppose that X1 X2 X3 are i.i.d. from pX in Example 4.1.1. Determine the
exact distribution of Y3 X1X2X3

1 3

4.1.2 Suppose that a fair six­sided die is tossed n 2 independent times. Compute
the exact distribution of the sample mean.
4.1.3 Suppose that an urn contains a proportion p of chips labelled 0 and proportion
1 p of chips labelled 1. For a sample of n 2 drawn with replacement, determine
the distribution of the sample mean.
4.1.4 Suppose that an urn contains N chips labelled 0 and M chips labelled 1. For a
sample of n 2 drawn without replacement, determine the distribution of the sample
mean.
4.1.5 Suppose that a symmetrical die is tossed n 20 independent times. Work out
the exact sampling distribution of the maximum of this sample.

4.1.6 Suppose three fair dice are rolled, and let Y be the number of 6’s showing. Com­
pute the exact distribution of Y .

4.1.7 Suppose two fair dice are rolled, and let W be the product of the two numbers
showing. Compute the exact distribution of W .
4.1.8 Suppose two fair dice are rolled, and let Z be the difference of the two numbers
showing (i.e., the first number minus the second number). Compute the exact distribu­
tion of Z .
4.1.9 Suppose four fair coins are flipped, and let Y be the number of pairs of coins
which land the same way (i.e., the number of pairs that are either both heads or both
tails). Compute the exact distribution of Y .

COMPUTER EXERCISES

4.1.10 Generate a sample of N 103 values of Y50 in Example 4.1.1 Calculate the
mean and standard deviation of this sample.
4.1.11 Suppose that X1 X2 X10 is an i.i.d. sequence from an N 0 1 distribu­
tion. Generate a sample of N 103 values from the distribution of max X1 X2
X10 Calculate the mean and standard deviation of this sample.

PROBLEMS

4.1.12 Suppose that X1 X2 Xn is a sample from the Poisson distribution. De­
termine the exact sampling distribution of Y X1 X2 Xn (Hint: Determine
the moment­generating function of Y and use the uniqueness theorem.)
4.1.13 Suppose that X1 X2 is a sample from the Uniform[0,1] distribution. Determine
the exact sampling distribution of Y X1 X2 (Hint: Determine the density of Y .)
4.1.14 Suppose that X1 X2 is a sample from the Uniform[0,1] distribution. Determine
the exact sampling distribution of Y X1X2

1 2 (Hint: Determine the density of
lnY and then transform.)
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4.2 Convergence in Probability
Notions of convergence are fundamental to much of mathematics. For example, if
an 1 1 n, then a1 0, a2 1 2, a3 2 3, a4 3 4, etc. We see that the
values of an are getting “closer and closer” to 1, and indeed we know from calculus
that limn an 1 in this case.

For random variables, notions of convergence are more complicated. If the values
themselves are random, then how can they “converge” to anything? On the other hand,
we can consider various probabilities associated with the random variables and see if
they converge in some sense.

The simplest notion of convergence of random variables is convergence in prob­
ability, as follows. (Other notions of convergence will be developed in subsequent
sections.)

Definition 4.2.1 Let X1 X2 be an infinite sequence of random variables, and
let Y be another random variable. Then the sequence Xn converges in probability

to Y , if for all 0, limn P Xn Y 0 and we write Xn
P

Y

In Figure 4.2.1, we have plotted the differences Xn Y for selected values of n
for 10 generated sequences Xn Y for a typical situation where the random variables
Xn converge to a random variable Y in probability We have also plotted the horizontal
lines at for 0 25 From this we can see the increasing concentration of the
distribution of Xn Y about 0, as n increases, as required by Definition 4.2.1. In fact,
the 10 observed values of X100 Y all satisfy the inequality X100 Y 0 25
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Figure 4.2.1: Plot of 10 replications of Xn Y illustrating the convergence in probability of
Xn to Y .

We consider some applications of this definition.
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EXAMPLE 4.2.1
Let Y be any random variable, and let X1 X2 X3 Y . (That is, the random
variables are all identical to each other.) In that case, Xn Y 0, so of course

lim
n

P Xn Y 0

for all 0. Hence, Xn
P

Y .

EXAMPLE 4.2.2
Suppose P Xn 1 1 n 1 and P Y 1 1. Then P Xn Y 0
whenever n 1 . Hence, P Xn Y 0 as n for all 0. Hence,
the sequence Xn converges in probability to Y . (Here, the distributions of Xn and Y
are all degenerate.)

EXAMPLE 4.2.3
Let U Uniform[0 1]. Define Xn by

Xn
3 U 2

3
1
n

8 otherwise,

and define Y by

Y
3 U 2

3
8 otherwise.

Then

P Xn Y P Xn Y P
2

3

1

n
U

2

3

1

n

Hence, P Xn Y 0 as n for all 0, and the sequence Xn con­
verges in probability to Y . (This time, the distributions of Xn and Y are not degenerate.)

A common case is where the distributions of the Xn are not degenerate, but Y is
just a constant, as in the following example.

EXAMPLE 4.2.4
Suppose Zn Exponential n and let Y 0. Then

P Zn Y P Zn ne nxdx e n

Hence, again P Zn Y 0 as n for all 0, so the sequence Zn
converges in probability to Y .

4.2.1 The Weak Law of Large Numbers

One of the most important applications of convergence in probability is the weak law
of large numbers. Suppose X1 X2 is a sequence of independent random variables
that each have the same mean . For large n, what can we say about their average

Mn
1

n
X1 Xn ?
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We refer to Mn as the sample average, or sample mean, for X1 Xn When the
sample size n is fixed, we will often use X as a notation for sample mean instead of
Mn .

For example, if we flip a sequence of fair coins, and if Xi 1 or Xi 0 as the i th
coin comes up heads or tails, then Mn represents the fraction of the first n coins that
came up heads. We might expect that for large n, this fraction will be close to 1 2, i.e.,
to the expected value of the Xi .

The weak law of large numbers provides a precise sense in which average values
Mn tend to get close to E Xi , for large n.

Theorem 4.2.1 (Weak law of large numbers) Let X1 X2 be a sequence of inde­
pendent random variables, each having the same mean and each having variance
less than or equal to . Then for all 0, limn P Mn 0

That is, the averages converge in probability to the common mean or Mn
P

.

PROOF Using linearity of expected value, we see that E Mn . Also, using
independence, we have

Var Mn
1

n2 Var X1 Var X2 Var Xn

1

n2

1

n2 n n

Hence, by Chebychev’s inequality (Theorem 3.6.2), we have

P Mn Var Mn
2 2n

This converges to 0 as n , which proves the theorem.

It is a fact that, in Theorem 4.2.1, if we require the X i variables to be i.i.d. instead
of merely independent, then we do not even need the X i to have finite variance. But we
will not discuss this result further here. Consider some applications of the weak law of
large numbers.

EXAMPLE 4.2.5
Consider flipping a sequence of identical fair coins. Let Mn be the fraction of the first
n coins that are heads. Then Mn X1 Xn n, where Xi 1 if the i th coin
is heads, otherwise Xi 0. Hence, by the weak law of large numbers, we have

lim
n

P Mn 0 49 lim
n

P Mn 0 5 0 01

lim
n

P Mn 0 5 0 01 or Mn 0 5 0 01

lim
n

P Mn 0 5 0 01 0

and, similarly, limn P Mn 0 51 0. This illustrates that for large n, it is very
likely that Mn is very close to 0 5.
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EXAMPLE 4.2.6
Consider f lipping a sequence of identical coins, each of which has probability p of
coming up heads. Let Mn again be the fraction of the first n coins that are heads. Then
by the weak law of large numbers, for any 0, limn P p Mn p 1.
We thus see that for large n, it is very likely that Mn is very close to p. (The previous
example corresponds to the special case p 1 2.)

EXAMPLE 4.2.7
Let X1 X2 be i.i.d. with distribution N 3 5 Then E Mn 3, and by the weak
law of large numbers, P 3 Mn 3 1 as n . Hence, for large n,
the average value Mn is very close to 3.

EXAMPLE 4.2.8
Let W1 W2 be i.i.d. with distribution Exponential 6 . Then E Mn 1 6, and by
the weak law of large numbers, P 1 6 Mn 1 6 1 as n .
Hence, for large n, the average value Mn is very close to 1 6.

Summary of Section 4.2

A sequence Xn of random variables converges in probability to Y if

lim
n

P Xn Y 0

The weak law of large numbers says that if Xn is i.i.d. (or is independent with
constant mean and bounded variance), then the averages Mn X1
Xn n converge in probability to E X i .

EXERCISES

4.2.1 Let U Uniform[5 10], and let Z IU [5 7 and Zn IU [5 7 1 n2 . Prove
that Zn Z in probability.
4.2.2 Let Y Uniform[0 1], and let Xn Y n . Prove that Xn 0 in probability.
4.2.3 Let W1 W2 be i.i.d. with distribution Exponential 3 . Prove that for some n,
we have P W1 W2 Wn n 2 0 999.
4.2.4 Let Y1 Y2 be i.i.d. with distribution N 2 5 . Prove that for some n, we have
P Y1 Y2 Yn n 0 999.
4.2.5 Let X1 X2 be i.i.d. with distribution Poisson 8 . Prove that for some n, we
have P X1 X2 Xn 9n 0 001.

4.2.6 Suppose X Uniform[0 1], and let Yn n 1
n X . Prove that Yn

P
X .

4.2.7 Let Hn be the number of heads when flipping n fair coins, let Xn e Hn , and

let Y 0. Prove that Xn
P

Y .
4.2.8 Let Zn Uniform[0 n], let Wn 5Zn Zn 1 , and let W 5. Prove that

Wn
P

W .
4.2.9 Consider flipping n fair coins. Let Hn be the total number of heads, and let Fn
be the number of heads on coins 1 through n 1 (i.e., omitting the nth coin). Let

Xn Hn Hn 1 , and Yn Fn Hn 1 , and Z 0. Prove that Xn Yn
P

Z .
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4.2.10 Let Zn be the sum of the squares of the numbers showing when we roll n fair

dice. Find (with proof) a number m such that 1
n Zn

P
m. (Hint: Use the weak law of

large numbers.)
4.2.11 Consider flipping n fair nickels and n fair dimes. Let Xn equal 4 times the
number of nickels showing heads, plus 5 times the number of dimes showing heads.

Find (with proof) a number r such that 1
n Xn

P
r .

COMPUTER EXERCISES

4.2.12 Generate i.i.d. X1 Xn distributed Exponential 5 and compute Mn when
n 20 Repeat this N times, where N is large (if possible, take N 105 otherwise
as large as is feasible), and compute the proportion of values of Mn that lie between
0.19 and 0.21. Repeat this with n 50 What property of convergence in probability
do your results illustrate?
4.2.13 Generate i.i.d. X1 Xn distributed Poisson 7 and compute Mn when n
20 Repeat this N times, where N is large (if possible, take N 105 otherwise as
large as is feasible), and compute the proportion of values of Mn that lie between 6.99
and 7.01. Repeat this with n 100 What property of convergence in probability do
your results illustrate?

PROBLEMS

4.2.14 Give an example of random variables X1 X2 such that Xn converges to
0 in probability, but E Xn 1 for all n. (Hint: Suppose P Xn n 1 n and
P Xn 0 1 1 n.)

4.2.15 Prove that Xn
P

0 if and only if Xn
P

0.

4.2.16 Prove or disprove that Xn
P

5 if and only if Xn
P

5.

4.2.17 Suppose Xn
P

X , and Yn
P

Y . Let Zn Xn Yn and Z X Y . Prove

that Zn
P

Z .

