
Chapter 2

Random Variables and
Distributions

CHAPTER OUTLINE

Section 1 Random Variables
Section 2 Distributions of Random Variables
Section 3 Discrete Distributions
Section 4 Continuous Distributions
Section 5 Cumulative Distribution Functions
Section 6 One­Dimensional Change of Variable
Section 7 Joint Distributions
Section 8 Conditioning and Independence
Section 9 Multidimensional Change of Variable
Section 10 Simulating Probability Distributions
Section 11 Further Proofs (Advanced)

In Chapter 1, we discussed the probability model as the central object of study in the
theory of probability. This required defining a probability measure P on a class of
subsets of the sample space S It turns out that there are simpler ways of presenting a
particular probability assignment than this — ways that are much more convenient to
work with than P This chapter is concerned with the definitions of random variables,
distribution functions, probability functions, density functions, and the development
of the concepts necessary for carrying out calculations for a probability model using
these entities. This chapter also discusses the concept of the conditional distribution of
one random variable, given the values of others. Conditional distributions of random
variables provide the framework for discussing what it means to say that variables are
related, which is important in many applications of probability and statistics.
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34 Section 2.1: Random Variables

2.1 Random Variables
The previous chapter explained how to construct probability models, including a sam­
ple space S and a probability measure P . Once we have a probability model, we may
define random variables for that probability model.

Intuitively, a random variable assigns a numerical value to each possible outcome
in the sample space. For example, if the sample space is rain, snow, clear , then we
might define a random variable X such that X 3 if it rains, X 6 if it snows, and
X 2 7 if it is clear.

More formally, we have the following definition.

Definition 2.1.1 A random variable is a function from the sample space S to the
set R1 of all real numbers.

Figure 2.1.1 provides a graphical representation of a random variable X taking a re­
sponse value s S into a real number X s R1

1

S

X(s)

X

R1.s .

Figure 2.1.1: A random variable X as a function on the sample space S and taking values in
R1

EXAMPLE 2.1.1 A Very Simple Random Variable
The random variable described above could be written formally as X : rain, snow,
clear R1 by X rain 3, X snow 6, and X clear 2 7. We will return to
this example below.

We now present several further examples. The point is, we can define random
variables any way we like, as long as they are functions from the sample space to R1.

EXAMPLE 2.1.2
For the case S rain snow clear , we might define a second random variable Y by
saying that Y 0 if it rains, Y 1 2 if it snows, and Y 7 8 if it is clear. That is
Y rain 0, Y snow 1 2, and Y clear 7 8.

EXAMPLE 2.1.3
If the sample space corresponds to flipping three different coins, then we could let X
be the total number of heads showing, let Y be the total number of tails showing, let
Z 0 if there is exactly one head, and otherwise Z 17, etc.

EXAMPLE 2.1.4
If the sample space corresponds to rolling two fair dice, then we could let X be the
square of the number showing on the first die, let Y be the square of the number show­
ing on the second die, let Z be the sum of the two numbers showing, let W be the
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square of the sum of the two numbers showing, let R be the sum of the squares of the
two numbers showing, etc.

EXAMPLE 2.1.5 Constants as Random Variables
As a special case, every constant value c is also a random variable, by saying that
c s c for all s S. Thus, 5 is a random variable, as is 3 or 21 6.

EXAMPLE 2.1.6 Indicator Functions
One special kind of random variable is worth mentioning. If A is any event, then we
can define the indicator function of A, written IA, to be the random variable

IA s
1 s A
0 s A

which is equal to 1 on A, and is equal to 0 on AC .

Given random variables X and Y , we can perform the usual arithmetic operations
on them. Thus, for example, Z X2 is another random variable, defined by Z s
X2 s X s 2 X s X s . Similarly, if W XY 3, then W s X s
Y s Y s Y s , etc. Also, if Z X Y , then Z s X s Y s , etc.

EXAMPLE 2.1.7
Consider rolling a fair six­sided die, so that S 1 2 3 4 5 6 . Let X be the number
showing, so that X s s for s S. Let Y be three more than the number showing,
so that Y s s 3. Let Z X2 Y . Then Z s X s 2 Y s s2 s 3. So
Z 1 5, Z 2 9, etc.

We write X Y to mean that X s Y s for all s S. Similarly, we write
X Y to mean that X s Y s for all s S, and X Y to mean that X s Y s
for all s S. For example, we write X c to mean that X s c for all s S.

EXAMPLE 2.1.8
Again consider rolling a fair six­sided die, with S 1 2 3 4 5 6 . For s S, let
X s s, and let Y X I 6 . This means that

Y s X s I 6 s
s s 5
7 s 6

Hence, Y s X s for 1 s 5. But it is not true that Y X , because Y 6
X 6 . On the other hand, it is true that Y X .

EXAMPLE 2.1.9
For the random variable of Example 2.1.1 above, it is not true that X 0, nor is it true
that X 0. However, it is true that X 2 7 and that X 6. It is also true that
X 10 and X 100.

If S is infinite, then a random variable X can take on infinitely many different
values.

EXAMPLE 2.1.10
If S 1 2 3 , with P s 2 s for all s S, and if X is defined by X s s2,
then we always have X 1 But there is no largest value of X s because the value
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X s increases without bound as s . We shall call such a random variable an
unbounded random variable.

Finally, suppose X is a random variable. We know that different states s occur with
different probabilities. It follows that X s also takes different values with different
probabilities. These probabilities are called the distribution of X ; we consider them
next.

Summary of Section 2.1

A random variable is a function from the state space to the set of real numbers.

The function could be constant, or correspond to counting some random quantity
that arises, or any other sort of function.

EXERCISES

2.1.1 Let S 1 2 3 , and let X s s2 and Y s 1 s for s S. For each
of the following quantities, determine (with explanation) whether or not it exists. If it
does exist, then give its value.
(a) mins S X s
(b) maxs S X s
(c) mins S Y s
(d) maxs S Y s

2.1.2 Let S high middle low . Define random variables X , Y , and Z by X high
12, X middle 2, X low 3, Y high 0, Y middle 0, Y low 1,

Z high 6, Z middle 0, Z low 4. Determine whether each of the following
relations is true or false.
(a) X Y
(b) X Y
(c) Y Z
(d) Y Z
(e) XY Z
(f) XY Z
2.1.3 Let S 1 2 3 4 5 .
(a) Define two different (i.e., nonequal) nonconstant random variables, X and Y , on S.
(b) For the random variables X and Y that you have chosen, let Z X Y 2. Compute
Z s for all s S.

2.1.4 Consider rolling a fair six­sided die, so that S 1 2 3 4 5 6 . Let X s s,
and Y s s3 2. Let Z XY . Compute Z s for all s S.
2.1.5 Let A and B be events, and let X IA IB . Is X an indicator function? If yes,
then of what event?
2.1.6 Let S 1 2 3 4 , X I 1 2 , Y I 2 3 , and Z I 3 4 . Let W X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
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(c) Compute W 4 .
(d) Determine whether or not W Z .
2.1.7 Let S 1 2 3 , X I 1 , Y I 2 3 , and Z I 1 2 . Let W X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
(c) Compute W 3 .
(d) Determine whether or not W Z .
2.1.8 Let S 1 2 3 4 5 , X I 1 2 3 , Y I 2 3 , and Z I 3 4 5 . Let W
X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
(c) Compute W 5 .
(d) Determine whether or not W Z .
2.1.9 Let S 1 2 3 4 , X I 1 2 , and Y s s2 X s .
(a) Compute Y 1 .
(b) Compute Y 2 .
(c) Compute Y 4 .

PROBLEMS

2.1.10 Let X be a random variable.
(a) Is it necessarily true that X 0?
(b) Is it necessarily true that there is some real number c such that X c 0?
(c) Suppose the sample space S is finite. Then is it necessarily true that there is some
real number c such that X c 0?
2.1.11 Suppose the sample space S is finite. Is it possible to define an unbounded
random variable on S? Why or why not?
2.1.12 Suppose X is a random variable that takes only the values 0 or 1. Must X be an
indicator function? Explain.
2.1.13 Suppose the sample space S is finite, of size m. How many different indicator
functions can be defined on S?
2.1.14 Suppose X is a random variable. Let Y X . Must Y be a random variable?
Explain.

DISCUSSION TOPICS

2.1.15 Mathematical probability theory was introduced to the English­speaking world
largely by two American mathematicians, William Feller and Joe Doob, writing in the
early 1950s. According to Professor Doob, the two of them had an argument about
whether random variables should be called “random variables” or “chance variables.”
They decided by flipping a coin — and “random variables” won. (Source: Statistical
Science 12 (1997), No. 4, page 307.) Which name do you think would have been a
better choice?
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2.2 Distributions of Random Variables
Because random variables are defined to be functions of the outcome s, and because
the outcome s is assumed to be random (i.e., to take on different values with different
probabilities), it follows that the value of a random variable will itself be random (as
the name implies).

Specifically, if X is a random variable, then what is the probability that X will equal
some particular value x? Well, X x precisely when the outcome s is chosen such
that X s x .

EXAMPLE 2.2.1
Let us again consider the random variable of Example 2.1.1, where S rain, snow,
clear , and X is defined by X rain 3, X snow 6, and X clear 2 7. Suppose
further that the probability measure P is such that P rain 0 4, P snow 0 15,
and P clear 0 45. Then clearly, X 3 only when it rains, X 6 only when
it snows, and X 2 7 only when it is clear. Thus, P X 3 P rain 0 4,
P X 6 P snow 0 15, and P X 2 7 P clear 0 45. Also,
P X 17 0, and in fact P X x P 0 for all x 3 6 2 7 . We can
also compute that

P X 3 6 P X 3 P X 6 0 4 0 15 0 55

while
P X 5 P X 3 P X 2 7 0 4 0 45 0 85

etc.

We see from this example that, if B is any subset of the real numbers, then P X
B P s S : X s B . Furthermore, to understand X well requires knowing
the probabilities P X B for different subsets B. That is the motivation for the
following definition.

Definition 2.2.1 If X is a random variable, then the distribution of X is the collec­
tion of probabilities P X B for all subsets B of the real numbers.

Strictly speaking, it is required that B be a Borel subset, which is a technical restriction
from measure theory that need not concern us here. Any subset that we could ever
write down is a Borel subset.

In Figure 2.2.1, we provide a graphical representation of how we compute the dis­
tribution of a random variable X For a set B we must find the elements in s S such
that X s B These elements are given by the set s S : X s B Then we
evaluate the probability P s S : X s B . We must do this for every subset
B R1



Chapter 2: Random Variables and Distributions 39

1

S
X

R1
{s : X(s)  B }

( )

a b
B

Figure 2.2.1: If B a b R1 then s S : X s B is the set of elements such that
a X s b

EXAMPLE 2.2.2 A Very Simple Distribution
Consider once again the above random variable, where S rain, snow, clear and
where X is defined by X rain 3, X snow 6, and X clear 2 7, and
P rain 0 4, P snow 0 15, and P clear 0 45. What is the distribution of
X? Well, if B is any subset of the real numbers, then P X B should count 0 4 if
3 B, plus 0 15 if 6 B, plus 0 45 if 2 7 B. We can formally write all this
information at once by saying that

P X B 0 4 IB 3 0 15 IB 6 0 45 IB 2 7 ,

where again IB x 1 if x B, and IB x 0 if x B.

EXAMPLE 2.2.3 An Almost­As­Simple Distribution
Consider once again the above setting, with S rain, snow, clear , and P rain 0 4,
P snow 0 15, and P clear 0 45. Consider a random variable Y defined by
Y rain 5, Y snow 7, and Y clear 5.

What is the distribution of Y ? Clearly, Y 7 only when it snows, so that P Y
7 P snow 0 15. However, here Y 5 if it rains or if it is clear. Hence,
P Y 5 P rain, clear 0 4 0 45 0 85. Therefore, if B is any subset of
the real numbers, then

P Y B 0 15 IB 7 0 85 IB 5 .

While the above examples show that it is possible to keep track of P X B for all
subsets B of the real numbers, they also indicate that it is rather cumbersome to do so.
Fortunately, there are simpler functions available to help us keep track of probability
distributions, including cumulative distribution functions, probability functions, and
density functions. We discuss these next.

Summary of Section 2.2

The distribution of a random variable X is the collection of probabilities P X
B of X belonging to various sets.

The probability P X B is determined by calculating the probability of the set
of response values s such that X s B i.e., P X B P s S : X s
B
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EXERCISES

2.2.1 Consider flipping two independent fair coins. Let X be the number of heads that
appear. Compute P X x for all real numbers x .
2.2.2 Suppose we flip three fair coins, and let X be the number of heads showing.
(a) Compute P X x for every real number x .
(b) Write a formula for P X B , for any subset B of the real numbers.
2.2.3 Suppose we roll two fair six­sided dice, and let Y be the sum of the two numbers
showing.
(a) Compute P Y y for every real number y.
(b) Write a formula for P Y B , for any subset B of the real numbers.
2.2.4 Suppose we roll one fair six­sided die, and let Z be the number showing. Let
W Z3 4, and let V Z .
(a) Compute P W for every real number .
(b) Compute P V for every real number .
(c) Compute P ZW x for every real number x .
(d) Compute P V W y for every real number y.
(e) Compute P V W r for every real number r .
2.2.5 Suppose that a bowl contains 100 chips: 30 are labelled 1, 20 are labelled 2, and
50 are labelled 3. The chips are thoroughly mixed, a chip is drawn, and the number X
on the chip is noted.
(a) Compute P X x for every real number x .
(b) Suppose the first chip is replaced, a second chip is drawn, and the number Y on the
chip noted. Compute P Y y for every real number y.
(c) Compute P W for every real number when W X Y
2.2.6 Suppose a standard deck of 52 playing cards is thoroughly shufed and a single
card is drawn. Suppose an ace has value 1, a jack has value 11, a queen has value 12,
and a king has value 13.
(a) Compute P X x for every real number x when X is the value of the card
drawn.
(b) Suppose that Y 1 2 3 or 4 when a diamond, heart, club, or spade is drawn.
Compute P Y y for every real number y.
(c) Compute P W for every real number when W X Y
2.2.7 Suppose a university is composed of 55% female students and 45% male stu­
dents. A student is selected to complete a questionnaire. There are 25 questions on
the questionnaire administered to a male student and 30 questions on the questionnaire
administered to a female student. If X denotes the number of questions answered by a
randomly selected student, then compute P X x for every real number x

2.2.8 Suppose that a bowl contains 10 chips, each uniquely numbered 0 through 9
The chips are thoroughly mixed, one is drawn and the number on it, X1, is noted. This
chip is then replaced in the bowl. A second chip is drawn and the number on it, X2 is
noted. Compute P W for every real number when W X1 10X2
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PROBLEMS

2.2.9 Suppose that a bowl contains 10 chips each uniquely numbered 0 through 9 The
chips are thoroughly mixed, one is drawn and the number on it, X1 is noted. This chip
is not replaced in the bowl. A second chip is drawn and the number on it, X2 is noted.
Compute P W for every real number when W X1 10X2

CHALLENGES

2.2.10 Suppose Alice flips three fair coins, and let X be the number of heads showing.
Suppose Barbara flips five fair coins, and let Y be the number of heads showing. Let
Z X Y . Compute P Z z for every real number z.

2.3 Discrete Distributions
For many random variables X , we have P X x 0 for certain x values. This
means there is positive probability that the variable will be equal to certain particular
values.

If

x R1

P X x 1

then all of the probability associated with the random variable X can be found from the
probability that X will be equal to certain particular values. This prompts the following
definition.

Definition 2.3.1 A random variable X is discrete if

x R1

P X x 1 (2.3.1)

At first glance one might expect (2.3.1) to be true for any random variable. How­
ever, (2.3.1) does not hold for the uniform distribution on [0 1] or for other continuous
distributions, as we shall see in the next section.

Random variables satisfying (2.3.1) are simple in some sense because we can un­
derstand them completely just by understanding their probabilities of being equal to
particular values x . Indeed, by simply listing out all the possible values x such that
P X x 0, we obtain a second, equivalent definition, as follows.

Definition 2.3.2 A random variable X is discrete if there is a finite or countable se­
quence x1 x2 of distinct real numbers, and a corresponding sequence p1 p2
of nonnegative real numbers, such that P X xi pi for all i , and i pi 1.

This second definition also suggests how to keep track of discrete distributions. It
prompts the following definition.
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Definition 2.3.3 For a discrete random variable X , its probability function is the
function pX : R1 [0 1] defined by

pX x P X x .

Hence, if x1 x2 are the distinct values such that P X xi pi for all i with

i pi 1, then

pX x
pi x xi for some i
0 otherwise.

Clearly, all the information about the distribution of X is contained in its probability
function, but only if we know that X is a discrete random variable.

Finally, we note that Theorem 1.5.1 immediately implies the following.

Theorem 2.3.1 (Law of total probability, discrete random variable version) Let X
be a discrete random variable, and let A be some event. Then

P A
x R1

P X x P A X x .

2.3.1 Important Discrete Distributions

Certain particular discrete distributions are so important that we list them here.

EXAMPLE 2.3.1 Degenerate Distributions
Let c be some fixed real number. Then, as already discussed, c is also a random variable
(in fact, c is a constant random variable). In this case, clearly c is discrete, with
probability function pc satisfying that pc c 1, and pc x 0 for x c. Because c
is always equal to a particular value (namely, c) with probability 1, the distribution of
c is sometimes called a point mass or point distribution or degenerate distribution.

EXAMPLE 2.3.2 The Bernoulli Distribution
Consider flipping a coin that has probability of coming up heads and probability 1
of coming up tails, where 0 1. Let X 1 if the coin is heads, while X 0 if
the coin is tails. Then pX 1 P X 1 , while pX 0 P X 0 1 .
The random variable X is said to have the Bernoulli distribution; we write this as
X Bernoulli .

Bernoulli distributions arise anytime we have a response variable that takes only
two possible values, and we label one of these outcomes as 1 and the other as 0. For
example, 1 could correspond to success and 0 to failure of some quality test applied to
an item produced in a manufacturing process. In this case, is the proportion of manu­
factured items that will pass the test. Alternatively, we could be randomly selecting an
individual from a population and recording a 1 when the individual is female and a 0 if
the individual is a male. In this case, is the proportion of females in the population.
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EXAMPLE 2.3.3 The Binomial Distribution
Consider flipping n coins, each of which has (independent) probability of coming up
heads, and probability 1 of coming up tails. (Again, 0 1.) Let X be the total
number of heads showing. By (1.4.2), we see that for x 0 1 2 n

pX x P X x
n

x
x 1 n x n!

x! n x !
x 1 n x

The random variable X is said to have the Binomial n distribution; we write this as
X Binomial n . The Bernoulli distribution corresponds to the special case of
the Binomial n distribution when n 1, namely, Bernoulli Binomial 1 .
Figure 2.3.1 contains the plots of several Binomial 20 probability functions.

20100

0.2

0.1

0.0

 x

 p

Figure 2.3.1: Plot of the Binomial 20 1 2 ( ) and the Binomial 20 1 5 ( )
probability functions.

The binomial distribution is applicable to any situation involving n independent
performances of a random system; for each performance, we are recording whether a
particular event has occurred, called a success, or has not occurred, called a failure. If
we denote the event in question by A and put P A we have that the number of
successes in the n performances is distributed Binomial n For example, we could
be testing light bulbs produced by a manufacturer, and is the probability that a bulb
works when we test it. Then the number of bulbs that work in a batch of n is distributed
Binomial n If a baseball player has probability of getting a hit when at bat, then
the number of hits obtained in n at­bats is distributed Binomial n

There is another way of expressing the binomial distribution that is sometimes
useful. For example, if X1 X2 Xn are chosen independently and each has the
Bernoulli distribution, and Y X1 Xn, then Y will have the Binomial n
distribution (see Example 3.4.10 for the details).

EXAMPLE 2.3.4 The Geometric Distribution
Consider repeatedly flipping a coin that has probability of coming up heads and prob­
ability 1 of coming up tails, where again 0 1. Let X be the number of tails
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that appear before the first head. Then for k 0, X k if and only if the coin shows
exactly k tails followed by a head. The probability of this is equal to 1 k . (In
particular, the probability of getting an infinite number of tails before the first head is
equal to 1 0, so X is never equal to infinity.) Hence, pX k 1 k ,
for k 0 1 2 3 . The random variable X is said to have the Geometric distri­
bution; we write this as X Geometric . Figure 2.3.2 contains the plots of several
Geometric probability functions.
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Figure 2.3.2: Plot of the Geometric 1 2 ( ) and the Geometric 1 5 ( ) probability
functions at the values 0 1 15.

