
Chapter 3

Expectation
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Section 7 General Expectations (Advanced)
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In the first two chapters we learned about probability models, random variables, and
distributions. There is one more concept that is fundamental to all of probability theory,
that of expected value.

Intuitively, the expected value of a random variable is the average value that the
random variable takes on. For example, if half the time X 0, and the other half of
the time X 10, then the average value of X is 5. We shall write this as E X 5.
Similarly, if onethird of the time Y 6 while twothirds of the time Y 15, then
E Y 12.

Another interpretation of expected value is in terms of fair gambling. Suppose
someone offers you a ticket (e.g., a lottery ticket) worth a certain random amount X .
How much would you be willing to pay to buy the ticket? It seems reasonable that you
would be willing to pay the expected value E X of the ticket, but no more. However,
this interpretation does have certain limitations; see Example 3.1.12.

To understand expected value more precisely, we consider discrete and absolutely
continuous random variables separately.

3.1 The Discrete Case
We begin with a definition.
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130 Section 3.1: The Discrete Case

Definition 3.1.1 Let X be a discrete random variable. Then the expected value (or
mean value or mean) of X , written E X (or X ), is defined by

E X
x R1

x P X x
x R1

x pX x

We will have P X x 0 except for those values x that are possible values of X .
Hence, an equivalent definition is the following.

Definition 3.1.2 Let X be a discrete random variable, taking on distinct values
x1 x2 , with pi P X xi . Then the expected value of X is given by

E X
i

xi pi

The definition (in either form) is best understood through examples.

EXAMPLE 3.1.1
Suppose, as above, that P X 0 P X 10 1 2. Then

E X 0 1 2 10 1 2 5

as predicted.

EXAMPLE 3.1.2
Suppose, as above, that P Y 6 1 3, and P Y 15 2 3. Then

E Y 6 1 3 15 2 3 2 10 12

again as predicted.

EXAMPLE 3.1.3
Suppose that P Z 3 0 2, and P Z 11 0 7, and P Z 31 0 1. Then

E Z 3 0 2 11 0 7 31 0 1 0 6 7 7 3 1 10 2

EXAMPLE 3.1.4
Suppose that P W 3 0 2, and P W 11 0 7, and P W 31 0 1.
Then

E W 3 0 2 11 0 7 31 0 1 0 6 7 7 3 1 5 2

In this case, the expected value of W is negative.

We thus see that, for a discrete random variable X , once we know the probabilities that
X x (or equivalently, once we know the probability function pX ), it is straightfor
ward (at least in simple cases) to compute the expected value of X .

We now consider some of the common discrete distributions introduced in Sec
tion 2.3.
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EXAMPLE 3.1.5 Degenerate Distributions
If X c is a constant, then P X c 1, so

E X c 1 c

as it should.

EXAMPLE 3.1.6 The Bernoulli Distribution and Indicator Functions
If X Bernoulli , then P X 1 and P X 0 1 , so

E X 1 0 1

As a particular application of this, suppose we have a response s taking values in a
sample S and A S Letting X s IA s we have that X is the indicator function
of the set A and so takes the values 0 and 1 Then we have that P X 1 P A
and so X Bernoulli P A This implies that

E X E IA P A

Therefore, we have shown that the expectation of the indicator function of the set A is
equal to the probability of A

EXAMPLE 3.1.7 The Binomial n Distribution
If Y Binomial n , then

P Y k
n

k
k 1 n k

for k 0 1 n. Hence,

E Y
n

k 0

k P Y k
n

k 0

k
n

k
k 1 n k

n

k 0

k
n!

k! n k !
k 1 n k

n

k 1

n!

k 1 ! n k !
k 1 n k

n

k 1

n n 1 !

k 1 ! n k !
k 1 n k

n

k 1

n
n 1

k 1
k 1 n k

Now, the binomial theorem says that for any a and b and any positive integer m,

a b m
m

j 0

m

j
a jbm j

Using this, and setting j k 1, we see that

E Y
n

k 1

n
n 1

k 1
k 1 n k

n 1

j 0

n
n 1

j
j 1 1 n j 1

n
n 1

j 0

n 1

j
j 1 n j 1 n 1 n 1 n
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Hence, the expected value of Y is n . Note that this is precisely n times the ex
pected value of X , where X Bernoulli as in Example 3.1.6. We shall see in
Example 3.1.15 that this is not a coincidence.

EXAMPLE 3.1.8 The Geometric Distribution
If Z Geometric , then P Z k 1 k for k 0 1 2 . Hence,

E Z
k 0

k 1 k (3.1.1)

Therefore, we can write

1 E Z
0

1 1

Using the substitution k 1, we compute that

1 E Z
k 1

k 1 1 k (3.1.2)

Subtracting (3.1.2) from (3.1.1), we see that

E Z E Z 1 E Z
k 1

k k 1 1 k

k 1

1 k 1

1 1
1

Hence, E Z 1 , and we obtain E Z 1 .

EXAMPLE 3.1.9 The Poisson Distribution
If X Poisson , then P X k e k k! for k 0 1 2 . Hence, setting

k 1,

E X
k 0

ke
k

k!
k 1

e
k

k 1 !
e

k 1

k 1

k 1 !

e
0

!
e e

and we conclude that E X .

It should be noted that expected values can sometimes be infinite, as the following
example demonstrates.

EXAMPLE 3.1.10
Let X be a discrete random variable, with probability function pX given by

pX 2k 2 k
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for k 1 2 3 with pX x 0 for other values of x . That is, pX 2 1 2,
pX 4 1 4, pX 8 1 8, etc., while pX 1 pX 3 pX 5 pX 6 0.

Then it is easily checked that pX is indeed a valid probability function (i.e., pX x
0 for all x , with x pX x 1). On the other hand, we compute that

E X
k 1

2k 2 k

k 1

1

We therefore say that E X , i.e., that the expected value of X is infinite.

Sometimes the expected value simply does not exist, as in the following example.

EXAMPLE 3.1.11
Let Y be a discrete random variable, with probability function pY given by

pY y
1 2y y 2 4 8 16
1 2 y y 2 4 8 16
0 otherwise.

That is, pY 2 pY 2 1 4, pY 4 pY 4 1 8, pY 8 pY 8
1 16, etc. Then it is easily checked that pY is indeed a valid probability function (i.e.,
pY y 0 for all y, with y pY y 1).

On the other hand, we compute that

E Y
y

y pY y
k 1

2k 1 2 2k

k 1

2k 1 2 2k

k 1

1 2
k 1

1 2

which is undefined. We therefore say that E Y does not exist, i.e., that the expected
value of Y is undefined in this case.

EXAMPLE 3.1.12 The St. Petersburg Paradox
Suppose someone makes you the following deal. You will repeatedly flip a fair coin
and will receive an award of 2Z pennies, where Z is the number of tails that appear
before the first head. How much would you be willing to pay for this deal?

Well, the probability that the award will be 2z pennies is equal to the probability
that you will f lip z tails and then one head, which is equal to 1 2z 1. Hence, the
expected value of the award (in pennies) is equal to

z 0

2z 1 2z 1

z 0

1 2

In words, the average amount of the award is infinite!
Hence, according to the “fair gambling” interpretation of expected value, as dis

cussed at the beginning of this chapter, it seems that you should be willing to pay an
infinite amount (or, at least, any finite amount no matter how large) to get the award
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promised by this deal! How much do you think you should really be willing to pay for
it?1

EXAMPLE 3.1.13 The St. Petersburg Paradox, Truncated
Suppose in the St. Petersburg paradox (Example 3.1.12), it is agreed that the award will
be truncated at 230 cents (which is just over $10 million!). That is, the award will be
the same as for the original deal, except the award will be frozen once it exceeds 230

cents. Formally, the award is now equal to 2min 30 Z pennies, where Z is as before.
How much would you be willing to pay for this new award? Well, the expected

value of the new award (in cents) is equal to

z 1

2min 30 z 1 2z 1
30

z 1

2z 1 2z 1

z 31

230 1 2z 1

30

z 1

1 2 230 1 231 31 2 15 5

That is, truncating the award at just over $10 million changes its expected value enor
mously, from infinity to less than 16 cents!

In utility theory, it is often assumed that each person has a utility function U such
that, if they win x cents, their amount of “utility” (i.e., benefit or joy or pleasure) is
equal to U x . In this context, the truncation of Example 3.1.13 may be thought of
not as changing the rules of the game but as corresponding to a utility function of the
form U x min x 230 . In words, this says that your utility is equal to the amount
of money you get, until you reach 230 cents (approximately $10 million), after which
point you don’t care about money2 anymore. The result of Example 3.1.13 then says
that, with this utility function, the St. Petersburg paradox is only worth 15.5 cents to
you — even though its expected value is infinite.

We often need to compute expected values of functions of random variables. For
tunately, this is not too difficult, as the following theorem shows.

Theorem 3.1.1
(a) Let X be a discrete random variable, and let g : R1 R1 be some function

such that the expectation of the random variable g X exists. Then

E g X
x

g x P X x

(b) Let X and Y be discrete random variables, and let h : R2 R1 be some
function such that the expectation of the random variable h X Y exists. Then

E h X Y
x y

h x y P X x Y y

1When one of the authors first heard about this deal, he decided to try it and agreed to pay $1. In fact, he
got four tails before the first head, so his award was 16 cents, but he still lost 84 cents overall.

2Or, perhaps, you think it is unlikely you will be able to collect the money!
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PROOF We prove part (b) here. Part (a) then follows by simply setting h x y
g x and noting that

x y
g x P X x Y y

x
g x P X x

Let Z h X Y We have that

E Z
z

z P Z z
z

z P h X Y z

z
z

x y
h x y z

P X x Y y
x y z

z h x y

z P X x Y y

x y
h x y P X x Y y

as claimed.

One of the most important properties of expected value is that it is linear, stated as
follows.

Theorem 3.1.2 (Linearity of expected values) Let X and Y be discrete random
variables, let a and b be real numbers, and put Z aX bY . Then E Z
aE X bE Y .

PROOF Let pX Y be the joint probability function of X and Y . Then using Theo
rem 3.1.1,

E Z
x y

ax by pX Y x y a
x y

x pX Y x y b
x y

y pX Y x y

a
x

x
y

pX Y x y b
y

y
x

pX Y x y

Because y pX Y x y pX x and x pX Y x y pY y we have that

E Z a
x

x pX x b
y

y pY y aE X bE Y

as claimed.

EXAMPLE 3.1.14
Let X Binomial n 1 , and let Y Geometric 2 . What is E 3X 2Y ?

We already know (Examples 3.1.6 and 3.1.7) that E X n 1 and E Y 1
2 2. Hence, by Theorem 3.1.2, E 3X 2Y 3E X 2E Y 3n 1 2 1
2 2

EXAMPLE 3.1.15
Let Y Binomial n . Then we know (cf. Example 2.3.3) that we can think of
Y X1 Xn, where each X i Bernoulli (in fact, Xi 1 if the i th coin is
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heads, otherwise X i 0). Because E Xi for each i , it follows immediately from
Theorem 3.1.2 that

E Y E X1 E Xn n

This gives the same answer as Example 3.1.7, but much more easily.

Suppose that X is a random variable and Y c is a constant. Then from Theorem
3.1.2, we have that E X c E X c From this we see that the mean value X
of X is a measure of the location of the probability distribution of X For example, if
X takes the value x with probability p and the value y with probability 1 p then the
mean of X is X px 1 p y which is a value between x and y For a constant c
the probability distribution of X c is concentrated on the points x c and y c with
probabilities p and 1 p respectively. The mean of X c is X c which is between
the points x c and y c i.e., the mean shifts with the probability distribution. It is
also true that if X is concentrated on the finite set of points x1 x2 xk then
x1 X xk and the mean shifts exactly as we shift the distribution. This is depicted
in Figure 3.1.1 for a distribution concentrated on k 4 points. Using the results of
Section 2.6.1, we have that pX c x pX x c

x1 x2 x3 x4

pX


E(X)

x1+c x2+c x3+c x4+c


E(X+c)

pX+c

Figure 3.1.1: The probability functions and means of discrete random variables X and X c.

Theorem 3.1.2 says, in particular, that E X Y E X E Y , i.e., that ex
pectation preserves sums. It is reasonable to ask whether the same property holds for
products. That is, do we necessarily have E XY E X E Y ? In general, the
answer is no, as the following example shows.
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EXAMPLE 3.1.16
Let X and Y be discrete random variables, with joint probability function given by

pX Y x y

1 2 x 3 y 5
1 6 x 3 y 9
1 6 x 6 y 5
1 6 x 6 y 9
0 otherwise.

Then

E X
x

x P X x 3 1 2 1 6 6 1 6 1 6 4

and

E Y
y

y P Y y 5 1 2 1 6 9 1 6 1 6 19 3

while

E XY
z

z P XY z

3 5 1 2 3 9 1 6 6 5 1 6 6 9 1 6

26

Because 4 19 3 26, we see that E X E Y E XY in this case.

On the other hand, if X and Y are independent, then we do have E X E Y
E XY .

Theorem 3.1.3 Let X and Y be discrete random variables that are independent.
Then E XY E X E Y .

PROOF Independence implies (see Theorem 2.8.3) that P X x Y y
P X x P Y y . Using this, we compute by Theorem 3.1.1 that

E XY
x y

xy P X x Y y
x y

xy P X x P Y y

x
x P X x

y
y P Y y E X E Y

as claimed.

Theorem 3.1.3 will be used often in subsequent chapters, as will the following impor
tant property.

Theorem 3.1.4 (Monotonicity) Let X and Y be discrete random variables, and
suppose that X Y . (Remember that this means X s Y s for all s S.) Then
E X E Y .
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PROOF Let Z Y X . Then Z is also discrete. Furthermore, because X Y ,
we have Z 0, so that all possible values of Z are nonnegative. Hence, if we list the
possible values of Z as z1 z2 then zi 0 for all i , so that

E Z
i

zi P Z zi 0

But by Theorem 3.1.2, E Z E Y E X . Hence, E Y E X 0, so that
E Y E X .