CHALLENGES

4.2.18 Suppose Xn
P

X , and f is a continuous function. Prove that f Xn
P

f X .

4.3 Convergence with Probability 1
A notion of convergence for random variables that is closely associated with the con­
vergence of a sequence of real numbers is provided by the concept of convergence with
probability 1. This property is given in the following definition.

Definition 4.3.1 Let X1 X2 be an infinite sequence of random variables. We
shall say that the sequence X i converges with probability 1 (or converges almost
surely (a.s.)) to a random variable Y , if P limn Xn Y 1 and we write
Xn

a s
Y
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In Figure 4.3.1, we illustrate this convergence by graphing the sequence of differ­
ences Xn Y for a typical situation where the random variables Xn converge to a
random variable Y with probability 1. We have also plotted the horizontal lines at
for 0 1 Notice that inevitably all the values Xn Y are in the interval 0 1 0 1
or, in other words, the values of Xn are within 0 1 of the values of Y

Definition 4.3.1 indicates that for any given 0 there will exist a value N
such that Xn Y for every n N The value of N will vary depending on
the observed value of the sequence Xn Y but it always exists. Contrast this with
the situation depicted in Figure 4.2.1, which only says that the probability distribution
Xn Y concentrates about 0 as n grows and not that the individual values of Xn Y
will necessarily all be near 0 (also see Example 4.3.2).
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Figure 4.3.1: Plot of a single replication Xn Y illustrating the convergence with probability
1 of Xn to Y .

Consider an example of this.

EXAMPLE 4.3.1
Consider again the setup of Example 4.2.3, where U Uniform[0 1],

Xn
3 U 2

3
1
n

8 otherwise

and

Y
3 U 2

3
8 otherwise

If U 2 3, then Y 8 and also Xn 8 for all n, so clearly Xn Y . If U 2 3,
then for large enough n we will also have

U
2

3

1

n

so again Xn Y . On the other hand, if U 2 3, then we will always have Xn 8,
even though Y 3. Hence, Xn Y except when U 2 3. Because P U 2 3
0, we do have Xn Y with probability 1.
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One might wonder what the relationship is between convergence in probability and
convergence with probability 1. The following theorem provides an answer.

Theorem 4.3.1 Let Z Z1 Z2 be random variables. Suppose Zn Z with
probability 1. Then Zn Z in probability. That is, if a sequence of random
variables converges almost surely, then it converges in probability to the same limit.

PROOF See Section 4.7 for the proof of this result.

On the other hand, the converse to Theorem 4.3.1 is false, as the following example
shows.

EXAMPLE 4.3.2
Let U have the uniform distribution on [0 1]. We construct an infinite sequence of
random variables Xn by setting

X1 I[0 1 2 U X2 I[1 2 1] U

X3 I[0 1 4 U X4 I[1 4 1 2 U X5 I[1 2 3 4 U X6 I[3 4 1] U

X7 I[0 1 8 U X8 I[1 8 1 4 U

where IA is the indicator function of the event A, i.e., IA s 1 if s A, and IA s
0 if s A

Note that we first subdivided [0 1] into two equal­length subintervals and defined
X1 and X2 as the indicator functions for the two subintervals. Next we subdivided [0 1]
into four equal­length subintervals and defined X3 X4 X5 and X6 as the indicator
functions for the four subintervals. We continued this process by next dividing [0 1]
into eight equal­length subintervals, then 16 equal­length subintervals, etc., to obtain
an infinite sequence of random variables.

Each of these random variables Xn takes the values 0 and 1 only and so must follow
a Bernoulli distribution. In particular, X1 Bernoulli 1 2 X2 Bernoulli 1 2 X3

Bernoulli 1 4 etc.
Then for 0 1 we have that P Xn 0 P Xn 1 . Because

the intervals for U that make Xn 0 are getting smaller and smaller, we see that
P Xn 1 is converging to 0. Hence, Xn converges to 0 in probability.

On the other hand, Xn does not converge to 0 almost surely. Indeed, no matter what
value U takes on, there will always be infinitely many different n for which Xn 1.
Hence, we will have Xn 1 infinitely often, so that we will not have Xn converging
to 0 for any particular value of U . Thus, P limn Xn 0 0, and Xn does not
converge to 0 with probability 1.

Theorem 4.3.1 and Example 4.3.2 together show that convergence with probability 1 is
a stronger notion than convergence in probability.

Now, the weak law of large numbers (Section 4.2.1) concludes only that the av­
erages Mn are converging in probability to E X i . A stronger version of this result
would instead conclude convergence with probability 1. We consider that now.
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4.3.1 The Strong Law of Large Numbers

The following is a strengthening of the weak law of large numbers because it concludes
convergence with probability 1 instead of just convergence in probability.

Theorem 4.3.2 (Strong law of large numbers) Let X1 X2 be a sequence of
i.i.d. random variables, each having finite mean . Then

P lim
n

Mn 1

That is, the averages converge with probability 1 to the common mean or Mn
a s

.

PROOF See A First Look at Rigorous Probability Theory, Second Edition, by J. S.
Rosenthal (World Scientific Publishing Co., 2006) for a proof of this result.

This result says that sample averages converge with probability 1 to .
Like Theorem 4.2.1, it says that for large n the averages Mn are usually close to
E Xi for large n. But it says in addition that if we wait long enough (i.e., if n

is large enough), then eventually the averages will all be close to , for all sufficiently
large n. In other words, the sample mean is consistent for

Summary of Section 4.3

A sequence Xn of random variables converges with probability 1 (or converges
almost surely) to Y if, P limn Xn Y 1

Convergence with probability 1 implies convergence in probability.

The strong law of large numbers says that if Xn is i.i.d., then the averages
Mn X1 Xn n converge with probability 1 to E Xi .

EXERCISES

4.3.1 Let U Uniform[5 10], and let Z I[5 7 U (i.e., Z is the indicator function
of [5 7 ) and Zn I[5 7 1 n2 U . Prove that Zn Z with probability 1.
4.3.2 Let Y Uniform[0 1], and let Xn Y n. Prove that Xn 0 with probability
1.
4.3.3 Let W1 W2 be i.i.d. with distribution Exponential 3 . Prove that with prob­
ability 1, for some n, we have W1 W2 Wn n 2.
4.3.4 Let Y1 Y2 be i.i.d. with distribution N 2 5 . Prove that with probability 1,
for some n, we have Y1 Y2 Yn n.
4.3.5 Suppose Xn X with probability 1, and also Yn Y with probability 1. Prove
that P Xn X and Yn Y 1.
4.3.6 Suppose Z1 Z2 are i.i.d. with finite mean . Let Mn Z1 Zn n.
Determine (with explanation) whether the following statements are true or false.
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(a) With probability 1, Mn for some n.
(b) With probability 1, 0 01 Mn 0 01 for some n.
(c) With probability 1, 0 01 Mn 0 01 for all but finitely many n.
(d) For any x R1, with probability 1, x 0 01 Mn x 0 01 for some n.
4.3.7 Let Xn be i.i.d., with Xn Uniform[3 7]. Let Yn X1 X2 Xn n.
Find (with proof) a number m such that Yn

a s
m. (Hint: Use the strong law of large

numbers.)

4.3.8 Let Zn be the sum of the squares of the numbers showing when we roll n fair
dice. Find (with proof) a number m such that 1

n Zn
a s

m.
4.3.9 Consider flipping n fair nickels and n fair dimes. Let Xn equal 4 times the
number of nickels showing heads, plus 5 times the number of dimes showing heads.
Find (with proof) a number r such that 1

n Xn
a s

r .

4.3.10 Suppose Yn
a s

Y . Does this imply that P Y5 Y Y4 Y 0? Explain.
4.3.11 Consider repeatedly flipping a fair coin. Let Hn be the number of heads on the
first n flips, and let Zn Hn n.
(a) Prove that there is some m such that Zn 1 2 0 001 for all n m.
(b) Let r be the smallest positive integer satisfying Zr 1 2 0 001. Must we have
Zn 1 2 0 001 for all n r? Why or why not?
4.3.12 Suppose P X 0 P X 1 1 2, and let Xn X for n 1 2 3 .
(That is, the random variables Xn are all identical.) Let Yn X1 X2 Xn n.
(a) Prove that P limn Yn 0 P limn Yn 1 1 2.
(b) Prove that there is no number m such that P limn Yn m 1.
(c) Why does part (b) not contradict the law of large numbers?

COMPUTER EXERCISES

4.3.13 Generate i.i.d. X1 Xn distributed Exponential 5 with n large (take n
105 if possible). Plot the values M1 M2 Mn . To what value are they converging?
How quickly?
4.3.14 Generate i.i.d. X1 Xn distributed Poisson 7 with n large (take n 105 if
possible). Plot the values M1 M2 Mn . To what value are they converging? How
quickly?
4.3.15 Generate i.i.d. X1 X2 Xn distributed N 4 3 with n large (take n 105

if possible). Plot the values M1 M2 Mn. To what value are they converging? How
quickly?

PROBLEMS

4.3.16 Suppose for each positive integer k, there are random variables Wk Xk 1 Xk 2
such that P limn Xk n Wk 1. Prove that P limn Xk n Wk for all k

1
4.3.17 Prove that Xn

a s
0 if and only if Xn

a s
0.

4.3.18 Prove or disprove that Xn
a s

5 if and only if Xn
a s

5.



Chapter 4: Sampling Distributions and Limits 213

4.3.19 Suppose Xn
a s

X , and Yn
a s

Y . Let Zn Xn Yn and Z X Y . Prove
that Zn

a s
Z .

CHALLENGES

4.3.20 Suppose for each real number r [0 1], there are random variables Wr Xr 1
Xr 2 such that P limn Xr n Wr 1. Prove or disprove that we must have
P limn Xn r Wr for all r [0 1] 1.
4.3.21 Give an example of random variables X1 X2 such that Xn converges to
0 with probability 1, but E Xn 1 for all n.

4.3.22 Suppose Xn
a s

X , and f is a continuous function. Prove that f Xn
a s

f X .

4.4 Convergence in Distribution
There is yet another notion of convergence of a sequence of random variables that is
important in applications of probability and statistics.

Definition 4.4.1 Let X X1 X2 be random variables. Then we say that the
sequence Xn converges in distribution to X if for all x R1 such that P X

x 0 we have limn P Xn x P X x and we write Xn
D

X

Intuitively, Xn converges in distribution to X if for large n, the distribution of Xn
is close to that of X . The importance of this, as we will see, is that often the distribution
of Xn is difficult to work with, while that of X is much simpler. With Xn converging
in distribution to X however, we can approximate the distribution of Xn by that of X

EXAMPLE 4.4.1
Suppose P Xn 1 1 n, and P Xn 0 1 1 n. Let X 0 so that
P X 0 1. Then,

P Xn x
0 x 0

1 1 n 0 x 1
1 1 x

P X x
0 x 0
1 0 x

as n As P Xn x P X x for every x and in particular at all x
where P X x 0 we have that Xn converges in distribution to X . Intuitively, as
n , it is more and more likely that Xn will equal 0.

EXAMPLE 4.4.2
Suppose P Xn 1 1 2 1 n, and P Xn 0 1 2 1 n. Suppose further
that P X 0 P X 1 1 2. Then Xn converges in distribution to X because
P Xn 1 1 2 and P Xn 0 1 2 as n .