The geometric distribution applies whenever we are counting the number of failures
until the first success for independent performances of a random system where the
occurrence of some event is considered a success. For example, the number of light
bulbs tested that work until the first bulb that does not (a working bulb is considered a
“failure” for the test) and the number of at­bats without a hit until the first hit for the
baseball player both follow the geometric distribution.

We note that some books instead define the geometric distribution to be the number
of coin flips up to and including the first head, which is simply equal to one plus the
random variable defined here.

EXAMPLE 2.3.5 The Negative­Binomial Distribution
Generalizing the previous example, consider again repeatedly flipping a coin that has
probability of coming up heads and probability 1 of coming up tails. Let r be a
positive integer, and let Y be the number of tails that appear before the r th head. Then
for k 0, Y k if and only if the coin shows exactly r 1 heads (and k tails) on the
first r 1 k flips, and then shows a head on the r k ­th flip. The probability of
this is equal to

pY k
r 1 k

r 1
r 1 1 k r 1 k

k
r 1 k

for k 0 1 2 3
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The random variable Y is said to have the Negative­Binomial r distribution; we
write this as Y Negative­Binomial r . Of course, the special case r 1 cor­
responds to the Geometric distribution. So in terms of our notation, we have that
Negative­Binomial 1 Geometric . Figure 2.3.3 contains the plots of several
Negative­Binomial r probability functions.
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Figure 2.3.3: Plot of the Negative­Binomial 2 1 2 ( ) probability function and the
Negative­Binomial 10 1 2 ( ) probability function at the values 0 1 20.

The Negative­Binomial r distribution applies whenever we are counting the
number of failures until the r th success for independent performances of a random
system where the occurrence of some event is considered a success. For example, the
number of light bulbs tested that work until the third bulb that does not and the num­
ber of at­bats without a hit until the fifth hit for the baseball player both follow the
negative­binomial distribution.

EXAMPLE 2.3.6 The Poisson Distribution
We say that a random variable Y has the Poisson distribution, and write Y
Poisson , if

pY y P Y y
y

y!
e

for y 0 1 2 3 We note that since (from calculus) y 0
y y! e it is

indeed true (as it must be) that y 0 P Y y 1 Figure 2.3.4 contains the plots
of several Poisson probability functions.
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Figure 2.3.4: Plot of the Poisson 2 ( ) and the Poisson 10 ( ) probability functions at
the values 0 1 20.
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We motivate the Poisson distribution as follows. Suppose X Binomial n ,
i.e., X has the Binomial n distribution as in Example 2.3.3. Then for 0 x n,

P X x
n

x
x 1 n x

If we set n for some 0, then this becomes

P X x
n

x n

x

1
n

n x

n n 1 n x 1

x! n

x

1
n

n x

(2.3.2)

Let us now consider what happens if we let n in (2.3.2), while keeping x
fixed at some nonnegative integer. In that case,

n n 1 n 2 n x 1

nx 1 1
1

n
1

2

n
1

x 1

n

converges to 1 while (since from calculus 1 c n n ec for any c)

1
n

n x

1
n

n

1
n

x

e 1 e

Substituting these limits into (2.3.2), we see that

lim
n

P X x
x

x!
e

for x 0 1 2 3
Intuitively, we can phrase this result as follows. If we f lip a very large number

of coins n, and each coin has a very small probability n of coming up heads,
then the probability that the total number of heads will be x is approximately given
by xe x!. Figure 2.3.5 displays the accuracy of this estimate when we are ap­
proximating the Binomial 100 1 10 distribution by the Poisson distribution where

n 100 1 10 10
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Figure 2.3.5: Plot of the Binomial 100 1 10 ( ) and the Poisson 10 ( ) probability
functions at the values 0 1 20.
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The Poisson distribution is a good model for counting random occurrences of an
event when there are many possible occurrences, but each occurrence has very small
probability. Examples include the number of house fires in a city on a given day, the
number of radioactive events recorded by a Geiger counter, the number of phone calls
arriving at a switchboard, the number of hits on a popular World Wide Web page on a
given day, etc.

EXAMPLE 2.3.7 The Hypergeometric Distribution
Suppose that an urn contains M white balls and N M black balls. Suppose we
draw n N balls from the urn in such a fashion that each subset of n balls has the
same probability of being drawn. Because there are N

n such subsets, this probability

is 1 N
n

One way of accomplishing this is to thoroughly mix the balls in the urn and then
draw a first ball. Accordingly, each ball has probability 1 N of being drawn. Then,
without replacing the first ball, we thoroughly mix the balls in the urn and draw a
second ball. So each ball in the urn has probability 1 N 1 of being drawn. We then
have that any two balls, say the i th and j th balls, have probability

P ball i and j are drawn

P ball i is drawn first P ball j is drawn second ball i is drawn first

P ball j is drawn first P ball i is drawn second ball j is drawn first

1

N

1

N 1

1

N

1

N 1
1

N

2

of being drawn in the first two draws. Continuing in this fashion for n draws, we obtain
that the probability of any particular set of n balls being drawn is 1 N

n This type of
sampling is called sampling without replacement.

Given that we take a sample of n let X denote the number of white balls obtained.
Note that we must have X 0 and X n N M because at most N M of
the balls could be black. Hence, X max 0 n M N . Furthermore, X n and
X M because there are only M white balls. Hence, X min n M

So suppose max 0 n M N x min n M . What is the probability that
x white balls are obtained? In other words, what is P X x ? To evaluate this, we
know that we need to count the number of subsets of n balls that contain x white balls.
Using the combinatorial principles of Section 1.4.1, we see that this number is given
by M

x
N M
n x Therefore,

P X x
M

x

N M

n x

N

n

for max 0 n M N x min n M The random variable X is said to have the
Hypergeometric N M n distribution. In Figure 2.3.6, we have plotted some hyper­
geometric probability functions. The Hypergeometric 20 10 10 probability function
is 0 for x 10 while the Hypergeometric 20 10 5 probability function is 0 for
x 5
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Figure 2.3.6: Plot of Hypergeometric 20 10 10 ( ) and Hypergeometric 20 10 5
( ) probability functions.

Obviously, the hypergeometric distribution will apply to any context wherein we
are sampling without replacement from a finite set of N elements and where each el­
ement of the set either has a characteristic or does not. For example, if we randomly
select people to participate in an opinion poll so that each set of n individuals in a pop­
ulation of N has the same probability of being selected, then the number of people who
respond yes to a particular question is distributed Hypergeometric N M n where M
is the number of people in the entire population who would respond yes. We will see
the relevance of this to statistics in Section 5.4.2.

Suppose in Example 2.3.7 we had instead replaced the drawn ball before draw­
ing the next ball. This is called sampling with replacement. It is then clear, from
Example 2.3.3, that the number of white balls observed in n draws is distributed
Binomial n M N .

Summary of Section 2.3

A random variable X is discrete if x P X x 1, i.e., if all its probability
comes from being equal to particular values.

A discrete random variable X takes on only a finite, or countable, number of
distinct values.

Important discrete distributions include the degenerate, Bernoulli, binomial, geo­
metric, negative­binomial, Poisson, and hypergeometric distributions.

EXERCISES

2.3.1 Consider rolling two fair six­sided dice. Let Y be the sum of the numbers show­
ing. What is the probability function of Y ?

2.3.2 Consider flipping a fair coin. Let Z 1 if the coin is heads, and Z 3 if the
coin is tails. Let W Z2 Z .
(a) What is the probability function of Z?
(b) What is the probability function of W?
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2.3.3 Consider flipping two fair coins. Let X 1 if the first coin is heads, and X 0
if the first coin is tails. Let Y 1 if the second coin is heads, and Y 5 if the second
coin is tails. Let Z XY . What is the probability function of Z?
2.3.4 Consider flipping two fair coins. Let X 1 if the first coin is heads, and X 0
if the first coin is tails. Let Y 1 if the two coins show the same thing (i.e., both heads
or both tails), with Y 0 otherwise. Let Z X Y , and W XY .
(a) What is the probability function of Z?
(b) What is the probability function of W?

2.3.5 Consider rolling two fair six­sided dice. Let W be the product of the numbers
showing. What is the probability function of W?
2.3.6 Let Z Geometric . Compute P 5 Z 9 .

2.3.7 Let X Binomial 12 . For what value of is P X 11 maximized?
2.3.8 Let W Poisson . For what value of is P W 11 maximized?
2.3.9 Let Z Negative­Binomial 3 1 4 . Compute P Z 2 .
2.3.10 Let X Geometric 1 5 . Compute P X2 15 .

2.3.11 Let Y Binomial 10 . Compute P Y 10 .
2.3.12 Let X Poisson . Let Y X 7. What is the probability function of Y?
2.3.13 Let X Hypergeometric 20 7 8 What is the probability that X 3? What
is the probability that X 8?
2.3.14 Suppose that a symmetrical die is rolled 20 independent times, and each time
we record whether or not the event 2 3 5 6 has occurred.

(a) What is the distribution of the number of times this event occurs in 20 rolls?
(b) Calculate the probability that the event occurs five times.
2.3.15 Suppose that a basketball player sinks a basket from a certain position on the
court with probability 0 35.
(a) What is the probability that the player sinks three baskets in 10 independent throws?
(b) What is the probability that the player scores their first basket on their tenth attempt?
(c) What is the probability that the player scores their second basket on their tenth
attempt?
2.3.16 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball
is drawn from the urn, its color is noted, and the ball is returned to the urn.
(a) What is the probability that 5 black balls are observed in 15 such draws?
(b) What is the probability that 15 draws are required until the first black ball is ob­
served?
(c) What is the probability that 15 draws are made with 5 black balls observed and the
fifth black ball is observed on the 15th draw?
2.3.17 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball
is drawn from the urn, its color is noted, and the ball is set aside. The remaining balls
are then mixed and a second ball is drawn.

(a) What is the probability distribution of the number of black balls observed?
(b) What is the probability distribution of the number of white balls observed?
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2.3.18 (Poisson processes and queues) Consider a situation involving a server, e.g.,
a cashier at a fast­food restaurant, an automatic bank teller machine, a telephone ex­
change, etc. Units typically arrive for service in a random fashion and form a queue
when the server is busy. It is often the case that the number of arrivals at the server, for
some specific unit of time t can be modeled by a Poisson t distribution and is such
that the number of arrivals in nonoverlapping periods are independent. In Chapter 3,
we will show that t is the average number of arrivals during a time period of length t
and so is the rate of arrivals per unit of time

Suppose telephone calls arrive at a help line at the rate of two per minute. A Poisson
process provides a good model.
(a) What is the probability that five calls arrive in the next 2 minutes?
(b) What is the probability that five calls arrive in the next 2 minutes and then five more
calls arrive in the following 2 minutes?
(c) What is the probability that no calls will arrive during a 10­minute period?
2.3.19 Suppose an urn contains 1000 balls — one of these is black, and the other 999
are white. Suppose that 100 balls are randomly drawn from the urn with replacement.
Use the appropriate Poisson distribution to approximate the probability that five black
balls are observed.
2.3.20 Suppose that there is a loop in a computer program and that the test to exit
the loop depends on the value of a random variable X The program exits the loop
whenever X A and this occurs with probability 1/3. If the loop is executed at least
once, what is the probability that the loop is executed five times before exiting?

COMPUTER EXERCISES

2.3.21 Tabulate and plot the Hypergeometric 20 8 10 probability function.

2.3.22 Tabulate and plot the Binomial 30 0 3 probability function. Tabulate and plot
the Binomial 30 0 7 probability function. Explain why the Binomial 30 0 3 proba­
bility function at x agrees with the Binomial 30 0 7 probability function at n x .

PROBLEMS

2.3.23 Let X be a discrete random variable with probability function pX x 2 x for
x 1 2 3 , with pX x 0 otherwise.
(a) Let Y X2. What is the probability function pY of Y ?
(b) Let Z X 1. What is the distribution of Z? (Identify the distribution by name
and specify all parameter values.)
2.3.24 Let X Binomial n1 and Y Binomial n2 , with X and Y chosen
independently. Let Z X Y . What will be the distribution of Z? (Explain your
reasoning.) (Hint: See the end of Example 2.3.3.)
2.3.25 Let X Geometric and Y Geometric , with X and Y chosen indepen­
dently. Let Z X Y . What will be the distribution of Z? Generalize this to r coins.
(Explain your reasoning.)
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2.3.26 Let X Geometric 1 and Y Geometric 2 , with X and Y chosen in­
dependently. Compute P X Y . Explain what this probability is in terms of coin
tossing.
2.3.27 Suppose that Xn Geometric n . Compute limn P Xn n .
2.3.28 Let X Negative­Binomial r and Y Negative­Binomial s , with X
and Y chosen independently. Let Z X Y . What will be the distribution of Z?
(Explain your reasoning.)
2.3.29 (Generalized hypergeometric distribution) Suppose that a set contains N ob­
jects, M1 of which are labelled 1 M2 of which are labelled 2 and the remainder of
which are labelled 3. Suppose we select a sample of n N objects from the set using
sampling without replacement, as described in Example 2.3.7. Determine the proba­
bility that we obtain the counts f1 f2 f3 where fi is the number of objects labelled
i in the sample.
2.3.30 Suppose that units arrive at a server according to a Poisson process at rate (see
Exercise 2.3.18) Let T be the amount of time until the first call. Calculate P T t

2.4 Continuous Distributions
In the previous section, we considered discrete random variables X for which P X
x 0 for certain values of x . However, for some random variables X , such as one
having the uniform distribution, we have P X x 0 for all x . This prompts the
following definition.

Definition 2.4.1 A random variable X is continuous if

P X x 0 (2.4.1)

for all x R1

EXAMPLE 2.4.1 The Uniform[0 1] Distribution
Consider a random variable whose distribution is the uniform distribution on [0 1], as
presented in (1.2.2). That is,

P a X b b a (2.4.2)

whenever 0 a b 1, with P X 0 P X 1 0. The random variable X
is said to have the Uniform[0 1] distribution; we write this as X Uniform[0 1]. For
example,

P
1

2
X

3

4

3

4

1

2

1

4

Also,

P X
2

3
P

2

3
X 1 P X 1 1

2

3
0

1

3

In fact, for any x [0 1],

P X x P X 0 P 0 X x 0 x 0 x
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Note that setting a b x in (2.4.2), we see in particular that P X x x
x 0 for every x R1 Thus, the uniform distribution is an example of a continuous
distribution. In fact, it is one of the most important examples!

The Uniform[0 1] distribution is fairly easy to work with. However, in general,
continuous distributions are very difficult to work with. Because P X x 0 for
all x , we cannot simply add up probabilities as we can for discrete random variables.
Thus, how can we keep track of all the probabilities?

A possible solution is suggested by rewriting (2.4.2), as follows. For x R1, let

f x
1 0 x 1
0 otherwise.

(2.4.3)

Then (2.4.2) can be rewritten as

P a X b
b

a
f x dx (2.4.4)

whenever a b
One might wonder about the wisdom of converting the simple equation (2.4.2) into

the complicated integral equation (2.4.4). However, the advantage of (2.4.4) is that, by
modifying the function f , we can obtain many other continuous distributions besides
the uniform distribution. To explore this, we make the following definitions.

Definition 2.4.2 Let f : R1 R1 be a function. Then f is a density function if
f x 0 for all x R1, and f x dx 1.

Definition 2.4.3 A random variable X is absolutely continuous if there is a density
function f , such that

P a X b
b

a
f x dx (2.4.5)

whenever a b as in (2.4.4).

In particular, if b a with a small positive number, and if f is continuous at a,
then we see that

P a X a
a

a
f x dx f a

Thus, a density function evaluated at a may be thought of as measuring the probability
of a random variable being in a small interval about a.

To better understand absolutely continuous random variables, we note the following
theorem.

Theorem 2.4.1 Let X be an absolutely continuous random variable. Then X is a
continuous random variable, i.e., P X a 0 for all a R1.
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PROOF Let a be any real number. Then P X a P a X a . On the
other hand, setting a b in (2.4.5), we see that P a X a a

a f x dx 0
Hence, P X a 0 for all a, as required.

It turns out that the converse to Theorem 2.4.1 is false. That is, not all continuous
distributions are absolutely continuous.1 However, most of the continuous distributions
that arise in statistics are absolutely continuous. Furthermore, absolutely continuous
distributions are much easier to work with than are other kinds of continuous distribu­
tions. Hence, we restrict our discussion to absolutely continuous distributions here. In
fact, statisticians sometimes say that X is continuous as shorthand for saying that X is
absolutely continuous.

2.4.1 Important Absolutely Continuous Distributions

Certain absolutely continuous distributions are so important that we list them here.

EXAMPLE 2.4.2 The Uniform[0 1] Distribution
Clearly, the uniform distribution is absolutely continuous, with the density function
given by (2.4.3). We will see, in Section 2.10, that the Uniform[0 1] distribution has
an important relationship with every absolutely continuous distribution.

EXAMPLE 2.4.3 The Uniform[L R] Distribution
Let L and R be any two real numbers with L R. Consider a random variable X such
that

P a X b
b a

R L
(2.4.6)

whenever L a b R with P X L P X R 0. The random variable
X is said to have the Uniform[L R] distribution; we write this as X Uniform[L R].
(If L 0 and R 1, then this definition coincides with the previous definition of the
Uniform[0 1] distribution.) Note that X Uniform[L R] has the same probability of
being in any two subintervals of [L R] that have the same length.

Note that the Uniform[L R] distribution is also absolutely continuous, with density
given by

f x
1

R L L x R
0 otherwise.

In Figure 2.4.1 we have plotted a Uniform[2 4] density.

1For examples of this, see more advanced probability books, e.g., page 143 of A First Look at Rigorous
Probability Theory, Second Edition, by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).
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Figure 2.4.1: A Uniform[2 4] density function.

EXAMPLE 2.4.4 The Exponential 1 Distribution
Define a function f : R1 R1 by

f x
e x x 0
0 x 0

Then clearly, f x 0 for all x . Also,

f x dx
0

e x dx e x

0
0 1 1

Hence, f is a density function. See Figure 2.4.2 for a plot of this density.
Consider now a random variable X having this density function f . If 0 a b

, then

P a X b
b

a
f x dx

b

a
e x dx e b e a e a e b

The random variable X is said to have the Exponential 1 distribution, which we write
as X Exponential 1 . The exponential distribution has many important properties,
which we will explore in the coming sections.

EXAMPLE 2.4.5 The Exponential Distribution
Let 0 be a fixed constant. Define a function f : R1 R1 by

f x
e x x 0

0 x 0

Then clearly, f x 0 for all x . Also,

f x dx
0

e x dx e x

0
0 1 1.
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Hence, f is again a density function. (If 1, then this corresponds to the Exponential 1
density.)

If X is a random variable having this density function f , then

P a X b
b

a
e x dx e b e a e a e b

for 0 a b . The random variable X is said to have the Exponential
distribution; we write this as X Exponential . Note that some books and software
packages instead replace by 1 in the definition of the Exponential distribution
— always check this when using another book or when using software.

An exponential distribution can often be used to model lifelengths. For example, a
certain type of light bulb produced by a manufacturer might follow an Exponential
distribution for an appropriate choice of . By this we mean that the lifelength X of a
randomly selected light bulb from those produced by this manufacturer has probability

P X x
x

e z dz e x

of lasting longer than x in whatever units of time are being used. We will see in
Chapter 3 that, in a specific application, the value 1 will correspond to the average
lifelength of the light bulbs.

As another application of this distribution, consider a situation involving a server,
e.g., a cashier at a fast­food restaurant, an automatic bank teller machine, a telephone
exchange, etc. Units arrive for service in a random fashion and form a queue when the
server is busy. It is often the case that the number of arrivals at the server, for some
specific unit of time t can be modeled by a Poisson t distribution. Now let T1 be the
time until the first arrival. Then we have

P T1 t P no arrivals in 0 t]
t 0

0!
e t e t

and T1 has density given by

f t
d

dt t
f z dz

d

dt
P T1 t e t

So T1 Exponential .