Summary of Section 3.1

The expected value E X of a random variable X represents the longrun average
value that it takes on.

If X is discrete, then E X x x P X x .

The expected values of the Bernoulli, binomial, geometric, and Poisson distrib
utions were computed.

Expected value has an interpretation in terms of fair gambling, but such interpre
tations require utility theory to accurately reflect human behavior.

Expected values of functions of one or two random variables can also be com
puted by summing the function values times the probabilities.

Expectation is linear and monotone.

If X and Y are independent, then E XY E X E Y . But without indepen
dence, this property may fail.

EXERCISES

3.1.1 Compute E X when the probability function of X is given by each of the fol
lowing.
(a)

pX x

1 7 x 4
2 7 x 0
4 7 x 3
0 otherwise

(b)

pX x
2 x 1 x 0 1 2
0 otherwise

(c)

pX x
2 x 6 x 7 8 9
0 otherwise
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3.1.2 Let X and Y have joint probability function given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

as in Example 2.7.5. Compute each of the following.
(a) E X
(b) E Y
(c) E 3X 7Y
(d) E X2

(e) E Y 2

(f) E XY
(g) E XY 14
3.1.3 Let X and Y have joint probability function given by

pX Y x y

1 2 x 2 y 10
1 6 x 7 y 10
1 12 x 2 y 12
1 12 x 7 y 12
1 12 x 2 y 14
1 12 x 7 y 14
0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E X2 Y 2

(f) E XY 4Y

3.1.4 Let X Bernoulli 1 and Y Binomial n 2 . Compute E 4X 3Y .
3.1.5 Let X Geometric and Y Poisson . Compute E 8X Y 12 .
3.1.6 Let Y Binomial 100 0 3 , and Z Poisson 7 . Compute E Y Z .
3.1.7 Let X Binomial 80 1 4 , and let Y Poisson 3 2 . Assume X and Y are
independent. Compute E XY .
3.1.8 Starting with one penny, suppose you roll one fair sixsided die and get paid an
additional number of pennies equal to three times the number showing on the die. Let
X be the total number of pennies you have at the end. Compute E X .

3.1.9 Suppose you start with eight pennies and flip one fair coin. If the coin comes up
heads, you get to keep all your pennies; if the coin comes up tails, you have to give
half of them back. Let X be the total number of pennies you have at the end. Compute
E X .
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3.1.10 Suppose you flip two fair coins. Let Y 3 if the two coins show the same
result, otherwise let Y 5. Compute E Y .
3.1.11 Suppose you roll two fair sixsided dice.
(a) Let Z be the sum of the two numbers showing. Compute E Z .

(b) Let W be the product of the two numbers showing. Compute E W .
3.1.12 Suppose you flip one fair coin and roll one fair sixsided die. Let X be the
product of the numbers of heads (i.e., 0 or 1) times the number showing on the die.
Compute E X . (Hint: Do not forget Theorem 3.1.3.)
3.1.13 Suppose you roll one fair sixsided die and then flip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you flip four coins.) Let
Y be the number of heads obtained. Compute E Y .
3.1.14 Suppose you roll three fair coins, and let X be the cube of the number of heads
showing. Compute E X .

PROBLEMS

3.1.15 Suppose you start with one penny and repeatedly flip a fair coin. Each time you
get heads, before the first time you get tails, you get two more pennies. Let X be the
total number of pennies you have at the end. Compute E X .
3.1.16 Suppose you start with one penny and repeatedly flip a fair coin. Each time you
get heads, before the first time you get tails, your number of pennies is doubled. Let X
be the total number of pennies you have at the end. Compute E X .
3.1.17 Let X Geometric , and let Y min X 100 .
(a) Compute E Y .
(b) Compute E Y X .
3.1.18 Give an example of a random variable X such that E min X 100 E X .

3.1.19 Give an example of a random variable X such that E min X 100 E X 2.
3.1.20 Give an example of a joint probability function pX Y for random variables X
and Y , such that X Bernoulli 1 4 and Y Bernoulli 1 2 , but E XY 1 8.
3.1.21 For X Hypergeometric N M n , prove that E X nM N
3.1.22 For X NegativeBinomial r , prove that E X r 1 (Hint:
Argue that if X1 Xr are independent and identically distributed Geometric
then X X1 Xr NegativeBinomial r )
3.1.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 Prove that
E Xi n i

CHALLENGES

3.1.24 Let X Geometric . Compute E X2 .
3.1.25 Suppose X is a discrete random variable, such that E min X M E X .
Prove that P X M 0.
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DISCUSSION TOPICS

3.1.26 How much would you be willing to pay for the deal corresponding to the
St. Petersburg paradox (see Example 3.1.12)? Justify your answer.
3.1.27 What utility function U (as in the text following Example 3.1.13) best describes
your own personal attitude toward money? Why?

3.2 The Absolutely Continuous Case
Suppose now that X is absolutely continuous, with density function fX . How can
we compute E X then? By analogy with the discrete case, we might try computing

x x P X x , but because P X x is always zero, this sum is always zero as
well.

On the other hand, if is a small positive number, then we could try approximating
E X by

E X
i

i P i X i 1

where the sum is over all integers i . This makes sense because, if is small and
i X i 1 , then X i .

Now, we know that

P i X i 1
i 1

i
fX x dx

This tells us that

E X
i

i 1

i
i fX x dx

Furthermore, in this integral, i x i 1 . Hence, i x . We therefore see that

E X
i

i 1

i
x fX x dx x fX x dx

This prompts the following definition.

Definition 3.2.1 Let X be an absolutely continuous random variable, with density
function fX . Then the expected value of X is given by

E X x fX x dx

From this definition, it is not too difficult to compute the expected values of many
of the standard absolutely continuous distributions.

EXAMPLE 3.2.1 The Uniform[0 1] Distribution
Let X Uniform[0 1] so that the density of X is given by

fX x
1 0 x 1
0 otherwise.
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Hence,

E X x fX x dx
1

0
x dx

x2

2

x 1

x 0
1 2

as one would expect.

EXAMPLE 3.2.2 The Uniform[L R] Distribution
Let X Uniform[L R] so that the density of X is given by

fX x
1 R L L x R
0 otherwise.

Hence,

E X x fX x dx
R

L
x

1

R L
dx

x2

2 R L

x R

x L

R2 L2

2 R L

R L R L

2 R L

R L

2

again as one would expect.

EXAMPLE 3.2.3 The Exponential Distribution
Let Y Exponential so that the density of Y is given by

fY y
e y y 0

0 y 0

Hence, integration by parts, with u y and d e y (so du dy e y),
leads to

E Y y fY y dy
0

y e y dy ye y
0

0
e y dy

0
e y dy

e y

0

0 1 1

In particular, if 1, then Y Exponential 1 and E Y 1.

EXAMPLE 3.2.4 The N 0 1 Distribution
Let Z N 0 1 so that the density of Z is given by

fZ z z
1

2
e z2 2

Hence,

E Z z fZ z dz

z
1

2
e z2 2 dz

0

z
1

2
e z2 2 dz

0
z

1

2
e z2 2 dz (3.2.1)
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But using the substitution z, we see that

0

z
1

2
e z2 2 dz

0

1

2
e

2 2 d

Then the two integrals in (3.2.1) cancel each other out, and leaving us with E Z 0.

As with discrete variables, means of absolutely continuous random variables can
also be infinite or undefined.

EXAMPLE 3.2.5
Let X have density function given by

fX x
1 x2 x 1
0 otherwise.

Then

E X x fX x dx
1

x 1 x2 dx
1

1 x dx log x
x

x 1

Hence, the expected value of X is infinite.

EXAMPLE 3.2.6
Let Y have density function given by

fY y
1 2y2 y 1
1 2y2 y 1
0 otherwise.

Then

E Y y fY y dy
1
y 1 y2 dy

1
y 1 y2 dy

1
1 y dy

1
1 y dy

which is undefined. Hence, the expected value of Y is undefined (i.e., does not exist)
in this case.

Theorem 3.1.1 remains true in the continuous case, as follows.
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Theorem 3.2.1
(a) Let X be an absolutely continuous random variable, with density function fX ,
and let g : R1 R1 be some function. Then when the expectation of g X exists,

E g X g x fX x dx

(b) Let X and Y be jointly absolutely continuous random variables, with joint den
sity function fX Y , and let h : R2 R1 be some function. Then when the expecta
tion of h X Y exists,

E h X Y h x y fX Y x y dx dy

We do not prove Theorem 3.2.1 here; however, we shall use it often. For a first use
of this result, we prove that expected values for absolutely continuous random variables
are still linear.

Theorem 3.2.2 (Linearity of expected values) Let X and Y be jointly absolutely
continuous random variables, and let a and b be real numbers. Then E aX bY
aE X bE Y .

PROOF Let fX Y be the joint density function of X and Y . Then using Theo
rem 3.2.1, we compute that

E Z ax by fX Y x y dx dy

a x fX Y x y dx dy b y fX Y x y dx dy

a x fX Y x y dy dx

b y fX Y x y dx dy

But fX Y x y dy fX x and fX Y x y dx fY y so

E Z a x fX x dx b y fY y dy aE X bE Y

as claimed.

Just as in the discrete case, we have that E X c E X c for an absolutely
continuous random variable X Note, however, that this is not implied by Theorem
3.2.2 because the constant c is a discrete, not absolutely continuous, random variable.
In fact, we need a more general treatment of expectation to obtain this result (see Sec
tion 3.7). In any case, the result is true and we again have that the mean of a random
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variable serves as a measure of the location of the probability distribution of X In
Figure 3.2.1, we have plotted the densities and means of the absolutely continuous ran
dom variables X and X c The change of variable results from Section 2.6.2 give
fX c x fX x c


E(X)


E(X+c)

fX

fX+c

x

x

Figure 3.2.1: The densities and means of absolutely continuous random variables X and
X c.

EXAMPLE 3.2.7 The N 2 Distribution
Let X N 2 . Then we know (cf. Exercise 2.6.3) that if Z X , then
Z N 0 1 . Hence, we can write X Z , where Z N 0 1 . But we know
(see Example 3.2.4) that E Z 0 and (see Example 3.1.5) that E . Hence,
using Theorem 3.2.2, E X E Z E E Z 0

If X and Y are independent, then the following results show that we again have
E XY E X E Y .

Theorem 3.2.3 Let X and Y be jointly absolutely continuous random variables that
are independent. Then E XY E X E Y .

PROOF Independence implies (Theorem 2.8.3) that fX Y x y fX x fY y .
Using this, along with Theorem 3.2.1, we compute

E XY xy fX Y x y dx dy xy fX x fY y dx dy

x fX x dx y fY y dy E X E Y

as claimed.

The monotonicity property (Theorem 3.1.4) still holds as well.
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Theorem 3.2.4 (Monotonicity) Let X and Y be jointly continuous random vari
ables, and suppose that X Y . Then E X E Y .

PROOF Let fX Y be the joint density function of X and Y . Because X Y , the
density fX Y can be chosen so that fX Y x y 0 whenever x y. Now let Z
Y X . Then by Theorem 3.2.1(b),

E Z y x fX Y x y dx dy

Because fX Y x y 0 whenever x y, this implies that E Z 0. But by Theo
rem 3.2.2, E Z E Y E X . Hence, E Y E X 0, so that E Y E X .

Summary of Section 3.2

If X is absolutely continuous, then E X x fX x dx .

The expected values of the uniform, exponential, and normal distributions were
computed.

Expectation for absolutely continuous random variables is linear and monotone.

If X and Y are independent, then we still have E XY E X E Y .

EXERCISES

3.2.1 Compute C and E X when the density function of X is given by each of the
following.
(a)

fX x
C 5 x 9
0 otherwise

(b)

fX x
C x 1 6 x 8
0 otherwise

(c)

fX x
Cx4 5 x 2
0 otherwise

3.2.2 Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

as in Examples 2.7.6 and 2.7.7. Compute each of the following.
(a) E X
(b) E Y
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(c) E 3X 7Y
(d) E X2

(e) E Y 2

(f) E XY
(g) E XY 14
3.2.3 Let X and Y have joint density

fX Y x y
4xy 3x2y2 18 0 x 1 0 y 3

0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E Y 4

(f) E X2Y 3

3.2.4 Let X and Y have joint density

fX Y x y
6xy 9 2 x2y2 0 y x 1
0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E Y 4

(f) E X2Y 3

3.2.5 Let X Uniform[3 7] and Y Exponential 9 . Compute E 5X 6Y .
3.2.6 Let X Uniform[ 12 9] and Y N 8 9 . Compute E 11X 14Y 3 .
3.2.7 Let Y Exponential 9 and Z Exponential 8 . Compute E Y Z .

3.2.8 Let Y Exponential 9 and Z Gamma 5 4 . Compute E Y Z . (You
may use Problem 3.2.16 below.)
3.2.9 Suppose X has density function f x 3 20 x2 x3 for 0 x 2, otherwise
f x 0. Compute each of E X , E X2 , and E X3 , and rank them from largest to
smallest.
3.2.10 Suppose X has density function f x 12 7 x2 x3 for 0 x 1, oth
erwise f x 0. Compute each of E X , E X2 , and E X3 and rank them from
largest to smallest.
3.2.11 Suppose men’s heights (in centimeters) follow the distribution N 174 202 ,
while those of women follow the distribution N 160 152 . Compute the mean total
height of a man–woman married couple.
3.2.12 Suppose X and Y are independent, with E X 5 and E Y 6. For each of
the following variables Z , either compute E Z or explain why we cannot determine
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E Z from the available information:
(a) Z X Y
(b) Z XY
(c) Z 2X 4Y
(d) Z 2X 3 4Y
(e) Z 2 X 3 4Y
(f) Z 2 X 3X 4Y
3.2.13 Suppose darts are randomly thrown at a wall. Let X be the distance (in cen
timeters) from the left edge of the dart’s point to the left end of the wall, and let Y be
the distance from the right edge of the dart’s point to the left end of the wall. Assume
the dart’s point is 0 1 centimeters thick, and that E X 214. Compute E Y .
3.2.14 Let X be the mean height of all citizens measured from the top of their head,
and let Y be the mean height of all citizens measured from the top of their head or hat
(whichever is higher). Must we have E Y E X ? Why or why not?
3.2.15 Suppose basketball teams A and B each have five players and that each member
of team A is being “guarded” by a unique member of team B. Suppose it is noticed that
each member of team A is taller than the corresponding guard from team B. Does it
necessarily follow that the mean height of team A is larger than the mean height of
team B? Why or why not?