EXAMPLE 4.4.3
Let X Uniform[0 1], and let P Xn i n 1 n for i 1 2 n. Then X is
absolutely continuous, while Xn is discrete. On the other hand, for any 0 x 1, we
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have P X x x and letting x denote the greatest integer less than or equal to
x , we have

P Xn x
nx

n

Hence, P Xn x P X x 1 n for all n. Because limn 1 n 0, we do
indeed have Xn X in distribution.

EXAMPLE 4.4.4
Suppose X1 X2 are i.i.d. with finite mean , and Mn X1 Xn n Then
the weak law of large numbers says that for any 0 we have

P Mn 0 and P Mn 1

as n . It follows that limn P Mn x P M x for any x , where
M is the constant random variable M . Hence, Mn M in distribution. Note that
it is not necessarily the case that P Mn P M 1. However, this does
not contradict the definition of convergence in distribution because P M 0
so we do not need to worry about the case x .

EXAMPLE 4.4.5 Poisson Approximation to the Binomial
Suppose Xn Binomial n n and X Poisson . We have seen in Example
2.3.6 that

P Xn j
n

j n

j

1
n

n j e
j

j!

as n . This implies that FXn x FX x at every point x 0 1 2 and
these are precisely the points for which P X x 0 Therefore, Xn converges in
distribution to X . (Indeed, this was our original motivation for the Poisson distribution.)

Many more examples of convergence in distribution are given by the central limit
theorem, discussed in the next section. We first pause to consider the relationship of
convergence in distribution to our previous notions of convergence.

Theorem 4.4.1 If Xn
P

X , then Xn
D

X .

PROOF See Section 4.7 for the proof of this result.

The converse to Theorem 4.4.1 is false. Indeed, the fact that Xn converges in
distribution to X says nothing about the underlying relationship between Xn and X ,
it says only something about their distributions. The following example illustrates this.

EXAMPLE 4.4.6
Suppose X X1 X2 are i.i.d., each equal to 1 with probability 1 2 each. In this
case, P Xn x P X x for all n and for all x R1, so of course Xn converges
in distribution to X . On the other hand, because X and Xn are independent,

P X Xn 2
1

2
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for all n, which does not go to 0 as n . Hence, Xn does not converge to X in
probability (or with probability 1). So we can have convergence in distribution without
having convergence in probability or convergence with probability 1.

The following result, stated without proof, indicates how moment­generating func­
tions can be used to check for convergence in distribution. (This generalizes Theo­
rem 3.4.6.)

Theorem 4.4.2 Let X be a random variable, such that for some s0 0, we have
mX s whenever s s0 s0 . If Z1 Z2 is a sequence of random vari­
ables with mZn s and limn mZn s mX s for all s s0 s0 , then
Zn converges to X in distribution.

We will make use of this result to prove one of the most famous theorems of probability
— the central limit theorem.

Finally, we note that combining Theorem 4.4.1 with Theorem 4.3.1 reveals the
following.

Corollary 4.4.1 If Xn X with probability 1, then Xn
D

X

4.4.1 The Central Limit Theorem

We now present the central limit theorem, one of the most important results in all of
probability theory. Intuitively, it says that a large sum of i.i.d. random variables, prop­
erly normalized, will always have approximately a normal distribution. This shows
that the normal distribution is extremely fundamental in probability and statistics —
even though its density function is complicated and its cumulative distribution function
is intractable.

Suppose X1 X2 is an i.i.d. sequence of random variables each having finite
mean and finite variance 2 Let Sn X1 Xn be the sample sum and
Mn Sn n be the sample mean. The central limit theorem is concerned with the
distribution of the random variable

Zn
Sn n

n

Mn

n
n

Mn

where 2 We know E Mn and Var Mn
2 n which implies that

E Zn 0 and Var Zn 1 The variable Zn is thus obtained from the sample mean
(or sample sum) by subtracting its mean and dividing by its standard deviation. This
transformation is referred to as standardizing a random variable, so that it has mean 0
and variance 1. Therefore, Zn is the standardized version of the sample mean (sample
sum).

Note that the distribution of Zn shares two characteristics with the N 0 1 distrib­
ution, namely, it has mean 0 and variance 1. The central limit theorem shows that there
is an even stronger relationship.
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Theorem 4.4.3 (The central limit theorem) Let X1 X2 be i.i.d. with finite mean
and finite variance 2. Let Z N 0 1 . Then as n , the sequence Zn

converges in distribution to Z , i.e., Zn
D

Z .

PROOF See Section 4.7 for the proof of this result.

The central limit theorem is so important that we shall restate its conclusions in
several different ways.

Corollary 4.4.2 For each fixed x R1, limn P Zn x x where is
the cumulative distribution function for the standard normal distribution.

We can write this as follows.

Corollary 4.4.3 For each fixed x R1,

lim
n

P Sn n x n x and lim
n

P Mn x n x

In particular, Sn is approximately equal to n , with deviations from this value of
order n, and Mn is approximately equal to , with deviations from this value of
order 1 n.

We note that it is not essential in the central limit theorem to divide by , in which
case the theorem asserts instead that Sn n n (or n Mn ) converges in
distribution to the N 0 2 distribution. That is, the limiting distribution will still be
normal but will have variance 2 instead of variance 1.

Similarly, instead of dividing by exactly , it suffices to divide by any quantity n,
provided n

a s
. A simple modification of the proof of Theorem 4.4.2 leads to the

following result.

Corollary 4.4.4 If

Zn
Sn n

n n

Mn

n n
n

Mn

n

and limn n
a s

, then Zn
D

Z as n .

To illustrate the central limit theorem, we consider a simulation experiment.

EXAMPLE 4.4.7 The Central Limit Theorem Illustrated in a Simulation
Suppose we generate a sample X1 Xn from the Uniform[0 1] density. Note that
the Uniform[0 1] density is completely unlike a normal density. An easy calculation
shows that when X Uniform[0 1] then E X 1 2 and Var X 1 12

Now suppose we are interested in the distribution of the sample average Mn
Sn n X1 Xn n for various choices of n The central limit theorem tells
us that

Zn
Sn n 2

n 12
n

Mn 1 2

1 12
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converges in distribution to an N 0 1 distribution. But how large does n have to be
for this approximation to be accurate?

To assess this, we ran a Monte Carlo simulation experiment. In Figure 4.4.1, we
have plotted a density histogram of N 105 values from the N 0 1 distribution based
on 800 subintervals of 4 4 each of length l 0 01. Density histograms are more
extensively discussed in Section 5.4.3, but for now we note that above each interval
we have plotted the proportion of sampled values that fell in the interval, divided by
the length of the interval. As we increase N and decrease l these histograms will look
more and more like the density of the distribution from which we are sampling. Indeed,
Figure 4.4.1 looks very much like an N 0 1 density, as it should.

In Figure 4.4.2, we have plotted a density histogram (using the same values of N
and l) of Z1 Note that Z1 Uniform[ 12 2 12 2] and indeed the histogram
does look like a uniform density. Figure 4.4.3 presents a density histogram of Z2
which still looks very nonnormal — but note that the histogram of Z3 in Figure 4.4.4
is beginning to look more like a normal distribution. The histogram of Z10 in Fig­
ure 4.4.5 looks very normal. In fact, the proportion of Z10 values in 1 96] for
this histogram, equals 0 9759 while the exact proportion for an N 0 1 distribution is
0 9750.
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Figure 4.4.1: Density histogram of 105 standard normal values.
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Figure 4.4.2: Density histogram for 105 values of Z1 in Example 4.4.7.
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Figure 4.4.3: Density histogram for 105 values of Z2 in Example 4.4.7.
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Figure 4.4.4: Density histogram for 105 values of Z3 in Example 4.4.7.
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Figure 4.4.5: Density histogram for 105 values of Z10 in Example 4.4.7.

So in this example, the central limit theorem has taken effect very quickly, even
though we are sampling from a very nonnormal distribution. As it turns out, it is
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primarily the tails of a distribution that determine how large n has to be for the central
limit theorem approximation to be accurate. When a distribution has tails no heavier
than a normal distribution, we can expect the approximation to be quite accurate for
relatively small sample sizes.

We consider some further applications of the central limit theorem.

EXAMPLE 4.4.8
For example, suppose X1 X2 are i.i.d. random variables, each with the Poisson 5
distribution. Recall that this implies that E X i 5 and 2 Var X i 5.
Hence, for each fixed x R1, we have

P Sn 5n x 5n x

as n

EXAMPLE 4.4.9 Normal Approximation to the Binomial Distribution
Suppose X1 X2 are i.i.d. random variables, each with the Bernoulli distribu­
tion. Recall that this implies that E Xi and Var Xi 1 . Hence, for
each fixed x R1 we have

P Sn n x n 1 x (4.4.1)

as n
But now note that we have previously shown that Yn Sn Binomial n So

(4.4.1) implies that whenever we have a random variable Yn Binomial n then

P Yn y P
Yn n

n 1

y n

n 1

y n

n 1
(4.4.2)

for large n
Note that we are approximating a discrete distribution by a continuous distribu­

tion here. Ref lecting this, a small improvement is often made to (4.4.2) when y is a
nonnegative integer. Instead, we use

P Yn y
y 0 5 n

n 1

Adding 0.5 to y is called the correction for continuity. In effect, this allocates all the
relevant normal probability in the interval y 0 5 y 0 5 to the nonnegative integer
y This has been shown to improve the approximation (4.4.2).

EXAMPLE 4.4.10 Approximating Probabilities Using the Central Limit Theorem
While there are tables for the binomial distribution (Table D.6), we often have to com­
pute binomial probabilities for situations the tables do not cover. We can always use
statistical software for this, in fact, such software makes use of the normal approxima­
tion we derived from the central limit theorem.

For example, suppose that we have a biased coin, where the probability of getting
a head on a single toss is 0 6 We will toss the coin n 1000 times and then



220 Section 4.4: Convergence in Distribution

calculate the probability of getting at least 550 heads and no more than 625 heads.
If Y denotes the number of heads obtained in the 1000 tosses, we have that Y
Binomial 1000 0 6 so

E Y 1000 0 6 600

Var Y 1000 0 6 0 4 240

Therefore, using the correction for continuity and Table D.2,

P 550 Y 625 P 550 0 5 Y 625 0 5

P
549 5 600

240

Y 600

240

625 5 600

240

P 3 2598
Y 600

240
1 646

1 65 3 26 0 9505 0 0006 0 9499

Note that it would be impossible to compute this probability using the formulas for the
binomial distribution.

One of the most important uses of the central limit theorem is that it leads to a
method for assessing the error in an average when this is estimating or approximating
some quantity of interest.

4.4.2 The Central Limit Theorem and Assessing Error

Suppose X1 X2 is an i.i.d. sequence of random variables, each with finite mean
and finite variance 2, and we are using the sample average Mn to approximate the

mean This situation arises commonly in many computational (see Section 4.5) and
statistical (see Chapter 6) problems. In such a context, we can generate the Xi but we
do not know the value of

If we approximate by Mn then a natural question to ask is: How much error is
there in the approximation? The central limit theorem tells us that

3 3 lim
n

P 3
Mn

n
3

lim
n

P Mn 3
n

Mn 3
n

Using Table D.2 (or statistical software), we have that 3 3 0 9987 1
0 9987 0 9974 So, for large n, we have that the interval

Mn 3 n Mn 3 n

contains the unknown value of with virtual certainty (actually with probability about
0 9974). Therefore, the half­length 3 n of this interval gives us an assessment of
the error in the approximation Mn. Note that Var Mn

2 n so the half­length of
the interval equals 3 standard deviations of the estimate Mn
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Because we do not know it is extremely unlikely that we will know (as its
definition uses ). But if we can find a consistent estimate n of , then we can use
Corollary 4.4.4 instead to construct such an interval.