EXAMPLE 2.4.6 The Gamma Distribution
The gamma function is defined by

0
t 1e t dt 0

It turns out (see Problem 2.4.15) that

1 (2.4.7)

and that if n is a positive integer, then n n 1 !, while 1 2 .
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We can use the gamma function to define the density of the Gamma distribu­
tion, as follows. Let 0 and 0, and define a function f by

f x
x 1

e x (2.4.8)

when x 0 with f x 0 for x 0. Then clearly f 0. Furthermore, it is
not hard to verify (see Problem 2.4.17) that 0 f x dx 1. Hence, f is a density
function.

A random variable X having density function f given by (2.4.8) is said to have the
Gamma distribution; we write this as X Gamma . Note that some books
and software packages instead replace by 1 in the definition of the Gamma
distribution — always check this when using another book or when using software.

The case 1 corresponds (because 1 0! 1) to the Exponential dis­
tribution: Gamma 1 Exponential . In Figure 2.4.2, we have plotted several
Gamma density functions.
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f

Figure 2.4.2: Graph of an Exponential 1 (solid line) a Gamma 2 1 (dashed line), and a
Gamma 3 1 (dotted line) density.

A gamma distribution can also be used to model lifelengths. As Figure 2.4.2 shows,
the gamma family gives a much greater variety of shapes to choose from than from the
exponential family.

We now define a function : R1 R1 by

x
1

2
e x2 2 (2.4.9)

This function is the famous “bell­shaped curve” because its graph is in the shape of
a bell, as shown in Figure 2.4.3.
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Figure 2.4.3: Plot of the function in (2.4.9)

We have the following result for .

Theorem 2.4.2 The function given by (2.4.9) is a density function.

PROOF See Section 2.11 for the proof of this result.

This leads to the following important distributions.

EXAMPLE 2.4.7 The N 0 1 Distribution
Let X be a random variable having the density function given by (2.4.9). This means
that for a b ,

P a X b
b

a
x dx

b

a

1

2
e x2 2 dx .

The random variable X is said to have the N 0 1 distribution (or the standard normal
distribution); we write this as X N 0 1 .

EXAMPLE 2.4.8 The N 2 Distribution
Let R1, and let 0. Let f be the function defined by

f x
1 x 1

2
e x 2 2 2

(If 0 and 1, then this corresponds with the previous example.) Clearly,
f 0. Also, letting y x , we have

f x dx 1 x dx 1 y dy y dy 1

Hence, f is a density function.
Let X be a random variable having this density function f . The random variable

X is said to have the N 2 distribution; we write this as X N 2 . In Figure
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2.4.4, we have plotted the N 0 1 and the N 1 1 densities. Note that changes in
simply shift the density without changing its shape. In Figure 2.4.5, we have plotted
the N 0 1 and the N 0 4 densities. Note that both densities are centered on 0, but
the N 0 4 density is much more spread out. The value of 2 controls the amount of
spread.
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Figure 2.4.4: Graph of the N 1 1 density (solid line) and the N 0 1 density (dashed line).
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Figure 2.4.5: Graph of an N 0 4 density (solid line) and an N 0 1 density (dashed line).

The N 2 distribution, for some choice of and 2 arises quite often in ap­
plications. Part of the reason for this is an important result known as the central limit
theorem. which we will discuss in Section 4.4. In particular, this result leads to using
a normal distribution to approximate other distributions, just as we used the Poisson
distribution to approximate the binomial distribution in Example 2.3.6.

In a large human population, it is not uncommon for various body measurements to
be normally distributed (at least to a reasonable degree of approximation). For example,
let us suppose that heights (measured in feet) of students at a particular university are
distributed N 2 for some choice of and 2 Then the probability that a randomly
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selected student has height between a and b feet, with a b is given by

b

a

1

2
e x 2 2 2

dx

In Section 2.5, we will discuss how to evaluate such an integral. Later in this text, we
will discuss how to select an appropriate value for and 2 and to assess whether or
not any normal distribution is appropriate to model the distribution of a variable defined
on a particular population.

Given an absolutely continuous random variable X , we will write its density as fX ,
or as f if no confusion arises. Absolutely continuous random variables will be used
extensively in later chapters of this book.

Remark 2.4.1 Finally, we note that density functions are not unique. Indeed, if f is a
density function and we change its value at a finite number of points, then the value of

b
a f x dx will remain unchanged. Hence, the changed function will also qualify as

a density corresponding to the same distribution. On the other hand, often a particular
“best” choice of density function is clear. For example, if the density function can be
chosen to be continuous, or even piecewise continuous, then this is preferred over some
other version of the density function.

To take a specific example, for the Uniform[0 1] distribution, we could replace the
density f of (2.4.3) by

g x
1 0 x 1
0 otherwise,

or even by

h x

1 0 x 3 4
17 x 3 4
1 3 4 x 1
0 otherwise.

Either of these new densities would again define the Uniform[0 1] distribution, be­
cause we would have b

a f x dx b
a g x dx b

a h x dx for any a b.
On the other hand, the densities f and g are both piecewise continuous and are

therefore natural choices for the density function, whereas h is an unnecessarily com­
plicated choice. Hence, when dealing with density functions, we shall always assume
that they are as continuous as possible, such as f and g, rather than having removable
discontinuities such as h. This will be particularly important when discussing likeli­
hood methods in Chapter 6.

Summary of Section 2.4

A random variable X is continuous if P X x 0 for all x , i.e., if none of its
probability comes from being equal to particular values.

X is absolutely continuous if there exists a density function fX with P a X
b b

a fX x dx for all a b.
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Important absolutely continuous distributions include the uniform, exponential,
gamma, and normal.

EXERCISES

2.4.1 Let U Uniform[0 1]. Compute each of the following.
(a) P U 0
(b) P U 1 2
(c) P U 1 3
(d) P U 2 3
(e) P U 2 3
(f) P U 1
(g) P U 17

2.4.2 Let W Uniform[1 4]. Compute each of the following.
(a) P W 5
(b) P W 2
(c) P W2 9 (Hint: If W 2 9, what must W be?)
(d) P W 2 2
2.4.3 Let Z Exponential 4 . Compute each of the following.
(a) P Z 5
(b) P Z 5
(c) P Z2 9
(d) P Z4 17 9
2.4.4 Establish for which constants c the following functions are densities.
(a) f x cx on 0 1 and 0 otherwise.

(b) f x cxn on 0 1 and 0 otherwise, for n a nonnegative integer.
(c) f x cx1 2 on 0 2 and 0 otherwise.
(d) f x c sin x on 0 2 and 0 otherwise.
2.4.5 Is the function defined by f x x 3 for 1 x 2 and 0 otherwise, a
density? Why or why not?
2.4.6 Let X Exponential 3 . Compute each of the following.
(a) P 0 X 1
(b) P 0 X 3
(c) P 0 X 5
(d) P 2 X 5
(e) P 2 X 10
(f) P X 2
2.4.7 Let M 0, and suppose f x cx2 for 0 x M, otherwise f x 0. For
what value of c (depending on M) is f a density?
2.4.8 Suppose X has density f and that f x 2 for 0 3 x 0 4. Prove that
P 0 3 X 0 4 0 2.
2.4.9 Suppose X has density f and Y has density g. Suppose f x g x for 1
x 2. Prove that P 1 X 2 P 1 Y 2 .
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2.4.10 Suppose X has density f and Y has density g. Is it possible that f x g x
for all x? Explain.
2.4.11 Suppose X has density f and f x f y whenever 0 x 1 y 2.
Does it follow that P 0 X 1 P 1 X 2 ? Explain.
2.4.12 Suppose X has density f and f x f y whenever 0 x 1 y 3.
Does it follow that P 0 X 1 P 1 X 3 ? Explain.
2.4.13 Suppose X N 0 1 and Y N 1 1 . Prove that P X 3 P Y 3 .

PROBLEMS

2.4.14 Let Y Exponential for some 0. Let y h 0. Prove that P Y
h y Y h P Y y That is, conditional on knowing that Y h, the
random variable Y h has the same distribution as Y did originally. This is called
the memoryless property of the exponential distributions; it says that they immediately
“forget” their past behavior.
2.4.15 Consider the gamma function 0 t 1e t dt , for 0.
(a) Prove that 1 . (Hint: Use integration by parts.)
(b) Prove that 1 1.
(c) Use parts (a) and (b) to show that n n 1 ! if n is a positive integer.
2.4.16 Use the fact that 1 2 to give an alternate proof that x dx

1 (as in Theorem 2.4.2). (Hint: Make the substitution t x2 2.)
2.4.17 Let f be the density of the Gamma distribution, as in (2.4.8). Prove that

0 f x dx 1. (Hint: Let t x .)
2.4.18 (Logistic distribution) Consider the function given by f x
e x 1 e x 2 for x Prove that f is a density function.

2.4.19 (Weibull distribution) Consider, for 0 fixed, the function given by
f x x 1e x for 0 x and 0 otherwise Prove that f is a density
function.
2.4.20 (Pareto distribution) Consider, for 0 fixed, the function given by f x

1 x 1 for 0 x and 0 otherwise Prove that f is a density function.
2.4.21 (Cauchy distribution) Consider the function given by

f x
1 1

1 x2

for x Prove that f is a density function. (Hint: Recall the derivative of
arctan x )

2.4.22 (Laplace distribution) Consider the function given by f x e x 2 for
x and 0 otherwise Prove that f is a density function.

2.4.23 (Extreme value distribution) Consider the function given by f x e x exp e x

for x and 0 otherwise Prove that f is a density function.
2.4.24 (Beta a b distribution) The beta function is the function B : 0 2 R1

given by

B a b
1

0
xa 1 1 x b 1 dx
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It can be proved (see Challenge 2.4.25) that

B a b
a b

a b
(2.4.10)

(a) Prove that the function f given by f x B 1 a b xa 1 1 x b 1 for 0
x 1 and 0 otherwise, is a density function.
(b) Determine and plot the density when a 1 b 1 Can you name this distribution?
(c) Determine and plot the density when a 2 b 1

(d) Determine and plot the density when a 1 b 2
(e) Determine and plot the density when a 2 b 2

CHALLENGES

2.4.25 Prove (2.4.10). (Hint: Use a b 0 0 xa 1yb 1e x y dx dy and
make the change of variable u x y x u )

DISCUSSION TOPICS

2.4.26 Suppose X N 0 1 and Y N 0 4 . Which do you think is larger, P X
2 or P Y 2 ? Why? (Hint: Look at Figure 2.4.5.)

2.5 Cumulative Distribution Functions
If X is a random variable, then its distribution consists of the values of P X B for
all subsets B of the real numbers. However, there are certain special subsets B that are
convenient to work with. Specifically, if B x] for some real number x , then
P X B P X x . It turns out (see Theorem 2.5.1) that it is sufficient to keep
track of P X x for all real numbers x .

This motivates the following definition.

Definition 2.5.1 Given a random variable X , its cumulative distribution function
(or distribution function, or cdf for short) is the function FX : R1 [0 1], defined
by FX x P X x . (Where there is no confusion, we sometimes write F x
for FX x .)

The reason for calling FX the “distribution function” is that the full distribution
of X can be determined directly from FX . We demonstrate this for some events of
particular importance.

First, suppose that B a b] is a left­open interval. Using (1.3.3),

P X B P a X b P X b P X a FX b FX a

Now, suppose that B [a b] is a closed interval. Using the continuity of proba­
bility (see Theorem 1.6.1), we have

P X B P a X b lim
n

P a 1 n X b

lim
n

FX b FX a 1 n FX b lim
n

FX a 1 n
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We sometimes write limn FX a 1 n as FX a , so that P X [a b]
FX b FX a In the special case where a b, we have

P X a FX a FX a (2.5.1)

Similarly, if B a b is an open interval, then

P X B P a X b lim
n

FX b 1 n FX a FX b FX a

If B [a b is a right­open interval, then

P X B P a X b lim
n

FX b 1 n lim
n

FX a 1 n

FX b FX a

We conclude that we can determine P X B from FX whenever B is any kind of
interval.

Now, if B is instead a union of intervals, then we can use additivity to again com­
pute P X B from FX . For example, if

B a1 b1] a2 b2] ak bk]

with a1 b1 a2 b2 ak bk , then by additivity,

P X B P X a1 b1] P X ak bk]

FX b1 FX a1 FX bk FX ak

Hence, we can still compute P X B solely from the values of FX x .

Theorem 2.5.1 Let X be any random variable, with cumulative distribution func­
tion FX . Let B be any subset of the real numbers. Then P X B can be deter­
mined solely from the values of FX x .

PROOF (Outline) It turns out that all relevant subsets B can be obtained by apply­
ing limiting operations to unions of intervals. Hence, because FX determines P X
B when B is a union of intervals, it follows that FX determines P X B for all
relevant subsets B.

2.5.1 Properties of Distribution Functions

In light of Theorem 2.5.1, we see that cumulative distribution functions FX are very
useful. Thus, we note a few of their basic properties here.

Theorem 2.5.2 Let FX be the cumulative distribution function of a random variable
X . Then

(a) 0 FX x 1 for all x ,
(b) FX x FX y whenever x y (i.e., FX is increasing),
(c) limx FX x 1,
(d) limx FX x 0.
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PROOF (a) Because FX x P X x is a probability, it is between 0 and 1.

(b) Let A X x and B X y . Then if x y, then A B, so that
P A P B . But P A FX x and P B FX y , so the result follows.

(c) Let An X n . Because X must take on some value and hence X n for
sufficiently large n, we see that An increases to S, i.e., An S (see Section 1.6).
Hence, by continuity of P (see Theorem 1.6.1), limn P An P S 1. But
P An P X n FX n , so the result follows.

(d) Let Bn X n . Because X n for sufficiently large n, Bn decreases
to the empty set, i.e., Bn . Hence, again by continuity of P, limn P Bn
P 0. But P Bn P X n FX n , so the result follows.

If FX is a cumulative distribution function, then FX is also right continuous; see Prob­
lem 2.5.17. It turns out that if a function F : R1 R1 satisfies properties (a) through
(d) and is right continuous, then there is a unique probability measure P on R1 such
that F is the cdf of P We will not prove this result here.2

2.5.2 Cdfs of Discrete Distributions

We can compute the cumulative distribution function (cdf) FX of a discrete random
variable from its probability function pX , as follows.

Theorem 2.5.3 Let X be a discrete random variable with probability function pX .
Then its cumulative distribution function FX satisfies FX x y x pX y

PROOF Let x1 x2 be the possible values of X . Then FX x P X x

xi x P X xi y x P X y y x pX y as claimed.

Hence, if X is a discrete random variable, then by Theorem 2.5.3, FX is piecewise
constant, with a jump of size pX xi at each value xi . A plot of such a distribution
looks like that depicted in Figure 2.5.1.

We consider an example of a distribution function of a discrete random variable.

EXAMPLE 2.5.1
Consider rolling one fair six­sided die, so that S 1 2 3 4 5 6 , with P s 1 6
for each s S. Let X be the number showing on the die divided by 6, so that X s
s 6 for s S. What is FX x ? Since X s x if and only if s 6x we have that

FX x P X x
s S s 6x

P s
s S s 6x

1

6

1

6
s S : s 6x

2For example, see page 67 of A First Look at Rigorous Probability Theory, Second Edition, by J. S. Rosen­
thal (World Scientific Publishing, Singapore, 2006).



Chapter 2: Random Variables and Distributions 65

That is, to compute FX x , we count how many elements s S satisfy s 6x and
multiply that number by 1 6. Therefore,

FX x

0 x 1 6
1 6 1 6 x 2 6
2 6 2 6 x 3 6
3 6 3 6 x 4 6
4 6 4 6 x 5 6
5 6 5 6 x 1
6 6 1 x

In Figure 2.5.1, we present a graph of the function FX and note that this is a step
function. Note (see Exercise 2.5.1) that the properties of Theorem 2.5.2 are indeed
satisfied by the function FX .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

x

 F

Figure 2.5.1: Graph of the cdf FX in Example 2.5.1.

2.5.3 Cdfs of Absolutely Continuous Distributions

Once we know the density fX of X , then it is easy to compute the cumulative distribu­
tion function of X , as follows.

Theorem 2.5.4 Let X be an absolutely continuous random variable, with density
function fX . Then the cumulative distribution function FX of X satisfies

FX x
x

fX t dt

for x R1

PROOF This follows from (2.4.5), by setting b x and letting a .

From the fundamental theorem of calculus, we see that it is also possible to compute
a density fX once we know the cumulative distribution function FX .
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Corollary 2.5.1 Let X be an absolutely continuous random variable, with cumula­
tive distribution function FX . Let

fX x
d

dx
FX x FX x

Then fX is a density function for X .

We note that FX might not be differentiable everywhere, so that the function fX of the
corollary might not be defined at certain isolated points. The density function may take
any value at such points.

Consider again the N 0 1 distribution, with density given by (2.4.9). According
to Theorem 2.5.4, the cumulative distribution function F of this distribution is given
by

F x
x

t dt
x 1

2
e t2 2 dt

It turns out that it is provably impossible to evaluate this integral exactly, except for
certain specific values of x (e.g., x , x 0, or x ). Nevertheless, the
cumulative distribution function of the N 0 1 distribution is so important that it is
assigned a special symbol. Furthermore, this is tabulated in Table D.2 of Appendix D
for certain values of x .

Definition 2.5.2 The symbol stands for the cumulative distribution function of
a standard normal distribution, defined by

x
x

t dt
x 1

2
e t2 2 dt (2.5.2)

for x R1

EXAMPLE 2.5.2 Normal Probability Calculations
Suppose that X N 0 1 and we want to calculate

P 0 63 X 2 0 P X 2 0 P X 0 63

Then P X 2 2 , while P X 0 63 0 63 . Unfortunately,
2 and 0 63 cannot be computed exactly, but they can be approximated us­

ing a computer to numerically calculate the integral (2.5.2). Virtually all statistical
software packages will provide such approximations, but many tabulations such as
Table D.2, are also available. Using this table, we obtain 2 0 9772 while

0 63 0 2643 This implies that

P 0 63 X 2 0 2 0 0 63 0 9772 0 2643 0 7129

Now suppose that X N 2 and we want to calculate P a X b Letting
f denote the density of X and following Example 2.4.8, we have

P a X b
b

a
f x dx

b

a

1 x
dx
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Then, again following Example 2.4.8, we make the substitution y x in the
above integral to obtain

P a X b

b

a
x dx

b a

Therefore, general normal probabilities can be computed using the function
Suppose now that a 0 63 b 2 0 1 3 and 2 4 We obtain

P 0 63 X 2 0
2 0 1 3

2

0 63 1 3

2
0 35 0 965 0 6368 0 16725

0 46955

because, using Table D.2, 0 35 0 6368 We approximate 0 965 by the
linear interpolation between the values 0 96 0 1685 0 97 0 1660
given by

0 965 0 96
0 97 0 96

0 97 0 96
0 965 0 96

0 1685
0 1660 0 1685

0 97 0 96
0 965 0 96 0 16725

EXAMPLE 2.5.3
Let X be a random variable with cumulative distribution function given by

FX x
0 x 2
x 2 4 16 2 x 4

1 4 x

In Figure 2.5.2, we present a graph of FX

1 2 3 4 5
0.0

0.5

1.0

x

F

Figure 2.5.2: Graph of the cdf FX in Example 2.5.3.

Suppose for this random variable X we want to compute P X 3 , P X 3 ,
P X 2 5 and P 1 2 X 3 4 . We can compute all these probabilities directly
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from FX . We have that

P X 3 FX 3 3 2 4 16 1 16

P X 3 FX 3 lim
n

3 1 n 2 4 16 1 16

P X 2 5 1 P X 2 5 1 FX 2 5

1 2 5 2 4 16 1 0 0625 16 0 996

P 1 2 X 3 4 FX 3 4 FX 1 2 3 4 2 4 16 0 0 2401

2.5.4 Mixture Distributions

Suppose now that F1 F2 Fk are cumulative distribution functions, correspond­
ing to various distributions. Also let p1 p2 pk be positive real numbers with

k
i 1 pi 1 (so these values form a probability distribution). Then we can define a

new function G by

G x p1F1 x p2F2 x pk Fk x (2.5.3)

It is easily verified (see Exercise 2.5.6) that the function G given by (2.5.3) will
satisfy properties (a) through (d) of Theorem 2.5.2 and is right continuous. Hence, G
is also a cdf.

