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In Chapter 1, we discussed the probability model as the central object of study in the

theory of probability. This required defining a probability measure P on a class of

subsets of the sample space S. It turns out that there are simpler ways of presenting a

particular probability assignment than this — ways that are much more convenient to

work with than P. This chapter is concerned with the definitions of random variables,

distribution functions, probability functions, density functions, and the development

of the concepts necessary for carrying out calculations for a probability model using

these entities. This chapter also discusses the concept of the conditional distribution of

one random variable, given the values of others. Conditional distributions of random

variables provide the framework for discussing what it means to say that variables are

related, which is important in many applications of probability and statistics.
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34 Section 2.1: Random Variables

2.1 Random Variables
The previous chapter explained how to construct probability models, including a sam-

ple space S and a probability measure P . Once we have a probability model, we may

define random variables for that probability model.

Intuitively, a random variable assigns a numerical value to each possible outcome

in the sample space. For example, if the sample space is {rain, snow, clear}, then we

might define a random variable X such that X = 3 if it rains, X = 6 if it snows, and

X = −2.7 if it is clear.

More formally, we have the following definition.

Definition 2.1.1 A random variable is a function from the sample space S to the

set R1 of all real numbers.

Figure 2.1.1 provides a graphical representation of a random variable X taking a re-

sponse value s ∈ S into a real number X (s) ∈ R1.
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Figure 2.1.1: A random variable X as a function on the sample space S and taking values in

R1.

EXAMPLE 2.1.1 A Very Simple Random Variable

The random variable described above could be written formally as X : {rain, snow,

clear} → R1 by X (rain) = 3, X (snow) = 6, and X (clear) = −2.7. We will return to

this example below.

We now present several further examples. The point is, we can define random

variables any way we like, as long as they are functions from the sample space to R1.

EXAMPLE 2.1.2

For the case S = {rain, snow, clear}, we might define a second random variable Y by

saying that Y = 0 if it rains, Y = −1/2 if it snows, and Y = 7/8 if it is clear. That is

Y (rain) = 0, Y (snow) = 1/2, and Y (clear) = 7/8.

EXAMPLE 2.1.3

If the sample space corresponds to flipping three different coins, then we could let X

be the total number of heads showing, let Y be the total number of tails showing, let

Z = 0 if there is exactly one head, and otherwise Z = 17, etc.

EXAMPLE 2.1.4

If the sample space corresponds to rolling two fair dice, then we could let X be the

square of the number showing on the first die, let Y be the square of the number show-

ing on the second die, let Z be the sum of the two numbers showing, let W be the

square of the sum of the two numbers showing, let R be the sum of the squares of the

two numbers showing, etc.
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EXAMPLE 2.1.5 Constants as Random Variables

As a special case, every constant value c is also a random variable, by saying that

c(s) = c for all s ∈ S. Thus, 5 is a random variable, as is 3 or −21.6.

EXAMPLE 2.1.6 Indicator Functions

One special kind of random variable is worth mentioning. If A is any event, then we

can define the indicator function of A, written IA, to be the random variable

IA(s) =

{
1 s ∈ A

0 s 6∈ A,

which is equal to 1 on A, and is equal to 0 on AC .

Given random variables X and Y , we can perform the usual arithmetic operations

on them. Thus, for example, Z = X2 is another random variable, defined by Z(s) =
X2(s) = (X (s))2 = X (s) × X (s). Similarly, if W = XY 3, then W (s) = X (s) ×
Y (s)× Y (s)× Y (s), etc. Also, if Z = X + Y , then Z(s) = X (s)+ Y (s), etc.

EXAMPLE 2.1.7

Consider rolling a fair six-sided die, so that S = {1, 2, 3, 4, 5, 6}. Let X be the number

showing, so that X (s) = s for s ∈ S. Let Y be three more than the number showing,

so that Y (s) = s + 3. Let Z = X2 + Y . Then Z(s) = X (s)2 + Y (s) = s2 + s + 3. So

Z(1) = 5, Z(2) = 9, etc.

We write X = Y to mean that X (s) = Y (s) for all s ∈ S. Similarly, we write

X ≤ Y to mean that X (s) ≤ Y (s) for all s ∈ S, and X ≥ Y to mean that X (s) ≥ Y (s)
for all s ∈ S. For example, we write X ≤ c to mean that X (s) ≤ c for all s ∈ S.

EXAMPLE 2.1.8

Again consider rolling a fair six-sided die, with S = {1, 2, 3, 4, 5, 6}. For s ∈ S, let

X (s) = s, and let Y = X + I{6}. This means that

Y (s) = X (s)+ I{6}(s) =

{
s s ≤ 5

7 s = 6.

Hence, Y (s) = X (s) for 1 ≤ s ≤ 5. But it is not true that Y = X , because Y (6) 6=
X (6). On the other hand, it is true that Y ≥ X .

EXAMPLE 2.1.9

For the random variable of Example 2.1.1 above, it is not true that X ≥ 0, nor is it true

that X ≤ 0. However, it is true that X ≥ −2.7 and that X ≤ 6. It is also true that

X ≥ −10 and X ≤ 100.

If S is infinite, then a random variable X can take on infinitely many different

values.

EXAMPLE 2.1.10

If S = {1, 2, 3, . . .}, with P{s} = 2−s for all s ∈ S, and if X is defined by X (s) = s2,

then we always have X ≥ 1. But there is no largest value of X (s) because the value

X (s) increases without bound as s → ∞. We shall call such a random variable an

unbounded random variable.
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Finally, suppose X is a random variable. We know that different states s occur with

different probabilities. It follows that X (s) also takes different values with different

probabilities. These probabilities are called the distribution of X ; we consider them

next.

Summary of Section 2.1

• A random variable is a function from the state space to the set of real numbers.

• The function could be constant, or correspond to counting some random quantity

that arises, or any other sort of function.

EXERCISES

2.1.1 Let S = {1, 2, 3, . . .}, and let X (s) = s2 and Y (s) = 1/s for s ∈ S. For each

of the following quantities, determine (with explanation) whether or not it exists. If it

does exist, then give its value.

(a) mins∈S X (s)
(b) maxs∈S X (s)
(c) mins∈S Y (s)
(d) maxs∈S Y (s)

2.1.2 Let S = {high,middle, low}. Define random variables X , Y , and Z by X (high) =
−12, X (middle) = −2, X (low) = 3, Y (high) = 0, Y (middle) = 0, Y (low) = 1,

Z(high) = 6, Z(middle) = 0, Z(low) = 4. Determine whether each of the following

relations is true or false.

(a) X < Y

(b) X ≤ Y

(c) Y < Z

(d) Y ≤ Z

(e) XY < Z

(f) XY ≤ Z

2.1.3 Let S = {1, 2, 3, 4, 5}.
(a) Define two different (i.e., nonequal) nonconstant random variables, X and Y , on S.

(b) For the random variables X and Y that you have chosen, let Z = X +Y 2. Compute

Z(s) for all s ∈ S.

2.1.4 Consider rolling a fair six-sided die, so that S = {1, 2, 3, 4, 5, 6}. Let X (s) = s,

and Y (s) = s3 + 2. Let Z = XY . Compute Z(s) for all s ∈ S.

2.1.5 Let A and B be events, and let X = IA · IB . Is X an indicator function? If yes,

then of what event?

2.1.6 Let S = {1, 2, 3, 4}, X = I{1,2}, Y = I{2,3}, and Z = I{3,4}. Let W = X+Y + Z .

(a) Compute W (1).
(b) Compute W (2).
(c) Compute W (4).
(d) Determine whether or not W ≥ Z .

2.1.7 Let S = {1, 2, 3}, X = I{1}, Y = I{2,3}, and Z = I{1,2}. Let W = X − Y + Z .

(a) Compute W (1).
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(b) Compute W (2).
(c) Compute W (3).
(d) Determine whether or not W ≥ Z .

2.1.8 Let S = {1, 2, 3, 4, 5}, X = I{1,2,3}, Y = I{2,3}, and Z = I{3,4,5}. Let W =
X − Y + Z .

(a) Compute W (1).
(b) Compute W (2).
(c) Compute W (5).
(d) Determine whether or not W ≥ Z .

2.1.9 Let S = {1, 2, 3, 4}, X = I{1,2}, and Y (s) = s2 X (s).
(a) Compute Y (1).
(b) Compute Y (2).
(c) Compute Y (4).

PROBLEMS

2.1.10 Let X be a random variable.

(a) Is it necessarily true that X ≥ 0?

(b) Is it necessarily true that there is some real number c such that X + c ≥ 0?

(c) Suppose the sample space S is finite. Then is it necessarily true that there is some

real number c such that X + c ≥ 0?

2.1.11 Suppose the sample space S is finite. Is it possible to define an unbounded

random variable on S? Why or why not?

2.1.12 Suppose X is a random variable that takes only the values 0 or 1. Must X be an

indicator function? Explain.

2.1.13 Suppose the sample space S is finite, of size m. How many different indicator

functions can be defined on S?

2.1.14 Suppose X is a random variable. Let Y =
√

X . Must Y be a random variable?

Explain.

DISCUSSION TOPICS

2.1.15 Mathematical probability theory was introduced to the English-speaking world

largely by two American mathematicians, William Feller and Joe Doob, writing in the

early 1950s. According to Professor Doob, the two of them had an argument about

whether random variables should be called “random variables” or “chance variables.”

They decided by flipping a coin — and “random variables” won. (Source: Statistical

Science 12 (1997), No. 4, page 307.) Which name do you think would have been a

better choice?
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2.2 Distributions of Random Variables
Because random variables are defined to be functions of the outcome s, and because

the outcome s is assumed to be random (i.e., to take on different values with different

probabilities), it follows that the value of a random variable will itself be random (as

the name implies).

Specifically, if X is a random variable, then what is the probability that X will equal

some particular value x? Well, X = x precisely when the outcome s is chosen such

that X (s) = x .

EXAMPLE 2.2.1

Let us again consider the random variable of Example 2.1.1, where S = {rain, snow,

clear}, and X is defined by X (rain) = 3, X (snow) = 6, and X (clear) = −2.7. Suppose

further that the probability measure P is such that P(rain) = 0.4, P(snow) = 0.15,

and P(clear) = 0.45. Then clearly, X = 3 only when it rains, X = 6 only when

it snows, and X = −2.7 only when it is clear. Thus, P(X = 3) = P(rain) = 0.4,

P(X = 6) = P(snow) = 0.15, and P(X = −2.7) = P(clear) = 0.45. Also,

P(X = 17) = 0, and in fact P(X = x) = P(∅) = 0 for all x 6∈ {3, 6,−2.7}. We can

also compute that

P(X ∈ {3, 6}) = P(X = 3)+ P(X = 6) = 0.4+ 0.15 = 0.55,

while

P(X < 5) = P(X = 3)+ P(X = −2.7) = 0.4+ 0.45 = 0.85,

etc.

We see from this example that, if B is any subset of the real numbers, then P(X ∈
B) = P({s ∈ S : X (s) ∈ B}). Furthermore, to understand X well requires knowing

the probabilities P(X ∈ B) for different subsets B. That is the motivation for the

following definition.

Definition 2.2.1 If X is a random variable, then the distribution of X is the collec-

tion of probabilities P(X ∈ B) for all subsets B of the real numbers.

Strictly speaking, it is required that B be a Borel subset, which is a technical restriction

from measure theory that need not concern us here. Any subset that we could ever

write down is a Borel subset.

In Figure 2.2.1, we provide a graphical representation of how we compute the dis-

tribution of a random variable X. For a set B, we must find the elements in s ∈ S such

that X (s) ∈ B. These elements are given by the set {s ∈ S : X (s) ∈ B}. Then we

evaluate the probability P({s ∈ S : X (s) ∈ B}). We must do this for every subset

B ⊂ R1.
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Figure 2.2.1: If B = (a, b) ⊂ R1, then {s ∈ S : X (s) ∈ B} is the set of elements such that

a < X (s) < b.

EXAMPLE 2.2.2 A Very Simple Distribution

Consider once again the above random variable, where S = {rain, snow, clear} and

where X is defined by X (rain) = 3, X (snow) = 6, and X (clear) = −2.7, and

P(rain) = 0.4, P(snow) = 0.15, and P(clear) = 0.45. What is the distribution of

X? Well, if B is any subset of the real numbers, then P(X ∈ B) should count 0.4 if

3 ∈ B, plus 0.15 if 6 ∈ B, plus 0.45 if −2.7 ∈ B. We can formally write all this

information at once by saying that

P(X ∈ B) = 0.4 IB(3)+ 0.15 IB(6)+ 0.45 IB(−2.7),

where again IB(x) = 1 if x ∈ B, and IB(x) = 0 if x 6∈ B.

EXAMPLE 2.2.3 An Almost-As-Simple Distribution

Consider once again the above setting, with S = {rain, snow, clear}, and P(rain) = 0.4,

P(snow) = 0.15, and P(clear) = 0.45. Consider a random variable Y defined by

Y (rain) = 5, Y (snow) = 7, and Y (clear) = 5.

What is the distribution of Y ? Clearly, Y = 7 only when it snows, so that P(Y =
7) = P(snow) = 0.15. However, here Y = 5 if it rains or if it is clear. Hence,

P(Y = 5) = P({rain, clear}) = 0.4 + 0.45 = 0.85. Therefore, if B is any subset of

the real numbers, then

P(Y ∈ B) = 0.15 IB(7)+ 0.85 IB(5).

While the above examples show that it is possible to keep track of P(X ∈ B) for all

subsets B of the real numbers, they also indicate that it is rather cumbersome to do so.

Fortunately, there are simpler functions available to help us keep track of probability

distributions, including cumulative distribution functions, probability functions, and

density functions. We discuss these next.

Summary of Section 2.2

• The distribution of a random variable X is the collection of probabilities P(X ∈
B) of X belonging to various sets.

• The probability P(X ∈ B) is determined by calculating the probability of the set

of response values s such that X (s) ∈ B, i.e., P(X ∈ B) = P({s ∈ S : X (s) ∈
B}).
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EXERCISES

2.2.1 Consider flipping two independent fair coins. Let X be the number of heads that

appear. Compute P(X = x) for all real numbers x .

2.2.2 Suppose we flip three fair coins, and let X be the number of heads showing.

(a) Compute P(X = x) for every real number x .

(b) Write a formula for P(X ∈ B), for any subset B of the real numbers.

2.2.3 Suppose we roll two fair six-sided dice, and let Y be the sum of the two numbers

showing.

(a) Compute P(Y = y) for every real number y.

(b) Write a formula for P(Y ∈ B), for any subset B of the real numbers.

2.2.4 Suppose we roll one fair six-sided die, and let Z be the number showing. Let

W = Z3 + 4, and let V =
√

Z .

(a) Compute P(W = w) for every real number w.

(b) Compute P(V = v) for every real number v.

(c) Compute P(Z W = x) for every real number x .

(d) Compute P(V W = y) for every real number y.

(e) Compute P(V +W = r) for every real number r .

2.2.5 Suppose that a bowl contains 100 chips: 30 are labelled 1, 20 are labelled 2, and

50 are labelled 3. The chips are thoroughly mixed, a chip is drawn, and the number X

on the chip is noted.

(a) Compute P(X = x) for every real number x .

(b) Suppose the first chip is replaced, a second chip is drawn, and the number Y on the

chip noted. Compute P(Y = y) for every real number y.

(c) Compute P(W = w) for every real number w when W = X + Y.

2.2.6 Suppose a standard deck of 52 playing cards is thoroughly shuffled and a single

card is drawn. Suppose an ace has value 1, a jack has value 11, a queen has value 12,

and a king has value 13.

(a) Compute P(X = x) for every real number x, when X is the value of the card

drawn.

(b) Suppose that Y = 1, 2, 3, or 4 when a diamond, heart, club, or spade is drawn.

Compute P(Y = y) for every real number y.

(c) Compute P(W = w) for every real number w when W = X + Y.

2.2.7 Suppose a university is composed of 55% female students and 45% male stu-

dents. A student is selected to complete a questionnaire. There are 25 questions on

the questionnaire administered to a male student and 30 questions on the questionnaire

administered to a female student. If X denotes the number of questions answered by a

randomly selected student, then compute P(X = x) for every real number x .

2.2.8 Suppose that a bowl contains 10 chips, each uniquely numbered 0 through 9.
The chips are thoroughly mixed, one is drawn and the number on it, X1, is noted. This

chip is then replaced in the bowl. A second chip is drawn and the number on it, X2, is

noted. Compute P(W = w) for every real number w when W = X1 + 10X2.
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PROBLEMS

2.2.9 Suppose that a bowl contains 10 chips each uniquely numbered 0 through 9. The

chips are thoroughly mixed, one is drawn and the number on it, X1, is noted. This chip

is not replaced in the bowl. A second chip is drawn and the number on it, X2, is noted.

Compute P(W = w) for every real number w when W = X1 + 10X2.

CHALLENGES

2.2.10 Suppose Alice flips three fair coins, and let X be the number of heads showing.

Suppose Barbara flips five fair coins, and let Y be the number of heads showing. Let

Z = X − Y . Compute P(Z = z) for every real number z.

2.3 Discrete Distributions
For many random variables X , we have P(X = x) > 0 for certain x values. This

means there is positive probability that the variable will be equal to certain particular

values.

If ∑
x∈R1

P(X = x) = 1,

then all of the probability associated with the random variable X can be found from the

probability that X will be equal to certain particular values. This prompts the following

definition.

Definition 2.3.1 A random variable X is discrete if∑
x∈R1

P(X = x) = 1. (2.3.1)

At first glance one might expect (2.3.1) to be true for any random variable. How-

ever, (2.3.1) does not hold for the uniform distribution on [0, 1] or for other continuous

distributions, as we shall see in the next section.

Random variables satisfying (2.3.1) are simple in some sense because we can un-

derstand them completely just by understanding their probabilities of being equal to

particular values x . Indeed, by simply listing out all the possible values x such that

P(X = x) > 0, we obtain a second, equivalent definition, as follows.

Definition 2.3.2 A random variable X is discrete if there is a finite or countable se-

quence x1, x2, . . . of distinct real numbers, and a corresponding sequence p1, p2, . . .
of nonnegative real numbers, such that P(X = xi ) = pi for all i , and

∑
i pi = 1.

This second definition also suggests how to keep track of discrete distributions. It

prompts the following definition.
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Definition 2.3.3 For a discrete random variable X , its probability function is the

function pX : R1 → [0, 1] defined by

pX (x) = P(X = x).

Hence, if x1, x2, . . . are the distinct values such that P(X = xi ) = pi for all i with∑
i pi = 1, then

pX (x) =

{
pi x = xi for some i

0 otherwise.

Clearly, all the information about the distribution of X is contained in its probability

function, but only if we know that X is a discrete random variable.

Finally, we note that Theorem 1.5.1 immediately implies the following.

Theorem 2.3.1 (Law of total probability, discrete random variable version) Let X

be a discrete random variable, and let A be some event. Then

P(A) =
∑
x∈R1

P(X = x) P(A | X = x).

2.3.1 Important Discrete Distributions

Certain particular discrete distributions are so important that we list them here.

EXAMPLE 2.3.1 Degenerate Distributions

Let c be some fixed real number. Then, as already discussed, c is also a random variable

(in fact, c is a constant random variable). In this case, clearly c is discrete, with

probability function pc satisfying that pc(c) = 1, and pc(x) = 0 for x 6= c. Because c

is always equal to a particular value (namely, c) with probability 1, the distribution of

c is sometimes called a point mass or point distribution or degenerate distribution.

EXAMPLE 2.3.2 The Bernoulli Distribution

Consider flipping a coin that has probability θ of coming up heads and probability 1−θ
of coming up tails, where 0 < θ < 1. Let X = 1 if the coin is heads, while X = 0 if

the coin is tails. Then pX (1) = P(X = 1) = θ , while pX (0) = P(X = 0) = 1 − θ .

The random variable X is said to have the Bernoulli(θ) distribution; we write this as

X ∼ Bernoulli(θ).
Bernoulli distributions arise anytime we have a response variable that takes only

two possible values, and we label one of these outcomes as 1 and the other as 0. For

example, 1 could correspond to success and 0 to failure of some quality test applied to

an item produced in a manufacturing process. In this case, θ is the proportion of manu-

factured items that will pass the test. Alternatively, we could be randomly selecting an

individual from a population and recording a 1 when the individual is female and a 0 if

the individual is a male. In this case, θ is the proportion of females in the population.
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EXAMPLE 2.3.3 The Binomial Distribution

Consider flipping n coins, each of which has (independent) probability θ of coming up

heads, and probability 1− θ of coming up tails. (Again, 0 < θ < 1.) Let X be the total

number of heads showing. By (1.4.2), we see that for x = 0, 1, 2, . . . , n,

pX (x) = P(X = x) =

(
n

x

)
θ x (1− θ)n−x =

n!

x! (n − x)!
θ x (1− θ)n−x .

The random variable X is said to have the Binomial(n, θ) distribution; we write this as

X ∼ Binomial(n, θ). The Bernoulli(θ) distribution corresponds to the special case of

the Binomial(n, θ) distribution when n = 1, namely, Bernoulli(θ) = Binomial(1, θ).
Figure 2.3.1 contains the plots of several Binomial(20, θ) probability functions.
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Figure 2.3.1: Plot of the Binomial(20, 1/2) (• • •) and the Binomial(20, 1/5) (◦ ◦ ◦)
probability functions.

The binomial distribution is applicable to any situation involving n independent

performances of a random system; for each performance, we are recording whether a

particular event has occurred, called a success, or has not occurred, called a failure. If

we denote the event in question by A and put θ = P(A), we have that the number of

successes in the n performances is distributed Binomial(n, θ). For example, we could

be testing light bulbs produced by a manufacturer, and θ is the probability that a bulb

works when we test it. Then the number of bulbs that work in a batch of n is distributed

Binomial(n, θ). If a baseball player has probability θ of getting a hit when at bat, then

the number of hits obtained in n at-bats is distributed Binomial(n, θ).
There is another way of expressing the binomial distribution that is sometimes

useful. For example, if X1, X2, . . . , Xn are chosen independently and each has the

Bernoulli(θ) distribution, and Y = X1+· · ·+ Xn , then Y will have the Binomial(n, θ)
distribution (see Example 3.4.10 for the details).

EXAMPLE 2.3.4 The Geometric Distribution

Consider repeatedly flipping a coin that has probability θ of coming up heads and

probability 1 − θ of coming up tails, where again 0 < θ < 1. Let X be the number
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of tails that appear before the first head. Then for k ≥ 0, X = k if and only if the

coin shows exactly k tails followed by a head. The probability of this is equal to

(1 − θ)kθ . (In particular, the probability of getting an infinite number of tails before

the first head is equal to (1 − θ)∞θ = 0, so X is never equal to infinity.) Hence,

pX (k) = (1− θ)kθ , for k = 0, 1, 2, 3, . . . . The random variable X is said to have the

Geometric(θ) distribution; we write this as X ∼ Geometric(θ). Figure 2.3.2 contains

the plots of several Geometric(θ) probability functions.
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Figure 2.3.2: Plot of the Geometric(1/2) (• • •) and the Geometric(1/5) (◦ ◦ ◦) probability

functions at the values 0, 1, . . . , 15.

The geometric distribution applies whenever we are counting the number of failures

until the first success for independent performances of a random system where the

occurrence of some event is considered a success. For example, the number of light

bulbs tested that work until the first bulb that does not (a working bulb is considered a

“failure” for the test) and the number of at-bats without a hit until the first hit for the

baseball player both follow the geometric distribution.

We note that some books instead define the geometric distribution to be the number

of coin flips up to and including the first head, which is simply equal to one plus the

random variable defined here.

EXAMPLE 2.3.5 The Negative-Binomial Distribution

Generalizing the previous example, consider again repeatedly flipping a coin that has

probability θ of coming up heads and probability 1 − θ of coming up tails. Let r be a

positive integer, and let Y be the number of tails that appear before the r th head. Then

for k ≥ 0, Y = k if and only if the coin shows exactly r − 1 heads (and k tails) on the

first r − 1 + k flips, and then shows a head on the (r + k)-th flip. The probability of

this is equal to

pY (k) =

(
r − 1+ k

r − 1

)
θr−1(1− θ)kθ =

(
r − 1+ k

k

)
θr (1− θ)k,

for k = 0, 1, 2, 3, . . . .
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The random variable Y is said to have the Negative-Binomial(r, θ) distribution;

we write this as Y ∼ Negative-Binomial(r, θ). Of course, the special case r = 1

corresponds to the Geometric(θ) distribution. So in terms of our notation, we have that

Negative-Binomial(1, θ) = Geometric(θ). Figure 2.3.3 contains the plots of several

Negative-Binomial(r, θ) probability functions.
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Figure 2.3.3: Plot of the Negative-Binomial(2, 1/2) (• • •) probability function and the

Negative-Binomial(10, 1/2) (◦ ◦ ◦) probability function at the values 0, 1, . . . , 20.

The Negative-Binomial(r, θ) distribution applies whenever we are counting the

number of failures until the r th success for independent performances of a random

system where the occurrence of some event is considered a success. For example, the

number of light bulbs tested that work until the third bulb that does not and the num-

ber of at-bats without a hit until the fifth hit for the baseball player both follow the

negative-binomial distribution.