As it turns out, the correct choice of n depends on what we know about the distri­
bution we are sampling from (see Chapter 6 for more discussion of this). For example,
if X1 Bernoulli then and 2 Var X1 1 . By the strong law
of large numbers (Theorem 4.3.2), Mn

a s
and thus

n Mn 1 Mn
a s

1

Then, using the same argument as above, we have that, for large n the interval

Mn 3 Mn 1 Mn n Mn 3 Mn 1 Mn n (4.4.3)

contains the true value of with virtual certainty (again, with probability about 0 9974).
The half­length of (4.4.3) is a measure of the accuracy of the estimate Mn — no­
tice that this can be computed from the values X1 Xn We refer to the quantity
Mn 1 Mn n 1 2 as the standard error of the estimate Mn

For a general random variable X1 let

2
n

1

n 1

n

i 1

Xi Mn
2 1

n 1

n

i 1

X2
i 2Mn

n

i 1

X i nM2
n

n

n 1

1

n

n

i 1

X2
i 2M2

n M2
n

n

n 1

1

n

n

i 1

X2
i M2

n

By the strong law of large numbers, we have that Mn
a s

and

1

n

n

i 1

X2
i
a s

E X2
1

2 2

Because n n 1 1 and M2
n

a s 2 as well, we conclude that 2
n

a s 2 This

implies that n
a s

hence n is consistent for It is common to call 2
n the sample

variance of the sample X1 Xn When the sample size n is fixed, we will often
denote this estimate of the variance by S2

Again, using the above argument, we have that, for large n the interval

Mn 3 n n Mn 3 n n Mn 3S n Mn 3S n (4.4.4)

contains the true value of with virtual certainty (also with probability about 0 9974).
Therefore, the half­length is a measure of the accuracy of the estimate Mn — notice
that this can be computed from the values X1 Xn The quantity S n is referred
to as the standard error of the estimate Mn.

We will make use of these estimates of the error in approximations in the following
section.
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Summary of Section 4.4

A sequence Xn of random variables converges in distribution to Y if, for all y
R1 with P Y y 0, we have limn FXn y FY y , i.e., limn P Xn
y P Y y .

If Xn converges to Y in probability (or with probability 1), then Xn converges
to Y in distribution.

The very important central limit theorem says that if Xn are i.i.d. with finite
mean and variance 2, then the random variables Zn Sn n n
converge in distribution to a standard normal distribution.

The central limit theorem allows us to approximate various distributions by nor­
mal distributions, which is helpful in simulation experiments and in many other
contexts. Table D.2 (or any statistical software package) provides values for the
cumulative distribution function of a standard normal.

EXERCISES

4.4.1 Suppose P Xn i n i 3n 6 for i 1 2 3. Suppose also that
P X i 1 3 for i 1 2 3. Prove that Xn converges in distribution to X .
4.4.2 Suppose P Yn k 1 2 n 1 1 2k 1 for k 0 1 n. Let Y
Geometric 1 2 . Prove that Yn converges in distribution to Y .
4.4.3 Let Zn have density n 1 xn for 0 x 1, and 0 otherwise. Let Z 1.
Prove that Zn converges in distribution to Z .
4.4.4 Let Wn have density

1 x n

1 1 2n

for 0 x 1, and 0 otherwise. Let W Uniform[0 1]. Prove that Wn converges
in distribution to W .
4.4.5 Let Y1 Y2 be i.i.d. with distribution Exponential 3 . Use the central limit
theorem and Table D.2 (or software) to estimate the probability P 1600

i 1 Yi 540 .
4.4.6 Let Z1 Z2 be i.i.d. with distribution Uniform[ 20 10]. Use the central
limit theorem and Table D.2 (or software) to estimate the probability P 900

i 1 Zi
4470 .

4.4.7 Let X1 X2 be i.i.d. with distribution Geometric 1 4 . Use the central limit
theorem and Table D.2 (or software) to estimate the probability P 800

i 1 Xi 2450 .
4.4.8 Suppose Xn N 0 1 n , i.e., Xn has a normal distribution with mean 0 and
variance 1 n. Does the sequence Xn converge in distribution to some random vari­
able? If yes, what is the distribution of the random variable?
4.4.9 Suppose P Xn i n 2i n n 1 for i 1 2 3 n. Let Z have density
function given by f z 2z for 0 z 1, otherwise f z 0.
(a) Compute P Z y for 0 y 1.
(b) Compute P Xn m n for some integer 1 m n. (Hint: Remember that

m
i 1 i m m 1 2.)
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(c) Compute P Xn y for 0 y 1.

(d) Prove that Xn
D

Z .

4.4.10 Suppose P Yn y 1 e 2ny n 1 for all y 0. Prove that Yn
D

Y where
Y Exponential for some 0 and compute .

4.4.11 Suppose P Zn z 1 1 3z
n

n for all 0 z n 3. Prove that Zn
D

Z
where Z Exponential for some 0 and compute . (Hint: Recall from calculus
that limn 1 c

n
n ec for any real number c.)

4.4.12 Suppose the service time, in minutes, at a bank has the Exponential distribution
with 1 2. Use the central limit theorem to estimate the probability that the average
service time of the first n customers is less than 2.5 minutes, when:
(a) n 16.
(b) n 36.
(c) n 100.
4.4.13 Suppose the number of kilograms of a metal alloy produced by a factory each
week is uniformly distributed between 20 and 30. Use the central limit theorem to esti­
mate the probability that next year’s output will be less than 1280 kilograms. (Assume
that a year contains precisely 52 weeks.)
4.4.14 Suppose the time, in days, until a component fails has the Gamma distribution
with 5 and 1 10. When a component fails, it is immediately replaced by
a new component. Use the central limit theorem to estimate the probability that 40
components will together be sufficient to last at least 6 years. (Assume that a year
contains precisely 365.25 days.)

COMPUTER EXERCISES

4.4.15 Generate N samples X1 X2 X20 Exponential 3 for N large (N 104,
if possible). Use these samples to estimate the probability P 1 6 M20 1 2 . How
does your answer compare to what the central limit theorem gives as an approximation?

4.4.16 Generate N samples X1 X2 X30 Uniform[ 20 10] for N large (N
104, if possible). Use these samples to estimate the probability P M30 5 . How
does your answer compare to what the central limit theorem gives as an approximation?
4.4.17 Generate N samples X1 X2 X20 Geometric 1 4 for N large (N
104, if possible). Use these samples to estimate the probability P 2 5 M20 3 3 .
How does your answer compare to what the central limit theorem gives as an approxi­
mation?
4.4.18 Generate N samples X1 X2 X20 from the distribution of log Z where Z
Gamma 4 1 for N large (N 104, if possible). Use these samples to construct a
density histogram of the values of M20 Comment on the shape of this graph.

4.4.19 Generate N samples X1 X2 X20 from the Binomial 10 0 01 distribution
for N large (N 104, if possible). Use these samples to construct a density histogram
of the values of M20 Comment on the shape of this graph.
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PROBLEMS

4.4.20 Let a1 a2 be any sequence of nonnegative real numbers with i ai 1.
Suppose P X i ai for every positive integer i . Construct a sequence Xn of
absolutely continuous random variables, such that Xn X in distribution.

4.4.21 Let f : [0 1] 0 be a continuous positive function such that 1
0 f x dx

1 Consider random variables X and Xn such that P a X b b
a f x dx

for a b and

P Xn
i

n

f i n
n
j 1 f j n

for i 1 2 3 n. Prove that Xn X in distribution.
4.4.22 Suppose that Yi X3

i and that X1 Xn is a sample from an N 0 1 dis­
tribution. Indicate how you would approximate the probability P Mn m where
Mn Y1 Yn n

4.4.23 Suppose Yi cos 2 Ui and U1 Un is a sample from the Uniform[0 1]
distribution. Indicate how you would approximate the probability P Mn

m , where Mn Y1 Yn n

COMPUTER PROBLEMS

4.4.24 Suppose that Y X3 and X N 0 1 . By generating a large sample (n
104, if possible) from the distribution of Y approximate the probability P Y 1 and
assess the error in your approximation Compute this probability exactly and compare
it with your approximation.
4.4.25 Suppose that Y X3 and X N 0 1 . By generating a large sample (n
104, if possible) from the distribution of Y approximate the expectation E cos X3 ,
and assess the error in your approximation

CHALLENGES

4.4.26 Suppose Xn C in distribution, where C is a constant. Prove that Xn C
in probability. (This proves that if X is constant, then the converse to Theorem 4.4.1
does hold, even though it does not hold for general X .)

4.5 Monte Carlo Approximations
The laws of large numbers say that if X1 X2 is an i.i.d. sequence of random vari­
ables with mean , and

Mn
X1 Xn

n
,

then for large n we will have Mn .
Suppose now that is unknown. Then, as discussed in Section 4.4.2, it is possible

to change perspective and use Mn (for large n) as an estimator or approximation of .
Any time we approximate or estimate a quantity, we must also say something about
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how much error is in the estimate. Of course, we cannot say what this error is exactly,
as that would require knowing the exact value of . In Section 4.4.2, however, we
showed how the central limit theorem leads to a very natural approach to assessing this
error, using three times the standard error of the estimate. We consider some examples.

EXAMPLE 4.5.1
Consider f lipping a sequence of identical coins, each of which has probability of
coming up heads, but where is unknown. Let Mn again be the fraction of the first n
coins that are heads. Then we know that for large n, it is very likely that Mn is very
close to . Hence, we can use Mn to estimate . Furthermore, the discussion in Section
4.4.2 indicates that (4.4.3) is the relevant interval to quote when assessing the accuracy
of the estimate Mn .

EXAMPLE 4.5.2
Suppose we believe a certain medicine lowers blood pressure, but we do not know by
how much. We would like to know the mean amount , by which this medicine lowers
blood pressure.

Suppose we observe n patients (chosen at random so they are i.i.d.), where patient
i has blood pressure Bi before taking the medicine and blood pressure Ai afterwards.
Let X i Bi Ai Then

Mn
1

n

n

i 1

Bi Ai

is the average amount of blood pressure decrease. (Note that Bi Ai may be negative
for some patients, and it is important to also include those negative terms in the sum.)
Then for large n, the value of Mn is a good estimate of E Xi . Furthermore, the
discussion in Section 4.4.2 indicates that (4.4.4) is the relevant interval to quote when
assessing the accuracy of the estimate Mn.

Such estimators can also be used to estimate purely mathematical quantities that do
not involve any experimental data (such as coins or medical patients) but that are too
difficult to compute directly. In this case, such estimators are called Monte Carlo ap­
proximations (named after the gambling casino in the principality of Monaco because
they introduce randomness to solve nonrandom problems).

EXAMPLE 4.5.3
Suppose we wish to evaluate

I
1

0
cos x2 sin x4 dx

This integral cannot easily be solved exactly. But it can be approximately computed
using a Monte Carlo approximation, as follows. We note that

I E cos U2 sin U4

where U Uniform[0 1]. Hence, for large n, the integral I is approximately equal
to Mn T1 Tn n, where Ti cos U2

i sin U4
i , and where U1 U2 are

i.i.d. Uniform[0 1].



226 Section 4.5: Monte Carlo Approximations

Putting this all together, we obtain an algorithm for approximating the integral I ,
as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Ti cos U2
i sin U4

i , for i 1 2 n.