PROBLEMS

3.2.16 Let 0 and 0, and let X Gamma . Prove that E X .
(Hint: The computations are somewhat similar to those of Problem 2.4.15. You will
also need property (2.4.7) of the gamma function.)
3.2.17 Suppose that X follows the logistic distribution (see Problem 2.4.18). Prove
that E X 0
3.2.18 Suppose that X follows the Weibull distribution (see Problem 2.4.19). Prove
that E X 1 1
3.2.19 Suppose that X follows the Pareto distribution (see Problem 2.4.20) for
1. Prove that E X 1 1 What is E X when 0 1?
3.2.20 Suppose that X follows the Cauchy distribution (see Problem 2.4.21). Argue
that E X does not exist (Hint: Compute the integral in two parts, where the integrand
is positive and where the integrand is negative.)
3.2.21 Suppose that X follows the Laplace distribution (see Problem 2.4.22). Prove
that E X 0
3.2.22 Suppose that X follows the Beta a b distribution (see Problem 2.4.24). Prove
that E X a a b
3.2.23 Suppose that X1 X2 Dirichlet 1 2 3 (see Problem 2.7.17). Prove
that E X i i 1 2 3
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3.3 Variance, Covariance, and Correlation
Now that we understand expected value, we can use it to define various other quantities
of interest. The numerical values of these quantities provide information about the
distribution of random variables.

Given a random variable X , we know that the average value of X will be E X .
However, this tells us nothing about how far X tends to be from E X . For that, we
have the following definition.

Definition 3.3.1 The variance of a random variable X is the quantity

2
X Var X E X X

2 (3.3.1)

where X E X is the mean of X .

We note that it is also possible to write (3.3.1) as Var X E X E X 2 ; how
ever, the multiple uses of “E” may be confusing. Also, because X X

2 is always
nonnegative, its expectation is always defined, so the variance of X is always defined.

Intuitively, the variance Var X is a measure of how spread out the distribution of
X is, or how random X is, or how much X varies, as the following example illustrates.

EXAMPLE 3.3.1
Let X and Y be two discrete random variables, with probability functions

pX x
1 x 10
0 otherwise

and

pY y
1 2 y 5
1 2 y 15
0 otherwise

respectively.
Then E X E Y 10. However,

Var X 10 10 2 1 0

while
Var Y 5 10 2 1 2 15 10 2 1 2 25

We thus see that, while X and Y have the same expected value, the variance of Y is
much greater than that of X . This corresponds to the fact that Y is more random than
X ; that is, it varies more than X does.

EXAMPLE 3.3.2
Let X have probability function given by

pX x

1 2 x 2
1 6 x 3
1 6 x 4
1 6 x 5
0 otherwise.
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Then E X 2 1 2 3 1 6 4 1 6 5 1 6 3 Hence,

Var X 2 3 2 1

2
3 3 2 1

6
4 3 2 1

6
5 3 2 1

6
4 3.

EXAMPLE 3.3.3
Let Y Bernoulli . Then E Y . Hence,

Var Y E Y 2 1 2 0 2 1

2 2 3 2 3 2 1 .

The square in (3.3.1) implies that the “scale” of Var X is different from the scale
of X . For example, if X were measuring a distance in meters (m), then Var X would
be measuring in meters squared (m2). If we then switched from meters to feet, we
would have to multiply X by about 3 28084 but would have to multiply Var X by
about 3 28084 2.

To correct for this “scale” problem, we can simply take the square root, as follows.

Definition 3.3.2 The standard deviation of a random variable X is the quantity

X Sd X Var X E X X
2

It is reasonable to ask why, in (3.3.1), we need the square at all. Now, if we simply
omitted the square and considered E X X , we would always get zero (because

X E X ), which is useless. On the other hand, we could instead use E X X .
This would, like (3.3.1), be a valid measure of the average distance of X from X .
Furthermore, it would not have the “scale problem” that Var X does. However, we
shall see that Var X has many convenient properties. By contrast, E X X is
very difficult to work with. Thus, it is purely for convenience that we define variance
by E X X

2 instead of E X X .
Variance will be very important throughout the remainder of this book. Thus, we

pause to present some important properties of Var.

Theorem 3.3.1 Let X be any random variable, with expected value X E X ,
and variance Var X . Then the following hold true:
(a) Var X 0.
(b) If a and b are real numbers, Var aX b a2 Var X .
(c) Var X E X2

X
2 E X2 E X 2. (That is, variance is equal to the

second moment minus the square of the first moment.)
(d) Var X E X2 .

PROOF (a) This is immediate, because we always have X X
2 0.

(b) We note that aX b E aX b aE X b a X b, by linearity. Hence,
again using linearity,

Var aX b E aX b aX b
2 E aX b a X b 2

a2E X X
2 a2 Var X
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(c) Again, using linearity,

Var X E X X
2 E X2 2X X X

2

E X2 2E X X X
2 E X2 2 X

2
X

2

E X2
X

2

(d) This follows immediately from part (c) because we have X
2 0.

Theorem 3.3.1 often provides easier ways of computing variance, as in the follow
ing examples.

EXAMPLE 3.3.4 Variance of the Exponential Distribution
Let W Exponential , so that fW e . Then E W 1 . Also, using
integration by parts,

E W 2

0

2 e d
0

2 e d

2
0

e d 2 E W 2 2

Hence, by part (c) of Theorem 3.3.1,

Var W E W 2 E W 2 2 2 1 2 1 2

EXAMPLE 3.3.5
Let W Exponential , and let Y 5W 3. Then from the above example,
Var W 1 2. Then, using part (b) of Theorem 3.3.1,

Var Y Var 5W 3 25 Var W 25 2

Because a2 a , part (b) of Theorem 3.3.1 immediately implies a correspond
ing fact about standard deviation.

Corollary 3.3.1 Let X be any random variable, with standard deviation Sd X , and
let a be any real number. Then Sd aX a Sd X .

EXAMPLE 3.3.6
Let W Exponential , and let Y 5W 3. Then using the above examples, we

see that Sd W Var W 1 2 1 2 1 2
1 Also, Sd Y Var Y 1 2

25 2 1 2
5 This agrees with Corollary 3.3.1, since Sd Y 5 Sd W .

EXAMPLE 3.3.7 Variance and Standard Deviation of the N 2 Distribution
Suppose that X N 2 In Example 3.2.7 we established that E X Now
we compute Var X

First consider Z N 0 1 Then from Theorem 3.3.1(c) we have that

Var Z E Z2 z2 1

2
exp

z2

2
dz
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Then, putting u z d z exp z2 2 (so du 1 exp z2 2 ), and using
integration by parts, we obtain

Var Z
1

2
z exp

z2

2

1

2
exp

z2

2
dz 1

and Sd Z 1
Now, for 0 put X Z We then have X N 2 . From Theorem

3.3.1(b) we have that

Var X Var Z 2 Var Z 2

and Sd X This establishes the variance of the N 2 distribution as 2 and
the standard deviation as

In Figure 3.3.1, we have plotted three normal distributions, all with mean 0 but
different variances.

5 4 3 2 1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

x

f

Figure 3.3.1: Plots of the the N 0 1 (solid line), the N 0 1 4 (dashed line) and the
N 0 4 (dotted line) density functions.

The effect of the variance on the amount of spread of the distribution about the mean
is quite clear from these plots. As 2 increases, the distribution becomes more diffuse;
as it decreases, it becomes more concentrated about the mean 0.

So far we have considered the variance of one random variable at a time. How
ever, the related concept of covariance measures the relationship between two random
variables.

Definition 3.3.3 The covariance of two random variables X and Y is given by

Cov X Y E X X Y Y

where X E X and Y E Y .

EXAMPLE 3.3.8
Let X and Y be discrete random variables, with joint probability function pX Y given
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by

pX Y x y

1 2 x 3 y 4
1 3 x 3 y 6
1 6 x 5 y 6
0 otherwise.

Then E X 3 1 2 3 1 3 5 1 6 10 3, and E Y 4 1 2
6 1 3 6 1 6 5. Hence,

Cov X Y E X 10 3 Y 5

3 10 3 4 5 2 3 10 3 6 5 3 5 10 3 6 5 6

1 3

EXAMPLE 3.3.9
Let X be any random variable with Var X 0. Let Y 3X , and let Z 4X . Then

Y 3 X and Z 4 X . Hence,

Cov X Y E X X Y Y E X X 3X 3 X

3 E X X
2 3 Var X

while

Cov X Z E X X Z Z E X X 4 X 4 X

4 E X X
2 4 Var X

Note in particular that Cov X Y 0, while Cov X Z 0. Intuitively, this says that
Y increases when X increases, whereas Z decreases when X increases.

We begin with some simple facts about covariance. Obviously, we always have
Cov X Y Cov Y X We also have the following result.

Theorem 3.3.2 (Linearity of covariance) Let X , Y , and Z be three random vari
ables. Let a and b be real numbers. Then

Cov aX bY Z a Cov X Z bCov Y Z

PROOF Note that by linearity, aX bY E aX bY aE X bE Y
a X b Y . Hence,

Cov aX bY Z E aX bY aX bY Z Z

E aX bY a X b Y Z Z

E aX a X bY b Y Z Z

aE X X Z Z bE Y Y Z Z

a Cov X Z bCov Y Z

and the result is established.

We also have the following identity, which is similar to Theorem 3.3.1(c).
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Theorem 3.3.3 Let X and Y be two random variables. Then

Cov X Y E XY E X E Y

PROOF Using linearity, we have

Cov X Y E X X Y Y E XY XY X Y X Y

E XY X E Y E X Y X Y

E XY X Y X Y X Y E XY X Y

Corollary 3.3.2 If X and Y are independent, then Cov X Y 0.

PROOF Because X and Y are independent, we know (Theorems 3.1.3 and 3.2.3)
that E XY E X E Y . Hence, the result follows immediately from Theorem 3.3.3.

We note that the converse to Corollary 3.3.2 is false, as the following example
shows.

EXAMPLE 3.3.10 Covariance 0 Does Not Imply Independence.
Let X and Y be discrete random variables, with joint probability function pX Y given
by

pX Y x y

1 4 x 3 y 5
1 4 x 4 y 9
1 4 x 7 y 5
1 4 x 6 y 9
0 otherwise.

Then E X 3 1 4 4 1 4 7 1 4 6 1 4 5 E Y 5 1 4
9 1 4 5 1 4 9 1 4 7 and E XY 3 5 1 4 4 9 1 4
7 5 1 4 6 9 1 4 35 We obtain Cov X Y E XY E X E Y

35 5 7 0
On the other hand, X and Y are clearly not independent. For example, P X

4 0 and P Y 5 0, but P X 4 Y 5 0, so P X 4 Y 5
P X 4 P Y 5 .

There is also an important relationship between variance and covariance.

Theorem 3.3.4
(a) For any random variables X and Y ,

Var X Y Var X Var Y 2 Cov X Y

(b) More generally, for any random variables X1 Xn ,

Var
i

Xi
i

Var Xi 2
i j

Cov Xi X j



Chapter 3: Expectation 155

PROOF We prove part (b) here; part (a) then follows as the special case n 2.
Note that by linearity,

i Xi
E

i

Xi
i

E Xi
i

Xi

Therefore, we have that

Var
i

X i

E
i

X i i Xi

2

E
i

X i
i

i

2

E
i

Xi i

2

E
i

Xi i
j

X j j

E
i j

Xi i X j j
i j

E Xi i X j j

i j

E Xi i X j j 2
i j

E Xi i X j j

i

Var Xi 2
i j

Cov Xi X j

Combining Theorem 3.3.4 with Corollary 3.3.2, we obtain the following.

Corollary 3.3.3
(a) If X and Y are independent, then Var X Y Var X Var Y
(b) If X1 Xn are independent, then Var n

i 1 Xi
n
i 1Var Xi

One use of Corollary 3.3.3 is the following.

EXAMPLE 3.3.11
Let Y Binomial n . What is Var Y ? Recall that we can write

Y X1 X2 Xn

where the Xi are independent, with Xi Bernoulli . We have already seen that
Var Xi 1 . Hence, from Corollary 3.3.3,

Var Y Var X1 Var X2 Var Xn

1 1 1 n 1 .

Another concept very closely related to covariance is correlation.
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Definition 3.3.4 The correlation of two random variables X and Y is given by

Corr X Y
Cov X Y

Sd X Sd Y

Cov X Y

Var X Var Y

provided 0 Var X and 0 Var Y

EXAMPLE 3.3.12
As in Example 3.3.2, let X be any random variable with Var X 0, let Y 3X , and
let Z 4X . Then Cov X Y 3 Var X and Cov X Z 4 Var X . But by
Corollary 3.3.1, Sd Y 3 Sd X and Sd Z 4 Sd X . Hence,

Corr X Y
Cov X Y

Sd X Sd Y

3 Var X

Sd X 3 Sd X

Var X

Sd X 2
1

because Sd X 2 Var X . Also, we have that

Corr X Z
Cov X Z

Sd X Sd Z

4 Var X

Sd X 4 Sd X

Var X

Sd X 2
1

Intuitively, this again says that Y increases when X increases, whereas Z decreases
when X increases. However, note that the scale factors 3 and 4 have cancelled out;
only their signs were important.