EXAMPLE 2.3.6 The Poisson Distribution

We say that a random variable Y has the Poisson(λ) distribution, and write Y ∼
Poisson(λ), if

pY (y) = P(Y = y) =
λy

y!
e−λ

for y = 0, 1, 2, 3, . . . . We note that since (from calculus)
∑∞

y=0 λ
y/y! = eλ, it is

indeed true (as it must be) that
∑∞

y=0 P(Y = y) = 1. Figure 2.3.4 contains the plots

of several Poisson(λ) probability functions.
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Figure 2.3.4: Plot of the Poisson(2) (• • •) and the Poisson(10) (◦ ◦ ◦) probability functions at

the values 0, 1, . . . , 20.
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We motivate the Poisson distribution as follows. Suppose X ∼ Binomial(n, θ),
i.e., X has the Binomial(n, θ) distribution as in Example 2.3.3. Then for 0 ≤ x ≤ n,

P(X = x) =

(
n

x

)
θ x (1− θ)n−x .

If we set θ = λ / n for some λ > 0, then this becomes

P(X = x) =

(
n

x

) (
λ

n

)x (
1−

λ

n

)n−x

=
n(n − 1) · · · (n − x + 1)

x!

(
λ

n

)x (
1−

λ

n

)n−x

. (2.3.2)

Let us now consider what happens if we let n → ∞ in (2.3.2), while keeping x

fixed at some nonnegative integer. In that case,

n(n − 1) (n − 2) · · · (n − x + 1)

nx
= 1

(
1−

1

n

)(
1−

2

n

)
· · ·

(
1−

x + 1

n

)
converges to 1 while (since from calculus (1+ (c/n))n → ec for any c)(

1−
λ

n

)n−x

=

(
1−

λ

n

)n (
1−

λ

n

)−x

→ e−λ · 1 = e−λ.

Substituting these limits into (2.3.2), we see that

lim
n→∞

P(X = x) =
λx

x!
e−λ

for x = 0, 1, 2, 3, . . . .
Intuitively, we can phrase this result as follows. If we flip a very large number

of coins n, and each coin has a very small probability θ = λ/n of coming up heads,

then the probability that the total number of heads will be x is approximately given

by λx e−λ/x!. Figure 2.3.5 displays the accuracy of this estimate when we are ap-

proximating the Binomial(100, 1/10) distribution by the Poisson(λ) distribution where

λ = nθ = 100(1/10) = 10.
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Figure 2.3.5: Plot of the Binomial(100, 1/10) (• • •) and the Poisson(10) (◦ ◦ ◦) probability

functions at the values 0, 1, . . . , 20.
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The Poisson distribution is a good model for counting random occurrences of an

event when there are many possible occurrences, but each occurrence has very small

probability. Examples include the number of house fires in a city on a given day, the

number of radioactive events recorded by a Geiger counter, the number of phone calls

arriving at a switchboard, the number of hits on a popular World Wide Web page on a

given day, etc.

EXAMPLE 2.3.7 The Hypergeometric Distribution

Suppose that an urn contains M white balls and N − M black balls. Suppose we

draw n ≤ N balls from the urn in such a fashion that each subset of n balls has the

same probability of being drawn. Because there are
(

N
n

)
such subsets, this probability

is 1/
(

N
n

)
.

One way of accomplishing this is to thoroughly mix the balls in the urn and then

draw a first ball. Accordingly, each ball has probability 1/N of being drawn. Then,

without replacing the first ball, we thoroughly mix the balls in the urn and draw a

second ball. So each ball in the urn has probability 1/(N −1) of being drawn. We then

have that any two balls, say the i th and j th balls, have probability

P(ball i and j are drawn)

= P(ball i is drawn first)P(ball j is drawn second | ball i is drawn first)

+ P(ball j is drawn first)P(ball i is drawn second | ball j is drawn first)

=
1

N

1

N − 1
+

1

N

1

N − 1
= 1/

(
N

2

)
of being drawn in the first two draws. Continuing in this fashion for n draws, we obtain

that the probability of any particular set of n balls being drawn is 1/
(

N
n

)
. This type of

sampling is called sampling without replacement.

Given that we take a sample of n, let X denote the number of white balls obtained.

Note that we must have X ≥ 0 and X ≥ n − (N − M) because at most N − M of

the balls could be black. Hence, X ≥ max(0, n + M − N ). Furthermore, X ≤ n and

X ≤ M because there are only M white balls. Hence, X ≤ min(n,M).
So suppose max(0, n + M − N ) ≤ x ≤ min(n,M). What is the probability that

x white balls are obtained? In other words, what is P(X = x)? To evaluate this, we

know that we need to count the number of subsets of n balls that contain x white balls.

Using the combinatorial principles of Section 1.4.1, we see that this number is given

by
(

M
x

) (
N−M
n−x

)
. Therefore,

P(X = x) =

(
M

x

)(
N − M

n − x

) / (
N

n

)
for max(0, n + M − N ) ≤ x ≤ min(n,M). The random variable X is said to have the

Hypergeometric(N ,M, n) distribution. In Figure 2.3.6, we have plotted some hyper-

geometric probability functions. The Hypergeometric(20, 10, 10) probability function

is 0 for x > 10, while the Hypergeometric(20, 10, 5) probability function is 0 for

x > 5.
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Figure 2.3.6: Plot of Hypergeometric(20, 10, 10) (• • •) and Hypergeometric(20, 10, 5)
(◦ ◦ ◦) probability functions.

Obviously, the hypergeometric distribution will apply to any context wherein we

are sampling without replacement from a finite set of N elements and where each el-

ement of the set either has a characteristic or does not. For example, if we randomly

select people to participate in an opinion poll so that each set of n individuals in a pop-

ulation of N has the same probability of being selected, then the number of people who

respond yes to a particular question is distributed Hypergeometric(N ,M, n), where M

is the number of people in the entire population who would respond yes. We will see

the relevance of this to statistics in Section 5.4.2.

Suppose in Example 2.3.7 we had instead replaced the drawn ball before draw-

ing the next ball. This is called sampling with replacement. It is then clear, from

Example 2.3.3, that the number of white balls observed in n draws is distributed

Binomial(n,M/N ).

Summary of Section 2.3

• A random variable X is discrete if
∑

x P(X = x) = 1, i.e., if all its probability

comes from being equal to particular values.

• A discrete random variable X takes on only a finite, or countable, number of

distinct values.

• Important discrete distributions include the degenerate, Bernoulli, binomial, geo-

metric, negative-binomial, Poisson, and hypergeometric distributions.

EXERCISES

2.3.1 Consider rolling two fair six-sided dice. Let Y be the sum of the numbers show-

ing. What is the probability function of Y ?

2.3.2 Consider flipping a fair coin. Let Z = 1 if the coin is heads, and Z = 3 if the

coin is tails. Let W = Z2 + Z .

(a) What is the probability function of Z?

(b) What is the probability function of W ?
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2.3.3 Consider flipping two fair coins. Let X = 1 if the first coin is heads, and X = 0

if the first coin is tails. Let Y = 1 if the second coin is heads, and Y = 5 if the second

coin is tails. Let Z = XY . What is the probability function of Z?

2.3.4 Consider flipping two fair coins. Let X = 1 if the first coin is heads, and X = 0

if the first coin is tails. Let Y = 1 if the two coins show the same thing (i.e., both heads

or both tails), with Y = 0 otherwise. Let Z = X + Y , and W = XY .

(a) What is the probability function of Z?

(b) What is the probability function of W ?

2.3.5 Consider rolling two fair six-sided dice. Let W be the product of the numbers

showing. What is the probability function of W ?

2.3.6 Let Z ∼ Geometric(θ). Compute P(5 ≤ Z ≤ 9).

2.3.7 Let X ∼ Binomial(12, θ). For what value of θ is P(X = 11) maximized?

2.3.8 Let W ∼ Poisson(λ). For what value of λ is P(W = 11) maximized?

2.3.9 Let Z ∼ Negative-Binomial(3, 1/4). Compute P(Z ≤ 2).

2.3.10 Let X ∼ Geometric(1/5). Compute P(X2 ≤ 15).

2.3.11 Let Y ∼ Binomial(10, θ). Compute P(Y = 10).

2.3.12 Let X ∼ Poisson(λ). Let Y = X − 7. What is the probability function of Y ?

2.3.13 Let X ∼ Hypergeometric(20, 7, 8). What is the probability that X = 3? What

is the probability that X = 8?

2.3.14 Suppose that a symmetrical die is rolled 20 independent times, and each time

we record whether or not the event {2, 3, 5, 6} has occurred.

(a) What is the distribution of the number of times this event occurs in 20 rolls?

(b) Calculate the probability that the event occurs five times.

2.3.15 Suppose that a basketball player sinks a basket from a certain position on the

court with probability 0.35.

(a) What is the probability that the player sinks three baskets in 10 independent throws?

(b) What is the probability that the player throws 10 times before obtaining the first

basket?

(c) What is the probability that the player throws 10 times before obtaining two baskets?

2.3.16 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball

is drawn from the urn, its color is noted, and the ball is returned to the urn.

(a) What is the probability that 5 black balls are observed in 15 such draws?

(b) What is the probability that 15 draws are required until the first black ball is ob-

served?

(c) What is the probability that 15 draws are required until the fifth black ball is ob-

served?

2.3.17 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball

is drawn from the urn, its color is noted, and the ball is set aside. The remaining balls

are then mixed and a second ball is drawn.

(a) What is the probability distribution of the number of black balls observed?

(b) What is the probability distribution of the number of white balls observed?
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2.3.18 (Poisson processes and queues) Consider a situation involving a server, e.g.,

a cashier at a fast-food restaurant, an automatic bank teller machine, a telephone ex-

change, etc. Units typically arrive for service in a random fashion and form a queue

when the server is busy. It is often the case that the number of arrivals at the server, for

some specific unit of time t, can be modeled by a Poisson(λt) distribution and is such

that the number of arrivals in nonoverlapping periods are independent. In Chapter 3,

we will show that λt is the average number of arrivals during a time period of length t,
and so λ is the rate of arrivals per unit of time.

Suppose telephone calls arrive at a help line at the rate of two per minute. A Poisson

process provides a good model.

(a) What is the probability that five calls arrive in the next 2 minutes?

(b) What is the probability that five calls arrive in the next 2 minutes and then five more

calls arrive in the following 2 minutes?

(c) What is the probability that no calls will arrive during a 10-minute period?

2.3.19 Suppose an urn contains 1000 balls — one of these is black, and the other 999

are white. Suppose that 100 balls are randomly drawn from the urn with replacement.

Use the appropriate Poisson distribution to approximate the probability that five black

balls are observed.

2.3.20 Suppose that there is a loop in a computer program and that the test to exit

the loop depends on the value of a random variable X. The program exits the loop

whenever X ∈ A, and this occurs with probability 1/3. If the loop is executed at least

once, what is the probability that the loop is executed five times before exiting?

COMPUTER EXERCISES

2.3.21 Tabulate and plot the Hypergeometric(20, 8, 10) probability function.

2.3.22 Tabulate and plot the Binomial(30, 0.3) probability function. Tabulate and plot

the Binomial(30, 0.7) probability function. Explain why the Binomial(30, 0.3) proba-

bility function at x agrees with the Binomial(30, 0.7) probability function at n − x .

PROBLEMS

2.3.23 Let X be a discrete random variable with probability function pX (x) = 2−x for

x = 1, 2, 3, . . . , with pX (x) = 0 otherwise.

(a) Let Y = X2. What is the probability function pY of Y ?

(b) Let Z = X − 1. What is the distribution of Z? (Identify the distribution by name

and specify all parameter values.)

2.3.24 Let X ∼ Binomial(n1, θ) and Y ∼ Binomial(n2, θ), with X and Y chosen

independently. Let Z = X + Y . What will be the distribution of Z? (Explain your

reasoning.) (Hint: See the end of Example 2.3.3.)

2.3.25 Let X ∼ Geometric(θ) and Y ∼ Geometric(θ), with X and Y chosen indepen-

dently. Let Z = X + Y . What will be the distribution of Z? Generalize this to r coins.

(Explain your reasoning.)
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2.3.26 Let X ∼ Geometric(θ1) and Y ∼ Geometric(θ2), with X and Y chosen in-

dependently. Compute P (X ≤ Y ). Explain what this probability is in terms of coin

tossing.

2.3.27 Suppose that X ∼ Geometric(λ/n). Compute limn→∞ P(X ≤ n).

2.3.28 Let X ∼ Negative-Binomial(r, θ) and Y ∼ Negative-Binomial(s, θ), with X

and Y chosen independently. Let Z = X + Y . What will be the distribution of Z?

(Explain your reasoning.)

2.3.29 (Generalized hypergeometric distribution) Suppose that a set contains N ob-

jects, M1 of which are labelled 1, M2 of which are labelled 2, and the remainder of

which are labelled 3. Suppose we select a sample of n ≤ N objects from the set using

sampling without replacement, as described in Example 2.3.7. Determine the proba-

bility that we obtain the counts ( f1, f2, f3) where fi is the number of objects labelled

i in the sample.

2.3.30 Suppose that units arrive at a server according to a Poisson process at rate λ (see

Exercise 2.3.18). Let T be the amount of time until the first call. Calculate P(T > t).

2.4 Continuous Distributions
In the previous section, we considered discrete random variables X for which P(X =
x) > 0 for certain values of x . However, for some random variables X , such as one

having the uniform distribution, we have P(X = x) = 0 for all x . This prompts the

following definition.

Definition 2.4.1 A random variable X is continuous if

P(X = x) = 0 , (2.4.1)

for all x ∈ R1.

EXAMPLE 2.4.1 The Uniform[0, 1] Distribution

Consider a random variable whose distribution is the uniform distribution on [0, 1], as

presented in (1.2.2). That is,

P(a ≤ X ≤ b) = b − a, (2.4.2)

whenever 0 ≤ a ≤ b ≤ 1, with P(X < 0) = P(X > 1) = 0. The random variable X

is said to have the Uniform[0, 1] distribution; we write this as X ∼ Uniform[0, 1]. For

example,

P

(
1

2
≤ X ≤

3

4

)
=

3

4
−

1

2
=

1

4
.

Also,

P

(
X ≥

2

3

)
= P

(
2

3
≤ X ≤ 1

)
+ P (X > 1)) =

(
1−

2

3

)
+ 0 =

1

3
.

In fact, for any x ∈ [0, 1],

P(X ≤ x) = P(X < 0)+ P(0 ≤ X ≤ x) = 0+ (x − 0) = x .
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Note that setting a = b = x in (2.4.2), we see in particular that P(X = x) = x −
x = 0 for every x ∈ R1. Thus, the uniform distribution is an example of a continuous

distribution. In fact, it is one of the most important examples!

The Uniform[0, 1] distribution is fairly easy to work with. However, in general,

continuous distributions are very difficult to work with. Because P(X = x) = 0 for

all x , we cannot simply add up probabilities as we can for discrete random variables.

Thus, how can we keep track of all the probabilities?

A possible solution is suggested by rewriting (2.4.2), as follows. For x ∈ R1, let

f (x) =

{
1 0 ≤ x ≤ 1

0 otherwise.
(2.4.3)

Then (2.4.2) can be rewritten as

P(a ≤ X ≤ b) =

∫ b

a

f (x) dx, (2.4.4)

whenever a ≤ b .
One might wonder about the wisdom of converting the simple equation (2.4.2) into

the complicated integral equation (2.4.4). However, the advantage of (2.4.4) is that, by

modifying the function f , we can obtain many other continuous distributions besides

the uniform distribution. To explore this, we make the following definitions.

Definition 2.4.2 Let f : R1 → R1 be a function. Then f is a density function if

f (x) ≥ 0 for all x ∈ R1, and
∫∞
−∞ f (x) dx = 1.

Definition 2.4.3 A random variable X is absolutely continuous if there is a density

function f , such that

P(a ≤ X ≤ b) =

∫ b

a

f (x) dx, (2.4.5)

whenever a ≤ b , as in (2.4.4).

In particular, if b = a + δ, with δ a small positive number, and if f is continuous at a,

then we see that

P(a ≤ X ≤ a + δ) =

∫ a+δ

a

f (x) dx ≈ δ f (a).

Thus, a density function evaluated at a may be thought of as measuring the probability

of a random variable being in a small interval about a.

To better understand absolutely continuous random variables, we note the following

theorem.

Theorem 2.4.1 Let X be an absolutely continuous random variable. Then X is a

continuous random variable, i.e., P(X = a) = 0 for all a ∈ R1.
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PROOF Let a be any real number. Then P(X = a) = P(a ≤ X ≤ a). On the

other hand, setting a = b in (2.4.5), we see that P(a ≤ X ≤ a) =
∫ a

a
f (x) dx = 0.

Hence, P(X = a) = 0 for all a, as required.

It turns out that the converse to Theorem 2.4.1 is false. That is, not all continuous

distributions are absolutely continuous.1 However, most of the continuous distributions

that arise in statistics are absolutely continuous. Furthermore, absolutely continuous

distributions are much easier to work with than are other kinds of continuous distribu-

tions. Hence, we restrict our discussion to absolutely continuous distributions here. In

fact, statisticians sometimes say that X is continuous as shorthand for saying that X is

absolutely continuous.

2.4.1 Important Absolutely Continuous Distributions

Certain absolutely continuous distributions are so important that we list them here.

EXAMPLE 2.4.2 The Uniform[0, 1] Distribution

Clearly, the uniform distribution is absolutely continuous, with the density function

given by (2.4.3). We will see, in Section 2.10, that the Uniform[0, 1] distribution has

an important relationship with every absolutely continuous distribution.

EXAMPLE 2.4.3 The Uniform[L , R] Distribution

Let L and R be any two real numbers with L < R. Consider a random variable X such

that

P(a ≤ X ≤ b) =
b − a

R − L
(2.4.6)

whenever L ≤ a ≤ b ≤ R , with P(X < L) = P(X > R) = 0. The random variable

X is said to have the Uniform[L , R] distribution; we write this as X ∼ Uniform[L , R].

(If L = 0 and R = 1, then this definition coincides with the previous definition of the

Uniform[0, 1] distribution.) Note that X ∼ Uniform[L , R] has the same probability of

being in any two subintervals of [L , R] that have the same length.

Note that the Uniform[L , R] distribution is also absolutely continuous, with density

given by

f (x) =

{
1

R−L
L ≤ x ≤ R

0 otherwise.

In Figure 2.4.1 we have plotted a Uniform[2, 4] density.

1For examples of this, see more advanced probability books, e.g., page 143 of A First Look at Rigorous

Probability Theory, Second Edition, by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).
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Figure 2.4.1: A Uniform[2, 4] density function.

EXAMPLE 2.4.4 The Exponential(1) Distribution

Define a function f : R1 → R1 by

f (x) =

{
e−x x ≥ 0

0 x < 0.

Then clearly, f (x) ≥ 0 for all x . Also,∫ ∞
−∞

f (x) dx =

∫ ∞
0

e−x dx = −e−x
∣∣∣∞
0
= (−0)− (−1) = 1 .

Hence, f is a density function. See Figure 2.4.2 for a plot of this density.

Consider now a random variable X having this density function f . If 0 ≤ a ≤ b <
∞, then

P(a ≤ X ≤ b) =

∫ b

a

f (x) dx =

∫ b

a

e−x dx = (−e−b)− (−e−a) = e−a − e−b.

The random variable X is said to have the Exponential(1) distribution, which we write

as X ∼ Exponential(1). The exponential distribution has many important properties,

which we will explore in the coming sections.

EXAMPLE 2.4.5 The Exponential(λ) Distribution

Let λ > 0 be a fixed constant. Define a function f : R1 → R1 by

f (x) =

{
λ e−λx x ≥ 0

0 x < 0.

Then clearly, f (x) ≥ 0 for all x . Also,∫ ∞
−∞

f (x) dx =

∫ ∞
0

λe−λx dx = −e−λx
∣∣∣∞
0
= (−0)− (−1) = 1.

Hence, f is again a density function. (If λ = 1, then this corresponds to the Exponential(1)
density.)
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If X is a random variable having this density function f , then

P(a ≤ X ≤ b) =

∫ b

a

λ e−λx dx = (−e−λb)− (−e−λa) = e−λa − e−λb

for 0 ≤ a ≤ b < ∞. The random variable X is said to have the Exponential(λ)
distribution; we write this as X ∼ Exponential(λ). Note that some books and software

packages instead replace λ by 1/λ in the definition of the Exponential(λ) distribution

— always check this when using another book or when using software.

An exponential distribution can often be used to model lifelengths. For example, a

certain type of light bulb produced by a manufacturer might follow an Exponential(λ)
distribution for an appropriate choice of λ. By this we mean that the lifelength X of a

randomly selected light bulb from those produced by this manufacturer has probability

P(X ≥ x) =

∫ ∞
x

λe−λz dz = e−λx

of lasting longer than x, in whatever units of time are being used. We will see in

Chapter 3 that, in a specific application, the value 1/λ will correspond to the average

lifelength of the light bulbs.

As another application of this distribution, consider a situation involving a server,

e.g., a cashier at a fast-food restaurant, an automatic bank teller machine, a telephone

exchange, etc. Units arrive for service in a random fashion and form a queue when the

server is busy. It is often the case that the number of arrivals at the server, for some

specific unit of time t, can be modeled by a Poisson(λt) distribution. Now let T1 be the

time until the first arrival. Then we have

P (T1 > t) = P (no arrivals in (0, t]) =
(λt)0

0!
e−λt = e−λt

and T1 has density given by

f (t) = −
d

dt

∫ ∞
t

f (z) dz = −
d

dt
P (T1 > t) = λe−λt .

So T1 ∼ Exponential(λ).

EXAMPLE 2.4.6 The Gamma(α, λ) Distribution

The gamma function is defined by

0(α) =

∫ ∞
0

tα−1e−t dt , α > 0.

It turns out (see Problem 2.4.15) that

0(α + 1) = α0(α) (2.4.7)

and that if n is a positive integer, then 0(n) = (n − 1)!, while 0(1/2) =
√
π .
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We can use the gamma function to define the density of the Gamma(α, λ) distribu-

tion, as follows. Let α > 0 and λ > 0, and define a function f by

f (x) =
λαxα−1

0(α)
e−λx (2.4.8)

when x > 0 , with f (x) = 0 for x ≤ 0. Then clearly f ≥ 0. Furthermore, it is

not hard to verify (see Problem 2.4.17) that
∫∞

0
f (x) dx = 1. Hence, f is a density

function.

A random variable X having density function f given by (2.4.8) is said to have the

Gamma(α, λ) distribution; we write this as X ∼ Gamma(α, λ). Note that some books

and software packages instead replace λ by 1/λ in the definition of the Gamma(α, λ)
distribution — always check this when using another book or when using software.

The case α = 1 corresponds (because 0(1) = 0! = 1) to the Exponential(λ)
distribution: Gamma(1, λ) = Exponential(λ). In Figure 2.4.2, we have plotted several

Gamma(α, λ) density functions.
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Figure 2.4.2: Graph of an Exponential(1) (solid line), a Gamma(2, 1) (dashed line), and a

Gamma(3, 1) (dotted line) density.

A gamma distribution can also be used to model lifelengths. As Figure 2.4.2 shows,

the gamma family gives a much greater variety of shapes to choose from than from the

exponential family.

We now define a function φ : R1 → R1 by

φ(x) =
1
√

2π
e−x2/2. (2.4.9)

This function φ is the famous “bell-shaped curve” because its graph is in the shape of

a bell, as shown in Figure 2.4.3.



Chapter 2: Random Variables and Distributions 57

5 4 3 2 1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

phi

Figure 2.4.3: Plot of the function φ in (2.4.9).

We have the following result for φ.

Theorem 2.4.2 The function φ given by (2.4.9) is a density function.

PROOF See Section 2.11 for the proof of this result.

This leads to the following important distributions.

EXAMPLE 2.4.7 The N (0, 1) Distribution

Let X be a random variable having the density function φ given by (2.4.9). This means

that for −∞ < a ≤ b <∞,

P(a ≤ X ≤ b) =

∫ b

a

φ(x) dx =

∫ b

a

1
√

2π
e−x2/2 dx .

The random variable X is said to have the N (0, 1) distribution (or the standard normal

distribution); we write this as X ∼ N (0, 1).

EXAMPLE 2.4.8 The N (µ, σ 2) Distribution

Let µ ∈ R1, and let σ > 0. Let f be the function defined by

f (x) =
1

σ
φ(

x − µ

σ
) =

1

σ
√

2π
e−(x−µ)

2/2σ 2

.

(If µ = 0 and σ = 1, then this corresponds with the previous example.) Clearly,

f ≥ 0. Also, letting y = (x − µ)/σ , we have∫ ∞
−∞

f (x) dx =

∫ ∞
−∞

σ−1φ((x−µ)/σ) dx =

∫ ∞
−∞

σ−1φ(y)σ dy =

∫ ∞
−∞

φ(y) dy = 1.

Hence, f is a density function.

Let X be a random variable having this density function f . The random variable

X is said to have the N (µ, σ 2) distribution; we write this as X ∼ N (µ, σ 2). In Figure

2.4.4, we have plotted the N (0, 1) and the N (1, 1) densities. Note that changes in µ
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simply shift the density without changing its shape. In Figure 2.4.5, we have plotted

the N (0, 1) and the N (0, 4) densities. Note that both densities are centered on 0, but

the N (0, 4) density is much more spread out. The value of σ 2 controls the amount of

spread.
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Figure 2.4.4: Graph of the N (1, 1) density (solid line) and the N (0, 1) density (dashed line).
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Figure 2.4.5: Graph of an N (0, 4) density (solid line) and an N (0, 1) density (dashed line).