The distribution whose cdf is given by (2.5.3) is called a mixture distribution be­
cause it mixes the various distributions with cdfs F1 Fk according to the probabil­
ity distribution given by the p1 p2 pk

To see how a mixture distribution arises in applications, consider a two­stage sys­
tem, as discussed in Section 1.5.1. Let Z be a random variable describing the outcome
of the first stage and such that P Z i pi for i 1 2 k Suppose that for
the second stage, we observe a random variable Y where the distribution of Y depends
on the outcome of the first stage, so that Y has cdf Fi when Z i In effect, Fi is the
conditional distribution of Y given that Z i (see Section 2.8). Then, by the law of
total probability (see Theorem 1.5.1), the distribution function of Y is given by

P Y y
k

i 1

P Y y Z i P Z i
k

i 1

pi Fi y G y

Therefore, the distribution function of Y is given by a mixture of the Fi
Consider the following example of this.

EXAMPLE 2.5.4
Suppose we have two bowls containing chips. Bowl #1 contains one chip labelled
0, two chips labelled 3, and one chip labelled 5. Bowl #2 contains one chip labelled
2, one chip labelled 4, and one chip labelled 5. Now let Xi be the random variable
corresponding to randomly drawing a chip from bowl #i . Therefore, P X1 0
1 4, P X1 3 1 2, and P X1 5 1 4, while P X2 2 P X2 4
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P X2 5 1 3. Then X1 has distribution function given by

F1 x

0 x 0
1 4 0 x 3
3 4 3 x 5
1 x 5

and X2 has distribution function given by

F2 x

0 x 2
1 3 2 x 4
2 3 4 x 5
1 x 5

Now suppose that we choose a bowl by randomly selecting a card from a deck of
five cards where one card is labelled 1 and four cards are labelled 2. Let Z denote the
value on the card obtained, so that P Z 1 1 5 and P Z 2 4 5 Then,
having obtained the value Z i , we observe Y by randomly drawing a chip from bowl
#i . We see immediately that the cdf of Y is given by

G x 1 5 F1 x 4 5 F2 x

and this is a mixture of the cdfs F1 and F2.

As the following examples illustrate, it is also possible to have infinite mixtures of
distributions.

EXAMPLE 2.5.5 Location and Scale Mixtures
Suppose F is some cumulative distribution function. Then for any real number y, the
function Fy defined by Fy x F x y is also a cumulative distribution function. In
fact, Fy is just a “shifted” version of F . An example of this is depicted in Figure 2.5.3.

­10 ­5 0 5 10

0.5

1.0

x

F

Figure 2.5.3: Plot of the distribution functions F (solid line) and F2 (dashed line) in Example
2.5.5, where F x ex ex 1 for x R1

If pi 0 with i pi 1 (so the pi form a probability distribution), and y1 y2
are real numbers, then we can define a discrete location mixture by

H x
i

pi Fyi x
i

pi F x yi
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Indeed, the shift Fy x F x y itself corresponds to a special case of a discrete
location mixture, with p1 1 and y1 y.

Furthermore, if g is some nonnegative function with g t dt 1 (so g is a
density function), then we can define

H x Fy x g y dy F x y g y dy

Then it is not hard to see that H is also a cumulative distribution function — one that is
called a continuous location mixture of F The idea is that H corresponds to a mixture
of different shifted distributions Fy , with the density g giving the distribution of the
mixing coefficient y.

We can also define a discrete scale mixture by

K x
i

pi F x yi

whenever yi 0, pi 0, and i pi 1. Similarly, if 0 g t dt 1, then we can
write

K x
0

F x y g y dy

Then K is also a cumulative distribution function, called a continuous scale mixture of
F .

You might wonder at this point whether a mixture distribution is discrete or con­
tinuous. The answer depends on the distributions being mixed and the mixing distrib­
ution. For example, discrete location mixtures of discrete distributions are discrete and
discrete location mixtures of continuous distributions are continuous.

There is nothing restricting us, however, to mixing only discrete distributions or
only continuous distributions. Other kinds of distribution are considered in the follow­
ing section.

2.5.5 Distributions Neither Discrete Nor Continuous (Advanced)

There are some distributions that are neither discrete nor continuous, as the following
example shows.

EXAMPLE 2.5.6
Suppose that X1 Poisson 3 is discrete with cdf F1, while X2 N 0 1 is continu­
ous with cdf F2 and Y has the mixture distribution given by FY y 1 5 F1 y
4 5 F2 y Using (2.5.1), we have

P Y y FY y FY y

1 5 F1 y 4 5 F2 y 1 5 F1 y 4 5 F2 y

1 5 F1 y F1 y 4 5 F2 y F2 y

1

5
P X1 y

4

5
P X2 y
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Therefore,

P Y y
1
5

3y

y! e 3 y a nonnegative integer
0 otherwise.

Because P Y y 0 for nonnegative integers y the random variable Y is not
continuous. On the other hand, we have

y
P Y y

y 0

1

5

3y

y!
e 3 1

5
1

Hence, Y is not discrete either.
In fact, Y is neither discrete nor continuous. Rather, Y is a mixture of a discrete

and a continuous distribution.

For the most part in this book, we shall treat discrete and continuous distributions
separately. However, it is important to keep in mind that actual distributions may be
neither discrete nor continuous but rather a mixture of the two.3 In most applications,
however, the distributions we deal with are either continuous or discrete.

Recall that a continuous distribution need not be absolutely continuous, i.e., have a
density. Hence, a distribution that is a mixture of a discrete and a continuous distribu­
tion might not be a mixture of a discrete and an absolutely continuous distribution.

Summary of Section 2.5

The cumulative distribution function (cdf) of X is FX x P X x .

All probabilities associated with X can be determined from FX .

As x increases from to , FX x increases from 0 to 1.

If X is discrete, then FX x y x P X y .

If X is absolutely continuous, then FX x x fX t dt , and fX x FX x .

We write x for the cdf of the standard normal distribution evaluated at x .

A mixture distribution has a cdf that is a linear combination of other cdfs. Two
special cases are location and scale mixtures.

Some mixture distributions are neither discrete nor continuous.

EXERCISES

2.5.1 Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are indeed sat­
isfied by the function FX in Example 2.5.1.
2.5.2 Consider rolling one fair six­sided die, so that S 1 2 3 4 5 6 , and P s
1 6 for all s S. Let X be the number showing on the die, so that X s s for s S.
Let Y X2. Compute the cumulative distribution function FY y P Y y , for all
y R1. Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are satisfied
by this function FY .

3In fact, there exist probability distributions that cannot be expressed even as a mixture of a discrete and
a continuous distribution, but these need not concern us here.
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2.5.3 For each of the following functions F , determine whether or not F is a valid
cumulative distribution function, i.e., whether or not F satisfies properties (a) through
(d) of Theorem 2.5.2.
(a) F x x for all x R1

(b)

F x
0 x 0
x 0 x 1
1 x 1

(c)

F x
0 x 0
x2 0 x 1
1 x 1

(d)

F x
0 x 0
x2 0 x 3
1 x 3

(e)

F x
0 x 0
x2 9 0 x 3
1 x 3

(f)

F x
0 x 1
x2 9 1 x 3
1 x 3

(g)

F x
0 x 1
x2 9 1 x 3
1 x 3

2.5.4 Let X N 0 1 . Compute each of the following in terms of the function of
Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities numer­
ically.
(a) P X 5
(b) P 2 X 7
(c) P X 3
2.5.5 Let Y N 8 4 . Compute each of the following, in terms of the function

of Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities
numerically.
(a) P Y 5
(b) P 2 Y 7
(c) P Y 3
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2.5.6 Verify that the function G given by (2.5.3) satisfies properties (a) through (d) of
Theorem 2.5.2.
2.5.7 Suppose FX x x2 for 0 x 1. Compute each of the following.
(a) P X 1 3
(b) P 1 4 X 1 2)
(c) P 2 5 X 4 5)
(d) P X 0
(e) P X 1
(f) P X 1
(g) P X 3
(h) P X 3 7
2.5.8 Suppose FY y y3 for 0 y 1 2, and FY y 1 for 1 2 y. Compute
each of the following.
(a) P 1 3 Y 3 4
(b) P Y 1 3
(c) P Y 1 2
2.5.9 Let F x x2 for 0 x 2, with F x 0 for x 0 and F x 4 for
x 2.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?
2.5.10 Let F x 0 for x 0, with F x e x for x 0.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?

2.5.11 Let F x 0 for x 0, with F x 1 e x for x 0.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?
2.5.12 Let X Exponential 3 . Compute the function FX .
2.5.13 Let F x 0 for x 0, with F x 1 3 for 0 x 2 5, and F x 3 4
for 2 5 x 4 5, and F x 1 for x 4 5.
(a) Sketch a graph of F .
(b) Prove that F is a valid cumulative distribution function.
(c) If X has cumulative distribution function equal to F , then compute P X 4 5
and P 1 X 1 2 and P X 2 5 and P X 4 5 .

2.5.14 Let G x 0 for x 0, with G x 1 e x2
for x 0.

(a) Prove that G is a valid cumulative distribution function.
(b) If Y has cumulative distribution function equal to G, then compute P Y 4 and
P 1 Y 2 and P Y 0 .
2.5.15 Let F and G be as in the previous two exercises. Let H x 1 3 F x
2 3 G x . Suppose Z has cumulative distribution function equal to H . Compute each

of the following.
(a) P Z 4 5
(b) P 1 Z 1 2
(c) P Z 2 5
(d) P Z 4 5
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(e) P Z 0
(f) P Z 1 2

PROBLEMS

2.5.16 Let F be a cumulative distribution function. Compute (with explanation) the
value of limn [F 2n F n ].

2.5.17 Let F be a cumulative distribution function. For x R1, we could define
F x by F x limn F x 1

n . Prove that F is right continuous, meaning that
for each x R1, we have F x F x . (Hint: You will need to use continuity of P
(Theorem 1.6.1).)

2.5.18 Let X be a random variable, with cumulative distribution function FX . Prove
that P X a 0 if and only if the function FX is continuous at a. (Hint: Use (2.5.1)
and the previous problem.)
2.5.19 Let be as in Definition 2.5.2. Derive a formula for x in terms of x .
(Hint: Let s t in (2.5.2), and do not forget Theorem 2.5.2.)
2.5.20 Determine the distribution function for the logistic distribution of Problem 2.4.18.
2.5.21 Determine the distribution function for the Weibull distribution of Problem
2.4.19.
2.5.22 Determine the distribution function for the Pareto distribution of Problem
2.4.20.
2.5.23 Determine the distribution function for the Cauchy distribution of Problem
2.4.21.
2.5.24 Determine the distribution function for the Laplace distribution of Problem
2.4.22.

2.5.25 Determine the distribution function for the extreme value distribution of Prob­
lem 2.4.23.
2.5.26 Determine the distribution function for the beta distributions of Problem 2.4.24
for parts (b) through (e).

DISCUSSION TOPICS

2.5.27 Does it surprise you that all information about the distribution of a random
variable X can be stored by a single function FX ? Why or why not? What other
examples can you think of where lots of different information is stored by a single
function?

2.6 One­Dimensional Change of Variable
Let X be a random variable with a known distribution. Suppose that Y h X , where
h : R1 R1 is some function. (Recall that this really means that Y s h X s , for
all s S.) Then what is the distribution of Y ?
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2.6.1 The Discrete Case

If X is a discrete random variable, this is quite straightforward. To compute the proba­
bility that Y y we need to compute the probability of the set consisting of all the x
values satisfying h x y, namely, compute P X x : h x y This is depicted
graphically in Figure 2.6.1.

1

R1.R1. . .
yx1 x2 x3

h

{ x : h(x) = y } = { x1, x2, x3 }

Figure 2.6.1: An example where the set of x values that satisfy h x y consists of three
points x1 x2 and x3

We now establish the basic result.

Theorem 2.6.1 Let X be a discrete random variable, with probability function pX .
Let Y h X , where h : R1 R1 is some function. Then Y is also discrete,
and its probability function pY satisfies pY y x h 1 y pX x where h 1 y
is the set of all real numbers x with h x y.

PROOF We compute that pY y P h X y x h 1 y P X x

x h 1 y pX x as claimed.

EXAMPLE 2.6.1
Let X be the number of heads when flipping three fair coins. Let Y 1 if X 1, with
Y 0 if X 0. Then Y h X where h 0 0 and h 1 h 2 h 3 1.
Hence, h 1 0 0 , so P Y 0 P X 0 1 8. On the other hand,
h 1 1 1 2 3 , so P Y 1 P X 1 P X 2 P X 3
3 8 3 8 1 8 7 8.

EXAMPLE 2.6.2
Let X be the number showing on a fair six­sided die, so that P X x 1 6 for x
1 2 3 4 5 and 6. Let Y X2 3X 2. Then Y h X where h x x2 3x 2.
Note that h x 0 if and only if x 1 or x 2. Hence, h 1 0 1 2 and

P Y 0 pX 1 pX 2
1

6

1

6

1

3

2.6.2 The Continuous Case

If X is continuous and Y h X , then the situation is more complicated. Indeed, Y
might not be continuous at all, as the following example shows.
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EXAMPLE 2.6.3
Let X have the uniform distribution on [0 1], i.e., X Uniform[0 1] as in Exam­
ple 2.4.2. Let Y h X , where

h x
7 x 3 4
5 x 3 4

Here, Y 7 if and only if X 3 4 (which happens with probability 3 4), whereas
Y 5 if and only if X 3 4 (which happens with probability 1 4). Hence, Y is
discrete, with probability function pY satisfying pY 7 3 4 pY 5 1 4 and
pY y 0 when y 5 7.

On the other hand, if X is absolutely continuous, and the function h is strictly
increasing, then the situation is considerably simpler, as the following theorem shows.

Theorem 2.6.2 Let X be an absolutely continuous random variable, with density
function fX . Let Y h X , where h : R1 R1 is a function that is differen­
tiable and strictly increasing. Then Y is also absolutely continuous, and its density
function fY is given by

fY y fX h 1 y h h 1 y (2.6.1)

where h is the derivative of h, and where h 1 y is the unique number x such that
h x y.

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.4
Let X Uniform[0 1], and let Y 3X . What is the distribution of Y ?

Here, X has density fX given by fX x 1 if 0 x 1, and fX x 0
otherwise. Also, Y h X , where h is defined by h x 3x . Note that h is strictly
increasing because if x y, then 3x 3y, i.e., h x h y . Hence, we may apply
Theorem 2.6.2.

We note first that h x 3 and that h 1 y y 3. Then, according to Theo­
rem 2.6.2, Y is absolutely continuous with density

fY y fX h 1 y h h 1 y
1

3
fX y 3

1 3 0 y 3 1
0 otherwise

1 3 0 y 3
0 otherwise.

By comparison with Example 2.4.3, we see that Y Uniform[0 3], i.e., that Y has
the Uniform[L R] distribution with L 0 and R 3.

EXAMPLE 2.6.5
Let X N 0 1 , and let Y 2X 5. What is the distribution of Y ?

Here, X has density fX given by

fX x x
1

2
e x2 2
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Also, Y h X , where h is defined by h x 2x 5. Note that again, h is strictly
increasing because if x y, then 2x 5 2y 5, i.e., h x h y . Hence, we may
again apply Theorem 2.6.2.

We note first that h x 2 and that h 1 y y 5 2. Then, according to
Theorem 2.6.2, Y is absolutely continuous with density

fY y fX h 1 y h h 1 y fX y 5 2 2
1

2 2
e y 5 2 8

By comparison with Example 2.4.8, we see that Y N 5 4 , i.e., that Y has the
N 2 distribution with 5 and 2 4.

If instead the function h is strictly decreasing, then a similar result holds.

Theorem 2.6.3 Let X be an absolutely continuous random variable, with density
function fX . Let Y h X , where h : R1 R1 is a function that is differen­
tiable and strictly decreasing. Then Y is also absolutely continuous, and its density
function fY may again be defined by (2.6.1).

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.6
Let X Uniform[0 1], and let Y ln 1 X . What is the distribution of Y ?

Here, X has density fX given by fX x 1 for 0 x 1, and fX x 0
otherwise. Also, Y h X , where h is defined by h x ln 1 x . Note that here,
h is strictly decreasing because if x y, then 1 x 1 y, so ln 1 x ln 1 y , i.e.,
h x h y . Hence, we may apply Theorem 2.6.3.

We note first that h x 1 x and that h 1 y e y . Then, by Theorem 2.6.3,
Y is absolutely continuous with density

fY y fX h 1 y h h 1 y e y fX e y

e y 0 e y 1
0 otherwise

e y y 0
0 otherwise.

By comparison with Example 2.4.4, we see that Y Exponential 1 , i.e., that Y has
the Exponential 1 distribution.

Finally, we note the following.

Theorem 2.6.4 Theorem 2.6.2 (and 2.6.3) remains true assuming only that h is
strictly increasing (or decreasing) at places for which fX x 0. If fX x 0 for
an interval of x values, then it does not matter how the function h behaves in that
interval (or even if it is well defined there).

EXAMPLE 2.6.7
If X Exponential , then fX x 0 for x 0. Therefore, it is required that h be
strictly increasing (or decreasing) only for x 0. Thus, functions such as h x x2,
h x x8, and h x x could still be used with Theorem 2.6.2, while functions
such as h x x2, h x x8, and h x x could still be used with The­
orem 2.6.3, even though such functions may not necessarily be strictly increasing (or
decreasing) and well defined on the entire real line.
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Summary of Section 2.6

If X is discrete, and Y h X , then P Y y x : h x y P X x .

If X is absolutely continuous, and Y h X with h strictly increasing or strictly
decreasing, then the density of Y is given by fY y fX h 1 y h h 1 y .

This allows us to compute the distribution of a function of a random variable.

EXERCISES

2.6.1 Let X Uniform[L R]. Let Y cX d, where c 0. Prove that Y
Uniform[cL d cR d]. (This generalizes Example 2.6.4.)
2.6.2 Let X Uniform[L R]. Let Y cX d, where c 0. Prove that Y
Uniform[cR d cL d]. (In particular, if L 0 and R 1 and c 1 and d 1,
then X Uniform[0 1] and also Y 1 X Uniform[0 1].)
2.6.3 Let X N 2 . Let Y cX d, where c 0. Prove that Y N c
d c2 2 . (This generalizes Example 2.6.5.)
2.6.4 Let X Exponential . Let Y cX , where c 0. Prove that Y
Exponential c .
2.6.5 Let X Exponential . Let Y X3. Compute the density fY of Y .
2.6.6 Let X Exponential . Let Y X1 4. Compute the density fY of Y . (Hint:
Use Theorem 2.6.4.)
2.6.7 Let X Uniform[0 3]. Let Y X2. Compute the density function fY of Y .
2.6.8 Let X have a density such that fX x fX x i.e., it is symmetric
about . Let Y 2 X . Show that the density of Y is given by fX . Use this to
determine the distribution of Y when X N 2

2.6.9 Let X have density function fX x x3 4 for 0 x 2, otherwise fX x 0.
(a) Let Y X2. Compute the density function fY y for Y .
(b) Let Z X . Compute the density function fZ z for Z .
2.6.10 Let X Uniform[0 2]. Let Y sin X . Compute the density function
fY y for Y .
2.6.11 Let X have density function fX x 1 2 sin x for 0 x , otherwise
fX x 0. Let Y X2. Compute the density function fY y for Y .
2.6.12 Let X have density function fX x 1 x2 for x 1, otherwise fX x 0.
Let Y X1 3. Compute the density function fY y for Y .
2.6.13 Let X Normal 0 1 . Let Y X3. Compute the density function fY y for
Y .

PROBLEMS

2.6.14 Let X Uniform[2 7], Y X3, and Z Y . Compute the density fZ of Z ,
in two ways.
(a) Apply Theorem 2.6.2 to first obtain the density of Y , then apply Theorem 2.6.2
again to obtain the density of Z .
(b) Observe that Z Y X3 X3 2, and apply Theorem 2.6.2 just once.
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2.6.15 Let X Uniform[L R], and let Y h X where h x x c 6. According
to Theorem 2.6.4, under what conditions on L R, and c can we apply Theorem 2.6.2
or Theorem 2.6.3 to this choice of X and Y ?
2.6.16 Let X N 2 . Let Y cX d, where c 0. Prove that again Y
N c d c2 2 , just like in Exercise 2.6.3.