We shall see later, in Section 3.6, that we always have 1 Corr X Y 1, for
any random variables X and Y . Hence, in Example 3.3.12, Y has the largest possible
correlation with X (which makes sense because Y increases whenever X does, without
exception), while Z has the smallest possible correlation with X (which makes sense
because Z decreases whenever X does). We will also see that Corr X Y is a measure
of the extent to which a linear relationship exists between X and Y .

EXAMPLE 3.3.13 The Bivariate Normal 1 2 1 2 Distribution
We defined this distribution in Example 2.7.9. It turns out that when X Y follows this
joint distribution then, (from Problem 2.7.13) X N 1

2
1 and Y N 2

2
2

Further, we have that (see Problem 3.3.17) Corr X Y In the following graphs,
we have plotted samples of n 1000 values of X Y from bivariate normal distrib
utions with 1 2 0 2

1
2
2 1 and various values of Note that we used

(2.7.1) to generate these samples.
From these plots we can see the effect of on the joint distribution. Figure 3.3.2

shows that when 0 the point cloud is roughly circular. It becomes elliptical in
Figure 3.3.3 with 0 5 and more tightly concentrated about a line in Figure 3.3.4
with 0 9 As we will see in Section 3.6, the points will lie exactly on a line when

1
Figure 3.3.5 demonstrates the effect of a negative correlation. With positive corre

lations, the value of Y tends to increase with X as reflected in the upward slope of the
point cloud. With negative correlations, Y tends to decrease with X as reflected in the
negative slope of the point cloud.
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Figure 3.3.2: A sample of n 1000 values X Y from the Bivariate Normal 0 0 1 1 0
distribution.
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Figure 3.3.3: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 5 distribution.
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Figure 3.3.4: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 9 distribution.
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Figure 3.3.5: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 9 distribution.
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Summary of Section 3.3

The variance of a random variable X measures how far it tends to be from its
mean and is given by Var X E X X

2 E X2 E X 2.

The variances of many standard distributions were computed.

The standard deviation of X equals Sd X Var X .

Var X 0, and Var aX b a2 Var X ; also Sd aX b a Sd X .

The covariance of random variables X and Y measures how they are related and
is given by Cov X Y E X X Y y E XY E X E Y .

If X and Y are independent, then Cov X Y 0.

Var X Y Var X Var Y 2 Cov X Y . If X and Y are independent,
this equals Var X Var Y .

The correlation of X and Y is Corr X Y Cov X Y Sd X Sd Y

EXERCISES

3.3.1 Suppose the joint probability function of X and Y is given by

pX Y x y

1 2 x 3 y 5
1 6 x 3 y 9
1 6 x 6 y 5
1 6 x 6 y 9
0 otherwise

with E X 4, E Y 19 3, and E XY 26, as in Example 3.1.16.
(a) Compute Cov X Y .
(b) Compute Var X and Var Y .
(c) Compute Corr X Y .
3.3.2 Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

as in Example 2.7.5.
(a) Compute E X and E Y .
(b) Compute Cov X Y .
(c) Compute Var X and Var Y .
(d) Compute Corr X Y .

3.3.3 Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise
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as in Exercise 3.2.2. Compute Corr X Y .

3.3.4 Let X and Y have joint density

fX Y x y
15x3y4 6x2y7 0 x 1 0 y 1
0 otherwise

Compute E X , E Y , Var X , Var Y , Cov X Y , and Corr X Y .
3.3.5 Let Y and Z be two independent random variables, each with positive variance.
Prove that Corr Y Z 0.
3.3.6 Let X , Y , and Z be three random variables, and suppose that X and Z are inde
pendent. Prove that Cov X Y Z Cov Y Z .
3.3.7 Let X Exponential 3 and Y Poisson 5 . Assume X and Y are independent.
Let Z X Y .
(a) Compute Cov X Z .
(b) Compute Corr X Z .
3.3.8 Prove that the variance of the Uniform[L R] distribution is given by the expres
sion R L 2 12
3.3.9 Prove that Var X E X X 1 E X E X 1 Use this to compute
directly from the probability function that when X Binomial n then Var X
n 1
3.3.10 Suppose you flip three fair coins. Let X be the number of heads showing, and
let Y X2. Compute E X , E Y , Var X , Var Y , Cov X Y , and Corr X Y .
3.3.11 Suppose you roll two fair sixsided dice. Let X be the number showing on the
first die, and let Y be the sum of the numbers showing on the two dice. Compute E X ,
E Y , E XY , and Cov X Y .

3.3.12 Suppose you flip four fair coins. Let X be the number of heads showing, and
let Y be the number of tails showing. Compute Cov X Y and Corr X Y .
3.3.13 Let X and Y be independent, with X Bernoulli 1 2 and Y Bernoulli 1 3 .
Let Z X Y and W X Y . Compute Cov Z W and Corr Z W .
3.3.14 Let X and Y be independent, with X Bernoulli 1 2 and Y N 0 1 . Let
Z X Y and W X Y . Compute Var Z , Var W , Cov Z W , and Corr Z W .
3.3.15 Suppose you roll one fair sixsided die and then flip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you flip four coins.) Let
X be the number showing on the die, and Y be the number of heads obtained. Compute
Cov X Y .

PROBLEMS

3.3.16 Let X N 0 1 , and let Y cX .
(a) Compute limc 0 Cov X Y .
(b) Compute limc 0 Cov X Y .
(c) Compute limc 0 Corr X Y .
(d) Compute limc 0 Corr X Y .
(e) Explain why the answers in parts (c) and (d) are not the same.
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3.3.17 Let X and Y have the bivariate normal distribution, as in Example 2.7.9. Prove
that Corr X Y . (Hint: Use (2.7.1).)
3.3.18 Prove that the variance of the Geometric distribution is given by 1 2

(Hint: Use Exercise 3.3.9 and 1 x x x 1 1 x 2 )
3.3.19 Prove that the variance of the NegativeBinomial r distribution is given by
r 1 2 (Hint: Use Problem 3.3.18.)
3.3.20 Let 0 and 0, and let X Gamma . Prove that Var X 2.
(Hint: Recall Problem 3.2.16.)

3.3.21 Suppose that X Weibull distribution (see Problem 2.4.19). Prove that
Var X 2 1 2 1 1 (Hint: Recall Problem 3.2.18.)

3.3.22 Suppose that X Pareto (see Problem 2.4.20) for 2. Prove that
Var X 1 2 2 . (Hint: Recall Problem 3.2.19.)
3.3.23 Suppose that X follows the Laplace distribution (see Problem 2.4.22). Prove
that Var X 2 (Hint: Recall Problem 3.2.21.)
3.3.24 Suppose that X Beta a b (see Problem 2.4.24). Prove that Var X
ab a b 2 a b 1 (Hint: Recall Problem 3.2.22.)
3.3.25 Suppose that X1 X2 X3 Multinomial n 1 2 3 . Prove that

Var Xi n i 1 i Cov Xi X j n i j when i j

(Hint: Recall Problem 3.1.23.)
3.3.26 Suppose that X1 X2 Dirichlet 1 2 3 (see Problem 2.7.17). Prove
that

Var Xi
i 1 2 3 i

1 2 3
2

1 2 3 1

Cov X1 X2
1 2

1 2 3
2

1 2 3 1

(Hint: Recall Problem 3.2.23.)
3.3.27 Suppose that X Hypergeometric N M n . Prove that

Var X n
M

N
1

M

N

N n

N 1

(Hint: Recall Problem 3.1.21 and use Exercise 3.3.9.)
3.3.28 Suppose you roll one fair sixsided die and then flip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you flip four coins.) Let
X be the number showing on the die, and Y be the number of heads obtained. Compute
Corr X Y .

CHALLENGES

3.3.29 Let Y be a nonnegative random variable. Prove that E Y 0 if and only if
P Y 0 1. (You may assume for simplicity that Y is discrete, but the result is true
for any Y .)
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3.3.30 Prove that Var X 0 if and only if there is a real number c with P X c
1 (You may use the result of Challenge 3.3.29.)
3.3.31 Give an example of a random variable X , such that E X 5, and Var X

.

3.4 Generating Functions
Let X be a random variable. Recall that the cumulative distribution function of X ,
defined by FX x P X x , contains all the information about the distribution of
X (see Theorem 2.5.1). It turns out that there are other functions — the probability
generating function and the momentgenerating function — that also provide informa
tion (sometimes all the information) about X and its expected values.

Definition 3.4.1 Let X be a random variable (usually discrete). Then we define its
probabilitygenerating function, rX , by rX t E t X for t R1

Consider the following examples of probabilitygenerating functions.

EXAMPLE 3.4.1 The Binomial n Distribution
If X Binomial n , then

rX t E t X
n

i 0

P X i t i

n

i 0

n

i
i 1 n i t i

n

i 0

n

i
t i 1 n i t 1 n

using the binomial theorem.

EXAMPLE 3.4.2 The Poisson Distribution
If Y Poisson then

rY t E tY

i 0

P Y i t i

i 0

e
i

i!
t i

i 0

e
t i

i!
e e t e t 1

The following theorem tells us that once we know the probabilitygenerating func
tion rX t , then we can compute all the probabilities P X 0 , P X 1 , P X 2 ,
etc.
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Theorem 3.4.1 Let X be a discrete random variable, whose possible values are all
nonnegative integers. Assume that rX t0 for some t0 0. Then

rX 0 P X 0

rX 0 P X 1

rX 0 2 P X 2

etc. In general,
r k
X 0 k! P X k

where r k
X is the kth derivative of rX .

PROOF Because the possible values are all nonnegative integers of the form i
0 1 2 we have

rX t E t X

x
t x P X x

i 0

t i P X i

t0P X 0 t1P X 1 t2P X 2 t3P X 3

so that

rX t 1P X 0 t1P X 1 t2P X 2 t3P X 3 . (3.4.1)

Substituting t 0 into (3.4.1), every term vanishes except the first one, and we obtain
rX 0 P X 0 . Taking derivatives of both sides of (3.4.1), we obtain

rX t 1P X 1 2t1P X 2 3t2P X 3

and setting t 0 gives rX 0 P X 1 . Taking another derivative of both sides
gives

rX t 2P X 2 3 2 t1P X 3

and setting t 0 gives rX 0 2 P X 2 . Continuing in this way, we obtain the
general formula.

We now apply Theorem 3.4.1 to the binomial and Poisson distributions.

EXAMPLE 3.4.3 The Binomial n Distribution
From Example 3.4.1, we have that

rX 0 1 n

rX 0 n t 1 n 1

t 0
n 1 n 1

rX 0 n n 1 t 1 n 2

t 0
n n 1 1 n 2 2

etc. It is thus verified directly that

P X 0 rX 0

P X 1 rX 0

2 P X 2 rX 0
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etc.

EXAMPLE 3.4.4 The Poisson Distribution
From Example 3.4.2, we have that

rX 0 e

rX 0 e

rX 0 2e

etc. It is again verified that

P X 0 rX 0

P X 1 rX 0

2 P X 2 rX 0

etc.

From Theorem 3.4.1, we can see why rX is called the probabilitygenerating func
tion. For, at least in the discrete case with the distribution concentrated on the non
negative integers, we can indeed generate the probabilities for X from rX We thus
see immediately that for a random variable X that takes values only in 0 1 2 ,
rX is unique. By this we mean that if X and Y are concentrated on 0 1 2 and
rX rY then X and Y have the same distribution. This uniqueness property of the
probabilitygenerating function can be very useful in trying to determine the distribu
tion of a random variable that takes only values in 0 1 2

It is clear that the probabilitygenerating function tells us a lot — in fact, everything
— about the distribution of random variables concentrated on the nonnegative integers.
But what about other random variables? It turns out that there are other quantities,
called moments, associated with random variables that are quite informative about their
distributions.

Definition 3.4.2 Let X be a random variable, and let k be a positive integer. Then
the kth moment of X is the quantity E Xk provided this expectation exists.

Note that if E Xk exists and is finite, it can be shown that E X l exists and is finite
when 0 l k.

The first moment is just the mean of the random variable. This can be taken as
a measure of where the central mass of probability for X lies in the real line, at least
when this distribution is unimodal (has a single peak) and is not too highly skewed. The
second moment E X2 together with the first moment, gives us the variance through
Var X E X2 E X 2 Therefore, the first two moments of the distribution tell
us about the location of the distribution and the spread, or degree of concentration, of
that distribution about the mean. In fact, the higher moments also provide information
about the distribution.

Many of the most important distributions of probability and statistics have all of
their moments finite; in fact, they have what is called a momentgenerating function.
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Definition 3.4.3 Let X be any random variable. Then its momentgenerating func
tion mX is defined by mX s E esX at s R1.

The following example computes the momentgenerating function of a wellknown
distribution.

EXAMPLE 3.4.5 The Exponential Distribution
Let X Exponential . Then for s ,

mX s E esX esx fX x dx
0

esx e x dx

0
e s x dx

e s x

s

x

x 0

e s 0

s

s
s 1

A comparison of Definitions 3.4.1 and 3.4.3 immediately gives the following.

Theorem 3.4.2 Let X be any random variable. Then mX s rX es .

This result can obviously help us evaluate some momentgenerating functions when
we have rX already.

EXAMPLE 3.4.6
Let Y Binomial n . Then we know that rY t t 1 n Hence, mY s
rY es es 1 n

EXAMPLE 3.4.7
Let Z Poisson . Then we know that rZ t e t 1 Hence, mZ s rZ es

e es 1

The following theorem tells us that once we know the momentgenerating function
mX t , we can compute all the moments E X , E X2 , E X3 , etc.

Theorem 3.4.3 Let X be any random variable. Suppose that for some s0 0, it is
true that mX s whenever s s0 s0 . Then

mX 0 1

mX 0 E X

mX 0 E X2

etc. In general,
m k

X 0 E Xk

where m k
X is the kth derivative of mX .