The N (µ, σ 2) distribution, for some choice of µ and σ 2, arises quite often in ap-

plications. Part of the reason for this is an important result known as the central limit

theorem. which we will discuss in Section 4.4. In particular, this result leads to using

a normal distribution to approximate other distributions, just as we used the Poisson

distribution to approximate the binomial distribution in Example 2.3.6.

In a large human population, it is not uncommon for various body measurements to

be normally distributed (at least to a reasonable degree of approximation). For example,

let us suppose that heights (measured in feet) of students at a particular university are

distributed N (µ, σ 2) for some choice ofµ and σ 2. Then the probability that a randomly

selected student has height between a and b feet, with a < b, is given by∫ b

a

1

σ
√

2π
e−(x−µ)

2/2σ 2

dx .
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In Section 2.5, we will discuss how to evaluate such an integral. Later in this text, we

will discuss how to select an appropriate value for µ and σ 2 and to assess whether or

not any normal distribution is appropriate to model the distribution of a variable defined

on a particular population.

Given an absolutely continuous random variable X , we will write its density as fX ,

or as f if no confusion arises. Absolutely continuous random variables will be used

extensively in later chapters of this book.

Remark 2.4.1 Finally, we note that density functions are not unique. Indeed, if f is a

density function and we change its value at a finite number of points, then the value of∫ b

a
f (x) dx will remain unchanged. Hence, the changed function will also qualify as

a density corresponding to the same distribution. On the other hand, often a particular

“best” choice of density function is clear. For example, if the density function can be

chosen to be continuous, or even piecewise continuous, then this is preferred over some

other version of the density function.

To take a specific example, for the Uniform[0, 1] distribution, we could replace the

density f of (2.4.3) by

g(x) =

{
1 0 < x < 1

0 otherwise,

or even by

h(x) =


1 0 < x < 3/4
17 x = 3/4
1 3/4 < x < 1

0 otherwise.

Either of these new densities would again define the Uniform[0, 1] distribution, be-

cause we would have
∫ b

a
f (x) dx =

∫ b

a
g(x) dx =

∫ b

a
h(x) dx for any a < b.

On the other hand, the densities f and g are both piecewise continuous and are

therefore natural choices for the density function, whereas h is an unnecessarily com-

plicated choice. Hence, when dealing with density functions, we shall always assume

that they are as continuous as possible, such as f and g, rather than having removable

discontinuities such as h. This will be particularly important when discussing likeli-

hood methods in Chapter 6.

Summary of Section 2.4

• A random variable X is continuous if P(X = x) = 0 for all x , i.e., if none of its

probability comes from being equal to particular values.

• X is absolutely continuous if there exists a density function fX with P(a ≤ X ≤
b) =

∫ b

a
fX (x) dx for all a < b.

• Important absolutely continuous distributions include the uniform, exponential,

gamma, and normal.
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EXERCISES

2.4.1 Let U ∼ Uniform[0, 1]. Compute each of the following.

(a) P(U ≤ 0)
(b) P(U = 1/2)
(c) P(U < −1/3)
(d) P(U ≤ 2/3)
(e) P(U < 2/3)
(f) P(U < 1)
(g) P(U ≤ 17)

2.4.2 Let W ∼ Uniform[1, 4]. Compute each of the following.

(a) P(W ≥ 5)
(b) P(W ≥ 2)
(c) P(W 2 ≤ 9) (Hint: If W 2 ≤ 9, what must W be?)

(d) P(W 2 ≤ 2)

2.4.3 Let Z ∼ Exponential(4). Compute each of the following.

(a) P(Z ≥ 5)
(b) P(Z ≥ −5)
(c) P(Z2 ≥ 9)
(d) P(Z4 − 17 ≥ 9)

2.4.4 Establish for which constants c the following functions are densities.

(a) f (x) = cx on (0, 1) and 0 otherwise.

(b) f (x) = cxn on (0, 1) and 0 otherwise, for n a nonnegative integer.

(c) f (x) = cx1/2 on (0, 2) and 0 otherwise.

(d) f (x) = c sin x on (0, π/2) and 0 otherwise.

2.4.5 Is the function defined by f (x) = x/3 for −1 < x < 2 and 0 otherwise, a

density? Why or why not?

2.4.6 Let X ∼ Exponential(3). Compute each of the following.

(a) P(0 < X < 1)
(b) P(0 < X < 3)
(c) P(0 < X < 5)
(d) P(2 < X < 5)
(e) P(2 < X < 10)
(f) P(X > 2)

2.4.7 Let M > 0, and suppose f (x) = cx2 for 0 < x < M , otherwise f (x) = 0. For

what value of c (depending on M) is f a density?

2.4.8 Suppose X has density f and that f (x) ≥ 2 for 0.3 < x < 0.4. Prove that

P(0.3 < X < 0.4) ≥ 0.2.

2.4.9 Suppose X has density f and Y has density g. Suppose f (x) > g(x) for 1 <
x < 2. Prove that P(1 < X < 2) > P(1 < Y < 2).

2.4.10 Suppose X has density f and Y has density g. Is it possible that f (x) > g(x)
for all x? Explain.

2.4.11 Suppose X has density f and f (x) > f (y) whenever 0 < x < 1 < y < 2.

Does it follow that P(0 < X < 1) > P(1 < X < 2)? Explain.
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2.4.12 Suppose X has density f and f (x) > f (y) whenever 0 < x < 1 < y < 3.

Does it follow that P(0 < X < 1) > P(1 < X < 3)? Explain.

2.4.13 Suppose X ∼ N (0, 1) and Y ∼ N (1, 1). Prove that P(X < 3) > P(Y < 3).

PROBLEMS

2.4.14 Let Y ∼ Exponential(λ) for some λ > 0. Let y, h ≥ 0. Prove that P(Y −
h ≥ y | Y ≥ h) = P(Y ≥ y). That is, conditional on knowing that Y ≥ h, the

random variable Y − h has the same distribution as Y did originally. This is called

the memoryless property of the exponential distributions; it says that they immediately

“forget” their past behavior.

2.4.15 Consider the gamma function 0(α) =
∫∞

0
tα−1e−t dt , for α > 0.

(a) Prove that 0(α + 1) = α 0(α). (Hint: Use integration by parts.)

(b) Prove that 0(1) = 1.

(c) Use parts (a) and (b) to show that 0(n) = (n − 1)! if n is a positive integer.

2.4.16 Use the fact that 0(1/2) =
√
π to give an alternate proof that

∫∞
−∞ φ(x) dx

= 1 (as in Theorem 2.4.2). (Hint: Make the substitution t = x2/2.)

2.4.17 Let f be the density of the Gamma(α, λ) distribution, as in (2.4.8). Prove that∫∞
0

f (x) dx = 1. (Hint: Let t = λx .)

2.4.18 (Logistic distribution) Consider the function given by f (x) =

e−x
(
1+ e−x

)−2
for −∞ < x <∞. Prove that f is a density function.

2.4.19 (Weibull(α) distribution) Consider, for α > 0 fixed, the function given by

f (x) = αxα−1e−xα for 0 < x < ∞ and 0 otherwise. Prove that f is a density

function.

2.4.20 (Pareto(α) distribution) Consider, for α > 0 fixed, the function given by f (x) =
α (1+ x)−α−1 for 0 < x <∞ and 0 otherwise. Prove that f is a density function.

2.4.21 (Cauchy distribution) Consider the function given by

f (x) =
1

π

1

1+ x2

for −∞ < x < ∞. Prove that f is a density function. (Hint: Recall the derivative of

arctan(x) .)

2.4.22 (Laplace distribution) Consider the function given by f (x) = e−|x |/2 for

−∞ < x <∞ and 0 otherwise. Prove that f is a density function.

2.4.23 (Extreme value distribution) Consider the function given by f (x) = e−x exp
{
−e−x

}
for −∞ < x <∞ and 0 otherwise. Prove that f is a density function.

2.4.24 (Beta(a, b) distribution) The beta function is the function B : (0,∞)2 → R1

given by

B (a, b) =

∫ 1

0

xa−1 (1− x)b−1 dx .

It can be proved (see Challenge 2.4.25) that

B (a, b) =
0 (a) 0 (b)

0 (a + b)
(2.4.10)
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(a) Prove that the function f given by f (x) = B−1 (a, b) xa−1 (1− x)b−1 , for 0 <
x < 1 and 0 otherwise, is a density function.

(b) Determine and plot the density when a = 1, b = 1. Can you name this distribution?

(c) Determine and plot the density when a = 2, b = 1.

(d) Determine and plot the density when a = 1, b = 2.

(e) Determine and plot the density when a = 2, b = 2.

CHALLENGES

2.4.25 Prove (2.4.10). (Hint: Use 0 (a) 0 (b) =
∫∞

0

∫∞
0

xa−1 yb−1e−x−y dx dy and

make the change of variable u = x + y, v = x/u.)

DISCUSSION TOPICS

2.4.26 Suppose X ∼ N (0, 1) and Y ∼ N (0, 4). Which do you think is larger, P(X >
2) or P(Y > 2)? Why? (Hint: Look at Figure 2.4.5.)

2.5 Cumulative Distribution Functions
If X is a random variable, then its distribution consists of the values of P(X ∈ B) for

all subsets B of the real numbers. However, there are certain special subsets B that are

convenient to work with. Specifically, if B = (−∞, x] for some real number x , then

P(X ∈ B) = P(X ≤ x). It turns out (see Theorem 2.5.1) that it is sufficient to keep

track of P(X ≤ x) for all real numbers x .

This motivates the following definition.

Definition 2.5.1 Given a random variable X , its cumulative distribution function

(or distribution function, or cdf for short) is the function FX : R1 → [0, 1], defined

by FX (x) = P(X ≤ x). (Where there is no confusion, we sometimes write F(x)
for FX (x).)

The reason for calling FX the “distribution function” is that the full distribution

of X can be determined directly from FX . We demonstrate this for some events of

particular importance.

First, suppose that B = (a, b] is a left-open interval. Using (1.3.3),

P(X ∈ B) = P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX (b)− FX (a).

Now, suppose that B = [a, b] is a closed interval. Using the continuity of proba-

bility (see Theorem 1.6.1), we have

P(X ∈ B) = P(a ≤ X ≤ b) = lim
n→∞

P(a − 1/n < X ≤ b)

= lim
n→∞

(FX (b)− FX (a − 1/n)) = FX (b)− lim
n→∞

FX (a − 1/n).

We sometimes write limn→∞ FX (a − 1/n) as FX (a
−), so that P(X ∈ [a, b]) =

FX (b)− FX (a
−). In the special case where a = b, we have

P(X = a) = FX (a)− FX (a
−). (2.5.1)
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Similarly, if B = (a, b) is an open interval, then

P(X ∈ B) = P(a < X < b) = lim
n→∞

FX (b − 1/n)− FX (a) = FX (b
−)− FX (a).

If B = [a, b) is a right-open interval, then

P(X ∈ B) = P(a ≤ X < b) = lim
n→∞

FX (b − 1/n)− lim
n→∞

FX (a − 1/n)

= FX (b
−)− FX (a

−).

We conclude that we can determine P(X ∈ B) from FX whenever B is any kind of

interval.

Now, if B is instead a union of intervals, then we can use additivity to again com-

pute P(X ∈ B) from FX . For example, if

B = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (ak, bk],

with a1 < b1 < a2 < b2 < · · · < ak < bk , then by additivity,

P(X ∈ B) = P(X ∈ (a1, b1])+ · · · + P(X ∈ (ak, bk])

= FX (b1)− FX (a1)+ · · · + FX (bk)− FX (ak).

Hence, we can still compute P(X ∈ B) solely from the values of FX (x).

Theorem 2.5.1 Let X be any random variable, with cumulative distribution func-

tion FX . Let B be any subset of the real numbers. Then P(X ∈ B) can be deter-

mined solely from the values of FX (x).

PROOF (Outline) It turns out that all relevant subsets B can be obtained by apply-

ing limiting operations to unions of intervals. Hence, because FX determines P(X ∈
B) when B is a union of intervals, it follows that FX determines P(X ∈ B) for all

relevant subsets B.

2.5.1 Properties of Distribution Functions

In light of Theorem 2.5.1, we see that cumulative distribution functions FX are very

useful. Thus, we note a few of their basic properties here.

Theorem 2.5.2 Let FX be the cumulative distribution function of a random variable

X . Then

(a) 0 ≤ FX (x) ≤ 1 for all x ,

(b) FX (x) ≤ FX (y) whenever x ≤ y (i.e., FX is increasing),

(c) limx→+∞ FX (x) = 1,

(d) limx→−∞ FX (x) = 0.

PROOF (a) Because FX (x) = P(X ≤ x) is a probability, it is between 0 and 1.

(b) Let A = {X ≤ x} and B = {X ≤ y}. Then if x ≤ y, then A ⊆ B, so that
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P(A) ≤ P(B). But P(A) = FX (x) and P(B) = FX (y), so the result follows.

(c) Let An = {X ≤ n}. Because X must take on some value and hence X ≤ n for

sufficiently large n, we see that {An} increases to S, i.e., {An} ↗ S (see Section 1.6).

Hence, by continuity of P (see Theorem 1.6.1), limn→∞ P(An) = P(S) = 1. But

P(An) = P(X ≤ n) = FX (n), so the result follows.

(d) Let Bn = {X ≤ −n}. Because X ≥ −n for sufficiently large n, {Bn} decreases

to the empty set, i.e., {Bn} ↘ ∅. Hence, again by continuity of P , limn→∞ P(Bn) =
P(∅) = 0. But P(Bn) = P(X ≤ −n) = FX (−n), so the result follows.

If FX is a cumulative distribution function, then FX is also right continuous; see Prob-

lem 2.5.17. It turns out that if a function F : R1 → R1 satisfies properties (a) through

(d) and is right continuous, then there is a unique probability measure P on R1 such

that F is the cdf of P. We will not prove this result here.2

2.5.2 Cdfs of Discrete Distributions

We can compute the cumulative distribution function (cdf) FX of a discrete random

variable from its probability function pX , as follows.

Theorem 2.5.3 Let X be a discrete random variable with probability function pX .

Then its cumulative distribution function FX satisfies FX (x) =
∑

y≤x pX (y).

PROOF Let x1, x2, . . . be the possible values of X . Then FX (x) = P(X ≤ x) =∑
xi≤x P(X = xi ) =

∑
y≤x P(X = y) =

∑
y≤x pX (y), as claimed.

Hence, if X is a discrete random variable, then by Theorem 2.5.3, FX is piecewise

constant, with a jump of size pX (xi ) at each value xi . A plot of such a distribution

looks like that depicted in Figure 2.5.1.

We consider an example of a distribution function of a discrete random variable.

EXAMPLE 2.5.1

Consider rolling one fair six-sided die, so that S = {1, 2, 3, 4, 5, 6}, with P(s) = 1/6
for each s ∈ S. Let X be the number showing on the die divided by 6, so that X (s) =
s/6 for s ∈ S. What is FX (x)? Since X (s) ≤ x if and only if s ≤ 6x, we have that

FX (x) = P(X ≤ x) =
∑

s∈S, s≤6x

P(s) =
∑

s∈S, s≤6x

1

6
=

1

6
|{s ∈ S : s ≤ 6x}| .

2For example, see page 67 of A First Look at Rigorous Probability Theory, Second Edition, by J. S. Rosen-

thal (World Scientific Publishing, Singapore, 2006).
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That is, to compute FX (x), we count how many elements s ∈ S satisfy s ≤ 6x and

multiply that number by 1/6. Therefore,

FX (x) =



0 x < 1/6
1/6 1/6 ≤ x < 2/6
2/6 2/6 ≤ x < 3/6
3/6 3/6 ≤ x < 4/6
4/6 4/6 ≤ x < 5/6
5/6 5/6 ≤ x < 1

6/6 1 ≤ x .

In Figure 2.5.1, we present a graph of the function FX and note that this is a step

function. Note (see Exercise 2.5.1) that the properties of Theorem 2.5.2 are indeed

satisfied by the function FX .
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Figure 2.5.1: Graph of the cdf FX in Example 2.5.1.

2.5.3 Cdfs of Absolutely Continuous Distributions

Once we know the density fX of X , then it is easy to compute the cumulative distribu-

tion function of X , as follows.

Theorem 2.5.4 Let X be an absolutely continuous random variable, with density

function fX . Then the cumulative distribution function FX of X satisfies

FX (x) =

∫ x

−∞
fX (t) dt

for x ∈ R1.

PROOF This follows from (2.4.5), by setting b = x and letting a→−∞.

From the fundamental theorem of calculus, we see that it is also possible to compute

a density fX once we know the cumulative distribution function FX .



66 Section 2.5: Cumulative Distribution Functions

Corollary 2.5.1 Let X be an absolutely continuous random variable, with cumula-

tive distribution function FX . Let

fX (x) =
d

dx
FX (x) = F ′X (x).

Then fX is a density function for X .

We note that FX might not be differentiable everywhere, so that the function fX of the

corollary might not be defined at certain isolated points. The density function may take

any value at such points.

Consider again the N (0, 1) distribution, with density φ given by (2.4.9). According

to Theorem 2.5.4, the cumulative distribution function F of this distribution is given

by

F(x) =

∫ x

−∞
φ(t) dt =

∫ x

−∞

1
√

2π
e−t2/2 dt.

It turns out that it is provably impossible to evaluate this integral exactly, except for

certain specific values of x (e.g., x = −∞, x = 0, or x = ∞). Nevertheless, the

cumulative distribution function of the N (0, 1) distribution is so important that it is

assigned a special symbol. Furthermore, this is tabulated in Table D.2 of Appendix D

for certain values of x .

Definition 2.5.2 The symbol 8 stands for the cumulative distribution function of

a standard normal distribution, defined by

8(x) =

∫ x

−∞
φ(t) dt =

∫ x

−∞

1
√

2π
e−t2/2 dt, (2.5.2)

for x ∈ R1.

EXAMPLE 2.5.2 Normal Probability Calculations

Suppose that X ∼ N (0, 1), and we want to calculate

P(−0.63 ≤ X ≤ 2.0) = P(X ≤ 2.0)− P(X ≤ −0.63).

Then P(X ≤ 2) = 8(2), while P(X ≤ −0.63) = 8(−0.63). Unfortunately,

8(2) and 8(−0.63) cannot be computed exactly, but they can be approximated us-

ing a computer to numerically calculate the integral (2.5.2). Virtually all statistical

software packages will provide such approximations, but many tabulations such as

Table D.2, are also available. Using this table, we obtain 8(2) = 0.9772, while

8(−0.63) = 0.2643. This implies that

P(−0.63 ≤ X ≤ 2.0) = 8(2.0)−8(−0.63) = 0.9772− 0.2643 = 0.7129.

Now suppose that X ∼ N (µ, σ 2), and we want to calculate P(a ≤ X ≤ b). Letting

f denote the density of X and following Example 2.4.8, we have

P(a ≤ X ≤ b) =

∫ b

a

f (x) dx =

∫ b

a

1

σ
φ

(
x − µ

σ

)
dx .
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Then, again following Example 2.4.8, we make the substitution y = (x − µ)/σ in the

above integral to obtain

P(a ≤ X ≤ b) =

∫ b−µ
σ

a−µ
σ

φ(x) dx = 8

(
b − µ

σ

)
−8

(
a − µ

σ

)
.

Therefore, general normal probabilities can be computed using the function 8.
Suppose now that a = −0.63, b = 2.0, µ = 1.3, and σ 2 = 4. We obtain

P(−0.63 ≤ X ≤ 2.0) = 8

(
2.0− 1.3

2

)
−8

(
−0.63− 1.3

2

)
= 8(0.35)−8(−0.965) = 0.6368− 0.16725

= 0.46955

because, using Table D.2, 8(0.35) = 0.6368. We approximate 8(−0.965) by the

linear interpolation between the values 8(−0.96) = 0.1685,8 (−0.97) = 0.1660,
given by

8(−0.965) ≈ 8(−0.96)+
8(−0.97)−8(−0.96)

−0.97− (−0.96)
(−0.965− (−0.96))

= 0.1685+
0.1660− 0.1685

−0.97− (−0.96)
(−0.965− (−0.96)) = 0.16725.

EXAMPLE 2.5.3

Let X be a random variable with cumulative distribution function given by

FX (x) =


0 x < 2

(x − 2)4/16 2 ≤ x < 4

1 4 ≤ x .

In Figure 2.5.2, we present a graph of FX .

1 2 3 4 5
0.0

0.5

1.0

x

F

Figure 2.5.2: Graph of the cdf FX in Example 2.5.3.

Suppose for this random variable X we want to compute P(X ≤ 3), P(X < 3),
P(X > 2.5), and P(1.2 < X ≤ 3.4). We can compute all these probabilities directly



68 Section 2.5: Cumulative Distribution Functions

from FX . We have that

P(X ≤ 3) = FX (3) = (3− 2)4/16 = 1/16,

P(X < 3) = FX (3
−) = lim

n→∞
(3− (1/n)− 2)4/16 = 1/16,

P(X > 2.5) = 1− P(X ≤ 2.5) = 1− FX (2.5)

= 1− (2.5− 2)4/16 = 1− 0.0625/16 = 0.996,

P(1.2 < X ≤ 3.4) = FX (3.4)− FX (1.2) = (3.4− 2)4/16− 0 = 0.2401.

2.5.4 Mixture Distributions

Suppose now that F1, F2, . . . , Fk are cumulative distribution functions, correspond-

ing to various distributions. Also let p1, p2, . . . , pk be positive real numbers with∑k
i=1 pi = 1 (so these values form a probability distribution). Then we can define a

new function G by

G(x) = p1 F1(x)+ p2 F2(x)+ · · · + pk Fk(x). (2.5.3)

It is easily verified (see Exercise 2.5.6) that the function G given by (2.5.3) will

satisfy properties (a) through (d) of Theorem 2.5.2 and is right continuous. Hence, G

is also a cdf.

The distribution whose cdf is given by (2.5.3) is called a mixture distribution be-

cause it mixes the various distributions with cdfs F1, . . . , Fk according to the probabil-

ity distribution given by the p1, p2, . . . , pk .
To see how a mixture distribution arises in applications, consider a two-stage sys-

tem, as discussed in Section 1.5.1. Let Z be a random variable describing the outcome

of the first stage and such that P(Z = i) = pi for i = 1, 2, . . . , k. Suppose that for

the second stage, we observe a random variable Y where the distribution of Y depends

on the outcome of the first stage, so that Y has cdf Fi when Z = i. In effect, Fi is the

conditional distribution of Y, given that Z = i (see Section 2.8). Then, by the law of

total probability (see Theorem 1.5.1), the distribution function of Y is given by

P(Y ≤ y) =
k∑

i=1

P(Y ≤ y | Z = i)P(Z = i) =
k∑

i=1

pi Fi (y) = G(y).

Therefore, the distribution function of Y is given by a mixture of the Fi .
Consider the following example of this.

EXAMPLE 2.5.4

Suppose we have two bowls containing chips. Bowl #1 contains one chip labelled

0, two chips labelled 3, and one chip labelled 5. Bowl #2 contains one chip labelled

2, one chip labelled 4, and one chip labelled 5. Now let X i be the random variable

corresponding to randomly drawing a chip from bowl #i . Therefore, P(X1 = 0) =
1/4, P(X1 = 3) = 1/2, and P(X1 = 5) = 1/4, while P(X2 = 2) = P(X2 = 4) =
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P(X2 = 5) = 1/3. Then X1 has distribution function given by

F1(x) =


0 x < 0

1/4 0 ≤ x < 3

3/4 3 ≤ x < 5

1 x ≥ 5

and X2 has distribution function given by

F2(x) =


0 x < 2

1/3 2 ≤ x < 4

2/3 4 ≤ x < 5

1 x ≥ 5.

Now suppose that we choose a bowl by randomly selecting a card from a deck of

five cards where one card is labelled 1 and four cards are labelled 2. Let Z denote the

value on the card obtained, so that P (Z = 1) = 1/5 and P (Z = 2) = 4/5. Then,

having obtained the value Z = i , we observe Y by randomly drawing a chip from bowl

#i . We see immediately that the cdf of Y is given by

G(x) = (1/5) F1(x)+ (4/5) F2(x),

and this is a mixture of the cdfs F1 and F2.

As the following examples illustrate, it is also possible to have infinite mixtures of

distributions.

EXAMPLE 2.5.5 Location and Scale Mixtures

Suppose F is some cumulative distribution function. Then for any real number y, the

function Fy defined by Fy(x) = F(x− y) is also a cumulative distribution function. In

fact, Fy is just a “shifted” version of F . An example of this is depicted in Figure 2.5.3.

10 5 0 5 10

0.5

1.0

x

F

Figure 2.5.3: Plot of the distribution functions F (solid line) and F2 (dashed line) in Example

2.5.5, where F(x) = ex/ (ex + 1) for x ∈ R1.