4. Estimate I by Mn T1 Tn n.

For large enough n, this algorithm will provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Uniform[0,1] variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 0 145294 0 130071 0 160518
104 0 138850 0 134105 0 143595
105 0 139484 0 137974 0 140993

From this we can see that the value of I is approximately 0 139484 and the true value
is almost certainly in the interval 0 137974 0 140993 . Notice how the lengths of
the intervals decrease as we increase n In fact, it can be shown that the exact value is
I 0 139567, so our approximation is excellent.

EXAMPLE 4.5.4
Suppose we want to evaluate the integral

I
0

25x2 cos x2 e 25x dx

This integral cannot easily be solved exactly, but it can also be approximately computed
using a Monte Carlo approximation, as follows.

We note first that I E X2 cos X2 where X Exponential 25 . Hence, for
large n, the integral I is approximately equal to Mn T1 Tn n, where
Ti X2

i cos X2
i , with X1 X2 i.i.d. Exponential 25 .

Now, we know from Section 2.10 that we can simulate X Exponential 25 by
setting X ln U 25 where U Uniform[0 1]. Hence, putting this all together,
we obtain an algorithm for approximating the integral I , as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Xi ln Ui 25, for i 1 2 n.

4. Set Ti X2
i cos X2

i , for i 1 2 n.

5. Estimate I by Mn T1 Tn n.
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For large enough n, this algorithm will provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Exponential 25 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 3 33846 10 3 2 63370 10 3 4 04321 10 3

104 3 29933 10 3 3 06646 10 3 3 53220 10 3

105 3 20629 10 3 3 13759 10 3 3 27499 10 3

From this we can see that the value of I is approximately 3 20629 10 3 and that the
true value is almost certainly in the interval 3 13759 10 3 3 27499 10 3 .

EXAMPLE 4.5.5
Suppose we want to evaluate the sum

S
j 0

j2 3 75 j

Though this is very difficult to compute directly, it can be approximately computed
using a Monte Carlo approximation.

Let us rewrite the sum as

S
5

4
j 0

j2 3 7 4

5
1

4

5

j

We then see that S 5 4 E X2 3 7 where X Geometric 4 5 .
Now, we know from Section 2.10 that we can simulate X Geometric 4 5 by

setting X ln 1 U ln 1 4 5 or, equivalently, X ln U ln 1 4 5 ,
where U Uniform[0 1] and where means to round down to the next integer
value. Hence, we obtain an algorithm for approximating the sum S, as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Xi ln Ui ln 1 4 5 , for i 1 2 n.

4. Set Ti X2
i 3 7, for i 1 2 n.

5. Estimate S by Mn 5 4 T1 Tn n.

For large enough n, this algorithm will provide a good estimate of the sum S.
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Geometric 4 5 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 4 66773 10 4 4 47078 10 4 4 86468 10 4

104 4 73538 10 4 4 67490 10 4 4 79586 10 4

105 4 69377 10 4 4 67436 10 4 4 71318 10 4



228 Section 4.5: Monte Carlo Approximations

From this we can see that the value of S is approximately 4 69377 10 4 and that the
true value is almost certainly in the interval 4 67436 10 4 4 71318 10 4 .

Note that when using a Monte Carlo approximation, it is not necessary that the
range of an integral or sum be the entire range of the corresponding random variable,
as follows.

EXAMPLE 4.5.6
Suppose we want to evaluate the integral

J
0

sin x e x2 2 dx

Again, this is extremely difficult to evaluate exactly.
Here

J 2 E sin X I X 0

where X N 0 1 and I X 0 is the indicator function of the event X 0 . We
know from Section 2.10 that we can simulate X N 0 1 by setting

X 2 log 1 U cos 2 V

where U and V are i.i.d. Uniform[0 1]. Hence, we obtain the following algorithm for
approximating the integral J .

1. Select a large positive integer n.

2. Obtain Ui Vi Uniform[0 1], independently for i 1 2
n.

3. Set Xi 2 log 1 Ui cos 2 Vi , for i 1 2 n.

4. Set Ti sin Xi I Xi 0 , for i 1 2 n. (That is, set Ti
sin Xi if X i 0, otherwise set Ti 0.)

5. Estimate J by Mn 2 T1 Tn n.

For large enough n, this algorithm will again provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of N 0 1 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 0 744037 0 657294 0 830779
104 0 733945 0 706658 0 761233
105 0 722753 0 714108 0 731398

From this we can see that the value of J is approximately 0 722753 and that the true
value is almost certainly in the interval 0 714108 0 731398 .

Now we consider an important problem for statistical applications of probability
theory.
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EXAMPLE 4.5.7 Approximating Sampling Distributions Using Monte Carlo
Suppose X1 X2 Xn is an i.i.d. sequence from the probability measure P We want
to find the distribution of a new random variable Y h X1 X2 Xn for some
function h Provided we can generate from P, then Monte Carlo methods give us a
way to approximate this distribution.

Denoting the cumulative distribution function of Y by FY we have

FY y P y EPY I y] Y E I y] h X1 X2 Xn

So FY y can be expressed as the expectation of the random variable

I y] h X1 X2 Xn

based on sampling from P
To estimate this, we generate N samples of size n

Xi1 X i2 Xin

for i 1 N from P (note N is the Monte Carlo sample size and can be varied,
whereas the sample size n is fixed here) and then calculate the proportion of values
h Xi1 Xi2 Xin y The estimate MN is then given by

FY y
1

N

N

i 1

I y] h Xi1 X i2 Xin

By the laws of large numbers, this converges to FY y as N To evaluate the
error in this approximation, we use (4.4.3), which now takes the form

FY y 3 FY y 1 FY y n FY y 3 FY y 1 FY y n

We presented an application of this in Example 4.4.7. Note that if the base of a rec­
tangle in the histogram of Figure 4.4.2 is given by a b] then the height of this rectan­
gle equals the proportion of values that fell in a b] times 1 b a This can be ex­
pressed as FY b FY a b a which converges to FY b FY a b a
as N This proves that the areas of the rectangles in the histogram converge to
FY b FY a as N

More generally, we can approximate an expectation E g Y using the average

1

N

N

i 1

g h X i1 Xi2 X in

By the laws of large numbers, this average converges to E g Y as N

Typically, there is more than one possible Monte Carlo algorithm for estimating
a quantity of interest. For example, suppose we want to approximate the integral
b
a g x dx where we assume this integral is finite. Let f be a density on the interval



230 Section 4.5: Monte Carlo Approximations

a b , such that f x 0 for every x a b and suppose we have a convenient
algorithm for generating X1 X2 i.i.d. with distribution given by f . We have that

b

a
g x dx

b

a

g x

f x
f x dx E

g X

f X

when X is distributed with density f . So we can estimate b
a g x dx by

Mn
1

n

n

i 1

g X i

f X i

1

n

n

i 1

Ti

where Ti g X i f Xi . In effect, this is what we did in Example 4.5.3 ( f is the
Uniform[0 1] density), in Example 4.5.4 ( f is the Exponential 25 density), and in
Example 4.5.6 ( f is the N 0 1 density). But note that there are many other possible
choices. In Example 4.5.3, we could have taken f to be any beta density. In Example
4.5.4, we could have taken f to be any gamma density, and similarly in Example
4.5.6. Most statistical computer packages have commands for generating from these
distributions. In a given problem, what is the best one to use?

In such a case, we would naturally use the algorithm that was most efficient. For
the algorithms we have been discussing here, this means that if, based on a sample
of n algorithm 1 leads to an estimate with standard error 1 n, and algorithm 2
leads to an estimate with standard error 2 n, then algorithm 1 is more efficient than
algorithm 2 whenever 1 2 Naturally, we would prefer algorithm 1 because the
intervals (4.4.3) or (4.4.4) will tend to be shorter for algorithm 1 for the same sample
size. Actually, a more refined comparison of efficiency would also take into account the
total amount of computer time used by each algorithm, but we will ignore this aspect of
the problem here. See Problem 4.5.21 for more discussion of efficiency and the choice
of algorithm in the context of the integration problem.

Summary of Section 4.5

An unknown quantity can be approximately computed using a Monte Carlo ap­
proximation, whereby independent replications of a random experiment (usually
on a computer) are averaged to estimate the quantity.

Monte Carlo approximations can be used to approximate complicated sums, in­
tegrals, and sampling distributions, all by choosing the random experiment ap­
propriately.

EXERCISES

4.5.1 Describe a Monte Carlo approximation of cos2 x e x2 2 dx

4.5.2 Describe a Monte Carlo approximation of m
j 0 j6 m

j 2 j3 m . (Hint: Remember
the Binomial m 2 3 distribution.)

4.5.3 Describe a Monte Carlo approximation of 0 e 5x 14x2
dx (Hint: Remember

the Exponential 5 distribution.)
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4.5.4 Suppose X1 X2 are i.i.d. with distribution Poisson , where is unknown.
Consider Mn X1 X2 Xn n as an estimate of Suppose we know that

10. How large must n be to guarantee that Mn will be within 0 1 of the true value
of with virtual certainty, i.e., when is 3 standard deviations smaller than 0 1?
4.5.5 Describe a Monte Carlo approximation of j 0 sin j2 5 j j !. Assume you
have available an algorithm for generating from the Poisson 5 distribution.

4.5.6 Describe a Monte Carlo approximation of 10
0 e x4

dx (Hint: Remember the
Uniform[0 10] distribution.)

4.5.7 Suppose we repeat a certain experiment 2000 times and obtain a sample average
of 5 and a standard error of 17. In terms of this, specify an interval that is virtually
certain to contain the experiment’s (unknown) true mean .
4.5.8 Suppose we repeat a certain experiment 400 times and get i.i.d. response values
X1 X2 X400. Suppose we compute that the sample average is M400 6 and
furthermore that 400

i 1 X i
2 15,400. In terms of this:

(a) Compute the standard error n .
(b) Specify an interval that is virtually certain to contain the (unknown) true mean of
the Xi .
4.5.9 Suppose a certain experiment has probability of success, where 0 1
but is unknown. Suppose we repeat the experiment 1000 times, of which 400 are
successes and 600 are failures. Compute an interval of values that are virtually certain
to contain .

4.5.10 Suppose a certain experiment has probability of success, where 0 1
but is unknown. Suppose we repeat the experiment n times, and let Y be the fraction
of successes.
(a) In terms of , what is Var Y ?
(b) For what value of is Var Y the largest?
(c) What is this largest possible value of Var Y ?
(d) Compute the smallest integer n such that we can be sure that Var Y 0 01,
regardless of the value of .
4.5.11 Suppose X and Y are random variables with joint density given by fX Y x y
C g x y for 0 x y 1 (with fX Y x y 0 for other x y), for appropriate con­
stant C, where

g x y x2 y3 sin xy cos xy exp x2 y

(a) Explain why

E X
1

0

1

0
x fX Y x y dx dy

1
0

1
0 x g x y dx dy

1
0

1
0 g x y dx dy

(b) Describe a Monte Carlo algorithm to approximately compute E X .

4.5.12 Let g x y cos xy , and consider the integral I 5
0

4
0 g x y dy dx .

(a) Prove that I 20 E[g X Y ] where X Uniform[0 5] and Y Uniform[0 4].
(b) Use part (a) to describe a Monte Carlo algorithm to approximately compute I .
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4.5.13 Consider the integral J 1
0 0 h x y dy dx , where

h x y e y2
cos xy

(a) Prove that J E[eY h X Y ], where X Uniform[0 1] and Y Exponential 1 .
(b) Use part (a) to describe a Monte Carlo algorithm to approximately compute J .
(c) If X Uniform[0 1] and Y Exponential 5 , then prove that

J 1 5 E[e5Y h X Y ]

(d) Use part (c) to describe a Monte Carlo algorithm to approximately compute J .
(e) Explain how you might use a computer to determine which is better, the algorithm
in part (b) or the algorithm in part (d).