PROOF We know that mX s E esX . We have

mX 0 E e0X E e0 E 1 1
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Also, taking derivatives, we see3 that mX s E X esX , so

mX 0 E X e0X E Xe0 E X

Taking derivatives again, we see that mX s E X2esX , so

mX 0 E X2 e0X E X2e0 E X2

Continuing in this way, we obtain the general formula.

We now consider an application of Theorem 3.4.3

EXAMPLE 3.4.8 The Mean and Variance of the Exponential Distribution
Using the momentgenerating function computed in Example 3.4.5, we have

mX s 1 s 2 1 s 2

Therefore,
E X mX 0 0 2 2 1

as it should. Also,

E X2 mX 0 2 0 3 1 2 3 2 2

so we have

Var X E X2 E X 2 2 2 1 2 1 2

This provides an easy way of computing the variance of X .

EXAMPLE 3.4.9 The Mean and Variance of the Poisson Distribution
In Example 3.4.7, we obtained mZ s exp es 1 So we have

E X mX 0 e0 exp e0 1

E X2 mX 0 e0 exp e0 1 e0
2

exp e0 1 2

Therefore, Var X E X2 E X 2 2 2

Computing the momentgenerating function of a normal distribution is also impor
tant, but it is somewhat more difficult.

Theorem 3.4.4 If X N 0 1 then mX s es
2 2.

PROOF Because X has density x 2 1 2 e x2 2, we have that

mX s E esX esx x dx esx
1

2
e x2 2 dx

1

2
esx x2 2 dx

1

2
e x s 2 2 s2 2 dx

es
2 2 1

2
e x s 2 2 dx

3Strictly speaking, interchanging the order of derivative and expectation is justified by analytic function
theory and requires that mX s whenever s s0.
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Setting y x s (so that dy dx), this becomes (using Theorem 2.4.2)

mX s es
2 2 1

2
e y2 2 dy es

2 2 y dy es
2 2

as claimed.

One useful property of both probabilitygenerating and momentgenerating func
tions is the following.

Theorem 3.4.5 Let X and Y be random variables that are independent. Then we
have
(a) rX Y t rX t rY t , and
(b) mX Y t mX t mY t .

PROOF Because X and Y are independent, so are t X and tY (by Theorem 2.8.5).
Hence, we know (by Theorems 3.1.3 and 3.2.3) that E t X tY E t X E tY . Using
this, we have

rX Y t E t X Y E t X tY E t X E tY rX t rY t

Similarly,

mX Y t E et X Y E et XetY E et X E etY mX t mY t

EXAMPLE 3.4.10
Let Y Binomial n . Then, as in Example 3.1.15, we can write

Y X1 Xn

where the Xi are i.i.d. with Xi Bernoulli . Hence, Theorem 3.4.5 says we must
have rY t rX1 t rX2 t rXn t But for any i ,

rXi t
x

t x P X x t1 t0 1 t 1

Hence, we must have

rY t t 1 t 1 t 1 t 1 n

as already verified in Example 3.4.1.

Momentgenerating functions, when defined in a neighborhood of 0, completely
define a distribution in the following sense. (We omit the proof, which is advanced.)

Theorem 3.4.6 (Uniqueness theorem) Let X be a random variable, such that for
some s0 0, we have mX s whenever s s0 s0 . Then if Y is some
other random variable with mY s mX s whenever s s0 s0 , then X and Y
have the same distribution.
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Theorems 3.4.1 and 3.4.6 provide a powerful technique for identifying distribu
tions. For example, if we determine that the momentgenerating function of X is
mX t exp s2 2 then we know, from Theorems 3.4.4 and 3.4.6, that X
N 0 1 We can use this approach to determine the distributions of some complicated
random variables.

EXAMPLE 3.4.11
Suppose that Xi N i

2
i for i 1 n and that these random variables are

independent. Consider the distribution of Y n
i 1 Xi

When n 1 we have (from Problem 3.4.15)

mY s exp 1s
2
1s

2

2

Then, using Theorem 3.4.5, we have that

mY s
n

i 1

mXi s
n

i 1

exp is
2
i s

2

2

exp
n

i 1
i s

n
i 1

2
i s2

2

From Problem 3.4.15, and applying Theorem 3.4.6, we have that

Y N
n

i 1
i

n

i 1

2
i

Generating functions can also help us with compound distributions, which are de
fined as follows.

Definition 3.4.4 Let X1 X2 be i.i.d., and let N be a nonnegative, integervalued
random variable which is independent of the Xi . Let

S
N

i 1

Xi (3.4.2)

Then S is said to have a compound distribution.

A compound distribution is obtained from a sum of i.i.d. random variables, where
the number of terms in the sum is randomly distributed independently of the terms in
the sum. Note that S 0 when N 0 Such distributions have applications in ar
eas like insurance, where the X1 X2 are claims and N is the number of claims
presented to an insurance company during a period. Therefore, S represents the total
amount claimed against the insurance company during the period. Obviously, the in
surance company wants to study the distribution of S, as this will help determine what
it has to charge for insurance to ensure a profit.

The following theorem is important in the study of compound distributions.
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Theorem 3.4.7 If S has a compound distribution as in (3.4.2), then
(a) E S E X1 E N .
(b) mS s rN mX1 s .

PROOF See Section 3.8 for the proof of this result.

3.4.1 Characteristic Functions (Advanced)

One problem with momentgenerating functions is that they can be infinite in any open
interval about s 0. Consider the following example.

EXAMPLE 3.4.12
Let X be a random variable having density

fX x
1 x2 x 1
0 otherwise.

Then

mX s E esX
1

esx 1 x2 dx

For any s 0, we know that esx grows faster than x2, so that limx esx x2 .
Hence, mX s whenever s 0.

Does X have any finite moments? We have that

E X
1

x 1 x2 dx
1

1 x dx ln x x
x 1

so, in fact, the first moment does not exist. From this we conclude that X does not have
any moments.

The random variable X in the above example does not satisfy the condition of
Theorem 3.4.3 that mX s whenever s s0, for some s0 0. Hence, The
orem 3.4.3 (like most other theorems that make use of momentgenerating functions)
does not apply. There is, however, a similarly defined function that does not suffer
from this defect, given by the following definition.

Definition 3.4.5 Let X be any random variable. Then we define its characteristic
function, cX , by

cX s E ei sX (3.4.3)

for s R1

So the definition of cX is just like the definition of mX , except for the introduction
of the imaginary number i 1. Using properties of complex numbers, we see
that (3.4.3) can also be written as cX s E cos sX i E sin sX for s R1

Consider the following examples.
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EXAMPLE 3.4.13 The Bernoulli Distribution
Let X Bernoulli . Then

cX s E ei sX ei s0 1 ei s1

1 1 ei s 1 eis

1 cos s i sin s

EXAMPLE 3.4.14
Let X have probability function given by

pX x

1 6 x 2
1 3 x 3
1 2 x 4
0 otherwise.

Then

cX s E ei sX eis2 1 6 ei s3 1 3 ei s4 1 2

1 6 cos 2s 1 3 cos 3s 1 2 cos 4s

1 6 i sin 2s 1 3 i sin 3s i 1 2 sin 4s

EXAMPLE 3.4.15
Let Z have probability function given by

pZ z
1 2 z 1
1 2 z 1
0 otherwise.

Then

cZ s E eisZ ei s 1 2 e i s 1 2

1 2 cos s 1 2 cos s 1 2 sin s 1 2 sin s

1 2 cos s 1 2 cos s 1 2 sin s 1 2 sin s cos s

Hence, in this case, cZ s is a real (not complex) number for all s R1.
Once we overcome our “fear” of imaginary and complex numbers, we can see

that the characteristic function is actually much better in some ways than the moment
generating function. The main advantage is that, because ei sX cos sX i sin sX
and ei sX 1, the characteristic function (unlike the momentgenerating function) is
always finite (although it could be a complex number).

Theorem 3.4.8 Let X be any random variable, and let s be any real number. Then
cX s is finite.

The characteristic function has many properties similar to the momentgenerating
function. In particular, we have the following. (The proof is just like the proof of
Theorem 3.4.3.)
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Theorem 3.4.9 Let X be any random variable with its first k moments finite. Then
cX 0 1, cX 0 i E X , cX 0 i2E X2 E X2 , etc. In general,

c k
X 0 ikE Xk , where i 1, and where c k

X is the kth derivative of cX .

We also have the following. (The proof is just like the proof of Theorem 3.4.5.)

Theorem 3.4.10 Let X and Y be random variables which are independent. Then
cX Y s cX s cY s .

For simplicity, we shall generally not use characteristic functions in this book.
However, it is worth keeping in mind that whenever we do anything with moment
generating functions, we could usually do the same thing in greater generality using
characteristic functions.

Summary of Section 3.4

The probabilitygenerating function of a random variable X is rX t E t X .

If X is discrete, then the derivatives of rX satisfy r k
X 0 k! P X k .

The kth moment of a random variable X is E Xk .

The momentgenerating function of a random variable X is mX s E esX

rX es .

The derivatives of mX satisfy m k
X 0 E Xk , for k 0 1 2 .

If X and Y are independent, then rX Y t rX t rY y and mX Y s
mX s mY s .

If mX s is finite in a neighborhood of s 0, then it uniquely characterizes the
distribution of X .

The characteristic function cX s E ei sX can be used in place of mX s to
avoid infinities.

EXERCISES

3.4.1 Let Z be a discrete random variable with P Z z 1 2z for z 1 2 3 .
(a) Compute rZ t . Verify that rZ 0 P Z 1 and rZ 0 2 P Z 2 .
(b) Compute mZ t . Verify that mZ 0 E Z and mZ 0 E Z2 .
3.4.2 Let X Binomial n . Use mX to prove that Var X n 1 .
3.4.3 Let Y Poisson . Use mY to compute the mean and variance of Y .
3.4.4 Let Y 3X 4. Compute rY t in terms of rX .

3.4.5 Let Y 3X 4. Compute mY s in terms of mX .
3.4.6 Let X Binomial n . Compute E X3 , the third moment of X .
3.4.7 Let Y Poisson . Compute E Y 3 , the third moment of Y .
3.4.8 Suppose P X 2 1 2, P X 5 1 3, and P X 7 1 6.
(a) Compute rX t for t R1.
(b) Verify that rX 0 P X 1 and rX 0 2P X 2 .
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(c) Compute mX s for s R1.
(d) Verify that mX 0 E X and mX 0 E X2 .

PROBLEMS

3.4.9 Suppose fX x 1 10 for 0 x 10, with fX x 0 otherwise.
(a) Compute mX s for s R1.
(b) Verify that mX 0 E X (Hint: L’Hôpital’s rule.)
3.4.10 Let X Geometric . Compute rX t and rX 0 2.
3.4.11 Let X NegativeBinomial r . Compute rX t and rX 0 2.
3.4.12 Let X Geometric .
(a) Compute mX s .
(b) Use mX to compute the mean of X .
(c) Use mX to compute the variance of X .
3.4.13 Let X NegativeBinomial r .
(a) Compute mX s .
(b) Use mX to compute the mean of X .
(c) Use mX to compute the variance of X .
3.4.14 If Y a bX where a and b are constants, then show that rY t tarX tb

and mY t eatmX bt
3.4.15 Let Z N 2 . Show that

mZ s exp s
2s2

2

(Hint: Write Z X where X N 0 1 , and use Theorem 3.4.4.)

3.4.16 Let Y be distributed according to the Laplace distribution (see Problem 2.4.22).
(a) Compute mY s . (Hint: Break up the integral into two pieces.)
(b) Use mY to compute the mean of Y .
(c) Use mY to compute the variance of Y .

3.4.17 Compute the kth moment of the Weibull distribution in terms of (see
Problem 2.4.19).

3.4.18 Compute the kth moment of the Pareto distribution (see Problem 2.4.20).
(Hint: Make the transformation u 1 x 1 and recall the beta distribution.)
3.4.19 Compute the kth moment of the Lognormal distribution (see Problem 2.6.17).
(Hint: Make the transformation z ln x and use Problem 3.4.15.)
3.4.20 Prove that the momentgenerating function of the Gamma distribution is
given by t when t .
3.4.21 Suppose that Xi Poisson i and X1 Xn are independent. Using moment
generating functions, determine the distribution of Y n

i 1 X i

3.4.22 Suppose that Xi NegativeBinomial ri and X1 Xn are independent.
Using momentgenerating functions, determine the distribution of Y n

i 1 Xi

3.4.23 Suppose that Xi Gamma i and X1 Xn are independent. Using
momentgenerating functions, determine the distribution of Y n

i 1 Xi
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3.4.24 Suppose X1 X2 is i.i.d. Exponential and N Poisson independent
of the X i . Determine the momentgenerating function of SN Determine the first
moment of this distribution by differentiating this function.
3.4.25 Suppose X1 X2 are i.i.d. Exponential random variables and N
Geometric independent of the X i . Determine the momentgenerating function
of SN Determine the first moment of this distribution by differentiating this function.
3.4.26 Let X Bernoulli . Use cX s to compute the mean of X .
3.4.27 Let Y Binomial n .
(a) Compute the characteristic function cY s . (Hint: Make use of cX s in Problem
3.4.26.)
(b) Use cY s to compute the mean of Y .

3.4.28 The characteristic function of the Cauchy distribution (see Problem 2.4.21) is
given by c t e t Use this to determine the characteristic function of the sample
mean

X
1

n

n

i 1

X i

based on a sample of n from the Cauchy distribution. Explain why this implies that the
sample mean is also Cauchy distributed. What do you find surprising about this result?

3.4.29 The kth cumulant (when it exists) of a random variable X is obtained by cal
culating the kth derivative of ln cX s with respect to s evaluating this at s 0 and
dividing by ik Evaluate cX s and all the cumulants of the N 2 distribution.

3.5 Conditional Expectation
We have seen in Sections 1.5 and 2.8 that conditioning on some event, or some random
variable, can change various probabilities. Now, because expectations are defined in
terms of probabilities, it seems reasonable that expectations should also change when
conditioning on some event or random variable. Such modified expectations are called
conditional expectations, as we now discuss.