If pi ≥ 0 with
∑

i pi = 1 (so the pi form a probability distribution), and y1, y2, . . .
are real numbers, then we can define a discrete location mixture by

H(x) =
∑

i

pi Fyi
(x) =

∑
i

pi F(x − yi ).
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Indeed, the shift Fy(x) = F(x − y) itself corresponds to a special case of a discrete

location mixture, with p1 = 1 and y1 = y.

Furthermore, if g is some nonnegative function with
∫∞
−∞ g(t) dt = 1 (so g is a

density function), then we can define

H(x) =

∫ ∞
−∞

Fy(x) g(y) dy =

∫ ∞
−∞

F(x − y) g(y) dy.

Then it is not hard to see that H is also a cumulative distribution function — one that is

called a continuous location mixture of F. The idea is that H corresponds to a mixture

of different shifted distributions Fy , with the density g giving the distribution of the

mixing coefficient y.

We can also define a discrete scale mixture by

K (x) =
∑

i

pi F(x/yi )

whenever yi > 0, pi ≥ 0, and
∑

i pi = 1. Similarly, if
∫∞

0
g(t) dt = 1, then we can

write

K (x) =

∫ ∞
0

F(x/y)g(y) dy.

Then K is also a cumulative distribution function, called a continuous scale mixture of

F .

You might wonder at this point whether a mixture distribution is discrete or con-

tinuous. The answer depends on the distributions being mixed and the mixing distrib-

ution. For example, discrete location mixtures of discrete distributions are discrete and

discrete location mixtures of continuous distributions are continuous.

There is nothing restricting us, however, to mixing only discrete distributions or

only continuous distributions. Other kinds of distribution are considered in the follow-

ing section.

2.5.5 Distributions Neither Discrete Nor Continuous (Advanced)

There are some distributions that are neither discrete nor continuous, as the following

example shows.

EXAMPLE 2.5.6

Suppose that X1 ∼ Poisson(3) is discrete with cdf F1, while X2 ∼ N (0, 1) is continu-

ous with cdf F2, and Y has the mixture distribution given by FY (y) = (1/5) F1(y) +
(4/5) F2(y). Using (2.5.1), we have

P(Y = y) = FY (y)− FY (y
−)

= (1/5)F1(y)+ (4/5) F2(y)− (1/5)F1(y
−)− (4/5)F2(y

−)

= (1/5)
(
F1(y)− F1(y

−)
)
+ (4/5)

(
F2(y)− F2(y

−)
)

=
1

5
P(X1 = y)+

4

5
P(X2 = y).
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Therefore,

P(Y = y) =

{
1
5

3y

y!
e−3 y a nonnegative integer

0 otherwise.

Because P(Y = y) > 0 for nonnegative integers y, the random variable Y is not

continuous. On the other hand, we have∑
y

P(Y = y) =
∞∑

y=0

1

5

3y

y!
e−3 =

1

5
< 1.

Hence, Y is not discrete either.

In fact, Y is neither discrete nor continuous. Rather, Y is a mixture of a discrete

and a continuous distribution.

For the most part in this book, we shall treat discrete and continuous distributions

separately. However, it is important to keep in mind that actual distributions may be

neither discrete nor continuous but rather a mixture of the two.3 In most applications,

however, the distributions we deal with are either continuous or discrete.

Recall that a continuous distribution need not be absolutely continuous, i.e., have a

density. Hence, a distribution that is a mixture of a discrete and a continuous distribu-

tion might not be a mixture of a discrete and an absolutely continuous distribution.

Summary of Section 2.5

• The cumulative distribution function (cdf) of X is FX (x) = P(X ≤ x).

• All probabilities associated with X can be determined from FX .

• As x increases from −∞ to∞, FX (x) increases from 0 to 1.

• If X is discrete, then FX (x) =
∑

y≤x P(X = y).

• If X is absolutely continuous, then FX (x) =
∫ x

−∞ fX (t) dt , and fX (x) = F ′X (x).

• We write 8(x) for the cdf of the standard normal distribution evaluated at x .

• A mixture distribution has a cdf that is a linear combination of other cdfs. Two

special cases are location and scale mixtures.

• Some mixture distributions are neither discrete nor continuous.

EXERCISES

2.5.1 Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are indeed sat-

isfied by the function FX in Example 2.5.1.

2.5.2 Consider rolling one fair six-sided die, so that S = {1, 2, 3, 4, 5, 6}, and P(s) =
1/6 for all s ∈ S. Let X be the number showing on the die, so that X (s) = s for s ∈ S.

Let Y = X2. Compute the cumulative distribution function FY (y) = P(Y ≤ y), for all

y ∈ R1. Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are satisfied

by this function FY .

3In fact, there exist probability distributions that cannot be expressed even as a mixture of a discrete and

a continuous distribution, but these need not concern us here.
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2.5.3 For each of the following functions F , determine whether or not F is a valid

cumulative distribution function, i.e., whether or not F satisfies properties (a) through

(d) of Theorem 2.5.2.

(a) F(x) = x for all x ∈ R1

(b)

F(x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(c)

F(x) =


0 x < 0

x2 0 ≤ x ≤ 1

1 x > 1

(d)

F(x) =


0 x < 0

x2 0 ≤ x ≤ 3

1 x > 3

(e)

F(x) =


0 x < 0

x2/9 0 ≤ x ≤ 3

1 x > 3

(f)

F(x) =


0 x < 1

x2/9 1 ≤ x ≤ 3

1 x > 3

(g)

F(x) =


0 x < −1

x2/9 −1 ≤ x ≤ 3

1 x > 3

2.5.4 Let X ∼ N (0, 1). Compute each of the following in terms of the function 8 of

Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities numer-

ically.

(a) P(X ≤ −5)
(b) P(−2 ≤ X ≤ 7)
(c) P(X ≥ 3)

2.5.5 Let Y ∼ N (−8, 4). Compute each of the following, in terms of the function

8 of Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities

numerically.

(a) P(Y ≤ −5)
(b) P(−2 ≤ Y ≤ 7)
(c) P(Y ≥ 3)
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2.5.6 Verify that the function G given by (2.5.3) satisfies properties (a) through (d) of

Theorem 2.5.2.

2.5.7 Suppose FX (x) = x2 for 0 ≤ x ≤ 1. Compute each of the following.

(a) P(X < 1/3)
(b) P(1/4 < X < 1/2)

(c) P(2/5 < X < 4/5)

(d) P(X < 0)
(e) P(X < 1)
(f) P(X < −1)
(g) P(X < 3)
(h) P(X = 3/7)

2.5.8 Suppose FY (y) = y3 for 0 ≤ y < 1/2, and FY (y) = 1 − (1 − y)3 for 1/2 ≤
y ≤ 1. Compute each of the following.

(a) P(1/3 < Y < 3/4)
(b) P(Y = 1/3)
(c) P(Y = 1/2)

2.5.9 Let F(x) = x2 for 0 ≤ x ≤ 2, with F(x) = 0 for x < 0 and F(x) = 4 for

x > 2.

(a) Sketch a graph of F .

(b) Is F a valid cumulative distribution function? Why or why not?

2.5.10 Let F(x) = 0 for x < 0, with F(x) = e−x for x ≥ 0.

(a) Sketch a graph of F .

(b) Is F a valid cumulative distribution function? Why or why not?

2.5.11 Let F(x) = 0 for x < 0, with F(x) = 1− e−x for x ≥ 0.

(a) Sketch a graph of F .

(b) Is F a valid cumulative distribution function? Why or why not?

2.5.12 Let X ∼ Exponential(3). Compute the function FX .

2.5.13 Let F(x) = 0 for x < 0, with F(x) = 1/3 for 0 ≤ x < 2/5, and F(x) = 3/4
for 2/5 ≤ x < 4/5, and F(x) = 1 for x ≥ 4/5.

(a) Sketch a graph of F .

(b) Prove that F is a valid cumulative distribution function.

(c) If X has cumulative distribution function equal to F , then compute P(X > 4/5)
and P(−1 < X < 1/2) and P(X = 2/5) and P(X = 4/5).

2.5.14 Let G(x) = 0 for x < 0, with G(x) = 1− e−x2
for x ≥ 0.

(a) Prove that G is a valid cumulative distribution function.

(b) If Y has cumulative distribution function equal to G, then compute P(Y > 4) and

P(−1 < Y < 2) and P(Y = 0).

2.5.15 Let F and G be as in the previous two exercises. Let H(x) = (1/3)F(x) +
(2/3)G(x). Suppose Z has cumulative distribution function equal to H . Compute each

of the following.

(a) P(Z > 4/5)
(b) P(−1 < Z < 1/2)
(c) P(Z = 2/5)
(d) P(Z = 4/5)
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(e) P(Z = 0)
(f) P(Z = 1/2)

PROBLEMS

2.5.16 Let F be a cumulative distribution function. Compute (with explanation) the

value of limn→∞[F(2n)− F(n)].

2.5.17 Let F be a cumulative distribution function. For x ∈ R1, we could define

F(x+) by F(x+) = limn→∞ F(x+ 1
n
). Prove that F is right continuous, meaning that

for each x ∈ R1, we have F(x+) = F(x). (Hint: You will need to use continuity of P

(Theorem 1.6.1).)

2.5.18 Let X be a random variable, with cumulative distribution function FX . Prove

that P(X = a) = 0 if and only if the function FX is continuous at a. (Hint: Use (2.5.1)

and the previous problem.)

2.5.19 Let 8 be as in Definition 2.5.2. Derive a formula for 8(−x) in terms of 8(x).
(Hint: Let s = −t in (2.5.2), and do not forget Theorem 2.5.2.)

2.5.20 Determine the distribution function for the logistic distribution of Problem 2.4.18.

2.5.21 Determine the distribution function for the Weibull(α) distribution of Problem

2.4.19.

2.5.22 Determine the distribution function for the Pareto(α) distribution of Problem

2.4.20.

2.5.23 Determine the distribution function for the Cauchy distribution of Problem

2.4.21.

2.5.24 Determine the distribution function for the Laplace distribution of Problem

2.4.22.

2.5.25 Determine the distribution function for the extreme value distribution of Prob-

lem 2.4.23.

2.5.26 Determine the distribution function for the beta distributions of Problem 2.4.24

for parts (b) through (e).

DISCUSSION TOPICS

2.5.27 Does it surprise you that all information about the distribution of a random

variable X can be stored by a single function FX ? Why or why not? What other

examples can you think of where lots of different information is stored by a single

function?

2.6 One-Dimensional Change of Variable
Let X be a random variable with a known distribution. Suppose that Y = h(X), where

h : R1 → R1 is some function. (Recall that this really means that Y (s) = h(X (s)), for

all s ∈ S.) Then what is the distribution of Y ?
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2.6.1 The Discrete Case

If X is a discrete random variable, this is quite straightforward. To compute the proba-

bility that Y = y, we need to compute the probability of the set consisting of all the x

values satisfying h(x) = y, namely, compute P (X ∈ {x : h(x) = y}) . This is depicted

graphically in Figure 2.6.1.

1
R1.R1. . .

yx1 x2 x3

h

{ x : h(x) = y } = { x1, x2, x3 }
Figure 2.6.1: An example where the set of x values that satisfy h(x) = y consists of three

points x1, x2, and x3.

We now establish the basic result.

Theorem 2.6.1 Let X be a discrete random variable, with probability function pX .

Let Y = h(X), where h : R1 → R1 is some function. Then Y is also discrete,

and its probability function pY satisfies pY (y) =
∑

x∈h−1{y} pX (x), where h−1{y}
is the set of all real numbers x with h(x) = y.

PROOF We compute that pY (y) = P(h(X) = y) =
∑

x∈h−1{y} P(X = x) =∑
x∈h−1{y} pX (x), as claimed.

EXAMPLE 2.6.1

Let X be the number of heads when flipping three fair coins. Let Y = 1 if X ≥ 1, with

Y = 0 if X = 0. Then Y = h(X), where h(0) = 0 and h(1) = h(2) = h(3) = 1.

Hence, h−1{0} = {0}, so P(Y = 0) = P(X = 0) = 1/8. On the other hand,

h−1{1} = {1, 2, 3}, so P(Y = 1) = P(X = 1) + P(X = 2) + P(X = 3) =
3/8+ 3/8+ 1/8 = 7/8.

EXAMPLE 2.6.2

Let X be the number showing on a fair six-sided die, so that P(X = x) = 1/6 for x =
1, 2, 3, 4, 5, and 6. Let Y = X2−3X+2. Then Y = h(X), where h(x) = x2−3x+2.

Note that h(x) = 0 if and only if x = 1 or x = 2. Hence, h−1{0} = {1, 2} and

P(Y = 0) = pX (1)+ pX (2) =
1

6
+

1

6
=

1

3
.

2.6.2 The Continuous Case

If X is continuous and Y = h(X), then the situation is more complicated. Indeed, Y

might not be continuous at all, as the following example shows.
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EXAMPLE 2.6.3

Let X have the uniform distribution on [0, 1], i.e., X ∼ Uniform[0, 1], as in Exam-

ple 2.4.2. Let Y = h(X), where

h(x) =

{
7 x ≤ 3/4
5 x > 3/4.

Here, Y = 7 if and only if X ≤ 3/4 (which happens with probability 3/4), whereas

Y = 5 if and only if X > 3/4 (which happens with probability 1/4). Hence, Y is

discrete, with probability function pY satisfying pY (7) = 3/4, pY (5) = 1/4, and

pY (y) = 0 when y 6= 5, 7.

On the other hand, if X is absolutely continuous, and the function h is strictly

increasing, then the situation is considerably simpler, as the following theorem shows.

Theorem 2.6.2 Let X be an absolutely continuous random variable, with density

function fX . Let Y = h(X), where h : R1 → R1 is a function that is differen-

tiable and strictly increasing. Then Y is also absolutely continuous, and its density

function fY is given by

fY (y) = fX (h
−1(y)) / |h′(h−1(y))|, (2.6.1)

where h′ is the derivative of h, and where h−1(y) is the unique number x such that

h(x) = y.

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.4

Let X ∼ Uniform[0, 1], and let Y = 3X . What is the distribution of Y ?

Here, X has density fX , given by fX (x) = 1 if 0 ≤ x ≤ 1, and fX (x) = 0

otherwise. Also, Y = h(X), where h is defined by h(x) = 3x . Note that h is strictly

increasing because if x < y, then 3x < 3y, i.e., h(x) < h(y). Hence, we may apply

Theorem 2.6.2.

We note first that h′(x) = 3 and that h−1(y) = y/3. Then, according to Theo-

rem 2.6.2, Y is absolutely continuous with density

fY (y) = fX (h
−1(y))/|h′(h−1(y))| =

1

3
fX (y/3)

=

{
1/3 0 ≤ y/3 ≤ 1

0 otherwise
=

{
1/3 0 ≤ y ≤ 3

0 otherwise.

By comparison with Example 2.4.3, we see that Y ∼ Uniform[0, 3], i.e., that Y has

the Uniform[L , R] distribution with L = 0 and R = 3.

EXAMPLE 2.6.5

Let X ∼ N (0, 1), and let Y = 2X + 5. What is the distribution of Y ?

Here, X has density fX , given by

fX (x) = φ(x) =
1
√

2π
e−x2/2.
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Also, Y = h(X), where h is defined by h(x) = 2x + 5. Note that again, h is strictly

increasing because if x < y, then 2x + 5 < 2y + 5, i.e., h(x) < h(y). Hence, we may

again apply Theorem 2.6.2.

We note first that h′(x) = 2 and that h−1(y) = (y − 5)/2. Then, according to

Theorem 2.6.2, Y is absolutely continuous with density

fY (y) = fX (h
−1(y))/|h′(h−1(y))| = fX ((y − 5)/2)/2 =

1

2
√

2π
e−(y−5)2/8.

By comparison with Example 2.4.8, we see that Y ∼ N (5, 4), i.e., that Y has the

N (µ, σ 2) distribution with µ = 5 and σ 2 = 4.

If instead the function h is strictly decreasing, then a similar result holds.

Theorem 2.6.3 Let X be an absolutely continuous random variable, with density

function fX . Let Y = h(X), where h : R1 → R1 is a function that is differen-

tiable and strictly decreasing. Then Y is also absolutely continuous, and its density

function fY may again be defined by (2.6.1).

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.6

Let X ∼ Uniform[0, 1], and let Y = ln(1/X). What is the distribution of Y ?

Here, X has density fX , given by fX (x) = 1 for 0 ≤ x ≤ 1, and fX (x) = 0

otherwise. Also, Y = h(X), where h is defined by h(x) = ln(1/x). Note that here,

h is strictly decreasing because if x < y, then 1/x > 1/y, so ln(1/x) > ln(1/y), i.e.,

h(x) > h(y). Hence, we may apply Theorem 2.6.3.

We note first that h′(x) = −1/x and that h−1(y) = e−y . Then, by Theorem 2.6.3,

Y is absolutely continuous with density

fY (y) = fX (h
−1(y))/|h′(h−1(y))| = e−y fX (e

−y)

=

{
e−y 0 ≤ e−y ≤ 1

0 otherwise
=

{
e−y y ≥ 0

0 otherwise.

By comparison with Example 2.4.4, we see that Y ∼ Exponential(1), i.e., that Y has

the Exponential(1) distribution.

Finally, we note the following.

Theorem 2.6.4 Theorem 2.6.2 (and 2.6.3) remains true assuming only that h is

strictly increasing (or decreasing) at places for which fX (x) > 0. If fX (x) = 0 for

an interval of x values, then it does not matter how the function h behaves in that

interval (or even if it is well defined there).

EXAMPLE 2.6.7

If X ∼ Exponential(λ), then fX (x) = 0 for x < 0. Therefore, it is required that h be

strictly increasing (or decreasing) only for x ≥ 0. Thus, functions such as h(x) = x2,

h(x) = x8, and h(x) =
√

x could still be used with Theorem 2.6.2, while functions

such as h(x) = −x2, h(x) = −x8, and h(x) = −
√

x could still be used with The-

orem 2.6.3, even though such functions may not necessarily be strictly increasing (or

decreasing) and well defined on the entire real line.
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Summary of Section 2.6

• If X is discrete, and Y = h(X), then P(Y = y) =
∑

x : h(x)=y P(X = x).

• If X is absolutely continuous, and Y = h(X) with h strictly increasing or strictly

decreasing, then the density of Y is given by fY (y) = fX (h
−1(y)) / |h′(h−1(y))|.

• This allows us to compute the distribution of a function of a random variable.

EXERCISES

2.6.1 Let X ∼ Uniform[L , R]. Let Y = cX + d, where c > 0. Prove that Y ∼
Uniform[cL + d, cR + d]. (This generalizes Example 2.6.4.)

2.6.2 Let X ∼ Uniform[L , R]. Let Y = cX + d, where c < 0. Prove that Y ∼
Uniform[cR + d, cL + d]. (In particular, if L = 0 and R = 1 and c = −1 and d = 1,

then X ∼ Uniform[0, 1] and also Y = 1− X ∼ Uniform[0, 1].)

2.6.3 Let X ∼ N (µ, σ 2). Let Y = cX + d, where c > 0. Prove that Y ∼ N (cµ +
d, c2σ 2). (This generalizes Example 2.6.5.)

2.6.4 Let X ∼ Exponential(λ). Let Y = cX , where c > 0. Prove that Y ∼
Exponential(λ/c).

2.6.5 Let X ∼ Exponential(λ). Let Y = X3. Compute the density fY of Y .

2.6.6 Let X ∼ Exponential(λ). Let Y = X1/4. Compute the density fY of Y . (Hint:

Use Theorem 2.6.4.)

2.6.7 Let X ∼ Uniform[0, 3]. Let Y = X2. Compute the density function fY of Y .

2.6.8 Let X have a density such that fX (µ+ x) = fX (µ− x) , i.e., it is symmetric

about µ. Let Y = 2µ − X . Show that the density of Y is given by fX . Use this to

determine the distribution of Y when X ∼ N (µ, σ 2).

2.6.9 Let X have density function fX (x) = x3/4 for 0 < x < 2, otherwise fX (x) = 0.

(a) Let Y = X2. Compute the density function fY (y) for Y .

(b) Let Z =
√

X . Compute the density function fZ (z) for Z .

2.6.10 Let X ∼ Uniform[0, π/2]. Let Y = sin(X). Compute the density function

fY (y) for Y .

2.6.11 Let X have density function fX (x) = (1/2) sin(x) for 0 < x < π , otherwise

fX (x) = 0. Let Y = X2. Compute the density function fY (y) for Y .

2.6.12 Let X have density function fX (x) = 1/x2 for x > 1, otherwise fX (x) = 0.

Let Y = X1/3. Compute the density function fY (y) for Y .

2.6.13 Let X ∼ Normal(0, 1). Let Y = X3. Compute the density function fY (y) for

Y .

PROBLEMS

2.6.14 Let X ∼ Uniform[2, 7], Y = X3, and Z =
√

Y . Compute the density fZ of Z ,

in two ways.

(a) Apply Theorem 2.6.2 to first obtain the density of Y , then apply Theorem 2.6.2

again to obtain the density of Z .

(b) Observe that Z =
√

Y =
√

X3 = X3/2, and apply Theorem 2.6.2 just once.
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2.6.15 Let X ∼ Uniform[L , R], and let Y = h(X) where h(x) = (x − c)6. According

to Theorem 2.6.4, under what conditions on L , R, and c can we apply Theorem 2.6.2

or Theorem 2.6.3 to this choice of X and Y ?

2.6.16 Let X ∼ N (µ, σ 2). Let Y = cX + d, where c < 0. Prove that again Y ∼
N (cµ+ d, c2σ 2), just like in Exercise 2.6.3.

2.6.17 (Log-normal(τ ) distribution) Suppose that X ∼ N (0, τ 2). Prove that Y = eX

has density

fτ (y) =
1
√

2πτ
exp

(
−
(ln y)2

2τ 2

)
1

y

for y > 0 and where τ > 0 is unknown. We say that Y ∼ Log-normal(τ ) .

2.6.18 Suppose that X ∼Weibull(α) (see Problem 2.4.19). Determine the distribution

of Y = Xβ .

2.6.19 Suppose that X ∼ Pareto(α) (see Problem 2.4.20). Determine the distribution

of Y = (1+ X)β − 1.

2.6.20 Suppose that X has the extreme value distribution (see Problem 2.4.23). Deter-

mine the distribution of Y = e−X .

CHALLENGES

2.6.21 Theorems 2.6.2 and 2.6.3 require that h be an increasing or decreasing function,

at least at places where the density of X is positive (see Theorem 2.6.4). Suppose now

that X ∼ N (0, 1) and Y = h(X), where h(x) = x2. Then fX (x) > 0 for all x , while

h is increasing only for x > 0 and decreasing only for x < 0. Hence, Theorems 2.6.2

and 2.6.3 do not directly apply. Compute fY (y) anyway. (Hint: P(a ≤ Y ≤ b) =
P(a ≤ Y ≤ b, X > 0)+ P(a ≤ Y ≤ b, X < 0).)

2.7 Joint Distributions
Suppose X and Y are two random variables. Even if we know the distributions of X

and Y exactly, this still does not tell us anything about the relationship between X and

Y .

EXAMPLE 2.7.1

Let X ∼ Bernoulli(1/2), so that P(X = 0) = P(X = 1) = 1/2. Let Y1 = X , and let

Y2 = 1 − X . Then we clearly have Y1 ∼ Bernoulli(1/2) and Y2 ∼ Bernoulli(1/2) as

well.

On the other hand, the relationship between X and Y1 is very different from the re-

lationship between X and Y2. For example, if we know that X = 1, then we also must

have Y1 = 1, but Y2 = 0. Hence, merely knowing that X , Y1, and Y2 all have the dis-

tribution Bernoulli(1/2) does not give us complete information about the relationships

among these random variables.

A formal definition of joint distribution is as follows.
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Definition 2.7.1 If X and Y are random variables, then the joint distribution of X

and Y is the collection of probabilities P((X, Y ) ∈ B), for all subsets B ⊆ R2 of

pairs of real numbers.

Joint distributions, like other distributions, are so complicated that we use vari-

ous functions to describe them, including joint cumulative distribution functions, joint

probability functions, and joint density functions, as we now discuss.

2.7.1 Joint Cumulative Distribution Functions

Definition 2.7.2 Let X and Y be random variables. Then their joint cumulative

distribution function is the function FX,Y : R2 → [0, 1] defined by

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

(Recall that the comma means “and” here, so that FX,Y (x, y) is the probability that

X ≤ x and Y ≤ y.)

EXAMPLE 2.7.2 (Example 2.7.1 continued)

Again, let X ∼ Bernoulli(1/2), Y1 = X , and Y2 = 1− X . Then we compute that

FX,Y1
(x, y) = P(X ≤ x, Y1 ≤ y) =


0 min(x, y) < 0

1/2 0 ≤ min(x, y) < 1

1 min(x, y) ≥ 1.

On the other hand,

FX,Y2
(x, y) = P(X ≤ x, Y2 ≤ y) =


0 min(x, y) < 0 or max(x, y) < 1

1/2 0 ≤ min(x, y) < 1 ≤ max(x, y)
1 min(x, y) ≥ 1.

We thus see that FX,Y1
is quite a different function from FX,Y2

. This reflects the

fact that, even though Y1 and Y2 each have the same distribution, their relationship

with X is quite different. On the other hand, the functions FX,Y1
and FX,Y2

are rather

cumbersome and awkward to work with.

