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In this chapter, we consider stochastic processes, which are processes that proceed

randomly in time. That is, rather than consider fixed random variables X , Y , etc., or

even sequences of independent and identically distributed (i.i.d.) random variables, we

shall instead consider sequences X0, X1, X2, . . . , where Xn represents some random

quantity at time n. In general, the value Xn at time n might depend on the quantity

Xn−1 at time n− 1, or even the values Xm for other times m < n. Stochastic processes

have a different “flavor” from ordinary random variables — because they proceed in

time, they seem more “alive.”

We begin with a simple but very interesting case, namely, simple random walk.

11.1 Simple Random Walk
Simple random walk can be thought of as a model for repeated gambling. Specifically,

suppose you start with $a, and repeatedly make $1 bets. At each bet, you have proba-

bility p of winning $1 and probability q of losing $1, where p + q = 1. If Xn is the

amount of money you have at time n (henceforth, your fortune at time n), then X0 = a,

while X1 could be a + 1 or a − 1, depending on whether you win or lose your first

bet. Then X2 could be a + 2 (if you win your first two bets), or a (if you win once and

lose once), or a − 2 (if you lose your first two bets). Continuing in this way, we obtain

615



616 Section 11.1: Simple Random Walk

a whole sequence X0, X1, X2, . . . of random values, corresponding to your fortune at

times 0, 1, 2, . . . .

We shall refer to the stochastic process {Xn} as simple random walk. Another way

to define this model is to start with random variables {Zi } that are i.i.d. with P(Zi =
1) = p and P(Zi = −1) = 1 − p ≡ q , where 0 < p < 1. (Here, Zi = 1 if you win

the i th bet, while Zi = −1 if you lose the i th bet.) We then set X0 = a, and for n ≥ 1

we set

Xn = a + Z1 + Z2 + · · · + Zn .

The following is a specific example of this.

EXAMPLE 11.1.1

Consider simple random walk with a = 8 and p = 1/3, so you start with $8 and have

probability 1/3 of winning each bet. Then the probability that you have $9 after one

bet is given by

P(X1 = 9) = P(8+ Z1 = 9) = P(Z1 = 1) = 1/3,

as it should be. Also, the probability that you have $7 after one bet is given by

P(X1 = 7) = P(8+ Z1 = 7) = P(Z1 = −1) = 2/3.

On the other hand, the probability that you have $10 after two bets is given by

P(X2 = 10) = P(8+ Z1 + Z2 = 10) = P(Z1 = Z2 = 1) = (1/3)(1/3) = 1/9.

EXAMPLE 11.1.2

Consider again simple random walk with a = 8 and p = 1/3. Then the probability

that you have $7 after three bets is given by

P(X3 = 7) = P(8+ Z1 + Z2 + Z3 = 7) = P(Z1 + Z2 + Z3 = −1).

Now, there are three different ways we could have Z1 + Z2 + Z3 = −1, namely: (a)

Z1 = 1, while Z2 = Z3 = −1; (b) Z2 = 1, while Z1 = Z3 = −1; or (c) Z3 = 1,

while Z1 = Z2 = −1. Each of these three options has probability (1/3)(2/3)(2/3).
Hence,

P(X3 = 7) = (1/3)(2/3)(2/3)+ (1/3)(2/3)(2/3)+ (1/3)(2/3)(2/3) = 4/9.

If the number of bets is much larger than three, then it becomes less and less con-

venient to compute probabilities in the above manner. A more systematic approach is

required. We turn to that next.

11.1.1 The Distribution of the Fortune

We first compute the distribution of Xn , i.e., the probability that your fortune Xn after

n bets takes on various values.
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Theorem 11.1.1 Let {Xn} be simple random walk as before, and let n be a positive

integer. If k is an integer such that −n ≤ k ≤ n and n + k is even, then

P(Xn = a + k) =

(
n

n+k
2

)
p(n+k)/2q(n−k)/2.

For all other values of k, we have P(Xn = a + k) = 0. Furthermore, E(Xn) =
a + n(2p − 1).

PROOF See Section 11.7.

This theorem tells us the entire distribution, and expected value, of the fortune Xn

at time n.

EXAMPLE 11.1.3

Suppose p = 1/3, n = 8, and a = 1. Then P(Xn = 6) = 0 because 6 = 1 + 5, and

n + 5 = 13 is not even. Also, P(Xn = 13) = 0 because 13 = 1+ 12 and 12 > n. On

the other hand,

P(Xn = 5) = P(Xn = 1+ 4) =

(
n

n+4
2

)
p(n+4)/2q(n−4)/2 =

(
8

6

)
(1/3)6(2/3)

=
8 · 7

2
(1/3)6(2/3)1 = 0.0256.