2.6.17 (Log­normal distribution) Suppose that X N 0 2 Prove that Y eX

has density

f y
1

2
exp

ln y 2

2 2

1

y

for y 0 and where 0 is unknown. We say that Y Log­normal
2.6.18 Suppose that X Weibull (see Problem 2.4.19). Determine the distribution
of Y X

2.6.19 Suppose that X Pareto (see Problem 2.4.20). Determine the distribution
of Y 1 X 1

2.6.20 Suppose that X has the extreme value distribution (see Problem 2.4.23). Deter­
mine the distribution of Y e X

CHALLENGES

2.6.21 Theorems 2.6.2 and 2.6.3 require that h be an increasing or decreasing function,
at least at places where the density of X is positive (see Theorem 2.6.4). Suppose now
that X N 0 1 and Y h X where h x x2. Then fX x 0 for all x , while
h is increasing only for x 0 and decreasing only for x 0. Hence, Theorems 2.6.2
and 2.6.3 do not directly apply. Compute fY y anyway. (Hint: P a Y b
P a Y b X 0 P a Y b X 0 .)

2.7 Joint Distributions
Suppose X and Y are two random variables. Even if we know the distributions of X
and Y exactly, this still does not tell us anything about the relationship between X and
Y .

EXAMPLE 2.7.1
Let X Bernoulli 1 2 , so that P X 0 P X 1 1 2. Let Y1 X , and let
Y2 1 X . Then we clearly have Y1 Bernoulli 1 2 and Y2 Bernoulli 1 2 as
well.

On the other hand, the relationship between X and Y1 is very different from the re­
lationship between X and Y2. For example, if we know that X 1, then we also must
have Y1 1, but Y2 0. Hence, merely knowing that X , Y1, and Y2 all have the dis­
tribution Bernoulli 1 2 does not give us complete information about the relationships
among these random variables.

A formal definition of joint distribution is as follows.
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Definition 2.7.1 If X and Y are random variables, then the joint distribution of X
and Y is the collection of probabilities P X Y B , for all subsets B R2 of
pairs of real numbers.

Joint distributions, like other distributions, are so complicated that we use vari­
ous functions to describe them, including joint cumulative distribution functions, joint
probability functions, and joint density functions, as we now discuss.

2.7.1 Joint Cumulative Distribution Functions

Definition 2.7.2 Let X and Y be random variables. Then their joint cumulative
distribution function is the function FX Y : R2 [0 1] defined by

FX Y x y P X x Y y

(Recall that the comma means “and” here, so that FX Y x y is the probability that
X x and Y y.)

EXAMPLE 2.7.2 (Example 2.7.1 continued)
Again, let X Bernoulli 1 2 , Y1 X , and Y2 1 X . Then we compute that

FX Y1 x y P X x Y1 y
0 min x y 0
1 2 0 min x y 1
1 min x y 1

On the other hand,

FX Y2 x y P X x Y2 y
0 min x y 0 or max x y 1
1 2 0 min x y 1 max x y
1 min x y 1

We thus see that FX Y1 is quite a different function from FX Y2 . This ref lects the
fact that, even though Y1 and Y2 each have the same distribution, their relationship
with X is quite different. On the other hand, the functions FX Y1 and FX Y2 are rather
cumbersome and awkward to work with.

We see from this example that joint cumulative distribution functions (or joint cdfs)
do indeed keep track of the relationship between X and Y . Indeed, joint cdfs tell us
everything about the joint probabilities of X and Y , as the following theorem (an analog
of Theorem 2.5.1) shows.

Theorem 2.7.1 Let X and Y be any random variables, with joint cumulative dis­
tribution function FX Y . Let B be a subset of R2. Then P X Y B can be
determined solely from the values of FX Y x y .

We shall not give a proof of Theorem 2.7.1, although it is similar to the proof of
Theorem 2.5.1. However, the following theorem indicates why Theorem 2.7.1 is true,
and it also provides a useful computational fact.
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Theorem 2.7.2 Let X and Y be any random variables, with joint cumulative distri­
bution function FX Y . Suppose a b and c d. Then

P a X b c Y d FX Y b d FX Y a d FX Y b c FX Y a c

PROOF According to (1.3.3),

P a X b c Y d

P X b Y d P X b Y d and either X a or Y c

But by the principle of inclusion–exclusion (1.3.4),

P X b Y d and either X a or Y c

P X b Y c P X a Y d P X a Y c

Combining these two equations, we see that

P a X b c Y d

P X b Y d P X a Y d P X b Y c P X a Y c

and from this we obtain

P a X b c Y d FX Y b d FX Y a d FX Y b c FX Y a c

as claimed.

Joint cdfs are not easy to work with. Thus, in this section we shall also consider
other functions, which are more convenient for pairs of discrete or absolutely continu­
ous random variables.

2.7.2 Marginal Distributions

We have seen how a joint cumulative distribution function FX Y tells us about the rela­
tionship between X and Y . However, the function FX Y also tells us everything about
each of X and Y separately, as the following theorem shows.

Theorem 2.7.3 Let X and Y be two random variables, with joint cumulative distri­
bution function FX Y . Then the cumulative distribution function FX of X satisfies

FX x lim
y

FX Y x y

for all x R1 Similarly, the cumulative distribution function FY of Y satisfies

FY y lim
x

FX Y x y

for all y R1
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PROOF Note that we always have Y . Hence, using continuity of P, we have

FX x P X x

P X x Y

lim
y

P X x Y y

lim
y

FX Y x y

as claimed. Similarly,

FY y P Y y

P X Y y

lim
x

P X x Y y

lim
x

FX Y x y

completing the proof.

In the context of Theorem 2.7.3, FX is called the marginal cumulative distribu­
tion function of X , and the distribution of X is called the marginal distribution of X .
(Similarly, FY is called the marginal cumulative distribution function of Y , and the
distribution of Y is called the marginal distribution of Y .) Intuitively, if we think of
FX Y as being a function of a pair x y , then FX and FY are functions of x and y,
respectively, which could be written into the “margins” of a graph of FX Y .

EXAMPLE 2.7.3
In Figure 2.7.1, we have plotted the joint distribution function

FX Y x y

0 x 0 or y 0

xy2 0 x 1 0 y 1

x 0 x 1 y 1

y2 x 1 0 y 1

1 x 1 and y 1

It is easy to see that
FX x FX Y x 1 x

for 0 x 1 and that
FY y FX Y 1 y y2

for 0 y 1 The graphs of these functions are given by the outermost edges of the
surface depicted in Figure 2.7.1.
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0.0
0.00.0

0.5

1.0

1.0

F

x

0.5

0.5

y

1.0

Figure 2.7.1: Graph of the joint distribution function FX Y x y xy2 for 0 x 1 and
0 y 1 in Example 2.7.3.

Theorem 2.7.3 thus tells us that the joint cdf FX Y is very useful indeed. Not only
does it tell us about the relationship of X to Y , but it also contains all the information
about the marginal distributions of X and of Y .

We will see in the next subsections that joint probability functions, and joint density
functions, similarly contain information about both the relationship of X and Y and the
marginal distributions of X and Y .

2.7.3 Joint Probability Functions

Suppose X and Y are both discrete random variables. Then we can define a joint
probability function for X and Y , as follows.

Definition 2.7.3 Let X and Y be discrete random variables. Then their joint prob­
ability function, pX Y , is a function from R2 to R1, defined by

pX Y x y P X x Y y

Consider the following example.
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EXAMPLE 2.7.4 (Examples 2.7.1 and 2.7.2 continued)
Again, let X Bernoulli 1 2 , Y1 X , and Y2 1 X . Then we see that

pX Y1 x y P X x Y1 y
1 2 x y 1
1 2 x y 0
0 otherwise.

On the other hand,

pX Y2 x y P X x Y2 y
1 2 x 1 y 0
1 2 x 0 y 1
0 otherwise.

We thus see that pX Y1 and pX Y2 are two simple functions that are easy to work
with and that clearly describe the relationships between X and Y1 and between X and
Y2. Hence, for pairs of discrete random variables, joint probability functions are usually
the best way to describe their relationships.

Once we know the joint probability function pX Y , the marginal probability func­
tions of X and Y are easily obtained.

Theorem 2.7.4 Let X and Y be two discrete random variables, with joint probabil­
ity function pX Y . Then the probability function pX of X can be computed as

pX x
y

pX Y x y

Similarly, the probability function pY of Y can be computed as

pY y
x

pX Y x y

PROOF Using additivity of P , we have that

pX x P X x
y

P X x Y y
y

pX Y x y

as claimed. Similarly,

pY y P Y y
x

P X x Y y
x

pX Y x y

EXAMPLE 2.7.5
Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise



Chapter 2: Random Variables and Distributions 85

Then

pX 5
y

pX Y 5 y pX Y 5 0 pX Y 5 3 pX Y 5 4

1

7

1

7

1

7

3

7

while

pX 8
y

pX Y 8 y pX Y 8 0 pX Y 8 4
3

7

1

7

4

7

Similarly,

pY 4
x

pX Y x 4 pX Y 5 4 pX Y 8 4
1

7

1

7

2

7

etc.
Note that in such a simple context it is possible to tabulate the joint probability

function in a table, as illustrated below for pX Y pX and pY of this example.

Y 0 Y 3 Y 4
X 5 1 7 1 7 1 7 3 7
X 8 3 7 0 1 7 4 7

4 7 1 7 2 7

Summing the rows and columns and placing the totals in the margins gives the marginal
distributions of X and Y .

2.7.4 Joint Density Functions

If X and Y are continuous random variables, then clearly pX Y x y 0 for all x and
y. Hence, joint probability functions are not useful in this case. On the other hand, we
shall see here that if X and Y are jointly absolutely continuous, then their relationship
may be usefully described by a joint density function.

Definition 2.7.4 Let f : R2 R1 be a function. Then f is a joint density function
if f x y 0 for all x and y, and f x y dx dy 1.

Definition 2.7.5 Let X and Y be random variables. Then X and Y are jointly ab­
solutely continuous if there is a joint density function f , such that

P a X b c Y d
d

c

b

a
f x y dx dy

for all a b c d
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Consider the following example.

EXAMPLE 2.7.6
Let X and Y be jointly absolutely continuous, with joint density function f given by

f x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

We first verify that f is indeed a density function. Clearly, f x y 0 for all x
and y. Also,

f x y dx dy
1

0

1

0
4x2y 2y5 dx dy

1

0

4

3
y 2y5 dy

4

3

1

2
2

1

6

2

3

1

3
1

Hence, f is a joint density function. In Figure 2.7.2, we have plotted the function f
which gives a surface over the unit square.

1.0

0.5
1.0

0.5

y

0.0

x

0.0
0

2

f
4

6

Figure 2.7.2: A plot of the density f in Example 2.7.6.
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We next compute P 0 5 X 0 7 0 2 Y 0 9 . Indeed, we have

P 0 5 X 0 7 0 2 Y 0 9
0 9

0 2

0 7

0 5
4x2y 2y5 dx dy

0 9

0 2

4

3
0 7 3 0 5 3 y 2y5 0 7 0 5 dy

4

3
0 7 3 0 5 3 1

2
0 9 2 0 2 2 2

6
0 9 6 0 2 6 0 7 0 5

2

3
0 7 3 0 5 3 0 9 2 0 2 2 1

3
0 9 6 0 2 6 0 7 0 5 0 147

Other probabilities can be computed similarly.

Once we know a joint density fX Y , then computing the marginal densities of X
and Y is very easy, as the following theorem shows.

Theorem 2.7.5 Let X and Y be jointly absolutely continuous random variables,
with joint density function fX Y . Then the (marginal) density fX of X satisfies

fX x fX Y x y dy

for all x R1 Similarly, the (marginal) density fY of Y satisfies

fY y fX Y x y dx

for all y R1

PROOF We need to show that, for a b, P a X b b
a fX x dx

b
a fX Y x y dy dx Now, we always have Y . Hence, using con­

tinuity of P , we have that P a X b P a X b Y
and

P a X b Y

lim
c
d

P a X b c Y d lim
c
d

d

c

b

a
f x y dx dy

lim
c
d

b

a

d

c
f x y dy dx

b

a
fX Y x y dy dx

as claimed. The result for fY follows similarly.

EXAMPLE 2.7.7 (Example 2.7.6 continued)
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.
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Then by Theorem 2.7.5, for 0 x 1,

fX x fX Y x y dy
1

0
4x2y 2y5 dy 2x2 1 3

while for x 0 or x 1,

fX x fX Y x y dy 0 dy 0

Similarly, for 0 y 1,

fY y fX Y x y dx
1

0
4x2y 2y5 dx

4

3
y 2y5

while for y 0 or y 1, fY y 0.

EXAMPLE 2.7.8
Suppose X and Y are jointly absolutely continuous, with joint density

fX Y x y
120x3y x 0 y 0 x y 1
0 otherwise.

Then the region where fX Y x y 0 is a triangle, as depicted in Figure 2.7.3.

1

x

y

1

1

Figure 2.7.3: Region of the plane where the density fX Y in Example 2.7.8 is positive.

We check that

fX Y x y dx dy
1

0

1 x

0
120x3y dy dx

1

0
120x3 1 x 2

2
dx

1

0
60 x3 2x4 x5 dx 60

1

4
2

1

5

1

6
15 2 12 10 1

so that fX Y is indeed a joint density function. We then compute that, for example,

fX x
1 x

0
120x3y dy 120x3 1 x 2

2
60 x3 2x4 x5
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for 0 x 1 (with fX x 0 for x 0 or x 1).

EXAMPLE 2.7.9 Bivariate Normal 1 2 1 2 Distribution
Let 1 2 1 2, and be real numbers, with 1 2 0 and 1 1. Let X
and Y have joint density given by

fX Y x y
1

2 1 2 1 2
exp

1

2 1 2

x 1
1

2 y 2
2

2

2 x 1
1

y 2
2

for x R1 y R1 We say that X and Y have the Bivariate Normal 1 2 1 2
distribution.

It can be shown (see Problem 2.7.13) that X N 1
2
1 and Y N 2

2
2 .

Hence, X and Y are each normally distributed. The parameter measures the degree
of the relationship that exists between X and Y (see Problem 3.3.17) and is called
the correlation. In particular, X and Y are independent (see Section 2.8.3), and so
unrelated, if and only if 0 (see Problem 2.8.21).

Figure 2.7.4 is a plot of the standard bivariate normal density, given by setting

1 0 2 0 1 1 2 1, and 0 This is a bell­shaped surface in R3

with its peak at the point 0 0 in the xy­plane. The graph of the general Bivariate
Normal 1 2 1 2 distribution is also a bell­shaped surface, but the peak is at
the point 1 2 in the xy­plane and the shape of the bell is controlled by 1 2, and

­2yx

­2
0.00

2

0 0

2

0.05

0.15

0.10

Figure 2.7.4: A plot of the standard bivariate normal density function.
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It can be shown (see Problem 2.9.16) that, when Z1 Z2 are independent random
variables, both distributed N 0 1 and we put

X 1 1Z1 Y 2 2 Z1 1 2 1 2 Z2 (2.7.1)

then X Y Bivariate Normal 1 2 1 2 This relationship can be quite
useful in establishing various properties of this distribution. We can also write an

analogous version Y 2 2 Z1 X 1 1 Z1 1 2 1 2
Z2 and obtain

the same distributional result.
The bivariate normal distribution is one of the most commonly used bivariate dis­

tributions in applications. For example, if we randomly select an individual from a
population and measure his weight X and height Y then a bivariate normal distribution
will often provide a reasonable description of the joint distribution of these variables.

Joint densities can also be used to compute probabilities of more general regions,
as the following result shows. (We omit the proof. The special case B [a b] [c d]
corresponds directly to the definition of fX Y .)

Theorem 2.7.6 Let X and Y be jointly absolutely continuous random variables,
with joint density fX Y , and let B R2 be any region. Then

P X Y B
B

f x y dx dy

The previous discussion has centered around having just two random variables,
X and Y . More generally, we may consider n random variables X1 Xn. If the
random variables are all discrete, then we can further define a joint probability function
pX1 Xn : Rn [0 1] by pX1 Xn x1 xn P X1 x1 Xn xn .
If the random variables are jointly absolutely continuous, then we can define a joint
density function fX1 Xn : Rn [0 1] so that

P a1 X1 b1 an Xn bn

bn

an

b1

a1

fX1 Xn x1 xn dx1 dxn

whenever ai bi for all i .

Summary of Section 2.7

It is often important to keep track of the joint probabilities of two random vari­
ables, X and Y .

Their joint cumulative distribution function is given by FX Y x y P X
x Y y .

If X and Y are discrete, then their joint probability function is given by pX Y x y
P X x Y y .
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If X and Y are absolutely continuous, then their joint density function fX Y x y
is such that P a X b c Y d d

c
b

a fX Y x y dx dy

The marginal density of X and Y can be computed from any of FX Y , or pX Y ,
or fX Y .

An important example of a joint distribution is the bivariate normal distribution.

EXERCISES

2.7.1 Let X Bernoulli 1 3 , and let Y 4X 2. Compute the joint cdf FX Y .

2.7.2 Let X Bernoulli 1 4 , and let Y 7X . Compute the joint cdf FX Y .
2.7.3 Suppose

pX Y x y

1 5 x 2 y 3
1 5 x 3 y 2
1 5 x 3 y 2
1 5 x 2 y 3
1 5 x 17 y 19
0 otherwise

(a) Compute pX .
(b) Compute pY .
(c) Compute P Y X .
(d) Compute P Y X .
(e) Compute P XY 0 .
2.7.4 For each of the following joint density functions fX Y , find the value of C and
compute fX x fY y , and P X 0 8 Y 0 6 .
(a)

fX Y x y
2x2y Cy5 0 x 1 0 y 1
0 otherwise.

(b)

fX Y x y
C xy x5y5 0 x 1 0 y 1
0 otherwise.

(c)

fX Y x y
C xy x5 y5 0 x 4 0 y 10
0 otherwise.

(d)

fX Y x y
Cx5y5 0 x 4 0 y 10
0 otherwise.

2.7.5 Prove that FX Y x y min FX x FY y
2.7.6 Suppose P X x Y y 1 8 for x 3 5 and y 1 2 4 7, otherwise
P X x Y y 0. Compute each of the following.



92 Section 2.7: Joint Distributions

(a) FX Y x y for all x y R1

(b) pX Y x y for all x y R1

(c) pX x for all x R1

(d) pY y for all x R1

(e) The marginal cdf FX x for all x R1

(f) The marginal cdf FY y for all y R1

2.7.7 Let X and Y have joint density fX Y x y c sin xy for 0 x 1 and
0 y 2, otherwise fX Y x y 0, for appropriate constant c 0 (which cannot
be computed explicitly). In terms of c, compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

2.7.8 Let X and Y have joint density fX Y x y x2 y 36 for 2 x 1 and
0 y 4, otherwise fX Y x y 0. Compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

(c) P Y 1
(d) The joint cdf FX Y x y for all x y R1

2.7.9 Let X and Y have joint density fX Y x y x2 y 4 for 0 x y 2,
otherwise fX Y x y 0. Compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

(c) P Y 1
2.7.10 Let X and Y have the Bivariate­Normal 3 5 2 4 1 2 distribution.
(a) Specify the marginal distribution of X .
(b) Specify the marginal distribution of Y .
(c) Are X and Y independent? Why or why not?

PROBLEMS

2.7.11 Let X Exponential , and let Y X3. Compute the joint cdf, FX Y x y .
2.7.12 Let FX Y be a joint cdf. Prove that for all y R1, limx FX Y x y 0.
2.7.13 Let X and Y have the Bivariate Normal 1 2 1 2 distribution, as in
Example 2.7.9. Prove that X N 1

2
1 , by proving that

fX Y x y dy
1

1 2
exp

x 1
2

2 2
1

2.7.14 Suppose that the joint density fX Y is given by fX Y x y Cye xy for 0
x 1 0 y 1 and is 0 otherwise
(a) Determine C so that fX Y is a density.
(b) Compute P 1 2 X 1 1 2 Y 1

(c) Compute the marginal densities of X and Y
2.7.15 Suppose that the joint density fX Y is given by fX Y x y Cye xy for 0
x y 1 and is 0 otherwise
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(a) Determine C so that fX Y is a density.