COMPUTER EXERCISES

4.5.14 Use a Monte Carlo algorithm to approximate 1
0 cos x3 sin x4 dx based on a

large sample (take n 105, if possible). Assess the error in the approximation.
4.5.15 Use a Monte Carlo algorithm to approximate 0 25 cos x4 e 25x dx based on
a large sample (take n 105, if possible). Assess the error in the approximation.

4.5.16 Use a Monte Carlo algorithm to approximate j 0 j2 3 55 j based on a

large sample (take n 105, if possible). Assess the error in the approximation.

4.5.17 Suppose X N 0 1 . Use a Monte Carlo algorithm to approximate P X2

3X 2 0 based on a large sample (take n 105, if possible). Assess the error in
the approximation.

PROBLEMS

4.5.18 Suppose that X1 X2 are i.i.d. Bernoulli where is unknown. Determine
a lower bound on n so that the probability that the estimate Mn will be within of
the unknown value of is about 0.9974. This allows us to run simulations with high
confidence that the error in the approximation quoted is less than some prescribed value
. (Hint: Use the fact that x 1 x 1 4 for all x [0 1] )
4.5.19 Suppose that X1 X2 are i.i.d. with unknown mean and unknown variance

2 Suppose we know, however, that 2 2
0, where 2

0 is a known value. Determine
a lower bound on n so that the probability that the estimate Mn will be within of
the unknown value of is about 0 9974. This allows us to run simulations with high
confidence that the error in the approximation quoted is less than some prescribed value
.

4.5.20 Suppose X1 X2 are i.i.d. with distribution Uniform[0 ], where is un­
known, and consider Zn n 1 n 1 X n as an estimate of (see Section 2.8.4 on
order statistics).
(a) Prove that E Zn and compute Var Zn
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(b) Use Chebyshev’s inequality to show that Zn converges in probability to
(c) Show that E 2Mn and compare Mn and Zn with respect to their efficiencies
as estimators of Which would you use to estimate and why?

4.5.21 (Importance sampling) Suppose we want to approximate the integral b
a g x dx ,

where we assume this integral is finite. Let f be a density on the interval a b such
that f x 0 for every x a b and is such that we have a convenient algorithm for
generating X1 X2 i.i.d. with distribution given by f
(a) Prove that

Mn f
1

n

n

i 1

g X i

f Xi

a s
b

a
g x dx

(We refer to f as an importance sampler and note this shows that every f satisfying
the above conditions, provides a consistent estimator Mn f of b

a g x dx )

(b) Prove that

Var Mn f
1

n

b

a

g2 x

f x
dx

b

a
g x dx

2

(c) Suppose that g x h x f x , where f is as described above. Show that impor­
tance sampling with respect to f leads to the estimator

Mn f
1

n

n

i 1

h X i

(d) Show that if there exists c such that g x c f x for all x a b then
Var Mn f
(e) Determine the standard error of Mn f and indicate how you would use this to
assess the error in the approximation Mn f when Var Mn f

COMPUTER PROBLEMS

4.5.22 Use a Monte Carlo algorithm to approximate P X3 Y 3 3 , where X
N 1 2 independently of Y Gamma 1 1 based on a large sample (take n 105,
if possible). Assess the error in the approximation How large does n have to be to
guarantee the estimate is within 0 01 of the true value with virtual certainty? (Hint:
Problem 4.5.18.)
4.5.23 Use a Monte Carlo algorithm to approximate E X3 Y 3 , where X N 1 2
independently of Y Gamma 1 1 based on a large sample (take n 105, if possi­
ble). Assess the error in the approximation.
4.5.24 For the integral of Exercise 4.5.3, compare the efficiencies of the algorithm
based on generating from an Exponential 5 distribution with that based on generating
from an N 0 1 7 distribution.
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CHALLENGES

4.5.25 (Buffon’s needle) Suppose you drop a needle at random onto a large sheet of
lined paper. Assume the distance between the lines is exactly equal to the length of the
needle.
(a) Prove that the probability that the needle lands touching a line is equal to 2 .
(Hint: Let D be the distance from the higher end of the needle to the line just below it,
and let A be the angle the needle makes with that line. Then what are the distributions
of D and A? Under what conditions on D and A will the needle be touching a line?)
(b) Explain how this experiment could be used to obtain a Monte Carlo approximation
for the value of .
4.5.26 (Optimal importance sampling) Consider importance sampling as described in
Problem 4.5.21.
(a) Prove that Var Mn f is minimized by taking

f x g x
b

a
g x dx

Calculate the minimum variance and show that the minimum variance is 0 when g x
0 for all x a b .
(b) Why is this optimal importance sampler typically not feasible? (The optimal im­
portance sampler does indicate, however, that in our search for an efficient importance
sampler, we look for an f that is large when g is large and small when g is small.)

DISCUSSION TOPICS

4.5.27 An integral like 0 x2 cos x2 e x dx can be approximately computed using a
numerical integration computer package (e.g., using Simpson’s rule). What are some
advantages and disadvantages of using a Monte Carlo approximation instead of a nu­
merical integration package?

4.5.28 Carry out the Buffon’s needle Monte Carlo experiment, described in Challenge
4.5.25, by repeating the experiment at least 20 times. Present the estimate of so
obtained. How close is it to the true value of ? What could be done to make the
estimate more accurate?

4.6 Normal Distribution Theory
Because of the central limit theorem (Theorem 4.4.3), the normal distribution plays
an extremely important role in statistical theory. For this reason, we shall consider
a number of important properties and distributions related to the normal distribution.
These properties and distributions will be very important for the statistical theory in
later chapters of this book.

We already know that if X1 N 1
2
1 independent of X2 N 2

2
2 , then

cX1 d N c 1 d c2 2 (see Exercise 2.6.3) and X1 X2 N 1 2
2
1
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2
2 (see Problem 2.9.14). Combining these facts and using induction, we have the

following result.

Theorem 4.6.1 Suppose Xi N i
2
i for i 1 2 n and that they are

independent random variables. Let Y i ai Xi b for some constants ai and
b. Then

Y N
i

ai i b
i

a2
i

2
i

This immediately implies the following.

Corollary 4.6.1 Suppose Xi N 2 for i 1 2 n and that they are
independent random variables. If X X1 Xn n, then X N 2 n

A more subtle property of normal distributions is the following.

Theorem 4.6.2 Suppose Xi N i
2
i for i 1 2 n and also that the Xi

are independent. Let U n
i 1 ai Xi and V n

i 1 bi Xi for some constants ai
and bi . Then Cov U V i aibi

2
i . Furthermore, Cov U V 0 if and only

if U and V are independent.

PROOF The formula for Cov U V follows immediately from the linearity of co­
variance (Theorem 3.3.2) because we have

Cov U V Cov
n

i 1

ai Xi

n

j 1

b j X j

n

i 1

n

j 1

aib j Cov X i X j

n

i 1

aibi Cov X i Xi

n

i 1

aibi Var X i

n

i 1

aibi
2
i

(note that Cov Xi X j 0 for i j , by independence). Also, if U and V are
independent, then we must have Cov U V 0 by Corollary 3.3.2.

It remains to prove that, if Cov U V 0, then U and V are independent. This
involves a two­dimensional change of variable, as discussed in the advanced Section
2.9.2, so we refer the reader to Section 4.7 for this part of the proof.

Theorem 4.6.2 says that, for the special case of linear combinations of independent
normal distributions, if Cov U V 0 then U and V are independent. However, it is
important to remember that this property is not true in general, and there are random
variables X and Y such that Cov X Y 0 even though X and Y are not independent
(see Example 3.3.10). Furthermore, this property is not even true of normal distribu­
tions in general (see Problem 4.6.13).
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Note that using linear algebra, we can write the equations U n
i 1 ai X i and

V n
i 1 bi X i of Theorem 4.6.2 in matrix form as

U
V

A

X1
X2

Xn

(4.6.1)

where

A
a1 a2 an
b1 b2 bn

Furthermore, the rows of A are orthogonal if and only if i aibi 0. Now, in the case
i 1 for all i , we have that Cov U V i aibi . Hence, if i 1 for all i , then

Theorem 4.6.2 can be interpreted as saying that if U and V are given by (4.6.1), then
U and V are independent if and only if the rows of A are orthogonal. Linear algebra is
used extensively in more advanced treatments of these ideas.

4.6.1 The Chi­Squared Distribution

We now introduce another distribution, related to the normal distribution.

Definition 4.6.1 The chi­squared distribution with n degrees of freedom (or chi­
squared n or 2 n ) is the distribution of the random variable

Z X2
1 X2

2 X2
n

where X1 Xn are i.i.d., each with the standard normal distribution N 0 1 .

Most statistical packages have built­in routines for the evaluation of chi­squared prob­
abilities (also see Table D.3 in Appendix D).

One property of the chi­squared distribution is easy.

Theorem 4.6.3 If Z 2 n , then E Z n.

PROOF Write Z X2
1 X2

2 X2
n, where Xi are i.i.d. N 0 1 . Then

E Xi
2 1. It follows by linearity that E Z 1 1 n.

The density function of the chi­squared distribution is a bit harder to obtain. We
begin with the case n 1.

Theorem 4.6.4 Let Z 2 1 . Then

fZ z
1

2 z
e z 2 1 2 1 2

1 2
z 1 2e z 2

for z 0, with fZ z 0 for z 0. That is, Z Gamma 1 2 1 2 (using
1 2 ).
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PROOF Because Z 2 1 , we can write Z X2 where X N 0 1 . We then
compute that, for z 0,

z

fZ s ds P Z z P X2 z P z X z

But because X N 0 1 with density function s 2 1 2 e s2 2 we can
rewrite this as

z
fZ s ds

z

z
s ds

z
s ds

z
s ds

Because this is true for all z 0, we can differentiate with respect to z (using the
fundamental theorem of calculus and the chain rule) to obtain

fZ z
1

2 z
z

1

2 z
z

1

z
z

1

2 z
e z 2

as claimed.

In Figure 4.6.1, we have plotted the 2 1 density. Note that the density becomes
infinite at 0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

z

 f

Figure 4.6.1: Plot of the 2 1 density.

Theorem 4.6.5 Let Z 2 n . Then Z Gamma n 2 1 2 . That is,

fZ z
1

2n 2 n 2
z n 2 1e z 2

for z 0, with fZ z 0 for z 0.
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PROOF Because Z 2 n , we can write Z X2
1 X2

2 X2
n, where the Xi

are i.i.d. N 0 1 . But this means that X2
i are i.i.d. 2 1 . Hence, by Theorem 4.6.4,

we have X2
i i.i.d. Gamma 1 2 1 2 for i 1 2 n. Therefore, Z is the sum of n

independent random variables, each having distribution Gamma 1 2 1 2 .
Now by Appendix C (see Problem 3.4.20), the moment­generating function of a

Gamma random variable is given by m s s for s Putting
1 2 and 1 2 and applying Theorem 3.4.5, the variable Y X2

1 X2
2 X2

n
has moment­generating function given by

mY s
n

i 1

mX2
i
s

n

i 1

1

2

1 2 1

2
s

1 2 1

2

n 2 1

2
s

n 2

for s 1 2 We recognize this as the moment­generating function of the Gamma n 2
1 2 distribution. Therefore, by Theorem 3.4.6, we have that X2

1 X2
2 X2

n
Gamma n 2 1 2 , as claimed.