Also, E(Xn) = a + n(2p − 1) = 1+ 8(2/3− 1) = −5/3.

Regarding E(Xn), we immediately obtain the following corollary.

Corollary 11.1.1 If p = 1/2, then E(Xn) = a for all n ≥ 0. If p < 1/2, then

E(Xn) < a for all n ≥ 1. If p > 1/2, then E(Xn) > a for all n ≥ 1.

This corollary has the following interpretation. If p = 1/2, then the game is fair,

i.e., both you and your opponent have equal chance of winning each bet. Thus, the

corollary says that for fair games, your expected fortune E(Xn) will never change

from its initial value, a.

On the other hand, if p < 1/2, then the game is subfair, i.e., your opponent’s

chances are better than yours. In this case, the corollary says your expected fortune

will decrease, i.e., be less than its initial value of a. Similarly, if p > 1/2, then the

game is superfair, and the corollary says your expected fortune will increase, i.e., be

more than its initial value of a.

Of course, in a real gambling casino, the game is always subfair (which is how the

casino makes its profit). Hence, in a real casino, the average amount of money with

which you leave will always be less than the amount with which you entered!

EXAMPLE 11.1.4

Suppose a = 10 and p = 1/4. Then E(Xn) = 10+ n(2p − 1) = 10− 3n/4. Hence,

we always have E(Xn) ≤ 10, and indeed E(Xn) < 0 if n ≥ 14. That is, your expected

fortune is never more than your initial value of $10 and in fact is negative after 14 or

more bets.
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Finally, we note as an aside that it is possible to change your probabilities by chang-

ing your gambling strategy, as in the following example. Hence, the preceding analysis

applies only to the strategy of betting just $1 each time.

EXAMPLE 11.1.5

Consider the “double ’til you win” gambling strategy, defined as follows. We first bet

$1. Each time we lose, we double our bet on the succeeding turn. As soon as we win

once, we stop playing (i.e., bet zero from then on).

It is easily seen that, with this gambling strategy, we will be up $1 as soon as we

win a bet (which must happen eventually because p > 0). Hence, with probability 1

we will gain $1 with this gambling strategy for any positive value of p.

This is rather surprising, because if 0 < p < 1/2, then the odds in this game are

against us. So it seems that we have “cheated fate,” and indeed we have. On the other

hand, we may need to lose an arbitrarily large amount of money before we win our $1,

so “infinite capital” is required to follow this gambling strategy. If only finite capital

is available, then it is impossible to cheat fate in this manner. For a proof of this, see

more advanced probability books, e.g., page 64 of A First Look at Rigorous Probability

Theory, 2nd ed., by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).

11.1.2 The Gambler’s Ruin Problem

The previous subsection considered the distribution and expected value of the fortune

Xn at a fixed time n. Here, we consider the gambler’s ruin problem, which requires

the consideration of many different n at once, i.e., considers the time evolution of the

process.

Let {Xn} be simple random walk as before, for some initial fortune a and some

probability p of winning each bet. Assume a is a positive integer. Furthermore, let

c > a be some other integer. The gambler’s ruin question is: If you repeatedly bet $1,

then what is the probability that you will reach a fortune of $c before you lose all your

money by reaching a fortune $0? In other words, will the random walk hit c before

hitting 0? Informally, what is the probability that the gambler gets rich (i.e., has $c)

before going broke?

More formally, let

τ 0 = min{n ≥ 0 : Xn = 0},

τ c = min{n ≥ 0 : Xn = c}

be the first hitting times of 0 and c, respectively. That is, τ 0 is the first time your fortune

reaches 0, while τ c is the first time your fortune reaches c.

The gambler’s ruin question is: What is

P(τ c < τ 0),

the probability of hitting c before hitting 0? This question is not so easy to answer,

because there is no limit to how long it might take until either c or 0 is hit. Hence, it is

not sufficient to just compute the probabilities after 10 bets, or 20 bets, or 100 bets, or

even 1,000,000 bets. Fortunately, it is possible to answer this question, as follows.
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Theorem 11.1.2 Let {Xn} be simple random walk, with some initial fortune a

and probability p of winning each bet. Assume 0 < a < c. Then the probability

P(τ c < τ 0) of hitting c before 0 is given by

P(τ c < τ 0) =


a/c p = 1/2

1−
(

q
p

)a

1−
(

q
p

)c p 6= 1/2.

PROOF See Section 11.7 for the proof.

Consider some applications of this result.

EXAMPLE 11.1.6

Suppose you start with $5 (i.e., a = 5) and your goal is to win $10 before going broke

(i.e., c = 10). If p = 0.500, then your probability of success is a/c = 0.500. If

p = 0.499, then your probability of success is given by(
1−

(
0.501

0.499

)5
)(

1−

(
0.501

0.499

)10
)−1

,

which is approximately 0.495. If p = 0.501, then your probability of success is given

by (
1−

(
0.499

0.501

)5
)(

1−

(
0.499

0.501

)10
)−1

,

which is approximately 0.505. We thus see that in this case, small changes in p lead to

small changes in the probability of winning at gambler’s ruin.