3.5.1 Discrete Case

The simplest case is when X is a discrete random variable, and A is some event of
positive probability. We have the following.

Definition 3.5.1 Let X be a discrete random variable, and let A be some event with
P A 0. Then the conditional expectation of X given A, is equal to

E X A
x R1

x P X x A
x R1

x
P X x A

P A

EXAMPLE 3.5.1
Consider rolling a fair sixsided die, so that S 1 2 3 4 5 6 . Let X be the number
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showing, so that X s s for s S. Let A 3 5 6 be the event that the die shows
3, 5, or 6. What is E X A ?

Here we know that

P X 3 A P X 3 X 3 5 or 6 1 3

and that, similarly, P X 5 A P X 6 A 1 3. Hence,

E X A
x R1

x P X x A

3 P X 3 A 5 P X 5 A 6 P X 6 A

3 1 3 5 1 3 6 1 3 14 3

Often we wish to condition on the value of some other random variable. If the other
random variable is also discrete, and if the conditioned value has positive probability,
then this works as above.

Definition 3.5.2 Let X and Y be discrete random variables, with P Y y 0.
Then the conditional expectation of X given Y y, is equal to

E X Y y
x R1

x P X x Y y
x R1

x
pX Y x y

pY y

EXAMPLE 3.5.2
Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

Then

E X Y 0
x R1

x P X x Y 0

5P X 5 Y 0 8P X 8 Y 0

5
P X 5 Y 0

P Y 0
8
P X 8 Y 0

P Y 0

5
1 7

1 7 3 7
8

3 7

1 7 3 7

29

4

Similarly,

E X Y 4
x R1

x P X x Y 4

5P X 5 Y 4 8P X 8 Y 4

5
1 7

1 7 1 7
8

1 7

1 7 1 7
13 2
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Also,

E X Y 3
x R1

x P X x Y 3 5P X 5 Y 3

5
1 7

1 7
5

Sometimes we wish to condition on a random variable Y , without specifying in ad
vance on what value of Y we are conditioning. In this case, the conditional expectation
E X Y is itself a random variable — namely, it depends on the (random) value of Y
that occurs.

Definition 3.5.3 Let X and Y be discrete random variables. Then the conditional
expectation of X given Y , is the random variable E X Y which is equal to
E X Y y when Y y. In particular, E X Y is a random variable that
depends on the random value of Y .

EXAMPLE 3.5.3
Suppose again that the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

We have already computed that E X Y 0 29 4, E X Y 4 13 2, and
E X Y 3 5. We can express these results together by saying that

E X Y
29 4 Y 0
5 Y 3
13 2 Y 4

That is, E X Y is a random variable, which depends on the value of Y . Note that,
because P Y y 0 for y 0 3 4, the random variable E X Y is undefined in
that case; but this is not a problem because that case will never occur.

Finally, we note that just like for regular expectation, conditional expectation is
linear.

Theorem 3.5.1 Let X1 X2, and Y be random variables; let A be an event; let a b,
and y be real numbers; and let Z aX1 bX2. Then
(a) E Z A aE X1 A bE X2 A .
(b) E Z Y y aE X1 Y y bE X2 Y y .
(c) E Z Y aE X1 Y bE X2 Y .
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3.5.2 Absolutely Continuous Case

Suppose now that X and Y are jointly absolutely continuous. Then conditioning on
Y y, for some particular value of y, seems problematic, because P Y y 0.
However, we have already seen in Section 2.8.2 that we can define a conditional density
fX Y x y that gives us a density function for X , conditional on Y y. And because
density functions give rise to expectations, similarly conditional density functions give
rise to conditional expectations, as follows.

Definition 3.5.4 Let X and Y be jointly absolutely continuous random variables,
with joint density function fX Y x y . Then the conditional expectation of X given
Y y, is equal to

E X Y y
x R1

x fX Y x y dx
x R1

x
fX Y x y

fY y
dx

EXAMPLE 3.5.4
Let X and Y be jointly absolutely continuous, with joint density function fX Y given
by

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

Then for 0 y 1,

fY y fX Y x y dx
1

0
4x2y 2y5 dx 4y 3 2y5

Hence,

E X Y y
x R1

x
fX Y x y

fY y
dx

1

0
x

4x2y 2y5

4y 3 2y5 dx

y y5

4y 3 2y5

1 y4

4 3 2y4

As in the discrete case, we often wish to condition on a random variable without
specifying in advance the value of that variable. Thus, E X Y is again a random
variable, depending on the random value of Y .

Definition 3.5.5 Let X and Y be jointly absolutely continuous random variables.
Then the conditional expectation of X given Y , is the random variable E X Y
which is equal to E X Y y when Y y. Thus, E X Y is a random variable
that depends on the random value of Y .

EXAMPLE 3.5.5
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.
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We already know that E X Y y 1 y4 4 3 2y4 This formula is valid
for any y between 0 and 1, so we conclude that E X Y 1 Y 4 4 3 2Y 4

Note that in this last formula, Y is a random variable, so E X Y is also a random
variable.

Finally, we note that in the absolutely continuous case, conditional expectation is
still linear, i.e., Theorem 3.5.1 continues to hold.

3.5.3 Double Expectations

Because the conditional expectation E X Y is itself a random variable (as a function
of Y ), it makes sense to take its expectation, E E X Y . This is a double expectation.
One of the key results about conditional expectation is that it is always equal to E X .

Theorem 3.5.2 (Theorem of total expectation) If X and Y are random variables,
then E E X Y E X .

This theorem follows as a special case of Theorem 3.5.3 on the next page. But it
also makes sense intuitively. Indeed, conditioning on Y will change the conditional
value of X in various ways, sometimes making it smaller and sometimes larger, de
pending on the value of Y . However, if we then average over all possible values of Y ,
these various effects will cancel out, and we will be left with just E X .

EXAMPLE 3.5.6
Suppose again that X and Y have joint probability function

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

Then we know that

E X Y y
29 4 y 0
5 y 3
13 2 y 4

Also, P Y 0 1 7 3 7 4 7, P Y 3 1 7, and P Y 4
1 7 1 7 2 7. Hence,

E E X Y

y R1

E X Y y P Y y

E X Y 0 P Y 0 E X Y 3 P Y 3 E X Y 4 P Y 4

29 4 4 7 5 1 7 13 2 2 7 47 7
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On the other hand, we compute directly that E X 5P X 5 8P X 8
5 3 7 8 4 7 47 7. Hence, E E X Y E X , as claimed.

EXAMPLE 3.5.7
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

We already know that

E X Y 1 Y 4 4 3 2Y 4

and that fY y 4y 3 2y5 for 0 y 1. Hence,

E E X Y

E
1 Y 4

4 3 2Y 4 E X Y y fY y dy

1

0

1 y4

4 3 2y4 4y 3 2y5 dy
1

0
y y5 dy 1 2 1 6 2 3

On the other hand,

E X x fX Y x y dy dx
1

0

1

0
x 4x2y 2y5 dy dx

1

0
x 2x2 2 6 dx

1

0
2x3 x 3 dx 2 4 1 6 2 3

Hence, E E X Y E X , as claimed.

Theorem 3.5.2 is a special case (with g y 1) of the following more general
result, which in fact characterizes conditional expectation.

Theorem 3.5.3 Let X and Y be random variables, and let g : R1 R1 be any
function. Then E g Y E X Y E g Y X

PROOF See Section 3.8 for the proof of this result.

We also note the following related result. It says that, when conditioning on Y , any
function of Y can be factored out since it is effectively a constant.

Theorem 3.5.4 Let X and Y be random variables, and let g : R1 R1 be any
function. Then E g Y X Y g Y E X Y .

PROOF See Section 3.8 for the proof of this result.

Finally, because conditioning twice on Y is the same as conditioning just once on
Y , we immediately have the following.

Theorem 3.5.5 Let X and Y be random variables. Then E E X Y Y E X Y .
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3.5.4 Conditional Variance (Advanced)

In addition to defining conditional expectation, we can define conditional variance. As
usual, this involves the expected squared distance of a random variable to its mean.
However, in this case, the expectation is a conditional expectation. In addition, the
mean is a conditional mean.

Definition 3.5.6 If X is a random variable, and A is an event with P A 0, then
the conditional variance of X given A, is equal to

Var X A E X E X A 2 A E X2 A E X A 2

Similarly, if Y is another random variable, then

Var X Y y E X E X Y y 2 Y y

E X2 Y y E X Y y 2

and Var X Y E X E X Y 2 Y E X2 Y E X Y 2

EXAMPLE 3.5.8
Consider again rolling a fair sixsided die, so that S 1 2 3 4 5 6 , with P s
1 6 and X s s for s S, and with A 3 5 6 . We have already computed that
P X s A 1 3 for s A, and that E X A 14 3. Hence,

Var X A E X E X A 2 A

E X 14 3 2 A
s S

s 14 3 2 P X s A

3 14 3 2 1 3 5 14 3 2 1 3 6 14 3 2 1 3 14 9 1 56

By contrast, because E X 7 2, we have

Var X E X E X 2
6

x 1

x 7 2 2 1 6 35 12 2 92

Hence, we see that the conditional variance Var X A is much smaller than the uncon
ditional variance Var X . This indicates that, in this example, once we know that event
A has occurred, we know more about the value of X than we did originally.

EXAMPLE 3.5.9
Suppose X and Y have joint density function

fX Y x y
8xy 0 x y 1
0 otherwise.

We have fY y 4y3, fX Y x y 8xy 4y3 2x y2 for 0 x y and so

E X Y y
y

0
x

2x

y2 dx
y

0

2x2

y2 dx
2y3

3y2

2y

3
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Therefore,

Var X Y y E X E X Y y 2 Y y

y

0
x

2y

3

2 2x

y2
dx

1

2y2

8

9y

4

9

Finally, we note that conditional expectation and conditional variance satisfy the
following useful identity.

Theorem 3.5.6 For random variables X and Y ,

Var X Var E X Y E Var X Y

PROOF See Section 3.8 for the proof of this result.

Summary of Section 3.5

If X is discrete, then the conditional expectation of X given an event A is equal
to E X A x R1 x P X x A .

If X and Y are discrete random variables, then E X Y is itself a random vari
able, with E X Y equal to E X Y y when Y y.

If X and Y are jointly absolutely continuous, then E X Y is itself a random
variable, with E X Y equal to E X Y y when Y y where E X Y
y x fX Y x y dx .

Conditional expectation is linear.

We always have that E g Y E X Y E g Y X , and E E X Y Y
E X Y .

Conditional variance is given by Var X Y E X2 Y E X Y 2.

EXERCISES

3.5.1 Suppose X and Y are discrete, with

pX Y x y

1 5 x 2 y 3
1 5 x 3 y 2
1 5 x 3 y 3
1 5 x 2 y 2
1 5 x 3 y 17
0 otherwise

(a) Compute E X Y 3 .
(b) Compute E Y X 3 .
(c) Compute E X Y .
(d) Compute E Y X .
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3.5.2 Suppose X and Y are jointly absolutely continuous, with

fX Y x y
9 xy x5y5 16 000 900 0 x 4 0 y 5
0 otherwise

(a) Compute fX x .
(b) Compute fY y .
(c) Compute E X Y .
(d) Compute E Y X .
(e) Compute E E X Y , and verify that it is equal to E X .
3.5.3 Suppose X and Y are discrete, with

pX Y x y

1 11 x 4 y 2
2 11 x 4 y 3
4 11 x 4 y 7
1 11 x 6 y 2
1 11 x 6 y 3
1 11 x 6 y 7
1 11 x 6 y 13
0 otherwise

(a) Compute E Y X 6 .
(b) Compute E Y X 4 .
(c) Compute E Y X .
3.5.4 Let pX Y be as in the previous exercise.
(a) Compute E X Y 2 .
(b) Compute E X Y 3 .
(c) Compute E X Y 7 .
(d) Compute E X Y 13 .
(e) Compute E X Y .
3.5.5 Suppose that a student must choose one of two summer job offers. If it is not nec
essary to take a summer course, then a job as a waiter will produce earnings (rounded
to the nearest $1000) with the following probability distribution.

$1000 $2000 $3000 $4000
0 1 0 3 0 4 0 2

If it is necessary to take a summer course, then a parttime job at a hotel will produce
earnings (rounded to the nearest $1000) with the following probability distribution.