This result can also be obtained using Problem 2.9.15 and induction.

Note that the 2 2 density is the same as the Exponential 2 density. In Figure
4.6.2, we have plotted several 2 densities. Observe that the 2 are asymmetric and
skewed to the right. As the degrees of freedom increase, the central mass of probability
moves to the right.
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Figure 4.6.2: Plot of the 2 3 (solid line) and the 2 7 (dashed line density functions.

One application of the chi­squared distribution is the following.

Theorem 4.6.6 Let X1 Xn be i.i.d. N 2 . Put

X
1

n
X1 Xn and S2 1

n 1

n

i 1

Xi X 2

Then n 1 S2 2 2 n 1 and furthermore, S2 and X are independent.
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PROOF See Section 4.7 for the proof of this result.

Because the 2 n 1 distribution has mean n 1, we obtain the following.

Corollary 4.6.2 E S2 2.

PROOF Theorems 4.6.6 and 4.6.3 imply that E n 1 S2 2 n 1 and that
E S2 2.

Theorem 4.6.6 will find extensive use in Chapter 6. For example, this result, to­
gether with Corollary 4.6.1, gives us the joint sampling distribution of the sample mean
X and the sample variance S2 when we are sampling from an N 2 distribution. If
we do not know then X is a natural estimator of this quantity and, similarly, S2 is a
natural estimator of 2 when it is unknown. Interestingly, we divide by n 1 in S2

rather than n precisely because we want E S2 2 to hold, as in Corollary 4.6.2.
Actually, this property does not depend on sampling from a normal distribution. It can
be shown that anytime X1 Xn is a sample from a distribution with variance 2

then E S2 2

4.6.2 The t Distribution

The t distribution also has many statistical applications.

Definition 4.6.2 The t distribution with n degrees of freedom (or Student n or
t n ), is the distribution of the random variable

Z
X

X2
1 X2

2 X2
n n

where X X1 Xn are i.i.d., each with the standard normal distribution N 0 1 .
(Equivalently, Z X Y n, where Y 2 n .)

Most statistical packages have built­in routines for the evaluation of t n probabilities
(also see Table D.4 in Appendix D).

The density of the t n distribution is given by the following result.

Theorem 4.6.7 Let U t n . Then

fU u

n 1
2

n
2

1
u2

n

n 1 2
1

n

for all u R1.

PROOF For the proof of this result, see Section 4.7.

The following result shows that, when n is large, the t n distribution is very similar
to the N 0 1 distribution.
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Theorem 4.6.8 As n , the t n distribution converges in distribution to a
standard normal distribution.

PROOF Let Z1 Zn Z be i.i.d. N 0 1 As n , by the strong law of large
numbers, Z2

1 Z2
n n converges with probability 1 to the constant 1. Hence, the

distribution of

Z

Z2
1 Z2

n n
(4.6.2)

converges to the distribution of Z , which is the standard normal distribution. By Defi­
nition 4.6.2, we have that (4.6.2) is distributed t n

In Figure 4.6.3, we have plotted several t densities. Notice that the densities of the
t distributions are symmetric about 0 and look like the standard normal density.

­10 ­8 ­6 ­4 ­2 0 2 4 6 8 10

0.1

0.2

0.3

0.4

u

 f

Figure 4.6.3: Plot of the t 1 (solid line) and the t 30 (dashed line density functions.

The t n distribution has longer tails than the N 0 1 distribution. For example, the
t 1 distribution (also known as the Cauchy distribution) has 0.9366 of its probability
in the interval 10 10 whereas the N 0 1 distribution has all of its probability
there (at least to four decimal places). The t 30 and the N 0 1 densities are very
similar.

4.6.3 The F Distribution

Finally, we consider the F distribution.
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Definition 4.6.3 The F distribution with m and n degrees of freedom (or F m n )
is the distribution of the random variable

Z
X2

1 X2
2 X2

m m

Y 2
1 Y 2

2 Y 2
n n

where X1 Xm Y1 Yn are i.i.d., each with the standard normal distribution.
(Equivalently, Z X m Y n , where X 2 m and Y 2 n .)

Most statistical packages have built­in routines for the evaluation of F m n probabil­
ities (also see Table D.5 in Appendix D).

The density of the F m n distribution is given by the following result.

Theorem 4.6.9 Let U F m n . Then

fU u
m n

2
m
2

n
2

m

n
u

m 2 1
1

m

n
u

m n 2 m

n

for u 0, with fU u 0 for u 0.

PROOF For the proof of this result, see Section 4.7.

In Figure 4.6.4, we have plotted several F m n densities. Notice that these densities
are skewed to the right.
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0.0

0.2

0.4

0.6

u

 f

Figure 4.6.4: Plot of the F 2 1 (solid line) and the F 3 10 (dashed line) density functions.

The following results are useful when it is necessary to carry out computations with
the F m n distribution.

Theorem 4.6.10 If Z F m n then 1 Z F n m
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PROOF Using Definition 4.6.3, we have

1

Z

Y 2
1 Y 2

2 Y 2
n n

X2
1 X2

2 X2
m m

and the result is immediate from the definition.

Therefore, if Z F m n , then P Z z P 1 Z 1 z 1 P 1 Z 1 z
and P 1 Z 1 z is the cdf of the F n m distribution evaluated at 1 z.

In many statistical applications, n can be very large. The following result then gives
a useful approximation for that case.

Theorem 4.6.11 If Zn F m n then mZn converges in distribution to a 2 m
distribution as n .

PROOF Using Definition 4.6.3, we have

mZ
X2

1 X2
2 X2

m

Y 2
1 Y 2

2 Y 2
n n

By Definition 4.6.1, X2
1 X2

m
2 m By Theorem 4.6.3, E Y 2

i 1 so the
strong law of large numbers implies that Y 2

1 Y 2
2 Y 2

n n converges almost
surely to 1. This establishes the result.

Finally, Definitions 4.6.2 and 4.6.3 immediately give the following result.

Theorem 4.6.12 If Z t n then Z2 F 1 n

Summary of Section 4.6

Linear combinations of independent normal random variables are also normal,
with appropriate mean and variance.

Two linear combinations of the same collection of independent normal random
variables are independent if and only if their covariance equals 0.

The chi­squared distribution with n degrees of freedom is the distribution corre­
sponding to a sum of squares of n i.i.d. standard normal random variables. It has
mean n. It is equal to the Gamma n 2 1 2 distribution.

The t distribution with n degrees of freedom is the distribution corresponding to
a standard normal random variable, divided by the square­root of 1 n times an
independent chi­squared random variable with n degrees of freedom. Its density
function was presented. As n , it converges in distribution to a standard
normal distribution.

The F distribution with m and n degrees of freedom is the distribution corre­
sponding to m n times a chi­squared distribution with m degrees of freedom,
divided by an independent chi­squared distribution with n degrees of freedom.
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Its density function was presented. If t has a t n distribution, then t2 is distrib­
uted F 1 n .

EXERCISES

4.6.1 Let X1 N 3 22 and X2 N 8 52 be independent. Let U X1 5X2
and V 6X1 CX2, where C is a constant.
(a) What are the distributions of U and V ?
(b) What value of C makes U and V be independent?
4.6.2 Let X N 3 5 and Y N 7 2 be independent.
(a) What is the distribution of Z 4X Y 3?
(b) What is the covariance of X and Z?
4.6.3 Let X N 3 5 and Y N 7 2 be independent. Find values of C1
0 C2 C3 0 C4 C5 so that C1 X C2

2 C3 Y C4
2 2 C5 .

4.6.4 Let X 2 n and Y N 0 1 be independent. Prove that X Y 2

2 n 1 .

4.6.5 Let X 2 n and Y 2 m be independent. Prove that X Y 2 n m .
4.6.6 Let X1 X2 X4n be i.i.d. with distribution N 0 1 . Find a value of C such
that

C
X2

1 X2
2 X2

n

X2
n 1 X2

n 2 X2
4n

F n 3n

4.6.7 Let X1 X2 Xn 1 be i.i.d. with distribution N 0 1 . Find a value of C such
that

C
X1

X2
2 X2

n X2
n 1

t n

4.6.8 Let X N 3 5 and Y N 7 2 be independent. Find values of C1 C2 C3
C4 C5 C6 so that

C1 X C2
C3

Y C4
2 C5

t C6

4.6.9 Let X N 3 5 and Y N 7 2 be independent. Find values of C1 C2 C3
C4 C5 C6 C7 so that

C1 X C2
C3

Y C4
C5

F C6 C7

4.6.10 Let X1 X2 X100 be independent, each with the standard normal distribu­
tion.
(a) Compute the distribution of X2

1.

(b) Compute the distribution of X2
3 X2

5 .

(c) Compute the distribution of X10 [X2
20 X2

30 X2
40] 3.

(d) Compute the distribution of 3X2
10 [X2

20 X2
30 X2

40].
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(e) Compute the distribution of

30

70

X2
1 X2

2 X2
70

X2
71 X2

72 X2
100

4.6.11 Let X1 X2 X61 be independent, each distributed as N 2 . Set X
1 61 X1 X2 X61 and

S2 1

60
X1 X 2 X2 X 2 X61 X 2

as usual.
(a) For what values of K and m is it true that the quantity Y K X S2 has a t
distribution with m degrees of freedom?
(b) With K as in part (a), find y such that P Y y 0 05.
(c) For what values of a and b and c is it true that the quantity W a X 2 S2 has
an F distribution with b and c degrees of freedom?
(d) For those values of a and b and c, find a quantity so that P W 0 05.
4.6.12 Suppose the core temperature (in degrees celsius, when used intensively) of
the latest Dell desktop computer is normally distributed with mean 40 and standard
deviation 5, while for the latest Compaq it is normally distributed with mean 45 and
standard deviation 8. Suppose we measure the Dell temperature 20 times (on separate
days) and obtain measurements D1 D2 D20, and we also measure the Compaq
temperature 30 times and obtain measurements C1 C2 C30.
(a) Compute the distribution of D D1 D20 20.
(b) Compute the distribution of C C1 C30 30.
(c) Compute the distribution of Z C D.
(d) Compute P C D .

(e) Let U D1 D 2 D2 D 2 D20 D 2. What is P U 633 25 ?

PROBLEMS

4.6.13 Let X N 0 1 , and let P Y 1 P Y 1 1 2. Assume X and Y
are independent. Let Z XY .
(a) Prove that Z N 0 1 .
(b) Prove that Cov X Z 0.
(c) Prove directly that X and Z are not independent.
(d) Why does this not contradict Theorem 4.6.2?
4.6.14 Let Z t n . Prove that P Z x P Z x for x R1, namely, prove
that the t n distribution is symmetric about 0.
4.6.15 Let Xn F n 2n for n 1 2 3 . Prove that Xn 1 in probability and
with probability 1.
4.6.16 (The general chi­squared distribution) Prove that for 0 the function

f z
1

2 2 2
z 2 1e z 2
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defines a probability distribution on 0 This distribution is known as the 2

distribution, i.e., it generalizes the distribution in Section 4.6.2 by allowing the degrees
of freedom to be an arbitrary positive real number. (Hint: The 2 distribution is the
same as a Gamma 2 1 2 distribution.)
4.6.17 (MV) (The general t distribution) Prove that for 0 the function

f u

1
2

2

1
u2 1 2

1

defines a probability distribution on by showing that the random variable

U
X

Y

has this density when X N 0 1 independent of Y 2 , as in Problem 4.6.16.
This distribution is known as the t distribution, i.e., it generalizes the distribution
in Section 4.6.3 by allowing the degrees of freedom to be an arbitrary positive real
number. (Hint: The proof is virtually identical to that of Theorem 4.6.7.)
4.6.18 (MV) (The general F distribution) Prove that for 0 0 the function

f u
2

2 2

u
2 1

1 u
2

defines a probability distribution on 0 by showing that the random variable

U
X

Y

has this density whenever X 2 independent of Y 2 as in Problem
4.6.16. This distribution is known as the F distribution, i.e., it generalizes the
distribution in Section 4.6.4 by allowing the numerator and denominator degrees of
freedom to be arbitrary positive real numbers. (Hint: The proof is virtually identical to
that of Theorem 4.6.9).
4.6.19 Prove that when X t as defined in Problem 4.6.17, and 1 then
E X 0 Further prove that when 2, Var X 2 . You can assume
the existence of these integrals — see Challenge 4.6.21. (Hint: To evaluate the second
moment, use Y X2 F 1 as defined in Problem 4.6.18.)