We see from this example that joint cumulative distribution functions (or joint cdfs)

do indeed keep track of the relationship between X and Y . Indeed, joint cdfs tell us

everything about the joint probabilities of X and Y , as the following theorem (an analog

of Theorem 2.5.1) shows.

Theorem 2.7.1 Let X and Y be any random variables, with joint cumulative dis-

tribution function FX,Y . Let B be a subset of R2. Then P((X, Y ) ∈ B) can be

determined solely from the values of FX,Y (x, y).

We shall not give a proof of Theorem 2.7.1, although it is similar to the proof of

Theorem 2.5.1. However, the following theorem indicates why Theorem 2.7.1 is true,

and it also provides a useful computational fact.
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Theorem 2.7.2 Let X and Y be any random variables, with joint cumulative distri-

bution function FX,Y . Suppose a ≤ b and c ≤ d . Then

P(a < X ≤ b , c < Y ≤ d) = FX,Y (b, d)−FX,Y (a, d)−FX,Y (b, c)+FX,Y (a, c).

PROOF According to (1.3.3),

P(a < X ≤ b, c < Y ≤ d)

= P(X ≤ b, Y ≤ d)− P(X ≤ b, Y ≤ d , and either X ≤ a or Y ≤ c).

But by the principle of inclusion–exclusion (1.3.4),

P(X ≤ b, Y ≤ d, and either X ≤ a or Y ≤ c)

= P(X ≤ b, Y ≤ c)+ P(X ≤ a, Y ≤ d)− P(X ≤ a, Y ≤ c).

Combining these two equations, we see that

P(a < X ≤ b, c < Y ≤ d)

= P(X ≤ b, Y ≤ d)− P(X ≤ a, Y ≤ d)− P(X ≤ b, Y ≤ c)+ P(X ≤ a, Y ≤ c)

and from this we obtain

P(a < X ≤ b, c < Y ≤ d) = FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c)+ FX,Y (a, c),

as claimed.

Joint cdfs are not easy to work with. Thus, in this section we shall also consider

other functions, which are more convenient for pairs of discrete or absolutely continu-

ous random variables.

2.7.2 Marginal Distributions

We have seen how a joint cumulative distribution function FX,Y tells us about the rela-

tionship between X and Y . However, the function FX,Y also tells us everything about

each of X and Y separately, as the following theorem shows.

Theorem 2.7.3 Let X and Y be two random variables, with joint cumulative distri-

bution function FX,Y . Then the cumulative distribution function FX of X satisfies

FX (x) = lim
y→∞

FX,Y (x, y),

for all x ∈ R1. Similarly, the cumulative distribution function FY of Y satisfies

FY (y) = lim
x→∞

FX,Y (x, y),

for all y ∈ R1.
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PROOF Note that we always have Y ≤ ∞. Hence, using continuity of P , we have

FX (x) = P(X ≤ x)

= P(X ≤ x, Y ≤ ∞)

= lim
y→∞

P(X ≤ x, Y ≤ y)

= lim
y→∞

FX,Y (x, y),

as claimed. Similarly,

FY (y) = P(Y ≤ y)

= P(X ≤ ∞, Y ≤ y)

= lim
x→∞

P(X ≤ x, Y ≤ y)

= lim
x→∞

FX,Y (x, y),

completing the proof.

In the context of Theorem 2.7.3, FX is called the marginal cumulative distribu-

tion function of X , and the distribution of X is called the marginal distribution of X .

(Similarly, FY is called the marginal cumulative distribution function of Y , and the

distribution of Y is called the marginal distribution of Y .) Intuitively, if we think of

FX,Y as being a function of a pair (x, y), then FX and FY are functions of x and y,

respectively, which could be written into the “margins” of a graph of FX,Y .

EXAMPLE 2.7.3

In Figure 2.7.1, we have plotted the joint distribution function

FX,Y (x, y) =



0 x < 0 or y < 0

xy2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

x 0 ≤ x ≤ 1, y ≥ 1

y2 x ≥ 1, 0 ≤ y ≤ 1

1 x > 1 and y > 1.

It is easy to see that

FX (x) = FX,Y (x, 1) = x

for 0 ≤ x ≤ 1 and that

FY (y) = FX,Y (1, y) = y2

for 0 ≤ y ≤ 1. The graphs of these functions are given by the outermost edges of the

surface depicted in Figure 2.7.1.
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Figure 2.7.1: Graph of the joint distribution function FX,Y (x, y) = xy2 for 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1 in Example 2.7.3.

Theorem 2.7.3 thus tells us that the joint cdf FX,Y is very useful indeed. Not only

does it tell us about the relationship of X to Y , but it also contains all the information

about the marginal distributions of X and of Y .

We will see in the next subsections that joint probability functions, and joint density

functions, similarly contain information about both the relationship of X and Y and the

marginal distributions of X and Y .

2.7.3 Joint Probability Functions

Suppose X and Y are both discrete random variables. Then we can define a joint

probability function for X and Y , as follows.

Definition 2.7.3 Let X and Y be discrete random variables. Then their joint prob-

ability function, pX,Y , is a function from R2 to R1, defined by

pX,Y (x, y) = P(X = x , Y = y).

Consider the following example.
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EXAMPLE 2.7.4 (Examples 2.7.1 and 2.7.2 continued)

Again, let X ∼ Bernoulli(1/2), Y1 = X , and Y2 = 1− X . Then we see that

pX,Y1
(x, y) = P(X = x , Y1 = y) =


1/2 x = y = 1

1/2 x = y = 0

0 otherwise.

On the other hand,

pX,Y2
(x, y) = P(X = x , Y2 = y) =


1/2 x = 1, y = 0

1/2 x = 0, y = 1

0 otherwise.

We thus see that pX,Y1
and pX,Y2

are two simple functions that are easy to work

with and that clearly describe the relationships between X and Y1 and between X and

Y2. Hence, for pairs of discrete random variables, joint probability functions are usually

the best way to describe their relationships.

Once we know the joint probability function pX,Y , the marginal probability func-

tions of X and Y are easily obtained.

Theorem 2.7.4 Let X and Y be two discrete random variables, with joint probabil-

ity function pX,Y . Then the probability function pX of X can be computed as

pX (x) =
∑

y

pX,Y (x, y).

Similarly, the probability function pY of Y can be computed as

pY (y) =
∑

x

pX,Y (x, y).

PROOF Using additivity of P , we have that

pX (x) = P(X = x) =
∑

y

P(X = x , Y = y) =
∑

y

pX,Y (x, y),

as claimed. Similarly,

pY (y) = P(Y = y) =
∑

x

P(X = x, Y = y) =
∑

x

pX,Y (x, y).

EXAMPLE 2.7.5

Suppose the joint probability function of X and Y is given by

pX,Y (x, y) =



1/7 x = 5, y = 0

1/7 x = 5, y = 3

1/7 x = 5, y = 4

3/7 x = 8, y = 0

1/7 x = 8, y = 4

0 otherwise.
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Then

pX (5) =
∑

y

pX,Y (5, y) = pX,Y (5, 0)+ pX,Y (5, 3)+ pX,Y (5, 4)

=
1

7
+

1

7
+

1

7
=

3

7
,

while

pX (8) =
∑

y

pX,Y (8, y) = pX,Y (8, 0)+ pX,Y (8, 4) =
3

7
+

1

7
=

4

7
.

Similarly,

pY (4) =
∑

x

pX,Y (x, 4) = pX,Y (5, 4)+ pX,Y (8, 4) =
1

7
+

1

7
=

2

7
,

etc.

Note that in such a simple context it is possible to tabulate the joint probability

function in a table, as illustrated below for pX,Y , pX , and pY of this example.

Y = 0 Y = 3 Y = 4

X = 5 1/7 1/7 1/7 3/7
X = 8 3/7 0 1/7 4/7

4/7 1/7 2/7

Summing the rows and columns and placing the totals in the margins gives the marginal

distributions of X and Y .

2.7.4 Joint Density Functions

If X and Y are continuous random variables, then clearly pX,Y (x, y) = 0 for all x and

y. Hence, joint probability functions are not useful in this case. On the other hand, we

shall see here that if X and Y are jointly absolutely continuous, then their relationship

may be usefully described by a joint density function.

Definition 2.7.4 Let f : R2 → R1 be a function. Then f is a joint density function

if f (x, y) ≥ 0 for all x and y, and
∫∞
−∞

∫∞
−∞ f (x, y) dx dy = 1.

Definition 2.7.5 Let X and Y be random variables. Then X and Y are jointly ab-

solutely continuous if there is a joint density function f , such that

P(a ≤ X ≤ b , c ≤ Y ≤ d) =

∫ d

c

∫ b

a

f (x, y) dx dy,

for all a ≤ b , c ≤ d .
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Consider the following example.

EXAMPLE 2.7.6

Let X and Y be jointly absolutely continuous, with joint density function f given by

f (x, y) =

{
4x2 y + 2y5 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise.

We first verify that f is indeed a density function. Clearly, f (x, y) ≥ 0 for all x

and y. Also,

∫ ∞
−∞

∫ ∞
−∞

f (x, y) dx dy =

∫ 1

0

∫ 1

0

(4x2 y + 2y5) dx dy =

∫ 1

0

(
4

3
y + 2y5

)
dy

=
4

3

1

2
+ 2

1

6
=

2

3
+

1

3
= 1.

Hence, f is a joint density function. In Figure 2.7.2, we have plotted the function f,
which gives a surface over the unit square.

1.0

0.5
1.0

0.5

y

0.0
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0.0
0

2

f 4

6

Figure 2.7.2: A plot of the density f in Example 2.7.6.
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We next compute P(0.5 ≤ X ≤ 0.7 , 0.2 ≤ Y ≤ 0.9). Indeed, we have

P(0.5 ≤ X ≤ 0.7 , 0.2 ≤ Y ≤ 0.9)

=

∫ 0.9

0.2

∫ 0.7

0.5
(4x2 y + 2y5) dx dy

=

∫ 0.9

0.2

[(
4

3
((0.7)3 − (0.5)3

)
y + 2y5(0.7− 0.5)

]
dy

=
4

3

(
(0.7)3 − (0.5)3

) 1

2
((0.9)2 − (0.2)2)+

2

6
((0.9)6 − (0.2)6)(0.7− 0.5)

=
2

3
((0.7)3 − (0.5)3)((0.9)2 − (0.2)2)+

1

3
((0.9)6 − (0.2)6)(0.7− 0.5)

.
= 0.147.

Other probabilities can be computed similarly.

Once we know a joint density fX,Y , then computing the marginal densities of X

and Y is very easy, as the following theorem shows.

Theorem 2.7.5 Let X and Y be jointly absolutely continuous random variables,

with joint density function fX,Y . Then the (marginal) density fX of X satisfies

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy,

for all x ∈ R1. Similarly, the (marginal) density fY of Y satisfies

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx,

for all y ∈ R1 .

PROOF We need to show that, for a ≤ b, P(a ≤ X ≤ b) =
∫ b

a
fX (x) dx =∫ b

a

∫∞
−∞ fX,Y (x, y) dy dx . Now, we always have −∞ < Y < ∞. Hence, using con-

tinuity of P , we have that P(a ≤ X ≤ b) = P(a ≤ X ≤ b ,−∞ < Y < ∞)
and

P(a ≤ X ≤ b ,−∞ < Y <∞)

= lim
c→−∞
d→∞

P(a ≤ X ≤ b, c ≤ Y ≤ d) = lim
c→−∞
d→∞

∫ d

c

∫ b

a

f (x, y) dx dy

= lim
c→−∞
d→∞

∫ b

a

∫ d

c

f (x, y) dy dx =

∫ b

a

∫ ∞
−∞

fX,Y (x, y) dy dx,

as claimed. The result for fY follows similarly.

EXAMPLE 2.7.7 (Example 2.7.6 continued)

Let X and Y again have joint density

fX,Y (x, y) =

{
4x2 y + 2y5 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise.
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Then by Theorem 2.7.5, for 0 ≤ x ≤ 1,

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1

0

(4x2 y + 2y5) dy = 2x2 + (1/3),

while for x < 0 or x > 1,

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

0 dy = 0.

Similarly, for 0 ≤ y ≤ 1,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 1

0

(4x2 y + 2y5) dx =
4

3
y + 2y5,

while for y < 0 or y > 1, fY (y) = 0.

EXAMPLE 2.7.8

Suppose X and Y are jointly absolutely continuous, with joint density

fX,Y (x, y) =

{
120x3 y x ≥ 0, y ≥ 0, x + y ≤ 1

0 otherwise.

Then the region where fX,Y (x, y) > 0 is a triangle, as depicted in Figure 2.7.3.

1

x

y

1

1

Figure 2.7.3: Region of the plane where the density fX,Y in Example 2.7.8 is positive.

We check that∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy =

∫ 1

0

∫ 1−x

0

120x3 y dy dx =

∫ 1

0

120x3 (1− x)2

2
dx

=

∫ 1

0

60(x3 − 2x4 + x5) dx = 60(
1

4
− 2

1

5
+

1

6
)

= 15− 2(12)+ 10 = 1,

so that fX,Y is indeed a joint density function. We then compute that, for example,

fX (x) =

∫ 1−x

0

120x3 y dy = 120x3 (1− x)2

2
= 60(x3 − 2x4 + x5)
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for 0 ≤ x ≤ 1 (with fX (x) = 0 for x < 0 or x > 1).

EXAMPLE 2.7.9 Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ) Distribution

Let µ1, µ2, σ 1, σ 2, and ρ be real numbers, with σ 1, σ 2 > 0 and −1 ≤ ρ ≤ 1. Let X

and Y have joint density given by

fX,Y (x, y) =
1

2πσ 1σ 2

√
1− ρ2

exp

− 1

2(1− ρ2)


(

x−µ1

σ 1

)2

+
(

y−µ2

σ 2

)2

−

2ρ
(

x−µ1

σ 1

) (
y−µ2

σ 2

)



for x ∈ R1, y ∈ R1.We say that X and Y have the Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ)
distribution.

It can be shown (see Problem 2.7.13) that X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2).

Hence, X and Y are each normally distributed. The parameter ρ measures the degree

of the relationship that exists between X and Y (see Problem 3.3.17) and is called

the correlation. In particular, X and Y are independent (see Section 2.8.3), and so

unrelated, if and only if ρ = 0 (see Problem 2.8.21).

Figure 2.7.4 is a plot of the standard bivariate normal density, given by setting

µ1 = 0, µ2 = 0, σ 1 = 1, σ 2 = 1, and ρ = 0. This is a bell-shaped surface in R3

with its peak at the point (0, 0) in the xy-plane. The graph of the general Bivariate

Normal(µ1, µ2, σ 1, σ 2, ρ) distribution is also a bell-shaped surface, but the peak is at

the point (µ1, µ2) in the xy-plane and the shape of the bell is controlled by σ 1, σ 2, and

ρ.

2yx

2
0.00
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2

0.05

0.15
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Figure 2.7.4: A plot of the standard bivariate normal density function.

It can be shown (see Problem 2.9.16) that, when Z1, Z2 are independent random

variables, both distributed N (0, 1), and we put

X = µ1 + σ 1 Z1, Y = µ2 + σ 2

(
ρZ1 + (1− ρ

2)1/2 Z2

)
, (2.7.1)
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then (X, Y ) ∼ Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ) . This relationship can be quite

useful in establishing various properties of this distribution. We can also write an

analogous version Y = µ2 + σ 2 Z1, X = µ1 + σ 1(ρZ1 +
(
1− ρ2

)1/2
Z2) and obtain

the same distributional result.

The bivariate normal distribution is one of the most commonly used bivariate dis-

tributions in applications. For example, if we randomly select an individual from a

population and measure his weight X and height Y, then a bivariate normal distribution

will often provide a reasonable description of the joint distribution of these variables.

Joint densities can also be used to compute probabilities of more general regions,

as the following result shows. (We omit the proof. The special case B = [a, b]× [c, d]

corresponds directly to the definition of fX,Y .)

Theorem 2.7.6 Let X and Y be jointly absolutely continuous random variables,

with joint density fX,Y , and let B ⊆ R2 be any region. Then

P
(
(X, Y ) ∈ B

)
=

∫ ∫
B

f (x, y) dx dy.

The previous discussion has centered around having just two random variables,

X and Y . More generally, we may consider n random variables X1, . . . , Xn . If the

random variables are all discrete, then we can further define a joint probability function

pX1,...,Xn
: Rn → [0, 1] by pX1,...,Xn

(x1, . . . , xn) = P(X1 = x1 , . . . , Xn = xn).
If the random variables are jointly absolutely continuous, then we can define a joint

density function fX1,...,Xn
: Rn → [0, 1] so that

P(a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn)

=

∫ bn

an

· · ·

∫ b1

a1

fX1,...,Xn
(x1, . . . , xn) dx1 · · · dxn,

whenever ai ≤ bi for all i .

Summary of Section 2.7

• It is often important to keep track of the joint probabilities of two random vari-

ables, X and Y .

• Their joint cumulative distribution function is given by FX,Y (x, y) = P(X ≤
x, Y ≤ y).

• If X and Y are discrete, then their joint probability function is given by pX,Y (x, y)
= P(X = x, Y = y).

• If X and Y are absolutely continuous, then their joint density function fX,Y (x, y)

is such that P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a
fX,Y (x, y) dx dy.

• The marginal density of X and Y can be computed from any of FX,Y , or pX,Y ,

or fX,Y .

• An important example of a joint distribution is the bivariate normal distribution.
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EXERCISES

2.7.1 Let X ∼ Bernoulli(1/3), and let Y = 4X − 2. Compute the joint cdf FX,Y .

2.7.2 Let X ∼ Bernoulli(1/4), and let Y = −7X . Compute the joint cdf FX,Y .

2.7.3 Suppose

pX,Y (x, y) =



1/5 x = 2, y = 3

1/5 x = 3, y = 2

1/5 x = −3, y = −2

1/5 x = −2, y = −3

1/5 x = 17, y = 19

0 otherwise.

(a) Compute pX .

(b) Compute pY .

(c) Compute P(Y > X).
(d) Compute P(Y = X).
(e) Compute P(XY < 0).

2.7.4 For each of the following joint density functions fX,Y , find the value of C and

compute fX (x), fY (y), and P(X ≤ 0.8 , Y ≤ 0.6).
(a)

fX,Y (x, y) =

{
2x2 y + Cy5 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise.

(b)

fX,Y (x, y) =

{
C(xy + x5 y5) 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise.

(c)

fX,Y (x, y) =

{
C(xy + x5 y5) 0 ≤ x ≤ 4 , 0 ≤ y ≤ 10

0 otherwise.

(d)

fX,Y (x, y) =

{
Cx5 y5 0 ≤ x ≤ 4 , 0 ≤ y ≤ 10

0 otherwise.

2.7.5 Prove that FX,Y (x, y) ≤ min(FX (x), FY (y)).

2.7.6 Suppose P(X = x, Y = y) = 1/8 for x = 3, 5 and y = 1, 2, 4, 7, otherwise

P(X = x, Y = y) = 0. Compute each of the following.

(a) FX,Y (x, y) for all x, y ∈ R1

(b) pX,Y (x, y) for all x, y ∈ R1

(c) pX (x) for all x ∈ R1

(d) pY (y) for all x ∈ R1

(e) The marginal cdf FX (x) for all x ∈ R1

(f) The marginal cdf FY (y) for all y ∈ R1
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2.7.7 Let X and Y have joint density fX,Y (x, y) = c sin(xy) for 0 < x < 1 and

0 < y < 2, otherwise fX,Y (x, y) = 0, for appropriate constant c > 0 (which cannot

be computed explicitly). In terms of c, compute each of the following.

(a) The marginal density fX (x) for all x ∈ R1

(b) The marginal density fY (y) for all y ∈ R1

2.7.8 Let X and Y have joint density fX,Y (x, y) = (x2 + y)/36 for −2 < x < 1 and

0 < y < 4, otherwise fX,Y (x, y) = 0. Compute each of the following.

(a) The marginal density fX (x) for all x ∈ R1

(b) The marginal density fY (y) for all y ∈ R1

(c) P(Y < 1)
(d) The joint cdf FX,Y (x, y) for all x, y ∈ R1

2.7.9 Let X and Y have joint density fX,Y (x, y) = (x2 + y)/4 for 0 < x < y < 2,

otherwise fX,Y (x, y) = 0. Compute each of the following.

(a) The marginal density fX (x) for all x ∈ R1

(b) The marginal density fY (y) for all y ∈ R1

(c) P(Y < 1)

2.7.10 Let X and Y have the Bivariate-Normal(3, 5, 2, 4, 1/2) distribution.

(a) Specify the marginal distribution of X .

(b) Specify the marginal distribution of Y .

(c) Are X and Y independent? Why or why not?

PROBLEMS

2.7.11 Let X ∼ Exponential(λ), and let Y = X3. Compute the joint cdf, FX,Y (x, y).

2.7.12 Let FX,Y be a joint cdf. Prove that for all y ∈ R1, limx→−∞ FX,Y (x, y) = 0.

2.7.13 Let X and Y have the Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ) distribution, as in

Example 2.7.9. Prove that X ∼ N (µ1, σ
2
1), by proving that

∫ ∞
−∞

fX,Y (x, y) dy =
1

σ 1

√
2π

exp

{
−
(x − µ1)

2

2σ 2
1

}
.

2.7.14 Suppose that the joint density fX,Y is given by fX,Y (x, y) = Cye−xy for 0 <
x < 1, 0 < y < 1 and is 0 otherwise.

(a) Determine C so that fX,Y is a density.

(b) Compute P (1/2 < X < 1, 1/2 < Y < 1) .

(c) Compute the marginal densities of X and Y.

2.7.15 Suppose that the joint density fX,Y is given by fX,Y (x, y) = Cye−xy for 0 <
x < y < 1 and is 0 otherwise.

(a) Determine C so that fX,Y is a density.

(b) Compute P (1/2 < X < 1, 1/2 < Y < 1) .

(c) Compute the marginal densities of X and Y.

2.7.16 Suppose that the joint density fX,Y is given by fX,Y (x, y) = Ce−(x+y) for

0 < x < y <∞ and is 0 otherwise.
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(a) Determine C so that fX,Y is a density.

(b) Compute the marginal densities of X and Y.

2.7.17 (Dirichlet(α1, α2, α3) distribution) Let (X1, X2) have the joint density

fX1,X2
(x1, x2) =

0 (α1 + α2 + α3)

0 (α1) 0 (α2) 0 (α3)
x
α1−1
1 x

α2−1
2 (1− x1 − x2)

α3−1

for x1 ≥ 0, x2 ≥ 0, and 0 ≤ x1 + x2 ≤ 1. A Dirichlet distribution is often applicable

when X1, X2, and 1− X1 − X2 correspond to random proportions.

(a) Prove that fX1,X2
is a density. (Hint: Sketch the region where fX1,X2

is nonnegative,

integrate out x1 first by making the transformation u = x1/(1− x2) in this integral, and

use (2.4.10) from Problem 2.4.24.)

(b) Prove that X1 ∼ Beta(α1, α2 + α3) and X2 ∼ Beta(α2, α1 + α3) .

2.7.18 (Dirichlet(α1, . . . , αk+1) distribution) Let (X1, . . . , Xk) have the joint density

fX1,...,Xk
(x1, . . . , xk)

=
0 (α1 + · · · + αk+1)

0 (α1) · · ·0 (αk+1)
x
α1−1
1 · · · xαk−1

k (1− x1 − · · · − xk)
αk+1−1

for xi ≥ 0, i = 1, . . . , k, and 0 ≤ x1 + · · · + xk ≤ 1. Prove that fX1,...,Xk
is a density.

(Hint: Problem 2.7.17.)

CHALLENGES

2.7.19 Find an example of two random variables X and Y and a function h : R1 → R1,

such that FX (x) > 0 and FY (x) > 0 for all x ∈ R1, but limx→∞ FX,Y (x, h(x)) = 0.

DISCUSSION TOPICS

2.7.20 What are examples of pairs of real-life random quantities that have interesting

relationships? (List as many as you can, and describe each relationship as well as you

can.)

2.8 Conditioning and Independence
Let X and Y be two random variables. Suppose we know that X = 5. What does

that tell us about Y ? Depending on the relationship between X and Y , that may tell

us everything about Y (e.g., if Y = X ), or nothing about Y . Usually, the answer

will be between these two extremes, and the knowledge that X = 5 will change the

probabilities for Y somewhat.

2.8.1 Conditioning on Discrete Random Variables

Suppose X is a discrete random variable, with P(X = 5) > 0. Let a < b, and suppose

we are interested in the conditional probability P(a < Y ≤ b | X = 5). Well, we
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already know how to compute such conditional probabilities. Indeed, by (1.5.1),

P(a < Y ≤ b | X = 5) =
P(a < Y ≤ b , X = 5)

P(X = 5)
,

provided that P(X = 5) > 0. This prompts the following definition.

Definition 2.8.1 Let X and Y be random variables, and suppose that P(X = x) >
0. The conditional distribution of Y , given that X = x , is the probability distribution

assigning probability
P(Y ∈ B , X = x)

P(X = x)

to each event Y ∈ B. In particular, it assigns probability

P(a < Y ≤ b , X = x)

P(X = x)

to the event that a < Y ≤ b.

EXAMPLE 2.8.1

Suppose as in Example 2.7.5 that X and Y have joint probability function

pX,Y (x, y) =



1/7 x = 5, y = 0

1/7 x = 5, y = 3

1/7 x = 5, y = 4

3/7 x = 8, y = 0

1/7 x = 8, y = 4

0 otherwise.