(b) Compute P 1 2 X 1 1 2 Y 1
(c) Compute the marginal densities of X and Y
2.7.16 Suppose that the joint density fX Y is given by fX Y x y Ce x y for
0 x y and is 0 otherwise
(a) Determine C so that fX Y is a density.
(b) Compute the marginal densities of X and Y
2.7.17 (Dirichlet 1 2 3 distribution) Let X1 X2 have the joint density

fX1 X2 x1 x2
1 2 3

1 2 3
x 1 1

1 x 2 1
2 1 x1 x2

3 1

for x1 0 x2 0 and 0 x1 x2 1 A Dirichlet distribution is often applicable
when X1 X2 and 1 X1 X2 correspond to random proportions.
(a) Prove that fX1 X2 is a density. (Hint: Sketch the region where fX1 X2 is nonnegative,
integrate out x1 first by making the transformation u x1 1 x2 in this integral, and
use (2.4.10) from Problem 2.4.24.)
(b) Prove that X1 Beta 1 2 3 and X2 Beta 2 1 3

2.7.18 (Dirichlet 1 k 1 distribution) Let X1 Xk have the joint density

fX1 Xk x1 xk

1 k 1

1 k 1
x 1 1

1 x k 1
k 1 x1 xk

k 1 1

for xi 0 i 1 k and 0 x1 xk 1 Prove that fX1 Xk is a density.
(Hint: Problem 2.7.17.)

CHALLENGES

2.7.19 Find an example of two random variables X and Y and a function h : R1 R1,
such that FX x 0 and FY x 0 for all x R1, but limx FX Y x h x 0.

DISCUSSION TOPICS

2.7.20 What are examples of pairs of real­life random quantities that have interesting
relationships? (List as many as you can, and describe each relationship as well as you
can.)

2.8 Conditioning and Independence
Let X and Y be two random variables. Suppose we know that X 5. What does
that tell us about Y ? Depending on the relationship between X and Y , that may tell
us everything about Y (e.g., if Y X), or nothing about Y . Usually, the answer
will be between these two extremes, and the knowledge that X 5 will change the
probabilities for Y somewhat.
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2.8.1 Conditioning on Discrete Random Variables

Suppose X is a discrete random variable, with P X 5 0. Let a b, and suppose
we are interested in the conditional probability P a Y b X 5 . Well, we
already know how to compute such conditional probabilities. Indeed, by (1.5.1),

P a Y b X 5
P a Y b X 5

P X 5

provided that P X 5 0. This prompts the following definition.

Definition 2.8.1 Let X and Y be random variables, and suppose that P X x
0. The conditional distribution of Y , given that X x , is the probability distribution
assigning probability

P Y B X x

P X x

to each event Y B. In particular, it assigns probability

P a Y b X x

P X x

to the event that a Y b.

EXAMPLE 2.8.1
Suppose as in Example 2.7.5 that X and Y have joint probability function

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise.

We compute P Y 4 X 8 as

P Y 4 X 8
P Y 4 X 8

P X 8

1 7

3 7 1 7

1 7

4 7
1 4

On the other hand,

P Y 4 X 5
P Y 4 X 5

P X 5

1 7

1 7 1 7 1 7

1 7

3 7
1 3

Thus, depending on the value of X , we obtain different probabilities for Y .

Generalizing from the above example, we see that if X and Y are discrete, then

P Y y X x
P Y y X x

P X x

pX Y x y

pX x

pX Y x y

z pX Y x z
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This prompts the following definition.

Definition 2.8.2 Suppose X and Y are two discrete random variables. Then the
conditional probability function of Y , given X , is the function pY X defined by

pY X y x
pX Y x y

z pX Y x z

pX Y x y

pX x

defined for all y R1 and all x with pX x 0.

2.8.2 Conditioning on Continuous Random Variables

If X is continuous, then we will have P X x 0. In this case, Definitions 2.8.1
and 2.8.2 cannot be used because we cannot divide by 0. So how can we condition on
X x in this case?

One approach is suggested by instead conditioning on x X x , where
0 is a very small number. Even if X is continuous, we might still have P x

X x 0. On the other hand, if is very small and x X x , then X
must be very close to x .

Indeed, suppose that X and Y are jointly absolutely continuous, with joint density
function fX Y . Then

P a Y b x X x
P a Y b x X x

P x X x
b

a
x

x fX Y t y dt dy
x

x fX Y t y dt dy

In Figure 2.8.1, we have plotted the region x y : a y b x x x
for X Y

b

a

y

x x+x­
|

Figure 2.8.1: The shaded region is the set x y : a y b x x x .

Now, if is very small, then in the above integrals we will always have t very close
to x . If fX Y is a continuous function, then this implies that fX Y t y will be very
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close to fX Y x y . We conclude that, if is very small, then

P a Y b x X x
b

a
x

x fX Y x y dt dy
x

x fX Y x y dt dy
b

a 2 fX Y x y dy

2 fX Y x y dy

b

a

fX Y x y

fX Y x z dz
dy

This suggests that the quantity

fX Y x y

fX Y x z dz

fX Y x y

fX x

plays the role of a density, for the conditional distribution of Y given that X x . This
prompts the following definitions.

Definition 2.8.3 Let X and Y be jointly absolutely continuous, with joint den­
sity function fX Y . The conditional density of Y , given X x , is the function
fY X y x , defined by

fY X y x
fX Y x y

fX x

valid for all y R1, and for all x such that fX x 0.

Definition 2.8.4 Let X and Y be jointly absolutely continuous, with joint density
function fX Y . The conditional distribution of Y , given X x , is defined by saying
that

P a Y b X x
b

a
fY X y x dy

when a b, with fY X as in Definition 2.8.3, valid for all x such that fX x 0.

EXAMPLE 2.8.2
Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise,

as in Examples 2.7.6 and 2.7.7.
We know from Example 2.7.7 that

fX x
2x2 1 3 0 x 1
0 otherwise,

while

fY y
4
3 y 2y5 0 y 1
0 otherwise.
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Let us now compute P 0 2 Y 0 3 X 0 8 . Using Definitions 2.8.4
and 2.8.3, we have

P 0 2 Y 0 3 X 0 8

0 3

0 2
fY X y 0 8 dy

0 3
0 2 fX Y 0 8 y dy

fX 0 8

0 3
0 2 4 0 8 2 y 2y5 dy

2 0 8 2 1
3

4
2 0 8 2 0 3 2 0 2 2 2

6 0 3 6 0 2 6

2 0 8 2 1
3

0 0398

By contrast, if we compute the unconditioned (i.e., usual) probability that 0 2
Y 0 3, we see that

P 0 2 Y 0 3
0 3

0 2
fY y dy

0 3

0 2

4

3
y 2y5 dy

4

3

1

2
0 3 2 0 2 2 2

6
0 3 6 0 2 6 0 0336

We thus see that conditioning on X 0 8 increases the probability that 0 2 Y 0 3,
from about 0 0336 to about 0 0398.

By analogy with Theorem 1.3.1, we have the following.

Theorem 2.8.1 (Law of total probability, absolutely continuous random variable
version) Let X and Y be jointly absolutely continuous random variables, and let
a b and c d. Then

P a X b c Y d
d

c

b

a
fX x fY X y x dx dy

More generally, if B R2 is any region, then

P X Y B
B

fX x fY X y x dx dy

PROOF By Definition 2.8.3,

fX x fY X y x fX Y x y

Hence, the result follows immediately from Definition 2.7.4 and Theorem 2.7.6.

2.8.3 Independence of Random Variables

Recall from Definition 1.5.2 that two events A and B are independent if P A B
P A P B . We wish to have a corresponding definition of independence for random
variables X and Y . Intuitively, independence of X and Y means that X and Y have no
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influence on each other, i.e., that the values of X make no change to the probabilities
for Y (and vice versa).

The idea of the formal definition is that X and Y give rise to events, of the form
“a X b” or “Y B ” and we want all such events involving X to be independent
of all such events involving Y . Specifically, our definition is the following.

Definition 2.8.5 Let X and Y be two random variables. Then X and Y are inde­
pendent if, for all subsets B1 and B2 of the real numbers,

P X B1 Y B2 P X B1 P Y B2

That is, the events “X B1” and “Y B2” are independent events.

Intuitively, X and Y are independent if they have no inf luence on each other, as we
shall see.

Now, Definition 2.8.5 is very difficult to work with. Fortunately, there is a much
simpler characterization of independence.

Theorem 2.8.2 Let X and Y be two random variables. Then X and Y are indepen­
dent if and only if

P a X b c Y d P a X b P c Y d (2.8.1)

whenever a b and c d.

That is, X and Y are independent if and only if the events “a X b” and “c Y
d” are independent events whenever a b and c d.

We shall not prove Theorem 2.8.2 here, although it is similar in spirit to the proof of
Theorem 2.5.1. However, we shall sometimes use (2.8.1) to check for the independence
of X and Y .

Still, even (2.8.1) is not so easy to check directly. For discrete and for absolutely
continuous distributions, easier conditions are available, as follows.

Theorem 2.8.3 Let X and Y be two random variables.
(a) If X and Y are discrete, then X and Y are independent if and only if their joint
probability function pX Y satisfies

pX Y x y pX x pY y

for all x y R1

(b) If X and Y are jointly absolutely continuous, then X and Y are independent if
and only if their joint density function fX Y can be chosen to satisfy

fX Y x y fX x fY y

for all x y R1
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PROOF (a) If X and Y are independent, then setting a b x and c d y
in (2.8.1), we see that P X x Y y P X x P Y y Hence, pX Y x y
pX x pY y .

Conversely, if pX Y x y pX x pY y for all x and y, then

P a X b c Y d

a x b c y d

pX Y x y
a x b c y d

pX x pY y

a x b

pX x
c y d

pY y P a X b P c Y d

This completes the proof of (a).

(b) If fX Y x y fX x fY y for all x and y, then

P a X b c Y d
b

a

d

c
fX Y x y dy dx

b

a

d

c
fX x fY y dy dx

b

a
fX x dx

d

c
fY y dy P a X b P c Y d

This completes the proof of the “if” part of (b). The proof of the “only if” part of (b) is
more technical, and we do not include it here.

EXAMPLE 2.8.3
Let X and Y have, as in Example 2.7.6, joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

and so, as derived in as in Example 2.7.7, marginal densities

fX x
2x2 1 3 0 x 1
0 otherwise

and

fY y
4
3 y 2y5 0 y 1
0 otherwise.

Then we compute that

fX x fY y
2x2 1 3 4

3 y 2y5 0 x 1 0 y 1
0 otherwise.

We therefore see that fX x fY y fX Y x y . Hence, X and Y are not independent.
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EXAMPLE 2.8.4
Let X and Y have joint density

fX Y x y
1

8080 12xy2 6x 4y2 2 0 x 6 3 y 5
0 otherwise.

We compute the marginal densities as

fX x fX Y x y dy
1

60
1
20 x 0 x 6

0 otherwise,

and

fY y fX Y x y dx
3

202
3

101 y2 3 y 5
0 otherwise.

Then we compute that

fX x fY y
1

60
1

20 x 3
202

3
101 y2 0 x 6 3 y 5

0 otherwise.

Multiplying this out, we see that fX x fY y fX Y x y . Hence, X and Y are
independent in this case.

Combining Theorem 2.8.3 with Definitions 2.8.2 and 2.8.3, we immediately obtain
the following result about independence. It says that independence of random vari­
ables is the same as saying that conditioning on one has no effect on the other, which
corresponds to an intuitive notion of independence.

Theorem 2.8.4 Let X and Y be two random variables.
(a) If X and Y are discrete, then X and Y are independent if and only if pY X y x
pY y for every x y R1.
(b) If X and Y are jointly absolutely continuous, then X and Y are independent if
and only if fY X y x fY y for every x y R1.

While Definition 2.8.5 is quite difficult to work with, it does provide the easiest
way to prove one very important property of independence, as follows.

Theorem 2.8.5 Let X and Y be independent random variables. Let f g : R1 R1

be any two functions. Then the random variables f X and g Y are also indepen­
dent.

PROOF Using Definition 2.8.5, we compute that

P f X B1 g Y B2 P X f 1 B1 Y g 1 B2

P X f 1 B1 P Y g 1 B2

P f X B1 P g Y B2
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(Here f 1 B1 x R1 : f x B1 and g 1 B2 y R1 : g y B2 .)
Because this is true for any B1 and B2, we see that f X and g Y are independent.

Suppose now that we have n random variables X1 Xn. The random variables
are independent if and only if the collection of events ai Xi bi are independent,
whenever ai bi for all i 1 2 n. Generalizing Theorem 2.8.3, we have the
following result.

Theorem 2.8.6 Let X1 Xn be a collection of random variables.
(a) If X1 Xn are discrete, then X1 Xn are independent if and only if their
joint probability function pX1 Xn satisfies

pX1 Xn x1 xn pX1 x1 pXn xn

for all x1 xn R1

(b) If X1 Xn are jointly absolutely continuous, then X1 Xn are indepen­
dent if and only if their joint density function fX1 Xn can be chosen to satisfy

fX1 Xn x y fX1 x1 fXn xn

for all x1 xn R1

A particularly common case in statistics is the following.

Definition 2.8.6 A collection X1 Xn of random variables is independent and
identically distributed (or i.i.d.) if the collection is independent and if, furthermore,
each of the n variables has the same distribution. The i.i.d. sequence X1 Xn is
also referred to as a sample from the common distribution.

In particular, if a collection X1 Xn of random variables is i.i.d. and discrete, then
each of the probability functions pXi is the same, so that pX1 x pX2 x
pXn x p x for all x R1 Furthermore, from Theorem 2.8.6(a), it follows that

pX1 Xn x1 xn pX1 x1 pX2 x2 pXn xn p x1 p x2 p xn

for all x1 xn R1.
Similarly, if a collection X1 Xn of random variables is i.i.d. and jointly ab­

solutely continuous, then each of the density functions fXi is the same, so that fX1 x
fX2 x fXn x f x for all x R1 Furthermore, from Theorem 2.8.6(b),
it follows that

fX1 Xn x1 xn fX1 x1 fX2 x2 fXn xn f x1 f x2 f xn

for all x1 xn R1.
We now consider an important family of discrete distributions that arise via sam­

pling.



102 Section 2.8: Conditioning and Independence

EXAMPLE 2.8.5 Multinomial Distributions
Suppose we have a response s that can take three possible values — for convenience,
labelled 1 2 and 3 — with the probability distribution

P s 1 1 P s 2 2 P s 3 3

so that each i 0 and 1 2 3 1 As a simple example, consider a bowl
of chips of which a proportion i of the chips are labelled i (for i 1 2 3). If
we randomly draw a chip from the bowl and observe its label s then P s i i .
Alternatively, consider a population of students at a university of which a proportion 1
live on campus (denoted by s 1), a proportion 2 live off­campus with their parents
(denoted by s 2), and a proportion 3 live off­campus independently (denoted by
s 3). If we randomly draw a student from this population and determine s for that
student, then P s i i

We can also write
P s i

I 1 i
1

I 2 i
2

I 3 i
3

for i 1 2 3 where I j is the indicator function for j . Therefore, if s1 sn
is a sample from the distribution on 1 2 3 given by the i Theorem 2.8.6(a) implies
that the joint probability function for the sample equals

P s1 k1 sn kn

n

j 1

I 1 k j
1

I 2 k j
2

I 3 k j
3

x1
1

x2
2

x3
3 (2.8.2)

where xi
n
j 1 I i k j is equal to the number of i’s in k1 kn

Now, based on the sample s1 sn define the random variables

Xi

n

j 1

I i s j

for i 1 2 and 3 Clearly, Xi is the number of i’s observed in the sample and we
always have Xi 0 1 n and X1 X2 X3 n We refer to the Xi as the
counts formed from the sample.

For x1 x2 x3 satisfying xi 0 1 n and x1 x2 x3 n (2.8.2) implies
that the joint probability function for X1 X2 X3 is given by

p X1 X2 X3 x1 x2 x3 P X1 x1 X2 x2 X3 x3

C x1 x2 x3
x1
1

x2
2

x3
3

where C x1 x2 x3 equals the number of samples s1 sn with x1 of its elements
equal to 1 x2 of its elements equal to 2 and x3 of its elements equal to 3 To calcu­
late C x1 x2 x3 we note that there are n

x1
choices for the places of the 1’s in the

sample sequence, n x1
x2

choices for the places of the 2’s in the sequence, and finally
n x1 x2

x3
1 choices for the places of the 3’s in the sequence (recall the multino­

mial coefficient defined in (1.4.4)). Therefore, the probability function for the counts
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X1 X2 X3 is equal to

p X1 X2 X3 x1 x2 x3
n

x1

n x1

x2

n x1 x2

x3

x1
1

x2
2

x3
3

n

x1 x2 x3

x1
1

x2
2

x3
3

We say that
X1 X2 X3 Multinomial n 1 2 3

Notice that the Multinomial n 1 2 3 generalizes the Binomial n distribu­
tion, as we are now counting the number of response values in three possible categories
rather than two. Also, it is immediate that

Xi Binomial n i

because Xi equals the number of occurrences of i in the n independent response values,
and i occurs for an individual response with probability equal to i (also see Problem
2.8.18).

As a simple example, suppose that we have an urn containing 10 red balls, 20 white
balls, and 30 black balls. If we randomly draw 10 balls from the urn with replacement,
what is the probability that we will obtain 3 red, 4 white, and 3 black balls? Because
we are drawing with replacement, the draws are i.i.d., so the counts are distributed
Multinomial 10 10 60 20 60 30 60 The required probability equals

10

3 4 3

10

60

3 20

60

4 30

60

3

3 0007 10 2

Note that if we had drawn without replacement, then the draws would not be i.i.d., the
counts would thus not follow a multinomial distribution but rather a generalization of
the hypergeometric distribution, as discussed in Problem 2.3.29.

Now suppose we have a response s that takes k possible values — for convenience,
labelled 1 2 k — with the probability distribution given by P s i i For
a sample s1 sn define the counts X i

n
j 1 I i s j for i 1 k Then,

arguing as above and recalling the development of (1.4.4), we have

p X1 Xk x1 xk
n

x1 xk

x1
1

xk
k

whenever each xi 0 n and x1 xk n In this case, we write

X1 Xk Multinomial n 1 k

2.8.4 Order Statistics

Suppose now that X1 Xn is a sample. In many applications of statistics, we will
have n data values where the assumption that these arise as an i.i.d. sequence makes
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sense. It is often of interest, then, to order these from smallest to largest to obtain the
order statistics

X 1 X n

Here, X i is equal to the i th smallest value in the sample X1 Xn So, for example,
if n 5 and

X1 2 3 X2 4 5 X3 1 2 X4 2 2 X5 4 3

then
X 1 1 2 X 2 2 2 X 3 2 3 X 4 4 3 X 5 4 5

Of considerable interest in many situations are the distributions of the order statis­
tics. Consider the following examples.

EXAMPLE 2.8.6 Distribution of the Sample Maximum
Suppose X1 X2 Xn are i.i.d. so that FX1 x FX2 x FXn x Then
the largest­order statistic X n max X1 X2 Xn is the maximum of these n
random variables.

Now X n is another random variable. What is its cumulative distribution function?
We see that X n x if and only if X i x for all i . Hence,

FX n x P X n x P X1 x X2 x Xn x

P X1 x P X2 x P Xn x FX1 x FX2 x FXn x

FX1 x n

If FX1
corresponds to an absolutely continuous distribution, then we can differentiate

this expression to obtain the density of X n

EXAMPLE 2.8.7
As a special case of Example 2.8.6, suppose that X1 X2 Xn are identically and
independently distributed Uniform[0 1]. From the above, for 0 x 1, we have
FX n x FX1 x n xn It then follows from Corollary 2.5.1 that the density
fX n of X n equals fX n x FX n

x nxn 1 for 0 x 1, with (of course)
fX n x 0 for x 0 and x 1. Note that, from Problem 2.4.24, we can write
X n Beta n 1

EXAMPLE 2.8.8 Distribution of the Sample Minimum
Following Example 2.8.6, we can also obtain the distribution function of the sample
minimum, or smallest­order statistic, X 1 min X1 X2 Xn We have

FX 1 x P X 1 x

1 P X 1 x

1 P X1 x X2 x Xn x

1 P X1 x P X2 x P Xn x

1 1 FX1 x 1 FX2 x 1 FXn x

1 1 FX1 x n
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Again, if FX1 corresponds to an absolutely continuous distribution, we can differentiate
this expression to obtain the density of X 1

EXAMPLE 2.8.9
Let X1 Xn be i.i.d. Uniform[0 1]. Hence, for 0 x 1,

FX 1 x P X 1 x 1 P X 1 x 1 1 x n

It then follows from Corollary 2.5.1 that the density fX 1 of X 1 satisfies fX 1 x
FX 1

x n 1 x n 1 for 0 x 1, with (of course) fX 1 x 0 for x 0 and
x 1. Note that, from Problem 2.4.24, we can write X 1 Beta 1 n

The sample median and sample quartiles are defined in terms of order statistics
and used in statistical applications. These quantities, and their uses, are discussed in
Section 5.5.