$1000 $2000 $3000 $4000
0 3 0 4 0 2 0 1

If the probability that the student will have to take the summer course is 0 6, then
determine the student’s expected summer earnings.
3.5.6 Suppose you roll two fair sixsided dice. Let X be the number showing on the
first die, and let Z be the sum of the two numbers showing.
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(a) Compute E X .
(b) Compute E Z X 1 .
(c) Compute E Z X 6 .
(d) Compute E X Z 2 .
(e) Compute E X Z 4 .
(f) Compute E X Z 6 .
(g) Compute E X Z 7 .
(h) Compute E X Z 11 .
3.5.7 Suppose you roll two fair sixsided dice. Let Z be the sum of the two numbers
showing, and let W be the product of the two numbers showing.
(a) Compute E Z W 4 .
(b) Compute E W Z 4 .
3.5.8 Suppose you roll one fair sixsided die and then flip as many coins as the number
showing on the die. (For example, if the die shows 4, then you flip four coins.) Let X
be the number showing on the die, and Y be the number of heads obtained.
(a) Compute E Y X 5 .
(b) Compute E X Y 0 .
(c) Compute E X Y 2 .
3.5.9 Suppose you flip three fair coins. Let X be the number of heads obtained, and
let Y 1 if the first coin shows heads, otherwise Y 0.
(a) Compute E X Y 0 .
(b) Compute E X Y 1 .
(c) Compute E Y X 0 .
(d) Compute E Y X 1 .
(e) Compute E Y X 2 .
(f) Compute E Y X 3 .
(g) Compute E Y X .
(h) Verify directly that E[E Y X ] E Y .
3.5.10 Suppose you flip one fair coin and roll one fair sixsided die. Let X be the
number showing on the die, and let Y 1 if the coin is heads with Y 0 if the coin is
tails. Let Z XY .
(a) Compute E Z .
(b) Compute E Z X 4 .
(c) Compute E Y X 4 .
(d) Compute E Y Z 4 .
(e) Compute E X Z 4 .
3.5.11 Suppose X and Y are jointly absolutely continuous, with joint density function
fX Y x y 6 19 x2 y3 for 0 x 2 and 0 y 1, otherwise fX Y x y
0.
(a) Compute E X .
(b) Compute E Y .
(c) Compute E X Y .
(d) Compute E Y X .
(e) Verify directly that E[E X Y ] E X .
(f) Verify directly that E[E Y X ] E Y .
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PROBLEMS

3.5.12 Suppose there are two urns. Urn I contains 100 chips: 30 are labelled 1, 40
are labelled 2, and 30 are labelled 3. Urn 2 contains 100 chips: 20 are labelled 1,
50 are labelled 2, and 30 are labelled 3. A coin is tossed and if a head is observed,
then a chip is randomly drawn from urn 1, otherwise a chip is randomly drawn from
urn 2. The value Y on the chip is recorded. If an occurrence of a head on the coin
is denoted by X 1, a tail by X 0 and X Bernoulli 3 4 then determine
E X Y E Y X E Y and E X
3.5.13 Suppose that five coins are each tossed until the first head is obtained on each
coin and where each coin has probability of producing a head. If you are told that the
total number of tails observed is Y 10 then determine the expected number of tails
observed on the first coin.
3.5.14 (Simpson’s paradox) Suppose that the conditional distributions of Y given X
are shown in the following table. For example, pY X 1 i could correspond to the
probability that a randomly selected heart patient at hospital i has a successful treat
ment.

pY X 0 1 pY X 1 1
0 030 0 970

pY X 0 2 pY X 1 2
0 020 0 980

(a) Compute E Y X
(b) Now suppose that patients are additionally classified as being seriously ill (Z 1),
or not seriously ill (Z 0). The conditional distributions of Y given X Z , are
shown in the following tables. Compute E Y X Z

pY X Z 0 1 0 pY X Z 1 1 0
0 010 0 990

pY X Z 0 2 0 pY X Z 1 2 0
0 013 0 987

pY X Z 0 1 1 pY X Z 1 1 1
0 038 0 962

pY X Z 0 2 1 pY X Z 1 2 1
0 040 0 960

(c) Explain why the conditional distributions in part (a) indicate that hospital 2 is the
better hospital for a patient who needs to undergo this treatment, but all the conditional
distributions in part (b) indicate that hospital 1 is the better hospital. This phenomenon
is known as Simpson’s paradox.
(d) Prove that, in general, pY X y x z pY X Z y x z pZ X z x and E Y X

E E Y X Z X
(e) If the conditional distributions pZ X x corresponding to the example discussed
in parts (a) through (c) are given in the following table, verify the result in part (d)
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numerically and explain how this resolves Simpson’s paradox.

pZ X 0 1 pZ X 1 1
0 286 0 714

pZ X 0 2 pZ X 1 2
0 750 0 250

3.5.15 Present an example of a random variable X , and an event A with P A 0,
such that Var X A Var X . (Hint: Suppose S 1 2 3 with X s s, and
A 1 3 .)
3.5.16 Suppose that X , given Y y, is distributed Gamma y and that the marginal
distribution of Y is given by 1 Y Exponential Determine E X
3.5.17 Suppose that X Y Bivariate Normal 1 2 1 2 . Use (2.7.1) (when
given Y y and its analog (when given X x to determine E X Y , E Y X ,
Var X Y and Var Y X
3.5.18 Suppose that X1 X2 X3 Multinomial n 1 2 3 . Determine E X1 X2
and Var X1 X2 . (Hint: Show that X1 given X2 x2 has a binomial distribution.)
3.5.19 Suppose that X1 X2 Dirichlet 1 2 3 . Determine E X1 X2 and
Var X1 X2 (Hint: First show that X1 1 x2 given X2 x2 has a beta dis
tribution and then use Problem 3.3.24.)
3.5.20 Let fX Y be as in Exercise 3.5.2.
(a) Compute Var X .
(b) Compute Var E X Y .
(c) Compute Var X Y .
(d) Verify that Var X Var E X Y E Var X Y .

3.5.21 Suppose we have three discrete random variables X Y and Z We say that X
and Y are conditionally independent, given Z if

pX Y Z x y z pX Z x z pY Z y z

for every x y and z such that P Z z 0 Prove that when X and Y are condition
ally independent, given Z then

E g X h Y Z E g X Z E h Y Z .

3.6 Inequalities
Expectation and variance are closely related to the underlying distributions of random
variables. This relationship allows us to prove certain inequalities that are often very
useful. We begin with a classic result, Markov’s inequality, which is very simple but
also very useful and powerful.



Chapter 3: Expectation 185

Theorem 3.6.1 (Markov’s inequality) If X is a nonnegative random variable, then
for all a 0,

P X a
E X

a
That is, the probability that X exceeds any given value a is no more than the mean
of X divided by a.

PROOF Define a new random variable Z by

Z
a X a
0 X a

Then clearly Z X , so that E Z E X by monotonicity. On the other hand,

E Z a P Z a 0 P Z 0 a P Z a a P X a

So, E X E Z a P X a . Rearranging, P X a E X a, as claimed.

Intuitively, Markov’s inequality says that if the expected value of X is small, then
it is unlikely that X will be too large. We now consider some applications of Theorem
3.6.1.

EXAMPLE 3.6.1
Suppose P X 3 1 2, P X 4 1 3, and P X 7 1 6. Then E X
3 1 2 4 1 3 7 1 6 4. Hence, setting a 6, Markov’s inequality says that
P X 6 4 6 2 3. In fact, P X 6 1 6 2 3.

EXAMPLE 3.6.2
Suppose P X 2 P X 8 1 2. Then E X 2 1 2 8 1 2 5.
Hence, setting a 8, Markov’s inequality says that P X 8 5 8. In fact,
P X 8 1 2 5 8.

EXAMPLE 3.6.3
Suppose P X 0 P X 2 1 2. Then E X 0 1 2 2 1 2 1.
Hence, setting a 2, Markov’s inequality says that P X 2 1 2. In fact,
P X 2 1 2, so Markov’s inequality is an equality in this case.

Markov’s inequality is also used to prove Chebychev’s inequality, perhaps the most
important inequality in all of probability theory.

Theorem 3.6.2 (Chebychev’s inequality) Let Y be an arbitrary random variable,
with finite mean Y . Then for all a 0,

P Y Y a
Var Y

a2

PROOF Set X Y Y
2. Then X is a nonnegative random variable. Thus, using

Theorem 3.6.1, we have P Y Y a P X a2 E X a2 Var Y a2

and this establishes the result
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Intuitively, Chebychev’s inequality says that if the variance of Y is small, then it
is unlikely that Y will be too far from its mean value Y . We now consider some
examples.

EXAMPLE 3.6.4
Suppose again that P X 3 1 2, P X 4 1 3, and P X 7 1 6.
Then E X 4 as above. Also, E X2 9 1 2 16 1 3 49 1 6 18, so
that Var X 18 42 2. Hence, setting a 1, Chebychev’s inequality says
that P X 4 1 2 12 2, which tells us nothing because we always have
P X 4 1 1. On the other hand, setting a 3, we get P X 4 3
2 32 2 9, which is true because in fact P X 4 3 P X 7 1 6 2 9.

EXAMPLE 3.6.5
Let X Exponential 3 , and let a 5. Then E X 1 3 and Var X 1 9. Hence,
by Chebychev’s inequality with a 1 2, P X 1 3 1 2 1 9 1 2 2 4 9.
On the other hand, because X 0, P X 1 3 1 2 P X 5 6 , and
by Markov’s inequality, P X 5 6 1 3 5 6 2 5. Because 2 5 4 9, we
actually get a better bound from Markov’s inequality than from Chebychev’s inequality
in this case.

EXAMPLE 3.6.6
Let Z N 0 1 , and a 5. Then by Chebychev’s inequality, P Z 5 1 5.

EXAMPLE 3.6.7
Let X be a random variable having very small variance. Then Chebychev’s inequality
says that P X X a is small whenever a is not too small. In other words, usually
X X is very small, i.e., X X . This makes sense, because if the variance of X

is very small, then usually X is very close to its mean value X .

Inequalities are also useful for covariances, as follows.

Theorem 3.6.3 (Cauchy–Schwartz inequality) Let X and Y be arbitrary random
variables, each having finite, nonzero variance. Then

Cov X Y Var X Var Y

Furthermore, if Var Y 0, then equality is attained if and only if X X
Y Y where Cov X Y Var Y .

PROOF See Section 3.8 for the proof.

The Cauchy–Schwartz inequality says that if the variance of X or Y is small, then
the covariance of X and Y must also be small.

EXAMPLE 3.6.8
Suppose X C is a constant. Then Var X 0. It follows from the Cauchy–
Schwartz inequality that, for any random variable Y , we must have Cov X Y
Var X Var Y 1 2 0 Var Y 1 2 0 so that Cov X Y 0.
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Recalling that the correlation of X and Y is defined by

Corr X Y
Cov X Y

Var X Var Y

we immediately obtain the following important result (which has already been referred
to, back when correlation was first introduced).

Corollary 3.6.1 Let X and Y be arbitrary random variables, having finite means
and finite, nonzero variances. Then Corr X Y 1 Furthermore, Corr X Y
1 if and only if

X X
Cov X Y

Var Y
Y Y

So the correlation between two random variables is always between 1 and 1. We
also see that X and Y are linearly related if and only if Corr X Y 1 and that
this relationship is increasing (positive slope) when Corr X Y 1 and decreasing
(negative slope) when Corr X Y 1

3.6.1 Jensen’s Inequality (Advanced)

Finally, we develop a more advanced inequality that is sometimes very useful. A func
tion f is called convex if for every x y, the line segment from x f x to y f y
lies entirely above the graph of f as depicted in Figure 3.6.1.

2 3 4 5

100

200

300

400

500

600

x

 f

Figure 3.6.1: Plot of the convex function f x x4 and the line segment joining 2 f 2 to
4 f 4 .

In symbols, we require that for every x y and every 0 1, we have
f x 1 f y f x 1 y . Examples of convex functions include

f x x2, f x x4, and f x max x C for any real number C . We have the
following.

Theorem 3.6.4 (Jensen’s inequality) Let X be an arbitrary random variable, and let
f : R1 R1 be a convex function such that E f X is finite. Then f E X
E f X Equality occurs if and only if f X a bX for some a and b
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PROOF Because f is convex, we can find a linear function g x ax b such
that g E X f E X and g x f x for all x R1 (see, for example, Figure
3.6.2).

2.5 3.0 3.5 4.0
0

50

100

150

200

250

x

 f

Figure 3.6.2: Plot of the convex function f x x4 and the function
g x 81 108 x 3 satisfying g x f x on the interval 2 4

But then using monotonicity and linearity, we have E f X E g X
E aX b aE X b g E X f E X as claimed.

We have equality if and only if 0 E f X g X Because f X g X 0
this occurs (using Challenge 3.3.29) if and only if f X g X aX b with
probability 1.

EXAMPLE 3.6.9
Let X be a random variable with finite variance. Then setting f x x2, Jensen’s
inequality says that E X2 E X 2. Of course, we already knew this because
E X2 E X 2 Var X 0.

EXAMPLE 3.6.10
Let X be a random variable with finite fourth moment. Then setting f x x4,
Jensen’s inequality says that E X4 E X 4.

EXAMPLE 3.6.11
Let X be a random variable with finite mean, and let M R1. Then setting f x
max x M , we have that E max X M max E X M by Jensen’s inequality. In
fact, we could also have deduced this from the monotonicity property of expectation,
using the two inequalities max X M X and max X M M.

Summary of Section 3.6

For nonnegative X Markov’s inequality says P X a E X a.

Chebychev’s inequality says P Y Y a Var Y a2.

The Cauchy–Schwartz inequality says Cov X Y Var X Var Y 1 2, so
that Corr X Y 1.
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Jensen’s inequality says f E X E f X whenever f is convex.

EXERCISES

3.6.1 Let Z Poisson 3 . Use Markov’s inequality to get an upper bound on P Z
7 .
3.6.2 Let X Exponential 5 . Use Markov’s inequality to get an upper bound on
P X 3 and compare it with the precise value.
3.6.3 Let X Geometric 1 2 .
(a) Use Markov’s inequality to get an upper bound on P X 9 .
(b) Use Markov’s inequality to get an upper bound on P X 2 .
(c) Use Chebychev’s inequality to get an upper bound on P X 1 1 .
(d) Compare the answers obtained in parts (b) and (c).
3.6.4 Let Z N 5 9 . Use Chebychev’s inequality to get an upper bound on P Z
5 30 .
3.6.5 Let W Binomial 100 1 2 , as in the number of heads when flipping 100 fair
coins. Use Chebychev’s inequality to get an upper bound on P W 50 10 .
3.6.6 Let Y N 0 100 , and let Z Binomial 80 1 4 . Determine (with explana
tion) the largest and smallest possible values of Cov Y Z .
3.6.7 Let X Geometric 1 11 . Use Jensen’s inequality to determine a lower bound
on E X4 , in two different ways.
(a) Apply Jensen’s inequality to X with f x x4.
(b) Apply Jensen’s inequality to X2 with f x x2.
3.6.8 Let X be the number showing on a fair sixsided die. What bound does Cheby
chev’s inequality give for P X 5 or X 2 ?
3.6.9 Suppose you flip four fair coins. Let Y be the number of heads obtained.
(a) What bound does Chebychev’s inequality give for P Y 3 or Y 1 ?
(b) What bound does Chebychev’s inequality give for P Y 4 or Y 0 ?