We compute P(Y = 4 | X = 8) as

P(Y = 4 | X = 8) =
P(Y = 4 , X = 8)

P(X = 8)
=

1/7

(3/7)+ (1/7)
=

1/7

4/7
= 1/4.

On the other hand,

P(Y = 4 | X = 5) =
P(Y = 4 , X = 5)

P(X = 5)
=

1/7

(1/7)+ (1/7)+ (1/7)
=

1/7

3/7
= 1/3.

Thus, depending on the value of X , we obtain different probabilities for Y .

Generalizing from the above example, we see that if X and Y are discrete, then

P(Y = y | X = x) =
P(Y = y , X = x)

P(X = x)
=

pX,Y (x, y)

pX (x)
=

pX,Y (x, y)∑
z pX,Y (x, z)

.

This prompts the following definition.
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Definition 2.8.2 Suppose X and Y are two discrete random variables. Then the

conditional probability function of Y , given X , is the function pY |X defined by

pY |X (y | x) =
pX,Y (x, y)∑
z pX,Y (x, z)

=
pX,Y (x, y)

pX (x)
,

defined for all y ∈ R1 and all x with pX (x) > 0.

2.8.2 Conditioning on Continuous Random Variables

If X is continuous, then we will have P(X = x) = 0. In this case, Definitions 2.8.1

and 2.8.2 cannot be used because we cannot divide by 0. So how can we condition on

X = x in this case?

One approach is suggested by instead conditioning on x − ε < X ≤ x + ε, where

ε > 0 is a very small number. Even if X is continuous, we might still have P(x − ε ≤
X ≤ x + ε) > 0. On the other hand, if ε is very small and x − ε ≤ X ≤ x + ε, then X

must be very close to x .

Indeed, suppose that X and Y are jointly absolutely continuous, with joint density

function fX,Y . Then

P(a ≤ Y ≤ b | x − ε ≤ X ≤ x + ε) =
P(a ≤ Y ≤ b, x − ε ≤ X ≤ x + ε)

P(x − ε ≤ X ≤ x + ε)

=

∫ b

a

∫ x+ε
x−ε fX,Y (t, y) dt dy∫∞

−∞

∫ x+ε
x−ε fX,Y (t, y) dt dy

.

In Figure 2.8.1, we have plotted the region {(x, y) : a ≤ y ≤ b , x − ε < x ≤ x + ε}
for (X, Y ) .

b

a

y

x x+εxε
|

Figure 2.8.1: The shaded region is the set {(x, y) : a ≤ y ≤ b , x − ε ≤ x ≤ x + ε}.

Now, if ε is very small, then in the above integrals we will always have t very close

to x . If fX,Y is a continuous function, then this implies that fX,Y (t, y) will be very
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close to fX,Y (x, y). We conclude that, if ε is very small, then

P(a ≤ Y ≤ b | x − ε ≤ X ≤ x + ε) ≈

∫ b

a

∫ x+ε
x−ε fX,Y (x, y) dt dy∫∞

−∞

∫ x+ε
x−ε fX,Y (x, y) dt dy

=

∫ b

a
2ε fX,Y (x, y) dy∫∞

−∞ 2ε fX,Y (x, y) dy
=

∫ b

a

fX,Y (x, y)∫∞
−∞ fX,Y (x, z) dz

dy.

This suggests that the quantity

fX,Y (x, y)∫∞
−∞ fX,Y (x, z) dz

=
fX,Y (x, y)

fX (x)

plays the role of a density, for the conditional distribution of Y, given that X = x . This

prompts the following definitions.

Definition 2.8.3 Let X and Y be jointly absolutely continuous, with joint den-

sity function fX,Y . The conditional density of Y , given X = x , is the function

fY |X (y | x), defined by

fY |X (y | x) =
fX,Y (x, y)

fX (x)
,

valid for all y ∈ R1, and for all x such that fX (x) > 0.

Definition 2.8.4 Let X and Y be jointly absolutely continuous, with joint density

function fX,Y . The conditional distribution of Y , given X = x , is defined by saying

that

P(a ≤ Y ≤ b | X = x) =

∫ b

a

fY |X (y | x) dy,

when a ≤ b, with fY |X as in Definition 2.8.3, valid for all x such that fX (x) > 0.

EXAMPLE 2.8.2

Let X and Y have joint density

fX,Y (x, y) =

{
4x2 y + 2y5 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise,

as in Examples 2.7.6 and 2.7.7.

We know from Example 2.7.7 that

fX (x) =

{
2x2 + (1/3) 0 ≤ x ≤ 1

0 otherwise,

while

fY (y) =

{
4
3

y + 2y5 0 ≤ y ≤ 1

0 otherwise.



Chapter 2: Random Variables and Distributions 97

Let us now compute P(0.2 ≤ Y ≤ 0.3 | X = 0.8). Using Definitions 2.8.4

and 2.8.3, we have

P(0.2 ≤ Y ≤ 0.3 | X = 0.8)

=

∫ 0.3

0.2
fY |X (y | 0.8) dy =

∫ 0.3
0.2 fX,Y (0.8, y) dy

fX (0.8)
=

∫ 0.3
0.2

(
4 (0.8)2 y + 2y5

)
dy

2 (0.8)2 + 1
3

=
4
2
(0.8)2 ((0.3)2 − (0.2)2)+ 2

6
((0.3)6 − (0.2)6)

2 (0.8)2 + 1
3

= 0.0398.

By contrast, if we compute the unconditioned (i.e., usual) probability that 0.2 ≤
Y ≤ 0.3, we see that

P(0.2 ≤ Y ≤ 0.3) =

∫ 0.3

0.2
fY (y) dy =

∫ 0.3

0.2
(
4

3
y + 2y5) dy

=
4

3

1

2
((0.3)2 − (0.2)2)+

2

6
((0.3)6 − (0.2)6) = 0.0336.

We thus see that conditioning on X = 0.8 increases the probability that 0.2 ≤ Y ≤ 0.3,

from about 0.0336 to about 0.0398.

By analogy with Theorem 1.3.1, we have the following.

Theorem 2.8.1 (Law of total probability, absolutely continuous random variable

version) Let X and Y be jointly absolutely continuous random variables, and let

a ≤ b and c ≤ d . Then

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX (x) fY |X (y | x) dx dy.

More generally, if B ⊆ R2 is any region, then

P
(
(X, Y ) ∈ B

)
=

∫ ∫
B

fX (x) fY |X (y | x) dx dy.

PROOF By Definition 2.8.3,

fX (x) fY |X (y | x) = fX,Y (x, y).

Hence, the result follows immediately from Definition 2.7.4 and Theorem 2.7.6.

2.8.3 Independence of Random Variables

Recall from Definition 1.5.2 that two events A and B are independent if P(A ∩ B) =
P(A) P(B). We wish to have a corresponding definition of independence for random

variables X and Y . Intuitively, independence of X and Y means that X and Y have no



98 Section 2.8: Conditioning and Independence

influence on each other, i.e., that the values of X make no change to the probabilities

for Y (and vice versa).

The idea of the formal definition is that X and Y give rise to events, of the form

“a < X ≤ b” or “Y ∈ B,” and we want all such events involving X to be independent

of all such events involving Y . Specifically, our definition is the following.

Definition 2.8.5 Let X and Y be two random variables. Then X and Y are inde-

pendent if, for all subsets B1 and B2 of the real numbers,

P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2).

That is, the events “X ∈ B1” and “Y ∈ B2” are independent events.

Intuitively, X and Y are independent if they have no influence on each other, as we

shall see.

Now, Definition 2.8.5 is very difficult to work with. Fortunately, there is a much

simpler characterization of independence.

Theorem 2.8.2 Let X and Y be two random variables. Then X and Y are indepen-

dent if and only if

P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(a ≤ X ≤ b)P(c ≤ Y ≤ d) (2.8.1)

whenever a ≤ b and c ≤ d .

That is, X and Y are independent if and only if the events “a ≤ X ≤ b” and “c ≤ Y ≤
d” are independent events whenever a ≤ b and c ≤ d .

We shall not prove Theorem 2.8.2 here, although it is similar in spirit to the proof of

Theorem 2.5.1. However, we shall sometimes use (2.8.1) to check for the independence

of X and Y .

Still, even (2.8.1) is not so easy to check directly. For discrete and for absolutely

continuous distributions, easier conditions are available, as follows.

Theorem 2.8.3 Let X and Y be two random variables.

(a) If X and Y are discrete, then X and Y are independent if and only if their joint

probability function pX,Y satisfies

pX,Y (x, y) = pX (x) pY (y)

for all x, y ∈ R1.
(b) If X and Y are jointly absolutely continuous, then X and Y are independent if

and only if their joint density function fX,Y can be chosen to satisfy

fX,Y (x, y) = fX (x) fY (y)

for all x, y ∈ R1.
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PROOF (a) If X and Y are independent, then setting a = b = x and c = d = y

in (2.8.1), we see that P(X = x, Y = y) = P(X = x)P(Y = y).Hence, pX,Y (x, y) =
pX (x) pY (y).

Conversely, if pX,Y (x, y) = pX (x) pY (y) for all x and y, then

P(a ≤ X ≤ b, c ≤ Y ≤ d)

=
∑

a≤x≤b

∑
c≤y≤d

pX,Y (x, y) =
∑

a≤x≤b

∑
c≤y≤d

pX (x) pY (y)

=

( ∑
a≤x≤b

pX (x)

) ( ∑
c≤y≤d

pY (y)

)
= P(a ≤ X ≤ b) P(c ≤ Y ≤ d).

This completes the proof of (a).

(b) If fX,Y (x, y) = fX (x) fY (y) for all x and y, then

P(a ≤ X ≤ b, c ≤ Y ≤ d)

=

∫ b

a

∫ d

c

fX,Y (x, y) dy dx =

∫ b

a

∫ d

c

fX (x) fY (y) dy dx

=

(∫ b

a

fX (x) dx

) (∫ d

c

fY (y) dy

)
= P(a ≤ X ≤ b) P(c ≤ Y ≤ d).

This completes the proof of the “if” part of (b). The proof of the “only if” part of (b) is

more technical, and we do not include it here.

EXAMPLE 2.8.3

Let X and Y have, as in Example 2.7.6, joint density

fX,Y (x, y) =

{
4x2 y + 2y5 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1

0 otherwise

and so, as derived in as in Example 2.7.7, marginal densities

fX (x) =

{
2x2 + (1/3) 0 ≤ x ≤ 1

0 otherwise

and

fY (y) =

{
4
3

y + 2y5 0 ≤ y ≤ 1

0 otherwise.

Then we compute that

fX (x) fY (y) =

{
(2x2 + (1/3)) ( 4

3
y + 2y5) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

We therefore see that fX (x) fY (y) 6= fX,Y (x, y). Hence, X and Y are not independent.
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EXAMPLE 2.8.4

Let X and Y have joint density

fX,Y (x, y) =

{
1

8080
(12xy2 + 6x + 4y2 + 2) 0 ≤ x ≤ 6, 3 ≤ y ≤ 5

0 otherwise.

We compute the marginal densities as

fX (x) =

∫ ∞
−∞

fX,Y (x, y) dy =

{
1
60
+ 1

20
x 0 ≤ x ≤ 6

0 otherwise,

and

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

{
3

202
+ 3

101
y2 3 ≤ y ≤ 5

0 otherwise.

Then we compute that

fX (x) fY (y) =

{
( 1

60
+ 1

20
x) ( 3

202
+ 3

101
y2) 0 ≤ x ≤ 6 , 3 ≤ y ≤ 5

0 otherwise.

Multiplying this out, we see that fX (x) fY (y) = fX,Y (x, y). Hence, X and Y are

independent in this case.

Combining Theorem 2.8.3 with Definitions 2.8.2 and 2.8.3, we immediately obtain

the following result about independence. It says that independence of random vari-

ables is the same as saying that conditioning on one has no effect on the other, which

corresponds to an intuitive notion of independence.

Theorem 2.8.4 Let X and Y be two random variables.

(a) If X and Y are discrete, then X and Y are independent if and only if pY |X (y | x) =
pY (y), for every x, y ∈ R1.

(b) If X and Y are jointly absolutely continuous, then X and Y are independent if

and only if fY |X (y | x) = fY (y), for every x, y ∈ R1.

While Definition 2.8.5 is quite difficult to work with, it does provide the easiest

way to prove one very important property of independence, as follows.

Theorem 2.8.5 Let X and Y be independent random variables. Let f, g : R1 → R1

be any two functions. Then the random variables f (X) and g(Y ) are also indepen-

dent.

PROOF Using Definition 2.8.5, we compute that

P ( f (X) ∈ B1, g(Y ) ∈ B2) = P

(
X ∈ f −1(B1), Y ∈ g−1(B2)

)
= P

(
X ∈ f −1(B1)

)
P

(
Y ∈ g−1(B2)

)
= P ( f (X) ∈ B1) P (g(Y ) ∈ B2) .
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(Here f −1(B1) = {x ∈ R1 : f (x) ∈ B1} and g−1(B2) = {y ∈ R1 : g(y) ∈ B2}.)
Because this is true for any B1 and B2, we see that f (X) and g(Y ) are independent.

Suppose now that we have n random variables X1, . . . , Xn . The random variables

are independent if and only if the collection of events {ai ≤ X i ≤ bi } are independent,

whenever ai ≤ bi , for all i = 1, 2, . . . , n. Generalizing Theorem 2.8.3, we have the

following result.

Theorem 2.8.6 Let X1, . . . , Xn be a collection of random variables.

(a) If X1, . . . , Xn are discrete, then X1, . . . , Xn are independent if and only if their

joint probability function pX1,...,Xn
satisfies

pX1,...,Xn
(x1, . . . , xn) = pX1

(x1) · · · pXn
(xn)

for all x1, . . . , xn ∈ R1 .
(b) If X1, . . . , Xn are jointly absolutely continuous, then X1, . . . , Xn are indepen-

dent if and only if their joint density function fX1,...,Xn
can be chosen to satisfy

fX1,...,Xn
(x, y) = fX1

(x1) · · · fXn
(xn)

for all x1, . . . , xn ∈ R1.

A particularly common case in statistics is the following.

Definition 2.8.6 A collection X1, . . . , Xn of random variables is independent and

identically distributed (or i.i.d.) if the collection is independent and if, furthermore,

each of the n variables has the same distribution. The i.i.d. sequence X1, . . . , Xn is

also referred to as a sample from the common distribution.

In particular, if a collection X1, . . . , Xn of random variables is i.i.d. and discrete, then

each of the probability functions pX i
is the same, so that pX1

(x) = pX2
(x) = · · · =

pXn
(x) ≡ p(x), for all x ∈ R1. Furthermore, from Theorem 2.8.6(a), it follows that

pX1,...,Xn
(x1, . . . , xn) = pX1

(x1)pX2
(x2) · · · pXn

(xn) = p(x1)p(x2) · · · p(xn)

for all x1, . . . , xn ∈ R1.

Similarly, if a collection X1, . . . , Xn of random variables is i.i.d. and jointly ab-

solutely continuous, then each of the density functions fX i
is the same, so that fX1

(x) =
fX2
(x) = · · · = fXn

(x) ≡ f (x) , for all x ∈ R1. Furthermore, from Theorem 2.8.6(b),

it follows that

fX1,...,Xn
(x1, . . . , xn) = fX1

(x1) fX2
(x2) · · · fXn

(xn) = f (x1) f (x2) · · · f (xn)

for all x1, . . . , xn ∈ R1.

We now consider an important family of discrete distributions that arise via sam-

pling.
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EXAMPLE 2.8.5 Multinomial Distributions

Suppose we have a response s that can take three possible values — for convenience,

labelled 1, 2, and 3 — with the probability distribution

P (s = 1) = θ1, P (s = 2) = θ2, P (s = 3) = θ3

so that each θ i ≥ 0 and θ1 + θ2 + θ3 = 1. As a simple example, consider a bowl

of chips of which a proportion θ i of the chips are labelled i (for i = 1, 2, 3). If

we randomly draw a chip from the bowl and observe its label s, then P (s = i) = θ i .

Alternatively, consider a population of students at a university of which a proportion θ1

live on campus (denoted by s = 1), a proportion θ2 live off-campus with their parents

(denoted by s = 2), and a proportion θ3 live off-campus independently (denoted by

s = 3). If we randomly draw a student from this population and determine s for that

student, then P (s = i) = θ i .
We can also write

P (s = i) = θ
I{1}(i)
1 θ

I{2}(i)
2 θ

I{3}(i)
3

for i ∈ {1, 2, 3} , where I{ j} is the indicator function for { j}. Therefore, if (s1, . . . , sn)
is a sample from the distribution on {1, 2, 3} given by the θ i , Theorem 2.8.6(a) implies

that the joint probability function for the sample equals

P (s1 = k1, . . . , sn = kn) =
n∏

j=1

θ
I{1}(k j)
1 θ

I{2}(k j)
2 θ

I{3}(k j)
3 = θ x1

1 θ
x2

2 θ
x3

3 (2.8.2)

where xi =
∑n

j=1 I{i}
(
k j

)
is equal to the number of i’s in (k1, . . . , kn) .

Now, based on the sample (s1, . . . , sn) , define the random variables

X i =
n∑

j=1

I{i}
(
s j

)
for i = 1, 2, and 3. Clearly, X i is the number of i’s observed in the sample and we

always have X i ∈ {0, 1, . . . , n} and X1 + X2 + X3 = n. We refer to the X i as the

counts formed from the sample.

For (x1, x2, x3) satisfying xi ∈ {0, 1, . . . , n} and x1 + x2 + x3 = n, (2.8.2) implies

that the joint probability function for (X1, X2, X3) is given by

p(X1,X2,X3) (x1, x2, x3) = P (X1 = x1, X2 = x2, X3 = x3)

= C (x1, x2, x3) θ
x1

1 θ
x2

2 θ
x3

3

where C (x1, x2, x3) equals the number of samples (s1, . . . , sn) with x1 of its elements

equal to 1, x2 of its elements equal to 2, and x3 of its elements equal to 3. To calcu-

late C (x1, x2, x3) , we note that there are
(

n
x1

)
choices for the places of the 1’s in the

sample sequence,
(

n−x1

x2

)
choices for the places of the 2’s in the sequence, and finally(

n−x1−x2

x3

)
= 1 choices for the places of the 3’s in the sequence (recall the multino-

mial coefficient defined in (1.4.4)). Therefore, the probability function for the counts
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(X1, X2, X3) is equal to

p(X1,X2,X3) (x1, x2, x3) =

(
n

x1

)(
n − x1

x2

)(
n − x1 − x2

x3

)
θ

x1

1 θ
x2

2 θ
x3

3

=

(
n

x1 x2 x3

)
θ

x1

1 θ
x2

2 θ
x3

3 .

We say that

(X1, X2, X3) ∼ Multinomial (n, θ1, θ2, θ3) .

Notice that the Multinomial(n, θ1, θ2, θ3) generalizes the Binomial(n, θ) distribu-

tion, as we are now counting the number of response values in three possible categories

rather than two. Also, it is immediate that

X i ∼ Binomial (n, θ i )

because X i equals the number of occurrences of i in the n independent response values,

and i occurs for an individual response with probability equal to θ i (also see Problem

2.8.18).

As a simple example, suppose that we have an urn containing 10 red balls, 20 white

balls, and 30 black balls. If we randomly draw 10 balls from the urn with replacement,

what is the probability that we will obtain 3 red, 4 white, and 3 black balls? Because

we are drawing with replacement, the draws are i.i.d., so the counts are distributed

Multinomial(10, 10/60, 20/60, 30/60) . The required probability equals(
10

3 4 3

)(
10

60

)3 (
20

60

)4 (
30

60

)3

= 3.0007× 10−2.

Note that if we had drawn without replacement, then the draws would not be i.i.d., the

counts would thus not follow a multinomial distribution but rather a generalization of

the hypergeometric distribution, as discussed in Problem 2.3.29.

Now suppose we have a response s that takes k possible values — for convenience,

labelled 1, 2, . . . , k — with the probability distribution given by P(s = i) = θ i . For

a sample (s1, . . . , sn) , define the counts X i =
∑n

j=1 I{i}
(
s j

)
for i = 1, . . . k. Then,

arguing as above and recalling the development of (1.4.4), we have

p(X1,...,Xk ) (x1, . . . , xk) =

(
n

x1 . . . xk

)
θ

x1

1 · · · θ
xk

k

whenever each xi ∈ {0, . . . , n} and x1 + · · · + xk = n. In this case, we write

(X1, . . . , Xk) ∼ Multinomial (n, θ1, . . . , θk) .

2.8.4 Order Statistics

Suppose now that (X1, . . . , Xn) is a sample. In many applications of statistics, we will

have n data values where the assumption that these arise as an i.i.d. sequence makes
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sense. It is often of interest, then, to order these from smallest to largest to obtain the

order statistics

X(1), . . . , X(n).

Here, X(i) is equal to the i th smallest value in the sample X1, . . . , Xn . So, for example,

if n = 5 and

X1 = 2.3, X2 = 4.5, X3 = −1.2, X4 = 2.2, X5 = 4.3

then

X(1) = −1.2, X(2) = 2.2, X(3) = 2.3, X(4) = 4.3, X(5) = 4.5.

Of considerable interest in many situations are the distributions of the order statis-

tics. Consider the following examples.

EXAMPLE 2.8.6 Distribution of the Sample Maximum

Suppose X1, X2, . . . , Xn are i.i.d. so that FX1
(x) = FX2

(x) = · · · = FXn
(x). Then

the largest-order statistic X(n) = max(X1, X2, . . . , Xn) is the maximum of these n

random variables.

Now X(n) is another random variable. What is its cumulative distribution function?

We see that X(n) ≤ x if and only if X i ≤ x for all i . Hence,

FX(n)(x) = P(X(n) ≤ x) = P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x)

= P(X1 ≤ x)P(X2 ≤ x) · · · P(Xn ≤ x) = FX1
(x)FX2

(x) · · · FXn
(x)

=
(
FX1

(x)
)n
.

If F
X1

corresponds to an absolutely continuous distribution, then we can differentiate

this expression to obtain the density of X(n).

EXAMPLE 2.8.7

As a special case of Example 2.8.6, suppose that X1, X2, . . . , Xn are identically and

independently distributed Uniform[0, 1]. From the above, for 0 ≤ x ≤ 1, we have

FX(n)(x) =
(
FX1

(x)
)n
= xn . It then follows from Corollary 2.5.1 that the density

fX(n) of X(n) equals fX(n)(x) = F ′X(n)
(x) = nxn−1 for 0 ≤ x ≤ 1, with (of course)

fX(n)(x) = 0 for x < 0 and x > 1. Note that, from Problem 2.4.24, we can write

X(n) ∼ Beta(n, 1) .

EXAMPLE 2.8.8 Distribution of the Sample Minimum

Following Example 2.8.6, we can also obtain the distribution function of the sample

minimum, or smallest-order statistic, X(1) = min(X1, X2, . . . , Xn). We have

FX(1)(x) = P(X(1) ≤ x)

= 1− P(X(1) > x)

= 1− P(X1 > x, X2 > x, . . . , Xn > x)

= 1− P(X1 > x) P(X2 > x) · · · P(Xn > x)

= 1−
(
1− FX1

(x)
) (

1− FX2
(x)
)
· · ·
(
1− FXn

(x)
)

= 1−
(
1− FX1

(x)
)n
.
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Again, if FX1
corresponds to an absolutely continuous distribution, we can differentiate

this expression to obtain the density of X(1).

EXAMPLE 2.8.9

Let X1, . . . , Xn be i.i.d. Uniform[0, 1]. Hence, for 0 ≤ x ≤ 1,

FX(1)(x) = P(X(1) ≤ x) = 1− P(X(1) > x) = 1− (1− x)n .

It then follows from Corollary 2.5.1 that the density fX(1) of X(1) satisfies fX(1)(x) =

F ′X(1)
(x) = n(1 − x)n−1 for 0 ≤ x ≤ 1, with (of course) fX(1)(x) = 0 for x < 0 and

x > 1. Note that, from Problem 2.4.24, we can write X(1) ∼ Beta(1, n) .

The sample median and sample quartiles are defined in terms of order statistics

and used in statistical applications. These quantities, and their uses, are discussed in

Section 5.5.

Summary of Section 2.8

• If X and Y are discrete, then the conditional probability function of Y, given X,
equals pY |X (y | x) = pX,Y (x, y)/ pX (x).

• If X and Y are absolutely continuous, then the conditional density function of Y,
given X, equals fY |X (y | x) = fX,Y (x, y)/ fX (x).

• X and Y are independent if P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2) for

all B1, B2 ⊆ R1.

• Discrete X and Y are independent if and only if pX,Y (x, y) = pX (x)pY (y) for

all x, y ∈ R1 or, equivalently, pY |X (y | x) = pY (y).

• Absolutely continuous X and Y are independent if and only if fX,Y (x, y) =
fX (x) fY (y) for all x, y ∈ R1 or, equivalently, fY |X (y | x) = fY (y).

• A sequence X1, X2, . . . , Xn is i.i.d. if the random variables are independent, and

each X i has the same distribution.