Summary of Section 2.8

If X and Y are discrete, then the conditional probability function of Y given X
equals pY X y x pX Y x y pX x .

If X and Y are absolutely continuous, then the conditional density function of Y
given X equals fY X y x fX Y x y fX x .

X and Y are independent if P X B1 Y B2 P X B1 P Y B2 for
all B1 B2 R1.

Discrete X and Y are independent if and only if pX Y x y pX x pY y for
all x y R1 or, equivalently, pY X y x pY y .

Absolutely continuous X and Y are independent if and only if fX Y x y
fX x fY y for all x y R1 or, equivalently, fY X y x fY y .

A sequence X1 X2 Xn is i.i.d. if the random variables are independent, and
each X i has the same distribution.

EXERCISES

2.8.1 Suppose X and Y have joint probability function

pX Y x y

1 6 x 2 y 3
1 12 x 2 y 5
1 6 x 9 y 3
1 12 x 9 y 5
1 3 x 13 y 3
1 6 x 13 y 5
0 otherwise

(a) Compute pX x for all x R1.
(b) Compute pY y for all y R1.
(c) Determine whether or not X and Y are independent.
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2.8.2 Suppose X and Y have joint probability function

pX Y x y

1 16 x 2 y 3
1 4 x 2 y 5
1 2 x 9 y 3
1 16 x 9 y 5
1 16 x 13 y 3
1 16 x 13 y 5
0 otherwise

(a) Compute pX x for all x R1.
(b) Compute pY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.3 Suppose X and Y have joint density function

fX Y x y
12
49 2 x xy 4y2 0 x 1 0 y 1

0 otherwise.

(a) Compute fX x for all x R1.
(b) Compute fY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.4 Suppose X and Y have joint density function

fX Y x y
2

5 2 e 3 ex 3y 3yey yex yex y 0 x 1
0 y 1

0 otherwise

(a) Compute fX x for all x R1.
(b) Compute fY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.5 Suppose X and Y have joint probability function

pX Y x y

1 9 x 4 y 2
2 9 x 5 y 2
3 9 x 9 y 2
2 9 x 9 y 0
1 9 x 9 y 4
0 otherwise.

(a) Compute P Y 4 X 9 .
(b) Compute P Y 2 X 9 .
(c) Compute P Y 0 X 4 .
(d) Compute P Y 2 X 5 .
(e) Compute P X 5 Y 2 .
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2.8.6 Let X Bernoulli and Y Geometric , with X and Y independent. Let
Z X Y . What is the probability function of Z?
2.8.7 For each of the following joint density functions fX Y (taken from Exercise 2.7.4),
compute the conditional density fY X y x , and determine whether or not X and Y are
independent.
(a)

fX Y x y
2x2y Cy5 0 x 1 0 y 1
0 otherwise.

(b)

fX Y x y
C xy x5y5 0 x 1 0 y 1
0 otherwise.

(c)

fX Y x y
C xy x5y5 0 x 4 0 y 10
0 otherwise.

(d)

fX Y x y
Cx5y5 0 x 4 0 y 10
0 otherwise.

2.8.8 Let X and Y be jointly absolutely continuous random variables. Suppose X
Exponential 2 and that P Y 5 X x e 3x . Compute P Y 5 .
2.8.9 Give an example of two random variables X and Y , each taking values in the set
1 2 3 , such that P X 1 Y 1 P X 1 P Y 1 , but X and Y are not

independent.
2.8.10 Let X Bernoulli and Y Bernoulli , where 0 1 and 0
1. Suppose P X 1 Y 1 P X 1 P Y 1 . Prove that X and Y must be
independent.
2.8.11 Suppose that X is a constant random variable and that Y is any random variable.
Prove that X and Y must be independent.
2.8.12 Suppose X Bernoulli 1 3 and Y Poisson , with X and Y independent
and with 0. Compute P X 1 Y 5 .
2.8.13 Suppose P X x Y y 1 8 for x 3 5 and y 1 2 4 7, otherwise
P X x Y y 0.
(a) Compute the conditional probability function pY X y x for all x y R1 with
pX x 0.
(b) Compute the conditional probability function pX Y x y for all x y R1 with
pY y 0.
(c) Are X and Y independent? Why or why not?
2.8.14 Let X and Y have joint density fX Y x y x2 y 36 for 2 x 1 and
0 y 4, otherwise fX Y x y 0.
(a) Compute the conditional density fY X y x for all x y R1 with fX x 0.
(b) Compute the conditional density fX Y x y for all x y R1 with fY y 0.
(c) Are X and Y independent? Why or why not?
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2.8.15 Let X and Y have joint density fX Y x y x2 y 4 for 0 x y 2,
otherwise fX Y x y 0. Compute each of the following.
(a) The conditional density fY X y x for all x y R1 with fX x 0
(b) The conditional density fX Y x y for all x y R1 with fY y 0
(c) Are X and Y independent? Why or why not?
2.8.16 Suppose we obtain the following sample of size n 6: X1 12, X2 8,
X3 X4 9, X5 7, and X6 11. Specify the order statistics X i for 1 i 6.

PROBLEMS

2.8.17 Let X and Y be jointly absolutely continuous random variables, having joint
density of the form

fX Y x y
C1 2x2y C2y5 0 x 1 0 y 1
0 otherwise.

Determine values of C1 and C2, such that fX Y is a valid joint density function, and X
and Y are independent.
2.8.18 Let X and Y be discrete random variables. Suppose pX Y x y g x h y ,
for some functions g and h. Prove that X and Y are independent. (Hint: Use Theo­
rem 2.8.3(a) and Theorem 2.7.4.)
2.8.19 Let X and Y be jointly absolutely continuous random variables. Suppose
fX Y x y g x h y , for some functions g and h. Prove that X and Y are indepen­
dent. (Hint: Use Theorem 2.8.3(b) and Theorem 2.7.5.)
2.8.20 Let X and Y be discrete random variables, with P X 1 0 and P X
2 0. Suppose P Y 1 X 1 3 4 and P Y 2 X 2 3 4. Prove that
X and Y cannot be independent.
2.8.21 Let X and Y have the bivariate normal distribution, as in Example 2.7.9. Prove
that X and Y are independent if and only if 0.
2.8.22 Suppose that X1 X2 X3 Multinomial n 1 2 3 Prove, by summing
the joint probability function, that X1 Binomial n 1

2.8.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 Find the conditional
distribution of X2 given that X1 x1

2.8.24 Suppose that X1 Xn is a sample from the Exponential distribution.
Find the densities fX 1 and fX n

2.8.25 Suppose that X1 Xn is a sample from a distribution with cdf F Prove that

FX i x
n

j i

n

j
F j x 1 F x n j

(Hint: Note that X i x if and only if at least i of X1 Xn are less than or equal
to x )
2.8.26 Suppose that X1 X5 is a sample from the Uniform[0 1] distribution. If we
define the sample median to be X 3 find the density of the sample median. Can you
identify this distribution? (Hint: Use Problem 2.8.25.)



Chapter 2: Random Variables and Distributions 109

2.8.27 Suppose that X Y Bivariate Normal 1 2 1 2 Prove that Y given
X x is distributed N 2 2 x 1 1 1 2 2

2 Establish the analogous
result for the conditional distribution of X given Y y (Hint: Use (2.7.1) for Y given
X x and its analog for X given Y y )

CHALLENGES

2.8.28 Let X and Y be random variables.
(a) Suppose X and Y are both discrete. Prove that X and Y are independent if and only
if P Y y X x P Y y for all x and y such that P X x 0.
(b) Suppose X and Y are jointly absolutely continuous. Prove that X and Y are inde­
pendent if and only if P a Y b X x P a Y b for all x and y such
that fX x 0.

2.9 Multidimensional Change of Variable
Let X and Y be random variables with known joint distribution. Suppose that Z
h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are two functions. What is the
joint distribution of Z and W?

This is similar to the problem considered in Section 2.6, except that we have moved
from a one­dimensional to a two­dimensional setting. The two­dimensional setting is
more complicated; however, the results remain essentially the same, as we shall see.

2.9.1 The Discrete Case

If X and Y are discrete random variables, then the distribution of Z and W is essentially
straightforward.

Theorem 2.9.1 Let X and Y be discrete random variables, with joint probability
function pX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are
some functions. Then Z and W are also discrete, and their joint probability function
pZ W satisfies

pZ W z
x y

h1 x y z h2 x y

pX Y x y

Here, the sum is taken over all pairs x y such that h1 x y z and h2 x y .

PROOF We compute that pZ W z P Z z W P h1 X Y
z h2 X Y This equals

x y
h1 x y z h2 x y

P X x Y y
x y

h1 x y z h2 x y

pX Y x y

as claimed.

As a special case, we note the following.
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Corollary 2.9.1 Suppose in the context of Theorem 2.9.1 that the joint function
h h1 h2 : R2 R2 defined by h x y h1 x y h2 x y is one­to­
one, i.e., if h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and
y1 y2. Then

pZ W z pX Y h 1 z

where h 1 z is the unique pair x y such that h x y z .

EXAMPLE 2.9.1
Suppose X and Y have joint density function

pX Y x y

1 6 x 2 y 6
1 12 x 2 y 6
1 4 x 3 y 11
1 2 x 3 y 8
0 otherwise

Let Z X Y and W Y X2. Then pZ W 8 2 P Z 8 W 2
P X 2 Y 6 P X 3 Y 11 1 6 1 4 5 12 On the other hand,
pZ W 5 17 P Z 5 W 17 P X 3 Y 8 1

2

2.9.2 The Continuous Case (Advanced)

If X and Y are continuous, and the function h h1 h2 is one­to­one, then it is
again possible to compute a formula for the joint density of Z and W , as the following
theorem shows. To state it, recall from multivariable calculus that, if h h1 h2 :
R2 R2 is a differentiable function, then its Jacobian derivative J is defined by

J x y det

h1
x

h2
x

h1
y

h2
y

h1

x

h2

y

h2

x

h1

y

Theorem 2.9.2 Let X and Y be jointly absolutely continuous, with joint density
function fX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are
differentiable functions. Define the joint function h h1 h2 : R2 R2 by

h x y h1 x y h2 x y

Assume that h is one­to­one, at least on the region x y : f x y 0 , i.e., if
h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and y1 y2.
Then Z and W are also jointly absolutely continuous, with joint density function
fZ W given by

fZ W z fX Y h 1 z J h 1 z

where J is the Jacobian derivative of h and where h 1 z is the unique pair
x y such that h x y z .
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PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.9.2
Let X and Y be jointly absolutely continuous, with joint density function fX Y given
by

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

as in Example 2.7.6. Let Z X Y 2 and W X Y 2. What is the joint density of
Z and W?

We first note that Z h1 X Y and W h2 X Y , where h1 x y x y2 and
h2 x y x y2. Hence,

J x y
h1

x

h2

y

h2

x

h1

y
1 2y 1 2y 4y

We may invert the relationship h by solving for X and Y , to obtain that

X
1

2
Z W and Y

Z W

2

This means that h h1 h2 is invertible, with

h 1 z
1

2
z

z

2

Hence, using Theorem 2.9.2, we see that

fZ W z

fX Y h 1 z J h 1 z

fX Y
1

2
z

z

2
J h 1 z

4 1
2 z 2 z

2 2 z
2

5
4 z

2

0 1
2 z 1

0 z
2 1

0 otherwise

z
2

2 1
2

z
2

2 0 z 2 0 z 2
0 otherwise.

We have thus obtained the joint density function for Z and W .

EXAMPLE 2.9.3
Let U1 and U2 be independent, each having the Uniform[0 1] distribution. (We could
write this as U1 U2 are i.i.d. Uniform[0 1].) Thus,

fU1 U2 u1 u2
1 0 u1 1 0 u2 1
0 otherwise.
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Then define X and Y by

X 2 log 1 U1 cos 2 U2 Y 2 log 1 U1 sin 2 U2

What is the joint density of X and Y ?
We see that here X h1 U1 U2 and Y h2 U1 U2 , where

h1 u1 u2 2 log 1 u1 cos 2 u2 h2 u1 u2 2 log 1 u1 sin 2 u2

Therefore,

h1

u1
u1 u2

1

2
2 log 1 u1

1 2 2u1 1 u2
1 cos 2 u2

Continuing in this way, we eventually compute (see Exercise 2.9.1) that

J u1 u2
h1

u1

h2

u2

h2

u1

h1

u2

2

u1
cos2 2 u2 sin2 2 u2

2

u1

Next, we set R X2 Y 2, so that R2 X2 Y 2 2 log 1 U1 . Then,
inverting the relationship h, we compute that

U1 X Y e R2 2 cos 2 U2 X Y X R sin 2 U2 X Y Y R

Here U1 X Y [0 1] is defined directly, while U2 X Y [0 1] is defined im­
plicitly to make 2 U2 X Y [0 2 be the unique angle which satisfies the above
relationships. Then, by Theorem 2.9.2, for any x y R2,

fX Y x y fU1 U2 h 1 x y J h 1 x y
1

fU1 U2 U1 x y U2 x y J U1 x y U2 x y 1

1
2

U1 x y

1 2

e R2 x y 2

1

2

e x2 y2 2

1 1

2
e x2 y2 2

We conclude that

fX Y x y
1

2
e x2 2 1

2
e y2 2

We recognize this as a product of two standard normal densities. We thus conclude that
X N 0 1 and Y N 0 1 and that, furthermore, X and Y are independent.
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2.9.3 Convolution

Suppose now that X and Y are independent, with known distributions, and that Z
X Y . What is the distribution of Z? In this case, the distribution of Z is called the
convolution of the distributions of X and of Y . Fortunately, the convolution is often
reasonably straightforward to compute.

Theorem 2.9.3 Let X and Y be independent, and let Z X Y .
(a) If X and Y are both discrete, with probability functions pX and pY , then Z is
also discrete, with probability function pZ given by

pZ z pX z pY

(b) If X and Y are jointly absolutely continuous, with density functions fX and fY ,
then Z is also absolutely continuous, with density function fZ given by

fZ z fX z fY d

PROOF (a) We let W Y and consider the two­dimensional transformation from
X Y to Z W X Y Y .

In the discrete case, by Corollary 2.9.1, pZ W z pX Y z Then from
Theorem 2.7.4, pZ z pZ W z pX Y z But because X
and Y are independent, pX Y x y pX x pY y , so pX Y z pX z

pY . This proves part (a).

(b) In the continuous case, we must compute the Jacobian derivative J x y of the
transformation from X Y to Z W X Y Y . Fortunately, this is very easy, as
we obtain

J x y
x y

x

y

y

y

x

x y

y
1 1 0 1 1

Hence, from Theorem 2.9.2, fZ W z fX Y z 1 fX Y z and
from Theorem 2.7.5,

fZ z fZ W z d fX Y z d

But because X and Y are independent, we may take fX Y x y fX x fY y , so
fX Y z fX z fY . This proves part (b).

EXAMPLE 2.9.4
Let X Binomial 4 1 5 and Y Bernoulli 1 4 , with X and Y independent. Let
Z X Y . Then

pZ 3 P X Y 3 P X 3 Y 0 P X 2 Y 1
4

3
1 5 3 4 5 1 3 4

4

2
1 5 2 4 5 2 1 4

4 1 5 3 4 5 1 3 4 6 1 5 2 4 5 2 1 4 0 0576
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EXAMPLE 2.9.5
Let X Uniform[3 7] and Y Exponential 6 , with X and Y independent. Let
Z X Y . Then

fZ 5 fX x fY 5 x dx
5

3
1 4 6 e 6 5 x dx

1 4 e 6 5 x
x 5

x 3
1 4 e 12 1 4 e0 0 2499985

Note that here the limits of integration go from 3 to 5 only, because fX x 0 for
x 3, while fY 5 x 0 for x 5.

Summary of Section 2.9

If X and Y are discrete, and Z h1 X Y and W h2 X Y , then

pZ W z
x y : h1 x y z h2 x y

pX Y x y

If X and Y are absolutely continuous, if Z h1 X Y and W h2 X Y , and
if h h1 h2 : R2 R2 is one­to­one with Jacobian J x y , then
fZ W z fX Y h 1 z J h 1 z .

This allows us to compute the joint distribution of functions of pairs of random
variables.

EXERCISES

2.9.1 Verify explicitly in Example 2.9.3 that J u1 u2 2 u1.

2.9.2 Let X Exponential 3 and Y Uniform[1 4], with X and Y independent.
Let Z X Y and W X Y .
(a) Write down the joint density fX Y x y of X and Y . (Be sure to consider the ranges
of valid x and y values.)
(b) Find a two­dimensional function h such that Z W h X Y .
(c) Find a two­dimensional function h 1 such that X Y h 1 Z W .
(d) Compute the joint density fZ W z of Z and W . (Again, be sure to consider the
ranges of valid z and values.)
2.9.3 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z X2 Y 2 and W X2 Y 2.
2.9.4 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z X 4 and W Y 3.
2.9.5 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z Y 4 and W X4.
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2.9.6 Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise.

Let Z X Y , W X Y , A X2 Y 2, and B 2X 3Y 2.
(a) Compute the joint probability function pZ W z .
(b) Compute the joint probability function pA B a b .
(c) Compute the joint probability function pZ A z a .
(d) Compute the joint probability function pW B b .
2.9.7 Let X have probability function

pX x

1 3 x 0
1 2 x 2
1 6 x 3
0 otherwise

and let Y have probability function

pY y

1 6 y 2
1 12 y 5
3 4 y 9
0 otherwise.

Suppose X and Y are independent. Let Z X Y . Compute pZ z for all z R1.

2.9.8 Let X Geometric 1 4 , and let Y have probability function

pY y

1 6 y 2
1 12 y 5
3 4 y 9
0 otherwise.

Let W X Y . Suppose X and Y are independent. Compute pW for all R1.
2.9.9 Suppose X and Y are discrete, with P X 1 Y 1 P X 1 Y 2
P X 1 Y 3 P X 2 Y 2 P X 2 Y 3 1 5, otherwise
P X x Y y 0. Let Z X Y 2 and W X2 5Y .
(a) Compute the joint probability function pZ W z for all z R1.
(b) Compute the marginal probability function pZ z for Z .
(c) Compute the marginal probability function pW for W .
2.9.10 Suppose X has density fX x x3 4 for 0 x 2, otherwise fX x 0,
and Y has density fY y 5y4 32 for 0 y 2, otherwise fY y 0. Assume X
and Y are independent, and let Z X Y .



116 Section 2.10: Simulating Probability Distributions

(a) Compute the joint density fX Y x y for all x y R1.
(b) Compute the density fZ z for Z .

PROBLEMS

2.9.11 Suppose again that X has density fX x x3 4 for 0 x 2, otherwise
fX x 0, that Y has density fY y 5y4 32 for 0 y 2, otherwise fY y 0,
and that X and Y are independent. Let Z X Y and W 4X 3Y .
(a) Compute the joint density fZ W z for all z R1.
(b) Compute the marginal density fZ z for Z .
(c) Compute the marginal density fW for W .

2.9.12 Let X Binomial n1 independent of Y Binomial n2 . Let Z
X Y . Use Theorem 2.9.3(a) to prove that Z Binomial n1 n2 .

2.9.13 Let X and Y be independent, with X Negative­Binomial r1 and Y
Negative­Binomial r2 . Let Z X Y . Use Theorem 2.9.3(a) to prove that Z
Negative­Binomial r1 r2 .
2.9.14 Let X and Y be independent, with X N 1

2
1 and Y N 2

2
2 . Let

Z X Y . Use Theorem 2.9.3(b) to prove that Z N 1 2
2
1

2
2 .