3.6.10 Suppose W has density function f 3 2 for 0 1, otherwise
f 0.
(a) Compute E W .
(b) What bound does Chebychev’s inequality give for P W E W 1 4 ?

3.6.11 Suppose Z has density function f z z3 4 for 0 z 2, otherwise f z
0.
(a) Compute E Z .
(b) What bound does Chebychev’s inequality give for P Z E Z 1 2 ?

3.6.12 Suppose Var X 4 and Var Y 9.
(a) What is the largest possible value of Cov X Y ?
(b) What is the smallest possible value of Cov X Y ?
(c) Suppose Z 3X 2. Compute Var Z and Cov X Z , and compare your answer
with part (a).
(d) Suppose W 3X 2. Compute Var W and Cov X W , and compare your
answer with part (b).
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3.6.13 Suppose a species of beetle has length 35 millimeters on average. Find an upper
bound on the probability that a randomly chosen beetle of this species will be over 80
millimeters long.

PROBLEMS

3.6.14 Prove that for any 0 and 0, there is a positive integer M, such that if X
is the number of heads when flipping M fair coins, then P X M 1 2 .
3.6.15 Prove that for any and 2 0, there is a 0 and a random variable X with
E X and Var X 2, such that Chebychev’s inequality holds with equality,
i.e., such that P X a 2 a2.
3.6.16 Suppose that X Y is uniform on the set x1 y1 xn yn where the
x1 xn are distinct values and the y1 yn are distinct values.

(a) Prove that X is uniformly distributed on x1 xn with mean given by x
n 1 n

i 1 xi and variance given by s2
X n 1 n

i 1 xi x 2

(b) Prove that the correlation coefficient between X and Y is given by

rXY
n
i 1 xi x yi y

n
i 1 xi x 2 n

i 1 yi y 2

sXY
sX sY

where sXY n 1 n
i 1 xi x yi y The value sXY is referred to as the sample

covariance and rXY is referred to as the sample correlation coefficient when the values
x1 y1 xn yn are an observed sample from some bivariate distribution.

(c) Argue that rXY is also the correlation coefficient between X and Y when we drop
the assumption of distinctness for the xi and yi .
(d) Prove that 1 rXY 1 and state the conditions under which rXY 1
3.6.17 Suppose that X is uniformly distributed on x1 xn and so has mean x
n 1 n

i 1 xi and variance s2
X n 1 n

i 1 xi x 2 (see Problem 3.6.16(a)) What is
the largest proportion of the values xi that can lie outside x 2sX x 2sX ?

3.6.18 Suppose that X is distributed with density given by fX x 2 x3 for x 1
and is 0 otherwise.
(a) Prove that fX is a density.
(b) Calculate the mean of X
(c) Compute P X k and compare this with the upper bound on this quantity given
by Markov’s inequality.
(d) What does Chebyshev’s inequality say in this case?

3.6.19 Let g x max x 10 .
(a) Verify that g is a convex function.
(b) Suppose Z Exponential 5 . Use Jensen’s inequality to obtain a lower bound on
E g Z .

3.6.20 It can be shown that a function f with continuous second derivative, is convex
on a b if f x 0 for all x a b
(a) Use the above fact to show that f x x p is convex on 0 whenever p 1
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(b) Use part (a) to prove that E X p 1 p E X whenever p 1
(c) Prove that Var X 0 if and only if X is degenerate at a constant c

CHALLENGES

3.6.21 Determine (with proof) all functions that are convex and whose negatives are
also convex. (That is, find all functions f such that f is convex, and also f is
convex.)

3.7 General Expectations (Advanced)
So far we have considered expected values separately for discrete and absolutely con
tinuous random variables only. However, this separation into two different “cases” may
seem unnatural. Furthermore, we know that some random variables are neither discrete
nor continuous — for example, mixtures of discrete and continuous distributions.

Hence, it seems desirable to have a more general definition of expected value. Such
generality is normally considered in the context of general measure theory, an advanced
mathematical subject. However, it is also possible to give a general definition in ele
mentary terms, as follows.

Definition 3.7.1 Let X be an arbitrary random variable (perhaps neither discrete
nor continuous). Then the expected value of X is given by

E X
0

P X t dt
0

P X t dt

provided either 0 P X t dt or 0 P X t dt

This definition appears to contradict our previous definitions of E X . However, in
fact, there is no contradiction, as the following theorem shows.

Theorem 3.7.1
(a) Let X be a discrete random variable with distinct possible values x1 x2
and put pi P X xi . Then Definition 3.7.1 agrees with the previous definition
of E X . That is,

0
P X t dt

0
P X t dt

i

xi pi

(b) Let X be an absolutely continuous random variable with density fX . Then
Definition 3.7.1 agrees with the previous definition of E X . That is,

0
P X t dt

0

P X t dt x fX x dx

PROOF The key to the proof is switching the order of the integration/summation.
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(a) We have

0
P X t dt

0 i xi t

pi dt
i

pi
xi

0
dt

i

pi xi

as claimed.

(b) We have

0
P X t dt

0 t
fX x dx dt

0

x

0
fX x dt dx

0
x fX x dx

Similarly,

0

P X t dt
0 t

fX x dx dt
0 0

x
fX x dt dx

0
x fX x dx

Hence,

0
P X t dt

0

P X t dt
0

x fX x dx
0

x fX x dx

x fX x dx

as claimed.

In other words, Theorem 3.7.1 says that Definition 3.7.1 includes our previous defi
nitions of expected value, for both discrete and absolutely continuous random variables,
while working for any random variable at all. (Note that to apply Definition 3.7.1 we
take an integral, not a sum, regardless of whether X is discrete or continuous!)

Furthermore, Definition 3.7.1 preserves the key properties of expected value, as
the following theorem shows. (We omit the proof here, but see Challenge 3.7.10 for a
proof of part (c).)

Theorem 3.7.2 Let X and Y be arbitrary random variables, perhaps neither discrete
nor continuous, with expected values defined by Definition 3.7.1.
(a) (Linearity) If a and b are any real numbers, then E aX bY aE X bE Y
(b) If X and Y are independent, then E XY E X E Y .
(c) (Monotonicity) If X Y , then E X E Y .

Definition 3.7.1 also tells us about expected values of mixture distributions, as fol
lows.
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Theorem 3.7.3 For 1 i k, let Yi be a random variable with cdf Fi . Let X be
a random variable whose cdf corresponds to a finite mixture (as in Section 2.5.4)
of the cdfs of the Yi , so that FX x i pi Fi x where pi 0 and i pi 1.
Then E X i pi E Yi

PROOF We compute that

P X t 1 FX t 1
i

pi Fi t

i

pi 1 Fi t
i

pi P Yi t

Similarly,

P X t FX t
i

pi Fi t
i

pi P Yi t

Hence, from Definition 3.7.1,

E X
0

P X t dt
0

P X t dt

0 i

pi P Yi t dt
0

i

pi P Yi t dt

i

pi
0

P Yi t dt
0

P Yi t dt

i

pi E Yi

as claimed.

Summary of Section 3.7

For general random variables, we can define a general expected value by E X

0 P X t dt 0 P X t dt .

This definition agrees with our previous one, for discrete or absolutely continu
ous random variables.

General expectation is still linear and monotone.

EXERCISES

3.7.1 Let X1, X2, and Y be as in Example 2.5.6, so that Y is a mixture of X1 and X2.
Compute E X1 , E X2 , and E Y .
3.7.2 Suppose we roll a fair sixsided die. If it comes up 1, then we roll the same die
again and let X be the value showing. If it comes up anything other than 1, then we
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instead roll a fair eightsided die (with the sides numbered 1 through 8), and let X be
the value showing on the eightsided die. Compute the expected value of X .
3.7.3 Let X be a positive constant random variable, so that X C for some constant
C 0. Prove directly from Definition 3.7.1 that E X C .
3.7.4 Let Z be a general random variable (perhaps neither discrete nor continuous),
and suppose that P Z 100 1. Prove directly from Definition 3.7.1 that E Z
100.
3.7.5 Suppose we are told only that P X x 1 x2 for x 1, and P X x 1
for x 1, but we are not told if X is discrete or continuous or neither. Compute E X .
3.7.6 Suppose P Z z 1 for z 5, P Z z 8 z 3 for 5 z 8, and
P Z z 0 for z 8. Compute E Z .
3.7.7 Suppose P W e 5 for 0 and P W 1 for 0.
Compute E W .

3.7.8 Suppose P Y y e y2 2 for y 0 and P Y y 1 for y 0. Compute
E Y . (Hint: The density of a standard normal might help you solve the integral.)
3.7.9 Suppose the cdf of W is given by FW 0 for 10, FW 10
for 10 11, and by FW 1 for 11. Compute E W . (Hint: Remember
that FW P W 1 P W .)

CHALLENGES

3.7.10 Prove part (c) of Theorem 3.7.2. (Hint: If X Y , then how does the event
X t compare to the event Y t ? Hence, how does P X t compare to
P Y t ? And what about X t and Y t ?)

3.8 Further Proofs (Advanced)
Proof of Theorem 3.4.7

We want to prove that if S has a compound distribution as in (3.4.2), then (a) E S
E X1 E N and (b) mS s rN mX1 s .

Because the Xi are i.i.d., we have E X i E X1 for all i . Define Ii by Ii
I 1 N i . Then we can write S i 1 Xi Ii Also note that i 1 Ii N .

Because N is independent of Xi , so is Ii and we have

E S E
i 1

Xi Ii
i 1

E Xi Ii

i 1

E X i E Ii
i 1

E X1 E Ii

E X1
i 1

E Ii E X1 E
i 1

Ii

E X1 E N
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This proves part (a).

Now, using an expectation version of the law of total probability (see Theorem
3.5.3), and recalling that E exp n

i 1 s Xi mX1 s n because the Xi are i.i.d.,
we compute that

mS s

E exp
n

i 1

sXi
n 0

P N n E exp
n

i 1

s Xi N n

n 0

P N n E exp
n

i 1

s Xi
n 0

P N n mX1 s n

E mX1 s N rN mX1 s

thus proving part (b).

Proof of Theorem 3.5.3

We want to show that when X and Y are random variables, and g : R1 R1 is any
function, then E g Y E X Y E g Y X

If X and Y are discrete, then

E g Y E X Y
y R1

g y E X Y y P Y y

y R1

g y
x R1

x P X x Y y P Y y

y R1

g y
x R1

x
P X x Y y

P Y y
P Y y

x R1 y R1

g y x P X x Y y E g Y X ,

as claimed.
Similarly, if X and Y are jointly absolutely continuous, then

E g Y E X Y g y E X Y y fY y dy

g y x fX Y x y dx fY y dy

g y x
fX Y x y

fY y
dx fY y dy

g y x fX Y x y dx dy E g Y X

as claimed.
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Proof of Theorem 3.5.4

We want to prove that, when X and Y are random variables, and g : R1 R1 is any
function, then E g Y X Y g Y E X Y

For simplicity, we assume X and Y are discrete; the jointly absolutely continuous
case is similar. Then for any y with P Y y 0,

E g Y X Y y
x R1 z R1

g z x P X x Y z Y y

x R1

g y x P X x Y y

g y
x R1

x P X x Y y g y E X Y y .

Because this is true for any y, we must have E g Y X Y g Y E X Y , as
claimed.

Proof of Theorem 3.5.6

We need to show that for random variables X and Y , Var X Var E X Y
E Var X Y

Using Theorem 3.5.2, we have that

Var X E X X
2 E E X X

2 Y . (3.8.1)

Now,

X X
2 X E X Y E X Y X

2

X E X Y 2 E X Y X
2

2 X E X Y E X Y X (3.8.2)

But E X E X Y 2 Y Var X Y
Also, again using Theorem 3.5.2,

E E E X Y X
2 Y E E X Y X

2 Var E X Y

Finally, using Theorem 3.5.4 and linearity (Theorem 3.5.1), we see that

E X E X Y E X Y X Y

E X Y X E X E X Y Y

E X Y X E X Y E E X Y Y

E X Y X E X Y E X Y 0

From (3.8.1), (3.8.2), and linearity, we have that Var X E Var X Y
Var E X Y 0 which completes the proof.
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Proof of Theorem 3.6.3 (Cauchy–Schwartz inequality)

We will prove that whenever X and Y are arbitrary random variables, each having
finite, nonzero variance, then

Cov X Y Var X Var Y

Furthermore, if Var Y 0, then equality is attained if and only if X X Y

Y where Cov X Y Var Y .
If Var Y 0 then Challenge 3.3.30 implies that Y Y with probability 1

(because Var Y E Y Y
2 0). This implies that

Cov X Y E X X Y Y 0 Var X Var Y

and the Cauchy–Schwartz inequality holds.
If Var Y 0 let Z X X and W Y Y . Then for any real number ,

we compute, using linearity, that

E Z W 2 E Z2 2 E ZW 2E W2

Var X 2 Cov X Y 2 Var Y

a 2 b c

where a Var Y 0 b 2 Cov X Y , and c Var X . On the other hand,
clearly E Z W 2 0 for all . Hence, we have a quadratic equation that is
always nonnegative, and so has at most one real root.

By the quadratic formula, any quadratic equation has two real roots provided that
the discriminant b2 4ac 0. Because that is not the case here, we must have
b2 4ac 0, i.e.,

4 Cov X Y 2 4 Var Y Var X 0

Dividing by 4, rearranging, and taking square roots, we see that

Cov X Y Var X Var Y 1 2

as claimed.
Finally, Cov X Y Var X Var Y 1 2 if and only if b2 4ac 0, which

means the quadratic has one real root. Thus, there is some real number such that
E Z W 2 0. Since Z W 2 0, it follows from Challenge 3.3.29 that this
happens if and only if Z W 0 with probability 1, as claimed. When this is the
case, then

Cov X Y E ZW E W 2 E W2 Var Y

and so Cov X Y Var Y when Var Y 0.