EXERCISES

2.8.1 Suppose X and Y have joint probability function

pX,Y (x, y) =



1/6 x = −2 , y = 3

1/12 x = −2 , y = 5

1/6 x = 9 , y = 3

1/12 x = 9 , y = 5

1/3 x = 13 , y = 3

1/6 x = 13 , y = 5

0 otherwise.

(a) Compute pX (x) for all x ∈ R1.

(b) Compute pY (y) for all y ∈ R1.

(c) Determine whether or not X and Y are independent.



106 Section 2.8: Conditioning and Independence

2.8.2 Suppose X and Y have joint probability function

pX,Y (x, y) =



1/16 x = −2 , y = 3

1/4 x = −2 , y = 5

1/2 x = 9 , y = 3

1/16 x = 9 , y = 5

1/16 x = 13 , y = 3

1/16 x = 13 , y = 5

0 otherwise.

(a) Compute pX (x) for all x ∈ R1.

(b) Compute pY (y) for all y ∈ R1.

(c) Determine whether or not X and Y are independent.

2.8.3 Suppose X and Y have joint density function

fX,Y (x, y) =

{
12
49

(
2+ x + xy + 4y2

)
0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

(a) Compute fX (x) for all x ∈ R1.

(b) Compute fY (y) for all y ∈ R1.

(c) Determine whether or not X and Y are independent.

2.8.4 Suppose X and Y have joint density function

fX,Y (x, y) =


2

5(2+e)

(
3+ ex + 3y + 3yey + yex + yex+y

) 0 ≤ x ≤ 1,
0 ≤ y ≤ 1

0 otherwise

(a) Compute fX (x) for all x ∈ R1.

(b) Compute fY (y) for all y ∈ R1.

(c) Determine whether or not X and Y are independent.

2.8.5 Suppose X and Y have joint probability function

pX,Y (x, y) =



1/9 x = −4, y = −2

2/9 x = 5, y = −2

3/9 x = 9, y = −2

2/9 x = 9, y = 0

1/9 x = 9, y = 4

0 otherwise.

(a) Compute P(Y = 4 | X = 9).
(b) Compute P(Y = −2 | X = 9).
(c) Compute P(Y = 0 | X = −4).
(d) Compute P(Y = −2 | X = 5).
(e) Compute P(X = 5 | Y = −2).
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2.8.6 Let X ∼ Bernoulli(θ) and Y ∼ Geometric(θ), with X and Y independent. Let

Z = X + Y . What is the probability function of Z?

2.8.7 For each of the following joint density functions fX,Y (taken from Exercise 2.7.4),

compute the conditional density fY |X (y | x), and determine whether or not X and Y are

independent.

(a)

fX,Y (x, y) =

{
2x2 y + Cy5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

(b)

fX,Y (x, y) =

{
C(xy + x5 y5) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

(c)

fX,Y (x, y) =

{
C(xy + x5 y5) 0 ≤ x ≤ 4, 0 ≤ y ≤ 10

0 otherwise.

(d)

fX,Y (x, y) =

{
Cx5 y5 0 ≤ x ≤ 4, 0 ≤ y ≤ 10

0 otherwise.

2.8.8 Let X and Y be jointly absolutely continuous random variables. Suppose X ∼
Exponential(2) and that P(Y > 5 | X = x) = e−3x . Compute P(Y > 5).

2.8.9 Give an example of two random variables X and Y , each taking values in the set

{1, 2, 3}, such that P(X = 1, Y = 1) = P(X = 1) P(Y = 1), but X and Y are not

independent.

2.8.10 Let X ∼ Bernoulli(θ) and Y ∼ Bernoulli(ψ), where 0 < θ < 1 and 0 < ψ <
1. Suppose P(X = 1, Y = 1) = P(X = 1) P(Y = 1). Prove that X and Y must be

independent.

2.8.11 Suppose that X is a constant random variable and that Y is any random variable.

Prove that X and Y must be independent.

2.8.12 Suppose X ∼ Bernoulli(1/3) and Y ∼ Poisson(λ), with X and Y independent

and with λ > 0. Compute P(X = 1 | Y = 5).

2.8.13 Suppose P(X = x, Y = y) = 1/8 for x = 3, 5 and y = 1, 2, 4, 7, otherwise

P(X = x, Y = y) = 0.

(a) Compute the conditional probability function pY |X (y|x) for all x, y ∈ R1 with

pX (x) > 0.

(b) Compute the conditional probability function pX |Y (x |y) for all x, y ∈ R1 with

pY (y) > 0.

(c) Are X and Y independent? Why or why not?

2.8.14 Let X and Y have joint density fX,Y (x, y) = (x2 + y)/36 for −2 < x < 1 and

0 < y < 4, otherwise fX,Y (x, y) = 0.

(a) Compute the conditional density fY |X (y|x) for all x, y ∈ R1 with fX (x) > 0.

(b) Compute the conditional density fX |Y (x |y) for all x, y ∈ R1 with fY (y) > 0.

(c) Are X and Y independent? Why or why not?
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2.8.15 Let X and Y have joint density fX,Y (x, y) = (x2 + y)/4 for 0 < x < y < 2,

otherwise fX,Y (x, y) = 0. Compute each of the following.

(a) The conditional density fY |X (y|x) for all x, y ∈ R1 with fX (x) > 0

(b) The conditional density fX |Y (x |y) for all x, y ∈ R1 with fY (y) > 0

(c) Are X and Y independent? Why or why not?

2.8.16 Suppose we obtain the following sample of size n = 6: X1 = 12, X2 = 8,

X3 = X4 = 9, X5 = 7, and X6 = 11. Specify the order statistics X(i) for 1 ≤ i ≤ 6.

PROBLEMS

2.8.17 Let X and Y be jointly absolutely continuous random variables, having joint

density of the form

fX,Y (x, y) =

{
C1(2x2 y + C2 y5) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

Determine values of C1 and C2, such that fX,Y is a valid joint density function, and X

and Y are independent.

2.8.18 Let X and Y be discrete random variables. Suppose pX,Y (x, y) = g(x) h(y),
for some functions g and h. Prove that X and Y are independent. (Hint: Use Theo-

rem 2.8.3(a) and Theorem 2.7.4.)

2.8.19 Let X and Y be jointly absolutely continuous random variables. Suppose

fX,Y (x, y) = g(x) h(y), for some functions g and h. Prove that X and Y are indepen-

dent. (Hint: Use Theorem 2.8.3(b) and Theorem 2.7.5.)

2.8.20 Let X and Y be discrete random variables, with P(X = 1) > 0 and P(X =
2) > 0. Suppose P(Y = 1 | X = 1) = 3/4 and P(Y = 2 | X = 2) = 3/4. Prove that

X and Y cannot be independent.

2.8.21 Let X and Y have the bivariate normal distribution, as in Example 2.7.9. Prove

that X and Y are independent if and only if ρ = 0.

2.8.22 Suppose that (X1, X2, X3) ∼ Multinomial(n, θ1, θ2, θ3) . Prove, by summing

the joint probability function, that X1 ∼ Binomial(n, θ1) .

2.8.23 Suppose that (X1, X2, X3) ∼Multinomial(n, θ1, θ2, θ3) . Find the conditional

distribution of X2 given that X1 = x1.

2.8.24 Suppose that X1, . . . , Xn is a sample from the Exponential(λ) distribution.

Find the densities fX(1) and fX(n) .

2.8.25 Suppose that X1, . . . , Xn is a sample from a distribution with cdf F. Prove that

FX(i)(x) =
n∑

j=i

(
n

j

)
F j (x) (1− F (x))n− j .

(Hint: Note that X(i) ≤ x if and only if at least i of X1, . . . , Xn are less than or equal

to x .)

2.8.26 Suppose that X1, . . . , X5 is a sample from the Uniform[0, 1] distribution. If we

define the sample median to be X(3), find the density of the sample median. Can you

identify this distribution? (Hint: Use Problem 2.8.25.)



Chapter 2: Random Variables and Distributions 109

2.8.27 Suppose that (X, Y ) ∼Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ) . Prove that Y given

X = x is distributed N (µ2+ρσ 2 (x − µ1) /σ 1,
(
1− ρ2

)
σ 2

2). Establish the analogous

result for the conditional distribution of X given Y = y. (Hint: Use (2.7.1) for Y given

X = x and its analog for X given Y = y.)

CHALLENGES

2.8.28 Let X and Y be random variables.

(a) Suppose X and Y are both discrete. Prove that X and Y are independent if and only

if P(Y = y | X = x) = P(Y = y) for all x and y such that P(X = x) > 0.

(b) Suppose X and Y are jointly absolutely continuous. Prove that X and Y are inde-

pendent if and only if P(a ≤ Y ≤ b | X = x) = P(a ≤ Y ≤ b) for all x and y such

that fX (x) > 0.

2.9 Multidimensional Change of Variable
Let X and Y be random variables with known joint distribution. Suppose that Z =
h1(X, Y ) and W = h2(X, Y ), where h1, h2 : R2 → R1 are two functions. What is the

joint distribution of Z and W ?

This is similar to the problem considered in Section 2.6, except that we have moved

from a one-dimensional to a two-dimensional setting. The two-dimensional setting is

more complicated; however, the results remain essentially the same, as we shall see.

2.9.1 The Discrete Case

If X and Y are discrete random variables, then the distribution of Z and W is essentially

straightforward.

Theorem 2.9.1 Let X and Y be discrete random variables, with joint probability

function pX,Y . Let Z = h1(X, Y ) and W = h2(X, Y ), where h1, h2 : R2 → R1 are

some functions. Then Z and W are also discrete, and their joint probability function

pZ ,W satisfies

pZ ,W (z, w) =
∑
x,y

h1(x,y)=z, h2(x,y)=w

pX,Y (x, y).

Here, the sum is taken over all pairs (x, y) such that h1(x, y) = z and h2(x, y) = w.

PROOF We compute that pZ ,W (z, w) = P(Z = z, W = w) = P(h1(X, Y ) =
z, h2(X, Y ) = w). This equals∑

x,y
h1(x,y)=z, h2(x,y)=w

P(X = x, Y = y) =
∑
x,y

h1(x,y)=z, h2(x,y)=w

pX,Y (x, y),

as claimed.

As a special case, we note the following.
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Corollary 2.9.1 Suppose in the context of Theorem 2.9.1 that the joint function

h = (h1, h2) : R2 → R2 defined by h(x, y) =
(
h1(x, y) , h2(x, y)

)
is one-to-

one, i.e., if h1(x1, y1) = h1(x2, y2) and h2(x1, y1) = h2(x2, y2), then x1 = x2 and

y1 = y2. Then

pZ ,W (z, w) = pX,Y (h
−1(z, w)),

where h−1(z, w) is the unique pair (x, y) such that h(x, y) = (z, w).

EXAMPLE 2.9.1

Suppose X and Y have joint density function

pX,Y (x, y) =


1/6 x = 2, y = 6

1/12 x = −2, y = −6

1/4 x = −3, y = 11

1/2 x = 3, y = −8

0 otherwise.

Let Z = X + Y and W = Y − X2. Then pZ ,W (8, 2) = P(Z = 8,W = 2) =
P(X = 2, Y = 6) + P(X = −3, Y = 11) = 1/6 + 1/4 = 5/12. On the other hand,

pZ ,W (−5,−17) = P(Z = −5,W = −17) = P(X = 3, Y = −8) = 1
2
.

2.9.2 The Continuous Case (Advanced)

If X and Y are continuous, and the function h = (h1, h2) is one-to-one, then it is

again possible to compute a formula for the joint density of Z and W , as the following

theorem shows. To state it, recall from multivariable calculus that, if h = (h1, h2) :

R2 → R2 is a differentiable function, then its Jacobian derivative J is defined by

J (x, y) = det

 ∂h1

∂x
∂h2

∂x

∂h1

∂y
∂h2

∂y

 = ∂h1

∂x

∂h2

∂y
−
∂h2

∂x

∂h1

∂y
.

Theorem 2.9.2 Let X and Y be jointly absolutely continuous, with joint density

function fX,Y . Let Z = h1(X, Y ) and W = h2(X, Y ), where h1, h2 : R2 → R1 are

differentiable functions. Define the joint function h = (h1, h2) : R2 → R2 by

h(x, y) = (h1(x, y), h2(x, y)) .

Assume that h is one-to-one, at least on the region {(x, y) : f (x, y) > 0}, i.e., if

h1(x1, y1) = h1(x2, y2) and h2(x1, y1) = h2(x2, y2), then x1 = x2 and y1 = y2.

Then Z and W are also jointly absolutely continuous, with joint density function

fZ ,W given by

fZ ,W (z, w) = fX,Y (h
−1(z, w)) / |J (h−1(z, w))|,

where J is the Jacobian derivative of h and where h−1(z, w) is the unique pair

(x, y) such that h(x, y) = (z, w).
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PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.9.2

Let X and Y be jointly absolutely continuous, with joint density function fX,Y given

by

fX,Y (x, y) =

{
4x2 y + 2y5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise,

as in Example 2.7.6. Let Z = X + Y 2 and W = X − Y 2. What is the joint density of

Z and W ?

We first note that Z = h1(X, Y ) and W = h2(X, Y ), where h1(x, y) = x + y2 and

h2(x, y) = x − y2. Hence,

J (x, y) =
∂h1

∂x

∂h2

∂y
−
∂h2

∂x

∂h1

∂y
= (1)(−2y)− (1)(2y) = −4y.

We may invert the relationship h by solving for X and Y , to obtain that

X =
1

2
(Z +W ) and Y =

√
Z −W

2
.

This means that h = (h1, h2) is invertible, with

h−1(z, w) =
(1

2
(z + w) ,

√
z − w

2

)
.

Hence, using Theorem 2.9.2, we see that

fZ ,W (z, w)

= fX,Y (h
−1(z, w)) / |J (h−1(z, w))|

= fX,Y

(
1

2
(z + w),

√
z − w

2

)
/ |J (h−1(z, w))|

=


{

4( 1
2
(z + w))2

√
z−w

2
+ 2

(√
z−w

2

)5
}
/4
√

z−w
2

0 ≤ 1
2
(z + w) ≤ 1,

0 ≤
√

z−w
2
≤ 1

0 otherwise

=

{
( z+w

2
)2 + 1

2

(
z−w

2

)2
0 ≤ z + w ≤ 2, 0 ≤ z − w ≤ 2

0 otherwise.

We have thus obtained the joint density function for Z and W .

EXAMPLE 2.9.3

Let U1 and U2 be independent, each having the Uniform[0, 1] distribution. (We could

write this as U1,U2 are i.i.d. Uniform[0, 1].) Thus,

fU1,U2
(u1, u2) =

{
1 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1

0 otherwise.
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Then define X and Y by

X =
√

2 log(1/U1) cos(2πU2), Y =
√

2 log(1/U1) sin(2πU2).

What is the joint density of X and Y ?

We see that here X = h1(U1,U2) and Y = h2(U1,U2), where

h1(u1, u2) =
√

2 log(1/u1) cos(2πu2), h2(u1, u2) =
√

2 log(1/u1) sin(2πu2).

Therefore,

∂h1

∂u1

(u1, u2) =
1

2
(2 log(1/u1))

−1/2
(

2u1(−1/u2
1)
)

cos(2πu2).

Continuing in this way, we eventually compute (see Exercise 2.9.1) that

J (u1, u2) =
∂h1

∂u1

∂h2

∂u2

−
∂h2

∂u1

∂h1

∂u2

= −
2π

u1

(
cos2(2πu2)+ sin2(2πu2)

)
= −

2π

u1

.

On the other hand, inverting the relationship h, we compute that

U1 = e−(X
2+Y 2)/2, U2 = arctan(Y/X) / 2π.

Hence, using Theorem 2.9.2, we see that

fX,Y (x, y) = fU1,U2
(h−1(x, y)) / |J (h−1(x, y))|

= fU1,U2

(
e−(x

2+y2)/2, arctan(y/x) /2π
)

×
∣∣∣J (e−(x

2+y2)/2 , arctan(y/x) /2π
)∣∣∣−1

=

 1 / | − 2π / e−(x
2+y2)/2| 0 ≤ e−(x

2+y2)/2 ≤ 1,
0 ≤ arctan(y/x) /2π ≤ 1

0 otherwise

=
1

2π
e−(x

2+y2)/2

where the last expression is valid for all x and y, because we always have

0 ≤ e−(x
2+y2)/2 ≤ 1

and 0 ≤ arctan(y/x) /2π ≤ 1.
We conclude that

fX,Y (x, y) =

(
1
√

2π
e−x2/2

)(
1
√

2π
e−y2/2

)
.

We recognize this as a product of two standard normal densities. We thus conclude that

X ∼ N (0, 1) and Y ∼ N (0, 1) and that, furthermore, X and Y are independent.
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2.9.3 Convolution

Suppose now that X and Y are independent, with known distributions, and that Z =
X + Y . What is the distribution of Z? In this case, the distribution of Z is called the

convolution of the distributions of X and of Y . Fortunately, the convolution is often

reasonably straightforward to compute.

Theorem 2.9.3 Let X and Y be independent, and let Z = X + Y .

(a) If X and Y are both discrete, with probability functions pX and pY , then Z is

also discrete, with probability function pZ given by

pZ (z) =
∑
w

pX (z − w)pY (w).

(b) If X and Y are jointly absolutely continuous, with density functions fX and fY ,

then Z is also absolutely continuous, with density function fZ given by

fZ (z) =

∫ ∞
−∞

fX (z − w) fY (w) dw.

PROOF (a) We let W = Y and consider the two-dimensional transformation from

(X, Y ) to (Z ,W ) = (X + Y, Y ).
In the discrete case, by Corollary 2.9.1, pZ ,W (z, w) = pX,Y (z−w,w). Then from

Theorem 2.7.4, pZ (z) =
∑
w pZ ,W (z, w) =

∑
w pX,Y (z − w,w). But because X

and Y are independent, pX,Y (x, y) = pX (x) pY (y), so pX,Y (z − w,w) = pX (z −
w) pY (w). This proves part (a).

(b) In the continuous case, we must compute the Jacobian derivative J (x, y) of the

transformation from (X, Y ) to (Z ,W ) = (X + Y, Y ). Fortunately, this is very easy, as

we obtain

J (x, y) =
∂(x + y)

∂x

∂y

∂y
−
∂y

∂x

∂(x + y)

∂y
= (1)(1)− (0)(1) = 1.

Hence, from Theorem 2.9.2, fZ ,W (z, w) = fX,Y (z−w,w)/|1| = fX,Y (z−w,w) and

from Theorem 2.7.5,

fZ (z) =

∫ ∞
−∞

fZ ,W (z, w) dw =

∫ ∞
−∞

fX,Y (z − w,w) dw.

But because X and Y are independent, we may take fX,Y (x, y) = fX (x) fY (y), so

fX,Y (z − w,w) = fX (z − w) fY (w). This proves part (b).

EXAMPLE 2.9.4

Let X ∼ Binomial(4, 1/5) and Y ∼ Bernoulli(1/4), with X and Y independent. Let

Z = X + Y . Then

pZ (3) = P(X + Y = 3) = P(X = 3, Y = 0)+ P(X = 2, Y = 1)

=

(
4

3

)
(1/5)3(4/5)1 (3/4)+

(
4

2

)
(1/5)2(4/5)2 (1/4)

= 4(1/5)3(4/5)1 (3/4)+ 6(1/5)2(4/5)2 (1/4)
.
= 0.0576.
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EXAMPLE 2.9.5

Let X ∼ Uniform[3, 7] and Y ∼ Exponential(6), with X and Y independent. Let

Z = X + Y . Then

fZ (5) =

∫ ∞
−∞

fX (x) fY (5− x) dx =

∫ 5

3

(1/4) 6 e−6(5−x) dx

= −(1/4)e−6(5−x)
∣∣∣x=5

x=3
= −(1/4)e−12 + (1/4)e0 .

= 0.2499985.

Note that here the limits of integration go from 3 to 5 only, because fX (x) = 0 for

x < 3, while fY (5− x) = 0 for x > 5.

Summary of Section 2.9

• If X and Y are discrete, and Z = h1(X, Y ) and W = h2(X, Y ), then

pZ ,W (z, w) =
∑

{(x,y): h1(x,y)=z, h2(x,y)=w}

pX,Y (x, y).

• If X and Y are absolutely continuous, if Z = h1(X, Y ) and W = h2(X, Y ), and

if h = (h1, h2) : R2 → R2 is one-to-one with Jacobian J (x, y), then

fZ ,W (z, w) = fX,Y (h
−1(z, w))/|J (h−1(z, w))|.

• This allows us to compute the joint distribution of functions of pairs of random

variables.

EXERCISES

2.9.1 Verify explicitly in Example 2.9.3 that J (u1, u2) = −2π/u1.

2.9.2 Let X ∼ Exponential(3) and Y ∼ Uniform[1, 4], with X and Y independent.

Let Z = X + Y and W = X − Y .

(a) Write down the joint density fX,Y (x, y) of X and Y . (Be sure to consider the ranges

of valid x and y values.)

(b) Find a two-dimensional function h such that (Z ,W ) = h(X, Y ).
(c) Find a two-dimensional function h−1 such that (X, Y ) = h−1(Z ,W ).
(d) Compute the joint density fZ ,W (z, w) of Z and W . (Again, be sure to consider the

ranges of valid z and w values.)

2.9.3 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X

and Y , if instead Z = X2 + Y 2 and W = X2 − Y 2.

2.9.4 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X

and Y , if instead Z = X + 4 and W = Y − 3.

2.9.5 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X

and Y , if instead Z = Y 4 and W = X4.
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2.9.6 Suppose the joint probability function of X and Y is given by

pX,Y (x, y) =



1/7 x = 5, y = 0

1/7 x = 5, y = 3

1/7 x = 5, y = 4

3/7 x = 8, y = 0

1/7 x = 8, y = 4

0 otherwise.

Let Z = X + Y , W = X − Y , A = X2 + Y 2, and B = 2X − 3Y 2.

(a) Compute the joint probability function pZ ,W (z, w).
(b) Compute the joint probability function pA,B(a, b).
(c) Compute the joint probability function pZ ,A(z, a).
(d) Compute the joint probability function pW,B(w, b).

2.9.7 Let X have probability function

pX (x) =


1/3 x = 0

1/2 x = 2

1/6 x = 3

0 otherwise,

and let Y have probability function

pY (y) =


1/6 y = 2

1/12 y = 5

3/4 y = 9

0 otherwise.

Suppose X and Y are independent. Let Z = X + Y . Compute pZ (z) for all z ∈ R1.

2.9.8 Let X ∼ Geometric(1/4), and let Y have probability function

pY (y) =


1/6 y = 2

1/12 y = 5

3/4 y = 9

0 otherwise.

Let W = X + Y . Suppose X and Y are independent. Compute pW (w) for all w ∈ R1.

2.9.9 Suppose X and Y are discrete, with P(X = 1, Y = 1) = P(X = 1, Y = 2) =
P(X = 1, Y = 3) = P(X = 2, Y = 2) = P(X = 2, Y = 3) = 1/5, otherwise

P(X = x, Y = y) = 0. Let Z = X − Y 2 and W = X2 + 5Y .

(a) Compute the joint probability function pZ ,W (z, w) for all z, w ∈ R1.

(b) Compute the marginal probability function pZ (z) for Z .

(c) Compute the marginal probability function pW (w) for W .

2.9.10 Suppose X has density fX (x) = x3/4 for 0 < x < 2, otherwise fX (x) = 0,

and Y has density fY (y) = 5y4/32 for 0 < y < 2, otherwise fY (y) = 0. Assume X

and Y are independent, and let Z = X + Y .
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(a) Compute the joint density fX,Y (x, y) for all x, y ∈ R1.

(b) Compute the density fZ (z) for Z .

PROBLEMS

2.9.11 Suppose again that X has density fX (x) = x3/4 for 0 < x < 2, otherwise

fX (x) = 0, that Y has density fY (y) = 5y4/32 for 0 < y < 2, otherwise fY (y) = 0,

and that X and Y are independent. Let Z = X − Y and W = 4X + 3Y .

(a) Compute the joint density fZ ,W (z, w) for all z, w ∈ R1.

(b) Compute the marginal density fZ (z) for Z .

(c) Compute the marginal density fW (w) for W .

2.9.12 Let X ∼ Binomial(n1, θ) independent of Y ∼ Binomial(n2, θ). Let Z =
X + Y . Use Theorem 2.9.3(a) to prove that Z ∼ Binomial(n1 + n2, θ).

2.9.13 Let X and Y be independent, with X ∼ Negative-Binomial(r1, θ) and Y ∼
Negative-Binomial(r2, θ). Let Z = X + Y . Use Theorem 2.9.3(a) to prove that Z ∼
Negative-Binomial(r1 + r2, θ).

2.9.14 Let X and Y be independent, with X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2). Let

Z = X + Y . Use Theorem 2.9.3(b) to prove that Z ∼ N (µ1 + µ2, σ
2
1 + σ

2
2).

2.9.15 Let X and Y be independent, with X ∼ Gamma(α1, λ) and Y ∼ Gamma(α2, λ).
Let Z = X + Y . Use Theorem 2.9.3(b) to prove that Z ∼ Gamma(α1 + α2, λ).

2.9.16 (MV) Show that when Z1, Z2 are i.i.d. N (0, 1) and X, Y are given by (2.7.1),

then (X, Y ) ∼ Bivariate Normal(µ1, µ2, σ 1, σ 2, ρ) .