2.9.15 Let X and Y be independent, with X Gamma 1 and Y Gamma 2 .
Let Z X Y . Use Theorem 2.9.3(b) to prove that Z Gamma 1 2 .
2.9.16 (MV) Show that when Z1 Z2 are i.i.d. N 0 1 and X Y are given by (2.7.1),
then X Y Bivariate Normal 1 2 1 2

2.10 Simulating Probability Distributions
So far, we have been concerned primarily with mathematical theory and manipulations
of probabilities and random variables. However, modern high­speed computers can
be used to simulate probabilities and random variables numerically. Such simulations
have many applications, including:

To approximate quantities that are too difficult to compute mathematically

To graphically simulate complicated physical or biological systems

To randomly sample from large data sets to search for errors or illegal activities, etc.

To implement complicated algorithms to sharpen pictures, recognize speech, etc.

To simulate intelligent behavior

To encrypt data or generate passwords

To solve puzzles or break codes by trying lots of random solutions

To generate random choices for online quizzes, computer games, etc.
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Indeed, as computers become faster and more widespread, probabilistic simulations are
becoming more and more common in software applications, scientific research, quality
control, marketing, law enforcement, etc.

In most applications of probabilistic simulation, the first step is to simulate ran­
dom variables having certain distributions. That is, a certain probability distribution
will be specified, and we want to generate one or more random variables having that
distribution.

Now, nearly all modern computer languages come with a pseudorandom number
generator, which is a device for generating a sequence U1 U2 of random values
that are approximately independent and have approximately the uniform distribution
on [0 1]. Now, in fact, the Ui are usually generated from some sort of deterministic
iterative procedure, which is designed to “appear” random. So the Ui are, in fact, not
random, but rather pseudorandom.

Nevertheless, we shall ignore any concerns about pseudorandomness and shall sim­
ply assume that

U1 U2 U3 Uniform[0 1] (2.10.1)

i.e., the Ui are i.i.d. Uniform[0 1]
Hence, if all we ever need are Uniform[0 1] random variables, then according

to (2.10.1), we are all set. However, in most applications, other kinds of randomness
are also required. We therefore consider how to use the uniform random variables
of (2.10.1) to generate random variables having other distributions.

EXAMPLE 2.10.1 The Uniform[L R] Distribution
Suppose we want to generate X Uniform[L R]. According to Exercise 2.6.1, we
can simply set

X R L U1 L

to ensure that X Uniform[L R].

2.10.1 Simulating Discrete Distributions

We now consider the question of how to simulate from discrete distributions.

EXAMPLE 2.10.2 The Bernoulli Distribution
Suppose we want to generate X Bernoulli , where 0 1. We can simply set

X
1 U1
0 U1

Then clearly, we always have either X 0 or X 1. Furthermore, P X 1
P U1 because U1 Uniform[0 1]. Hence, we see that X Bernoulli .

EXAMPLE 2.10.3 The Binomial n Distribution
Suppose we want to generate Y Binomial n , where 0 1 and n 1. There
are two natural methods for doing this.
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First, we can simply define Y as follows:

Y min j :
j

k 0

n

k
k 1 n k U1

That is, we let Y be the largest value of j such that the sum of the binomial probabilities
up to j 1 is still no more than U1. In that case,

P Y y P
y 1
k 0

n
k

k 1 n k U1

and y
k 0

n
k

k 1 n k U1

P
y 1

k 0

n

k
k 1 n k U1

y

k 0

n

k
k 1 n k

y

k 0

n

k
k 1 n k

y 1

k 0

n

k
k 1 n k

n

y
y 1 n y

Hence, we have Y Binomial n , as desired.
Alternatively, we can set

X i
1 Ui
0 Ui

for i 1 2 3 . Then, by Example 2.10.2, we have X i Bernoulli for each i ,
with the Xi independent because the Ui are independent. Hence, by the observation
at the end of Example 2.3.3, if we set Y X1 Xn, then we will again have
Y Binomial n .

In Example 2.10.3, the second method is more elegant and is also simpler compu­
tationally (as it does not require computing any binomial coefficients). On the other
hand, the first method of Example 2.10.3 is more general, as the following theorem
shows.

Theorem 2.10.1 Let p be a probability function for a discrete probability distri­
bution. Let x1 x2 x3 be all the values for which p xi 0. Let
U1 Uniform[0 1]. Define Y by

Y min x j :
j

k 1

p xk U1

Then Y is a discrete random variable, having probability function p.
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PROOF We have

P Y xi P
i 1

k 1

p xk U1 and
i

k 1

p xk U1

P
i 1

k 1

p xk U1

i

k 1

p xk

i

k 1

p xk

i 1

k 1

p xk p xi

Also, clearly P Y y 0 if y x1 x2 . Hence, for all y R1, we have
P Y y p y , as desired.

EXAMPLE 2.10.4 The Geometric Distribution
To simulate Y Geometric , we again have two choices. Using Theorem 2.10.1,
we can let U1 Uniform[0 1] and then set

Y min j :
j

k 0

1 k U1 min j : 1 1 j 1 U1

min j : j
log 1 U1

log 1
1

log 1 U1

log 1

where r means to round down r to the next integer value, i.e., r is the greatest
integer not exceeding r (sometimes called the f loor of r ).

Alternatively, using the definition of Geometric from Example 2.3.4, we can set

Xi
1 Ui
0 Ui

for i 1 2 3 (where Ui Uniform[0 1]), and then let Y min i : Xi 1
Either way, we have Y Geometric , as desired.

2.10.2 Simulating Continuous Distributions

We next turn to the subject of simulating absolutely continuous distributions. In gen­
eral, this is not an easy problem. However, for certain particular continuous distribu­
tions, it is not difficult, as we now demonstrate.

EXAMPLE 2.10.5 The Uniform[L R] Distribution
We have already seen in Example 2.10.1 that if U1 Uniform[0 1], and we set

X R L U1 L

then X Uniform[L R]. Thus, simulating from any uniform distribution is straight­
forward.
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EXAMPLE 2.10.6 The Exponential Distribution
We have also seen, in Example 2.6.6, that if U1 Uniform[0 1], and we set

Y ln 1 U1

then Y Exponential 1 . Thus, simulating from the Exponential 1 distribution is
straightforward.

Furthermore, we know from Exercise 2.6.4 that once Y Exponential 1 , then if
0 and we set

Z Y ln 1 U1

then Z Exponential . Thus, simulating from any Exponential distribution is
also straightforward.

EXAMPLE 2.10.7 The N 2 Distribution
Simulating from the standard normal distribution, N 0 1 , may appear to be more
difficult. However, by Example 2.9.3, if U1 Uniform[0 1] and U2 Uniform[0 1],
with U1 and U2 independent, and we set

X 2 log 1 U1 cos 2 U2 Y 2 log 1 U1 sin 2 U2 (2.10.2)

then X N 0 1 and Y N 0 1 (and furthermore, X and Y are independent). So,
using this trick, the standard normal distribution can be easily simulated as well.

It then follows from Exercise 2.6.3 that, once we have X N 0 1 , if we set
Z X then Z N 2 . Hence, it is straightforward to sample from any
normal distribution.

These examples illustrate that, for certain special continuous distributions, sam­
pling from them is straightforward. To provide a general method of sampling from a
continuous distribution, we first state the following definition.

Definition 2.10.1 Let X be a random variable, with cumulative distribution func­
tion F . Then the inverse cdf (or quantile function) of X is the function F 1 defined
by

F 1 t min x : F x t

for 0 t 1

In Figure 2.10.1, we have provided a plot of the inverse cdf of an N 0 1 distribu­
tion. Note that this function goes to as the argument goes to 0, and goes to as
the argument goes to 1.
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Figure 2.10.1: The inverse cdf of the N 0 1 distribution.

Using the inverse cdf, we obtain a general method of sampling from a continuous
distribution, as follows.

Theorem 2.10.2 (Inversion method for generating random variables) Let F be any
cumulative distribution function, and let U Uniform[0 1]. Define a random
variable Y by Y F 1 U Then P Y y F y , i.e., Y has cumulative
distribution function given by F .

PROOF We begin by noting that P Y y P F 1 U y . But F 1 U is the
smallest value x such that F x U . Hence, F 1 U y if and only if F y U ,
i.e., U F y . Therefore,

P Y y P F 1 U y P U F y

But 0 F y 1, and U Uniform[0 1], so P U F y F y . Thus,

P Y y P U F y F y

It follows that F is the cdf of Y , as claimed.

We note that Theorem 2.10.2 is valid for any cumulative distribution function, whether
it corresponds to a continuous distribution, a discrete distribution, or a mixture of the
two (as in Section 2.5.4). In fact, this was proved for discrete distributions in Theorem
2.10.1.

EXAMPLE 2.10.8 Generating from an Exponential Distribution
Let F be the cdf of an Exponential 1 random variable. Then

F x
x

0
e t dt 1 e x

It then follows that

F 1 t min x : F x t min x : 1 e x t

min x : x ln 1 t ln 1 t ln 1 1 t
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Therefore, by Theorem 2.10.2, if U Uniform[0 1], and we set

Y F 1 U ln 1 1 U (2.10.3)

then Y Exponential 1 .
Now, we have already seen from Example 2.6.6 that, if U Uniform[0 1], and we

set Y ln 1 U , then Y Exponential 1 . This is essentially the same as (2.10.3),
except that we have replaced U by 1 U . On the other hand, this is not surprising,
because we already know by Exercise 2.6.2 that, if U Uniform[0 1], then also
1 U Uniform[0 1].

EXAMPLE 2.10.9 Generating from the Standard Normal Distribution
Let be the cdf of a N 0 1 random variable, as in Definition 2.5.2. Then

1 t min x : x t

and there is no simpler formula for 1 t . By Theorem 2.10.2, if
U Uniform[0 1], and we set

Y 1 U (2.10.4)

then Y N 0 1 .
On the other hand, due to the difficulties of computing with and 1, the

method of (2.10.4) is not very practical. It is far better to use the method of (2.10.2), to
simulate a normal random variable.

For distributions that are too complicated to sample using the inversion method of
Theorem 2.10.2, and for which no simple trick is available, it may still be possible to
do sampling using Markov chain methods, which we will discuss in later chapters, or
by rejection sampling (see Challenge 2.10.21).

Summary of Section 2.10

It is important to be able to simulate probability distributions.

If X is discrete, taking the value xi with probability pi , where x1 x2 ,
and U Uniform[0 1], and Y min x j : j

k 1 pk U , then Y has the same
distribution as X . This method can be used to simulate virtually any discrete
distribution.

If F is any cumulative distribution with inverse cdf F 1, U Uniform[0 1],
and Y F 1 U , then Y has cumulative distribution function F . This allows
us to simulate virtually any continuous distribution.

There are simple methods of simulating many standard distributions, including
the binomial, uniform, exponential, and normal.
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EXERCISES

2.10.1 Let Y be a discrete random variable with P Y 7 1 2, P Y 2
1 3, and P Y 5 1 6. Find a formula for Z in terms of U , such that if U
Uniform[0 1], then Z has the same distribution as Y .
2.10.2 For each of the following cumulative distribution functions F , find a formula
for X in terms of U , such that if U Uniform[0 1], then X has cumulative distribution
function F .
(a)

F x
0 x 0
x 0 x 1
1 x 1

(b)

F x
0 x 0
x2 0 x 1
1 x 1

(c)

F x
0 x 0
x2 9 0 x 3
1 x 3

(d)

F x
0 x 1
x2 9 1 x 3
1 x 3

(e)

F x
0 x 0
x5 32 0 x 2
1 x 2

(f)

F x

0 x 0
1 3 0 x 7
3 4 7 x 11
1 x 11

2.10.3 Suppose U Uniform[0 1], and Y ln 1 U 3. What is the distribution of
Y?
2.10.4 Generalizing the previous question, suppose U Uniform[0 1] and W
ln 1 U for some fixed 0.
(a) What is the distribution of W?
(b) Does this provide a way of simulating from a certain well­known distribution?
Explain.
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2.10.5 Let U1 Uniform[0 1] and U2 Uniform[0 1] be independent, and let X
c1 log 1 U1 cos 2 U2 c2. Find values of c1 and c2 such that X N 5 9 .
2.10.6 Let U Uniform[0 1]. Find a formula for Y in terms of U , such that P Y
3 P Y 4 2 5 and P Y 7 1 5, otherwise P Y y 0.
2.10.7 Suppose P X 1 1 3, P X 2 1 6, P X 4 1 2, and
P X x 0 otherwise.
(a) Compute the cdf FX x for all x R1.
(b) Compute the inverse cdf F 1

X t for all t R1.
(c) Let U Uniform[0 1]. Find a formula for Y in terms of U , such that Y has cdf
FX .
2.10.8 Let X have density function fX x 3 x 2 for 0 x 1, otherwise
fX x 0.
(a) Compute the cdf FX x for all x R1.
(b) Compute the inverse cdf F 1

X t for all t R1.
(c) Let U Uniform[0 1]. Find a formula for Y in terms of U , such that Y has density
f .
2.10.9 Let U Uniform[0 1]. Find a formula for Z in terms of U , such that Z has
density fZ z 4 z3 for 0 z 1, otherwise fZ z 0.

COMPUTER EXERCISES

2.10.10 For each of the following distributions, use the computer (you can use any
algorithms available to you as part of a software package) to simulate X1 X2 X N
i.i.d. having the given distribution. (Take N 1000 at least, with N 10,000 or N

100,000 if possible.) Then compute X 1 N N
i 1 Xi and 1 N N

i 1 Xi X
2
.

(a) Uniform[0 1]
(b) Uniform[5 8]
(c) Bernoulli 1 3
(d) Binomial 12 1 3
(e) Geometric 1 5
(f) Exponential 1
(g) Exponential 13
(h) N 0 1
(i) N 5 9

PROBLEMS

2.10.11 Let G x p1F1 x p2 F2 x pk Fk x , where pi 0, i pi
1, and Fi are cdfs, as in (2.5.3). Suppose we can generate Xi to have cdf Fi , for
i 1 2 k. Describe a procedure for generating a random variable Y that has cdf
G.
2.10.12 Let X be an absolutely continuous random variable, with density given by
fX x x 2 for x 1, with fX x 0 otherwise. Find a formula for Z in terms of
U , such that if U Uniform[0 1], then Z has the same distribution as X .
2.10.13 Find the inverse cdf of the logistic distribution of Problem 2.4.18. (Hint: See
Problem 2.5.20.)
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2.10.14 Find the inverse cdf of the Weibull distribution of Problem 2.4.19. (Hint:
See Problem 2.5.21.)
2.10.15 Find the inverse cdf of the Pareto distribution of Problem 2.4.20. (Hint:
See Problem 2.5.22.)
2.10.16 Find the inverse cdf of the Cauchy distribution of Problem 2.4.21. (Hint: See
Problem 2.5.23.)
2.10.17 Find the inverse cdf of the Laplace distribution of Problem 2.4.22. (Hint: See
Problem 2.5.24.)

2.10.18 Find the inverse cdf of the extreme value distribution of Problem 2.4.23. (Hint:
See Problem 2.5.25.)

2.10.19 Find the inverse cdfs of the beta distributions in Problem 2.4.24(b) through
(d). (Hint: See Problem 2.5.26.)
2.10.20 (Method of composition) If we generate X fX obtaining x and then gener­
ate Y from fY X x prove that Y fY

CHALLENGES

2.10.21 (Rejection sampling) Suppose f is a complicated density function. Suppose g
is a density function from which it is easy to sample (e.g., the density of a uniform or
exponential or normal distribution). Suppose we know a value of c such that f x
cg x for all x R1. The following provides a method, called rejection sampling, for
sampling from a complicated density f by using a simpler density g, provided only
that we know f x cg x for all x R1.
(a) Suppose Y has density g. Let U Uniform[0 c], with U and Y independent.
Prove that

P a Y b f Y Ucg Y
b

a
f x dx

(Hint: Use Theorem 2.8.1 to show that P a Y b f Y cUg Y
b

a g y P f Y cUg Y Y y dy.)
(b) Suppose that Y1 Y2 are i.i.d., each with density g, and independently U1 U2
are i.i.d. Uniform[0 c]. Let i0 0, and for n 1, let in min j in 1 : U j f Y j
cg Y j . Prove that X i1 X i2 are i.i.d., each with density f (Hint: Prove this for
Xi1 Xi2 .)

2.11 Further Proofs (Advanced)

Proof of Theorem 2.4.2

We want to prove that the function given by (2.4.9) is a density function.
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Clearly x 0 for all x . To proceed, we set I x dx . Then, using
multivariable calculus,

I 2 x dx
2

x dx y dy

x y dx dy
1

2
e x2 y2 2 dx dy

We now switch to polar coordinates r , so that x r cos and y r sin ,
where r 0 and 0 2 . Then x2 y2 r2 and, by the multivariable change of
variable theorem from calculus, dx dy r dr d . Hence,

I 2
2

0 0

1

2
e r2 2r dr d

0
e r2 2r dr

e r2 2
r

r 0
0 1 1

and we have I 2 1. But clearly I 0 (because 0), so we must have I 1, as
claimed.

Proof of Theorem 2.6.2

We want to prove that, when X is an absolutely continuous random variable, with den­
sity function fX and Y h X , where h : R1 R1 is a function that is differentiable
and strictly increasing, then Y is also absolutely continuous, and its density function
fY is given by

fY y fX h 1 y h h 1 y (2.11.1)

where h is the derivative of h, and where h 1 y is the unique number x such that
h x y.

We must show that whenever a b, we have

P a Y b
b

a
fY y dy

where fY is given by (2.11.1). To that end, we note that, because h is strictly increasing,
so is h 1. Hence, applying h 1 preserves inequalities, so that

P a Y b P h 1 a h 1 Y h 1 b P h 1 a X h 1 b
h 1 b

h 1 a
fX x dx

We then make the substitution y h x , so that x h 1 y , and

dx
d

dy
h 1 y dy
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But by the inverse function theorem from calculus, d
dy h 1 y 1 h h 1 y . Fur­

thermore, as x goes from h 1 a to h 1 b , we see that y h x goes from a to b.
We conclude that

P a Y b
h 1 b

h 1 a
fX x dx

b

a
fX h 1 y 1 h h 1 y dy

b

a
fY y dy

as required.

Proof of Theorem 2.6.3

We want to prove that when X is an absolutely continuous random variable, with den­
sity function fX and Y h X , where h : R1 R1 is a function that is differentiable
and strictly decreasing, then Y is also absolutely continuous, and its density function
fY may again be defined by (2.11.1).

We note that, because h is strictly decreasing, so is h 1. Hence, applying h 1

reverses the inequalities, so that

P a Y b P h 1 b h 1 Y h 1 a P h 1 b X h 1 a
h 1 a

h 1 b
fX x dx

We then make the substitution y h x , so that x h 1 y , and

dx
d

dy
h 1 y dy

But by the inverse function theorem from calculus,

d

dy
h 1 y

1

h h 1 y

Furthermore, as x goes from h 1 b to h 1 a , we see that y h x goes from a to b.
We conclude that

P a Y b
h 1 a

h 1 b
fX x dx

b

a
fX h 1 y 1 h h 1 y dy

b

a
fY y dy

as required.
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Proof of Theorem 2.9.2

We want to prove the following result. Let X and Y be jointly absolutely continuous,
with joint density function fX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 :
R2 R1 are differentiable functions. Define the joint function h h1 h2 : R2

R2 by
h x y h1 x y h2 x y

Assume that h is one­to­one, at least on the region x y : f x y 0 , i.e., if
h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and y1 y2. Then
Z and W are also jointly absolutely continuous, with joint density function f Z W given
by

fZ W z fX Y h 1 z J h 1 z

where J is the Jacobian derivative of h, and where h 1 z is the unique pair x y
such that h x y z .

We must show that whenever a b and c d, we have

P a Z b c W d
d

c

b

a
fZ W z d dz

If we let S [a b] [c d] be the two­dimensional rectangle, then we can rewrite this
as

P Z W S
S

fZ W z dz d

Now, using the theory of multivariable calculus, and making the substitution x y
h 1 z (which is permissible because h is one­to­one), we have

S
fZ W z dz d

S
fX Y h 1 z J h 1 z dz d

h 1 S
fX Y x y J x y J x y dx dy

h 1 S
fX Y x y dx dy P X Y h 1 S

P h 1 Z W h 1 S P Z W S

as required.