4.6.20 Prove that when X F then E X 2 when 2 and
Var X 2 2 2 2 2 4 when 4.

CHALLENGES

4.6.21 Following Problem 4.6.19, prove that the mean of X does not exist whenever
0 1. Further prove that the variance of X does not exist whenever 0 1
and is infinite when 1 2.

4.6.22 Prove the identity (4.7.1) in Section 4.7, which arises as part of the proof of
Theorem 4.6.6.
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4.7 Further Proofs (Advanced)
Proof of Theorem 4.3.1

We want to prove the following result. Let Z Z1 Z2 be random variables. Suppose
Zn Z with probability 1. Then Zn Z in probability. That is, if a sequence of
random variables converges almost surely, then it converges in probability to the same
limit.

Assume P Zn Z 1. Fix 0, and let An s : Zm Z for some
m n . Then An is a decreasing sequence of events. Furthermore, if s n 1An,
then Zn s Z s as n . Hence,

P n 1An P Zn Z 0

By continuity of probabilities, we have limn P An P n 1An 0 Hence,
P Zn Z P An 0 as n . Because this is true for any 0, we
see that Zn Z in probability.

Proof of Theorem 4.4.1

We show that if Xn
P

X, then Xn
D

X.
Suppose Xn X in probability and that P X x 0. We wish to show that

limn P Xn x P X x .
Choose any 0. Now, if Xn x then we must have either X x or

X Xn . Hence, by subadditivity,

P Xn x P X x P X Xn

Replacing x by x in this equation, we see also that

P X x P Xn x P X Xn

Rearranging and combining these two inequalities, we have

P X x P X Xn P Xn x P X x P X Xn

This is the key.
We next let n . Because Xn X in probability, we know that

lim
n

P X Xn 0

This means that limn P Xn x is “sandwiched” between P X x and
P X x .

We then let 0. By continuity of probabilities,

lim
0
P X x P X x and lim

0
P X x P X x

This means that limn P Xn x is “sandwiched” between P X x and P X
x .

But because P X x 0, we must have P X x P X x . Hence,
limn P Xn x P X x , as required.
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Proof of Theorem 4.4.3 (The central limit theorem)

We must prove the following. LetX1 X2 be i.i.d. with finite mean and finite
variance 2. Let Z N 0 1 . Set Sn X1 Xn , and

Zn
Sn n

n 2

Then as n , the sequence Zn converges in distribution to the Z, i.e., Zn
D

Z.
Recall that the standard normal distribution has moment­generating function given

by mZ s exp s2 2 .
We shall now assume that mZn s is finite for s s0 for some s0 0. (This

assumption can be eliminated by using characteristic functions instead of moment­
generating functions.) Assuming this, we will prove that for each real number s, we
have limn mZn s mZ s , where mZn s is the moment­generating function of
Zn . It then follows from Theorem 4.4.2 that Zn converges to Z in distribution.

To proceed, let Yi Xi . Then E Yi 0 and E Y 2
i Var Yi 1.

Also, we have

Zn
1

n
Y1 Yn .

Let mY s E esYi be the moment­generating function of Yi (which is the same for
all i , because they are i.i.d.). Then using independence, we compute that

lim
n

mZn s lim
n

E esZn lim
n

E es Y1 Yn n

lim
n

E esY1 n esY2 n esYn n

lim
n

E esY1 n E esY2 n E esYn n

lim
n

mY s n mY s n mY s n

lim
n

mY s n n

Now, we know from Theorem 3.5.3 that mY 0 E e0 1. Also, mY 0
E Yi 0 and mY 0 E Y 2

i 1. But then expanding mY s in a Taylor series
around s 0, we see that

mY s 1 0s
1

2!
s2 o s2 1 s2 2 o s2

where o s2 stands for a quantity that, as s 0, goes to 0 faster than s2 does —
namely, o s2 s 0 as s 0. This means that

mY s n 1 s n 2 2 o s n 2 1 s2 2n o 1 n

where now o 1 n stands for a quantity that, as n , goes to 0 faster than 1 n
does.
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Finally, we recall from calculus that, for any real number c, limn 1 c n n

ec. It follows from this and the above that

lim
n

mY s 2 n n lim
n

1 s2 2n n es
2 2

That is, limn mZn s es
2 2, as claimed.

Proof of Theorem 4.6.2

We prove the following. Suppose X i N i
2
i for i 1 2 n and also that the

Xi are independent. Let U n
i 1 ai Xi and V n

i 1 bi Xi , for some constants
ai and bi . Then Cov U V i aibi

2
i . Furthermore, Cov U V 0 if and

only if U and V are independent.
It was proved in Section 4.6 that Cov U V i aibi

2
i and that Cov U V 0

if U and V are independent. It remains to prove that, if Cov U V 0, then U and V
are independent. For simplicity, we take n 2 and 1 2 0 and 2

1
2
2 1;

the general case is similar but messier. We therefore have

U a1X1 a2X2 and V b1X1 b2X2

The Jacobian derivative of this transformation is

J x1 x2
U

X1

V

X2

V

X1

U

X2
a1b2 b1a2

Inverting the transformation gives

X1
b2U a2V

a1b2 b1a2
and X2

a1V b1U

a1b2 b1a2

Also,

fX1 X2 x1 x2
1

2
e x2

1 x2
2 2

Hence, from the multidimensional change of variable theorem (Theorem 2.9.2), we
have

fU V u fX1 X2 x1 x2
b2u a2

a1b2 b1a2

a1 b1u

a1b2 b1a2
J x1 x2

1

1

2

exp b2u a2
2 a1 b1u 2 2 a1b2 b1a2

2

a1b2 b1a2

But

b2u a2
2 a1 b1u

2 b2
1 b2

2 u2 a2
1 a2

2
2 2 a1b1 a2b2 u

and Cov U V a1b1 a2b2. Hence, if Cov U V 0, then

b2u a2
2 a1 b1u

2 b2
1 b2

2 u2 a2
1 a2

2
2
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and

fU V u
exp b2

1 b2
2 u2 a2

1 a2
2

2 2 a1b2 b1a2
2

2 a1b2 b1a2

exp b2
1 b2

2 u2 2 a1b2 b1a2
2 exp a2

1 a2
2

2 2 a1b2 b1a2
2

2 a1b2 b1a2
.

It follows that we can factor fU V u as a function of u times a function of . But
this implies (see Problem 2.8.19) that U and V are independent.

Proof of Theorem 4.6.6

We want to prove that when X1 Xn are i.i.d. N 2 and

X
1

n
X1 Xn and S2 1

n 1

n

i 1

Xi X 2

then n 1 S2 2 2 n 1 and, furthermore, that S2 and X are independent.
We have

n 1
2 S2

n

i 1

Xi X
2

.

We rewrite this expression as (see Challenge 4.6.22)

n 1
2

S2

X1 X2

2

2 X1 X2 2X3

2 3

2 X1 X2 X3 3X4

3 4

2

X1 X2 Xn 1 n 1 Xn

n 1 n

2

. (4.7.1)

Now, by Theorem 4.6.1, each of the n 1 expressions within brackets in (4.7.1)
has the standard normal distribution. Furthermore, by Theorem 4.6.2, the expressions
within brackets in (4.7.1) are all independent of one another and are also all indepen­
dent of X .

It follows that n 1 S2 2 is independent of X . It also follows, by the definition
of the chi­squared distribution, that n 1 S2 2 2 n 1 .

Proof of Theorem 4.6.7

We want to show that when U t n , then

fU u

n 1
2

n
2

1
u2

n

n 1 2
1

n

for all u R1.
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Because U t n , we can write U X Y n, where X and Y are independent
with X N 0 1 and Y 2 n . It follows that X and Y have joint density given by

fX Y x y
e x2 2y n 2 1e y 2

2 2n 2 n
2

when y 0 (with fX Y x y 0 for y 0).
Let V Y We shall use the multivariate change of variables formula (Theo­

rem 2.9.2) to compute the joint density fU V u ofU and V . BecauseU X Y n
and V Y , it follows that X U V n and Y V . We compute the Jacobian term
as

J x y det

u
x x

u
y y

det

1
y n

0

x n
y3 2 1

1

y n

Hence,

fU V u fX Y u
n

J 1 u
n

e u2 2n n 2 1e 2

2 2n 2 n
2

n

1

n 2

1

2 n 1 2

1

n
n 1 2 1e 2 1 u2 n

for 0 (with fU V u 0 for 0).
Finally, we compute the marginal density of U :

fU u fU V u d

1

n 2

1

2 n 1 2

1

n 0

n 1 2 1e 2 1 u2 n d

1

n 2
1

u2

n

n 1 2
1

n 0

n 1 2 1e 2 d

n 1
2

n 2
1

u2

n

n 1 2
1

n

where we have made the substitution 1 u2 n 2 to get the third equality and
then used the definition of the gamma function to obtain the result.

Proof of Theorem 4.6.9

We want to show that when U F m n , then

fU u
m n

2
m
2

n
2

m

n
u

m 2 1
1

m

n
u

m n 2 m

n
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for u 0, with fU u 0 for u 0.
Because U F n m , we can write U X m Y n , where X and Y are

independent with X 2 m and Y 2 n . It follows that X and Y have joint
density given by

fX Y x y
x m 2 1e x 2y n 2 1e y 2

2m 2 m
2 2n 2 n

2

when x y 0 (with fX Y x y 0 for x 0 or y 0).
Let V Y and use the multivariate change of variables formula (Theorem 2.9.2)

to compute the joint density fU V u of U and V . Because U X m Y n and
V Y , it follows that X m n UV and Y V . We compute the Jacobian term as

J x y det

u
x x

u
y y

det

n
my 0

nX
mY 2 1

n

my

Hence,

fU V u fX Y m n u J 1 m n u
m
n u

m 2 1 e m n u 2 n 2 1e 2

2m 2 m
2 2n 2 n

2

m

n

1
m
2

n
2

m

n
u

m 2 1 m

n

1

2 m n 2
m n 2 1e 2 1 mu n

for u 0 (with fU V u 0 for u 0 or 0).
Finally, we compute the marginal density of U as

fU u

fU V u d

1
m
2

n
2

m

n
u

m 2 1 m

n

1

2 m n 2
0

m n 2 1e 2 1 mu n d

1
m
2

n
2

m

n
u

m 2 1
1

m

n
u

n m 2 m

n 0

m n 2 1e d

m n
2

m
2

n
2

m

n
u

m 2 1
1

m

n
u

n m 2 m

n

where we have used the substitution 1 mu n 2 to get the third equality, and
the final result follows from the definition of the gamma function.