2.10 Simulating Probability Distributions
So far, we have been concerned primarily with mathematical theory and manipulations

of probabilities and random variables. However, modern high-speed computers can

be used to simulate probabilities and random variables numerically. Such simulations

have many applications, including:

• To approximate quantities that are too difficult to compute mathematically

• To graphically simulate complicated physical or biological systems

• To randomly sample from large data sets to search for errors or illegal activities, etc.

• To implement complicated algorithms to sharpen pictures, recognize speech, etc.

• To simulate intelligent behavior

• To encrypt data or generate passwords

• To solve puzzles or break codes by trying lots of random solutions

• To generate random choices for online quizzes, computer games, etc.
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Indeed, as computers become faster and more widespread, probabilistic simulations are

becoming more and more common in software applications, scientific research, quality

control, marketing, law enforcement, etc.

In most applications of probabilistic simulation, the first step is to simulate ran-

dom variables having certain distributions. That is, a certain probability distribution

will be specified, and we want to generate one or more random variables having that

distribution.

Now, nearly all modern computer languages come with a pseudorandom number

generator, which is a device for generating a sequence U1,U2, . . . of random values

that are approximately independent and have approximately the uniform distribution

on [0, 1]. Now, in fact, the Ui are usually generated from some sort of deterministic

iterative procedure, which is designed to “appear” random. So the Ui are, in fact, not

random, but rather pseudorandom.

Nevertheless, we shall ignore any concerns about pseudorandomness and shall sim-

ply assume that

U1,U2,U3, . . . ∼ Uniform[0, 1], (2.10.1)

i.e., the Ui are i.i.d. Uniform[0, 1].
Hence, if all we ever need are Uniform[0, 1] random variables, then according

to (2.10.1), we are all set. However, in most applications, other kinds of randomness

are also required. We therefore consider how to use the uniform random variables

of (2.10.1) to generate random variables having other distributions.

EXAMPLE 2.10.1 The Uniform[L , R] Distribution

Suppose we want to generate X ∼ Uniform[L , R]. According to Exercise 2.6.1, we

can simply set

X = (R − L)U1 + L ,

to ensure that X ∼ Uniform[L , R].

2.10.1 Simulating Discrete Distributions

We now consider the question of how to simulate from discrete distributions.

EXAMPLE 2.10.2 The Bernoulli(θ) Distribution

Suppose we want to generate X ∼ Bernoulli(θ), where 0 < θ < 1. We can simply set

X =

{
1 U1 ≤ θ
0 U1 > θ.

Then clearly, we always have either X = 0 or X = 1. Furthermore, P(X = 1) =
P(U1 ≤ θ) = θ, because U1 ∼ Uniform[0, 1]. Hence, we see that X ∼ Bernoulli(θ).

EXAMPLE 2.10.3 The Binomial(n, θ) Distribution

Suppose we want to generate Y ∼ Binomial(n, θ), where 0 < θ < 1 and n ≥ 1. There

are two natural methods for doing this.
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First, we can simply define Y as follows:

Y = min{ j :

j∑
k=0

(
n

k

)
θk(1− θ)n−k ≥ U1}.

That is, we let Y be the largest value of j such that the sum of the binomial probabilities

up to j − 1 is still no more than U1. In that case,

P(Y = y) = P

( ∑y−1

k=0

(
n
k

)
θk(1− θ)n−k < U1

and
∑y

k=0

(
n
k

)
θk(1− θ)n−k ≥ U1

)

= P

(
y−1∑
k=0

(
n

k

)
θk(1− θ)n−k < U1 ≤

y∑
k=0

(
n

k

)
θk(1− θ)n−k

)

=
y∑

k=0

(
n

k

)
θk(1− θ)n−k −

y−1∑
k=0

(
n

k

)
θk(1− θ)n−k

=

(
n

y

)
θ y(1− θ)n−y .

Hence, we have Y ∼ Binomial(n, θ), as desired.

Alternatively, we can set

X i =

{
1 Ui ≤ θ
0 Ui > θ

for i = 1, 2, 3, . . . . Then, by Example 2.10.2, we have X i ∼ Bernoulli(θ) for each i ,

with the {X i } independent because the {Ui } are independent. Hence, by the observation

at the end of Example 2.3.3, if we set Y = X1 + · · · + Xn , then we will again have

Y ∼ Binomial(n, θ).

In Example 2.10.3, the second method is more elegant and is also simpler compu-

tationally (as it does not require computing any binomial coefficients). On the other

hand, the first method of Example 2.10.3 is more general, as the following theorem

shows.

Theorem 2.10.1 Let p be a probability function for a discrete probability distri-

bution. Let x1 < x2 < x3 < · · · be all the values for which p(xi ) > 0. Let

U1 ∼ Uniform[0, 1]. Define Y by

Y = min{x j :

j∑
k=1

p(xk) ≥ U1}.

Then Y is a discrete random variable, having probability function p.
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PROOF We have

P(Y = xi ) = P

(
i−1∑
k=1

p(xk) < U1, and

i∑
k=1

p(xk) ≥ U1

)

= P

(
i−1∑
k=1

p(xk) < U1 ≤
i∑

k=1

p(xk)

)

=
i∑

k=1

p(xk)−
i−1∑
k=1

p(xk) = p(xi ).

Also, clearly P(Y = y) = 0 if y 6∈ {x1, x2, . . .}. Hence, for all y ∈ R1, we have

P(Y = y) = p(y), as desired.

EXAMPLE 2.10.4 The Geometric(θ) Distribution

To simulate Y ∼ Geometric(θ), we again have two choices. Using Theorem 2.10.1,

we can let U1 ∼ Uniform[0, 1] and then set

Y = min{ j :

j∑
k=0

θ(1− θ)k ≥ U1} = min{ j : 1− (1− θ) j+1 ≥ U1}

= min{ j : j ≥
log(1−U1)

log(1− θ)
− 1} =

⌊
log(1−U1)

log(1− θ)

⌋
,

where brc means to round down r to the next integer value, i.e., brc is the greatest

integer not exceeding r (sometimes called the floor of r ).

Alternatively, using the definition of Geometric(θ) from Example 2.3.4, we can set

X i =

{
1 Ui ≤ θ
0 Ui > θ

for i = 1, 2, 3, . . . (where Ui ∼ Uniform[0, 1]), and then let Y = min{i : X i = 1}.
Either way, we have Y ∼ Geometric(θ), as desired.

2.10.2 Simulating Continuous Distributions

We next turn to the subject of simulating absolutely continuous distributions. In gen-

eral, this is not an easy problem. However, for certain particular continuous distribu-

tions, it is not difficult, as we now demonstrate.

EXAMPLE 2.10.5 The Uniform[L , R] Distribution

We have already seen in Example 2.10.1 that if U1 ∼ Uniform[0, 1], and we set

X = (R − L)U1 + L ,

then X ∼ Uniform[L , R]. Thus, simulating from any uniform distribution is straight-

forward.
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EXAMPLE 2.10.6 The Exponential(λ) Distribution

We have also seen, in Example 2.6.6, that if U1 ∼ Uniform[0, 1], and we set

Y = ln(1/U1),

then Y ∼ Exponential(1). Thus, simulating from the Exponential(1) distribution is

straightforward.

Furthermore, we know from Exercise 2.6.4 that once Y ∼ Exponential(1), then if

λ > 0, and we set

Z = Y / λ = ln(1/U1)/λ,

then Z ∼ Exponential(λ). Thus, simulating from any Exponential(λ) distribution is

also straightforward.

EXAMPLE 2.10.7 The N (µ, σ 2) Distribution

Simulating from the standard normal distribution, N (0, 1), may appear to be more

difficult. However, by Example 2.9.3, if U1 ∼ Uniform[0, 1] and U2 ∼ Uniform[0, 1],

with U1 and U2 independent, and we set

X =
√

2 log(1/U1) cos(2πU2), Y =
√

2 log(1/U1) sin(2πU2), (2.10.2)

then X ∼ N (0, 1) and Y ∼ N (0, 1) (and furthermore, X and Y are independent). So,

using this trick, the standard normal distribution can be easily simulated as well.

It then follows from Exercise 2.6.3 that, once we have X ∼ N (0, 1), if we set

Z = σ X + µ, then Z ∼ N (µ, σ 2). Hence, it is straightforward to sample from any

normal distribution.

These examples illustrate that, for certain special continuous distributions, sam-

pling from them is straightforward. To provide a general method of sampling from a

continuous distribution, we first state the following definition.

Definition 2.10.1 Let X be a random variable, with cumulative distribution func-

tion F . Then the inverse cdf (or quantile function) of X is the function F−1 defined

by

F−1(t) = min{x : F(x) ≥ t},

for 0 < t < 1.

In Figure 2.10.1, we have provided a plot of the inverse cdf of an N (0, 1) distribu-

tion. Note that this function goes to −∞ as the argument goes to 0, and goes to∞ as

the argument goes to 1.
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Figure 2.10.1: The inverse cdf of the N (0, 1) distribution.

Using the inverse cdf, we obtain a general method of sampling from a continuous

distribution, as follows.

Theorem 2.10.2 (Inversion method for generating random variables) Let F be any

cumulative distribution function, and let U ∼ Uniform[0, 1]. Define a random

variable Y by Y = F−1(U ). Then P(Y ≤ y) = F(y), i.e., Y has cumulative

distribution function given by F .

PROOF We begin by noting that P(Y ≤ y) = P(F−1(U ) ≤ y). But F−1(U ) is the

smallest value x such that F(x) ≥ U . Hence, F−1(U ) ≤ y if and only if F(y) ≥ U ,

i.e., U ≤ F(y). Therefore,

P(Y ≤ y) = P(F−1(U ) ≤ y) = P(U ≤ F(y)).

But 0 ≤ F(y) ≤ 1, and U ∼ Uniform[0, 1], so P(U ≤ F(y)) = F(y). Thus,

P(Y ≤ y) = P(U ≤ F(y)) = F(y).

It follows that F is the cdf of Y , as claimed.

We note that Theorem 2.10.2 is valid for any cumulative distribution function, whether

it corresponds to a continuous distribution, a discrete distribution, or a mixture of the

two (as in Section 2.5.4). In fact, this was proved for discrete distributions in Theorem

2.10.1.

EXAMPLE 2.10.8 Generating from an Exponential Distribution

Let F be the cdf of an Exponential(1) random variable. Then

F(x) =

∫ x

0

e−t dt = 1− e−x .

It then follows that

F−1(t) = min{x : F(x) ≥ t} = min{x : 1− e−x ≥ t}

= min{x : x ≥ − ln(1− t)} = − ln(1− t) = ln(1/(1− t)).
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Therefore, by Theorem 2.10.2, if U ∼ Uniform[0, 1], and we set

Y = F−1(U ) = ln(1/(1−U )), (2.10.3)

then Y ∼ Exponential(1).
Now, we have already seen from Example 2.6.6 that, if U ∼ Uniform[0, 1], and we

set Y = ln(1/U ), then Y ∼ Exponential(1). This is essentially the same as (2.10.3),

except that we have replaced U by 1 − U . On the other hand, this is not surprising,

because we already know by Exercise 2.6.2 that, if U ∼ Uniform[0, 1], then also

1−U ∼ Uniform[0, 1].

EXAMPLE 2.10.9 Generating from the Standard Normal Distribution

Let 8 be the cdf of a N (0, 1) random variable, as in Definition 2.5.2. Then

8−1(t) = min{x : 8(x) ≥ t},

and there is no simpler formula for 8−1(t). By Theorem 2.10.2, if

U ∼ Uniform[0, 1], and we set

Y = 8−1(U ), (2.10.4)

then Y ∼ N (0, 1).
On the other hand, due to the difficulties of computing with 8 and 8−1, the

method of (2.10.4) is not very practical. It is far better to use the method of (2.10.2), to

simulate a normal random variable.

For distributions that are too complicated to sample using the inversion method of

Theorem 2.10.2, and for which no simple trick is available, it may still be possible to

do sampling using Markov chain methods, which we will discuss in later chapters, or

by rejection sampling (see Challenge 2.10.21).

Summary of Section 2.10

• It is important to be able to simulate probability distributions.

• If X is discrete, taking the value xi with probability pi , where x1 < x2 < · · · ,
and U ∼ Uniform[0, 1], and Y = min{x j :

∑ j

k=1 pk ≥ U }, then Y has the same

distribution as X . This method can be used to simulate virtually any discrete

distribution.

• If F is any cumulative distribution with inverse cdf F−1, U ∼ Uniform[0, 1],

and Y = F−1(U ), then Y has cumulative distribution function F . This allows

us to simulate virtually any continuous distribution.

• There are simple methods of simulating many standard distributions, including

the binomial, uniform, exponential, and normal.
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EXERCISES

2.10.1 Let Y be a discrete random variable with P(Y = −7) = 1/2, P(Y = −2) =
1/3, and P(Y = 5) = 1/6. Find a formula for Z in terms of U , such that if U ∼
Uniform[0, 1], then Z has the same distribution as Y .

2.10.2 For each of the following cumulative distribution functions F , find a formula

for X in terms of U , such that if U ∼ Uniform[0, 1], then X has cumulative distribution

function F .

(a)

F(x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(b)

F(x) =


0 x < 0

x2 0 ≤ x ≤ 1

1 x > 1

(c)

F(x) =


0 x < 0

x2/9 0 ≤ x ≤ 3

1 x > 3

(d)

F(x) =


0 x < 1

x2/9 1 ≤ x ≤ 3

1 x > 3

(e)

F(x) =


0 x < 0

x5/32 0 ≤ x ≤ 2

1 x > 2

(f)

F(x) =


0 x < 0

1/3 0 ≤ x < 7

3/4 7 ≤ x < 11

1 x ≥ 11

2.10.3 Suppose U ∼ Uniform[0, 1], and Y = ln(1/U ) / 3. What is the distribution of

Y ?

2.10.4 Generalizing the previous question, suppose U ∼ Uniform[0, 1] and W =
ln(1/U ) / λ for some fixed λ > 0.

(a) What is the distribution of W ?

(b) Does this provide a way of simulating from a certain well-known distribution?

Explain.
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2.10.5 Let U1 ∼ Uniform[0, 1] and U2 ∼ Uniform[0, 1] be independent, and let X =
c1

√
log(1/U1) cos(2πU2)+ c2. Find values of c1 and c2 such that X ∼ N (5, 9).

2.10.6 Let U ∼ Uniform[0, 1]. Find a formula for Y in terms of U , such that P(Y =
3) = P(Y = 4) = 2/5 and P(Y = 7) = 1/5, otherwise P(Y = y) = 0.

2.10.7 Suppose P(X = 1) = 1/3, P(X = 2) = 1/6, P(X = 4) = 1/2, and

P(X = x) = 0 otherwise.

(a) Compute the cdf FX (x) for all x ∈ R1.

(b) Compute the inverse cdf F
−1
X (t) for all t ∈ R1.

(c) Let U ∼ Uniform[0, 1]. Find a formula for Y in terms of U , such that Y has cdf

FX .

2.10.8 Let X have density function fX (x) = 3
√

x /2 for 0 < x < 1, otherwise

fX (x) = 0.

(a) Compute the cdf FX (x) for all x ∈ R1.

(b) Compute the inverse cdf F
−1
X (t) for all t ∈ R1.

(c) Let U ∼ Uniform[0, 1]. Find a formula for Y in terms of U , such that Y has density

f .

2.10.9 Let U ∼ Uniform[0, 1]. Find a formula for Z in terms of U , such that Z has

density fZ (z) = 4 z3 for 0 < z < 1, otherwise fZ (z) = 0.

COMPUTER EXERCISES

2.10.10 For each of the following distributions, use the computer (you can use any

algorithms available to you as part of a software package) to simulate X1, X2, . . . , X N

i.i.d. having the given distribution. (Take N = 1000 at least, with N = 10,000 or N =

100,000 if possible.) Then compute X̄ = (1/N )
∑N

i=1 X i and (1/N )
∑N

i=1

(
X i − X̄

)2
.

(a) Uniform[0, 1]

(b) Uniform[5, 8]

(c) Bernoulli(1/3)
(d) Binomial(12, 1/3)
(e) Geometric(1/5)
(f) Exponential(1)
(g) Exponential(13)
(h) N (0, 1)
(i) N (5, 9)

PROBLEMS

2.10.11 Let G(x) = p1 F1(x) + p2 F2(x) + · · · + pk Fk(x), where pi ≥ 0,
∑

i pi =
1, and Fi are cdfs, as in (2.5.3). Suppose we can generate X i to have cdf Fi , for

i = 1, 2, . . . , k. Describe a procedure for generating a random variable Y that has cdf

G.

2.10.12 Let X be an absolutely continuous random variable, with density given by

fX (x) = x−2 for x ≥ 1, with fX (x) = 0 otherwise. Find a formula for Z in terms of

U , such that if U ∼ Uniform[0, 1], then Z has the same distribution as X .

2.10.13 Find the inverse cdf of the logistic distribution of Problem 2.4.18. (Hint: See

Problem 2.5.20.)
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2.10.14 Find the inverse cdf of the Weibull(α) distribution of Problem 2.4.19. (Hint:

See Problem 2.5.21.)

2.10.15 Find the inverse cdf of the Pareto(α) distribution of Problem 2.4.20. (Hint:

See Problem 2.5.22.)

2.10.16 Find the inverse cdf of the Cauchy distribution of Problem 2.4.21. (Hint: See

Problem 2.5.23.)

2.10.17 Find the inverse cdf of the Laplace distribution of Problem 2.4.22. (Hint: See

Problem 2.5.24.)

2.10.18 Find the inverse cdf of the extreme value distribution of Problem 2.4.23. (Hint:

See Problem 2.5.25.)

2.10.19 Find the inverse cdfs of the beta distributions in Problem 2.4.24(b) through

(d). (Hint: See Problem 2.5.26.)

2.10.20 (Method of composition) If we generate X ∼ fX obtaining x, and then gener-

ate Y from fY |X (· | x) , prove that Y ∼ fY .

CHALLENGES

2.10.21 (Rejection sampling) Suppose f is a complicated density function. Suppose g

is a density function from which it is easy to sample (e.g., the density of a uniform or

exponential or normal distribution). Suppose we know a value of c such that f (x) ≤
cg(x) for all x ∈ R1. The following provides a method, called rejection sampling, for

sampling from a complicated density f by using a simpler density g, provided only

that we know f (x) ≤ cg(x) for all x ∈ R1.

(a) Suppose Y has density g. Let U ∼ Uniform[0, c], with U and Y independent.

Prove that

P(a ≤ Y ≤ b | f (Y ) ≥ Ucg(Y )) =

∫ b

a

f (x) dx .

(Hint: Use Theorem 2.8.1 to show that P(a ≤ Y ≤ b, f (Y ) ≥ cUg(Y )) =∫ b

a
g(y)P( f (Y ) ≥ cUg(Y ) | Y = y) dy.)

(b) Suppose that Y1, Y2, . . . are i.i.d., each with density g, and independently U1,U2, . . .
are i.i.d. Uniform[0, c]. Let i0 = 0, and for n ≥ 1, let in = min{ j > in−1 : U j f (Y j ) ≥
cg(Y j )}. Prove that X i1

, X i2
, . . . are i.i.d., each with density f. (Hint: Prove this for

X i1
, X i2

.)

2.11 Further Proofs (Advanced)

Proof of Theorem 2.4.2

We want to prove that the function φ given by (2.4.9) is a density function.
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Clearly φ(x) ≥ 0 for all x . To proceed, we set I =
∫∞
−∞ φ(x) dx . Then, using

multivariable calculus,

I 2 =

(∫ ∞
−∞

φ(x) dx

)2

=

(∫ ∞
−∞

φ(x) dx

)(∫ ∞
−∞

φ(y) dy

)
=

∫ ∞
−∞

∫ ∞
−∞

φ(x) φ(y) dx dy =

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−(x

2+y2)/2 dx dy.

We now switch to polar coordinates (r, θ), so that x = r cos θ and y = r sin θ ,

where r > 0 and 0 ≤ θ ≤ 2π . Then x2 + y2 = r2 and, by the multivariable change of

variable theorem from calculus, dx dy = r dr dθ . Hence,

I 2 =

∫ 2π

0

∫ ∞
0

1

2π
e−r2/2r dr dθ =

∫ ∞
0

e−r2/2r dr

= −e−r2/2
∣∣∣r=∞
r=0
= (−0)− (−1) = 1,

and we have I 2 = 1. But clearly I ≥ 0 (because φ ≥ 0), so we must have I = 1, as

claimed.

Proof of Theorem 2.6.2

We want to prove that, when X is an absolutely continuous random variable, with den-

sity function fX and Y = h(X), where h : R1 → R1 is a function that is differentiable

and strictly increasing, then Y is also absolutely continuous, and its density function

fY is given by

fY (y) = fX (h
−1(y)) / |h′(h−1(y))|, (2.11.1)

where h′ is the derivative of h, and where h−1(y) is the unique number x such that

h(x) = y.

We must show that whenever a ≤ b, we have

P(a ≤ Y ≤ b) =

∫ b

a

fY (y) dy,

where fY is given by (2.11.1). To that end, we note that, because h is strictly increasing,

so is h−1. Hence, applying h−1 preserves inequalities, so that

P(a ≤ Y ≤ b) = P(h−1(a) ≤ h−1(Y ) ≤ h−1(b)) = P(h−1(a) ≤ X ≤ h−1(b))

=

∫ h−1(b)

h−1(a)
fX (x) dx .

We then make the substitution y = h(x), so that x = h−1(y), and

dx =

∣∣∣∣ d

dy
h−1(y)

∣∣∣∣ dy.
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But by the inverse function theorem from calculus, d
dy

h−1(y) = 1/h′(h−1(y)). Fur-

thermore, as x goes from h−1(a) to h−1(b), we see that y = h(x) goes from a to b.

We conclude that

P(a ≤ Y ≤ b) =

∫ h−1(b)

h−1(a)
fX (x) dx =

∫ b

a

fX (h
−1(y))(1/|h′(h−1(y))|) dy

=

∫ b

a

fY (y) dy,

as required.

Proof of Theorem 2.6.3

We want to prove that when X is an absolutely continuous random variable, with den-

sity function fX and Y = h(X), where h : R1 → R1 is a function that is differentiable

and strictly decreasing, then Y is also absolutely continuous, and its density function

fY may again be defined by (2.11.1).

We note that, because h is strictly decreasing, so is h−1. Hence, applying h−1

reverses the inequalities, so that

P(a ≤ Y ≤ b) = P(h−1(b) ≤ h−1(Y ) ≤ h−1(a)) = P(h−1(b) ≤ X ≤ h−1(a))

=

∫ h−1(a)

h−1(b)
fX (x) dx .

We then make the substitution y = h(x), so that x = h−1(y), and

dx =

∣∣∣∣ d

dy
h−1(y)

∣∣∣∣ dy.

But by the inverse function theorem from calculus,

d

dy
h−1(y) =

1

h′(h−1(y))
.

Furthermore, as x goes from h−1(b) to h−1(a), we see that y = h(x) goes from a to b.

We conclude that

P(a ≤ Y ≤ b) =

∫ h−1(a)

h−1(b)
fX (x) dx =

∫ b

a

fX (h
−1(y)) (1/|h′(h−1(y))|) dy

=

∫ b

a

fY (y) dy,

as required.
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Proof of Theorem 2.9.2

We want to prove the following result. Let X and Y be jointly absolutely continuous,

with joint density function fX,Y . Let Z = h1(X, Y ) and W = h2(X, Y ), where h1, h2 :

R2 → R1 are differentiable functions. Define the joint function h = (h1, h2) : R2 →
R2 by

h(x, y) = (h1(x, y), h2(x, y)) .

Assume that h is one-to-one, at least on the region {(x, y) : f (x, y) > 0}, i.e., if

h1(x1, y1) = h1(x2, y2) and h2(x1, y1) = h2(x2, y2), then x1 = x2 and y1 = y2. Then

Z and W are also jointly absolutely continuous, with joint density function fZ ,W given

by

fZ ,W (z, w) = fX,Y (h
−1(z, w)) / |J (h−1(z, w))|,

where J is the Jacobian derivative of h, and where h−1(z, w) is the unique pair (x, y)
such that h(x, y) = (z, w).

We must show that whenever a ≤ b and c ≤ d , we have

P(a ≤ Z ≤ b , c ≤ W ≤ d) =

∫ d

c

∫ b

a

fZ ,W (z, w) dw dz.

If we let S = [a, b]× [c, d] be the two-dimensional rectangle, then we can rewrite this

as

P((Z ,W ) ∈ S) =

∫ ∫
S

fZ ,W (z, w) dz dw.

Now, using the theory of multivariable calculus, and making the substitution (x, y) =
h−1(z, w) (which is permissible because h is one-to-one), we have∫ ∫

S

fZ ,W (z, w) dz dw

=

∫ ∫
S

(
fX,Y (h

−1(z, w)) / |J (h−1(z, w))|
)

dz dw

=

∫ ∫
h−1(S)

(
fX,Y (x, y) / |J (x, y)|

)
|J (x, y)| dx dy

=

∫ ∫
h−1(S)

fX,Y (x, y) dx dy = P((X, Y ) ∈ h−1(S))

= P(h−1(Z ,W ) ∈ h−1(S)) = P((Z ,W ) ∈ S),

as required.