EXAMPLE 11.1.7

Suppose now that you start with $5000 (i.e., a = 5000) and your goal is to win $10,000

before going broke (i.e., c = 10, 000). If p = 0.500, then your probability of success

is a/c = 0.500, same as before. On the other hand, if p = 0.499, then your probability

of success is given by(
1−

(
0.501

0.499

)5000
)(

1−

(
0.501

0.499

)10,000
)−1

,

which is approximately 2 × 10−9, i.e., two parts in a billion! Finally, if p = 0.501,

then your probability of success is given by(
1−

(
0.499

0.501

)5000
)(

1−

(
0.499

0.501

)10,000
)−1

,

which is extremely close to 1. We thus see that in this case, small changes in p lead to

extremely large changes in the probability of winning at gambler’s ruin. For example,

even a tiny disadvantage on each bet can lead to a very large disadvantage in the long
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run! The reason for this is that, to get from 5000 to 10,000, many bets must be made,

so small changes in p have a huge effect overall.

Finally, we note that it is also possible to use the gambler’s ruin result to compute

P(τ 0 < ∞), the probability that the walk will ever hit 0 (equivalently, that you will

ever lose all your money), as follows.

Theorem 11.1.3 Let {Xn} be simple random walk, with initial fortune a > 0 and

probability p of winning each bet. Then the probability P(τ 0 < ∞) that the walk

will ever hit 0 is given by

P(τ 0 <∞) =

{
1 p ≤ 1/2
(q/p)a p > 1/2.

PROOF See Section 11.7 for the proof.

EXAMPLE 11.1.8

Suppose a = 2 and p = 2/3. Then the probability that you will eventually lose all

your money is given by (q/p)a = ((1/3)/(2/3))2 = 1/4. Thus, starting with just $2,

we see that 3/4 of the time, you will be able to bet forever without ever losing all your

money.

On the other hand, if p ≤ 1/2, then no matter how large a is, it is certain that you

will eventually lose all your money.

Summary of Section 11.1

• A simple random walk is a sequence {Xn} of random variables, with X0 = 1 and

P(Xn+1 = Xn + 1) = p = 1− P(Xn+1 = Xn − 1).

• It follows that P(Xn = a + k) =
( n

n+k
2

)
p(n+k)/2q(n−k)/2 for k = −n,−n +

2,−n + 4, . . . , n, and E(Xn) = a + n(2p − 1).

• If 0 < a < c, then the gambler’s ruin probability of reaching c before 0 is equal

to a/c if p = 1/2, otherwise to (1− ((1− p)/p)a)/(1− ((1− p)/p)c).

EXERCISES

11.1.1 Let {Xn} be simple random walk, with initial fortune a = 12 and probability

p = 1/3 of winning each bet. Compute P(Xn = x) for the following values of n and

x .

(a) n = 0, x = 13

(b) n = 1, x = 12

(c) n = 1, x = 13

(d) n = 1, x = 11

(e) n = 1, x = 14

(f) n = 2, x = 12

(g) n = 2, x = 13

(h) n = 2, x = 14
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(i) n = 2, x = 15

(j) n = 20, x = 15

(k) n = 20, x = 16

(l) n = 20, x = −18

(m) n = 20, x = 10

11.1.2 Let {Xn} be simple random walk, with initial fortune a = 5 and probability

p = 2/5 of winning each bet.

(a) Compute P(X1 = 6, X2 = 5).
(b) Compute P(X1 = 4, X2 = 5).
(c) Compute P(X2 = 5).
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is

this so?

11.1.3 Let {Xn} be simple random walk, with initial fortune a = 7 and probability

p = 1/6 of winning each bet.

(a) Compute P(X1 = X3 = 8).
(b) Compute P(X1 = 6, X3 = 8).
(c) Compute P(X3 = 8).
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is

this so?

11.1.4 Suppose a = 1000 and p = 0.49.

(a) Compute E(Xn) for n = 0, 1, 2, 10, 20, 100, and 1000.

(b) How large does n need to be before E(Xn) < 0?

11.1.5 Let {Xn} be simple random walk, with initial fortune a and probability p =
0.499 of winning each bet. Compute the gambler’s ruin probability P(τ c < τ 0) for the

following values of a and c. Interpret your results in words.

(a) a = 9, c = 10

(b) a = 90, c = 100

(c) a = 900, c = 1000

(d) a = 9000, c = 10,000

(e) a = 90,000, c = 100,000

(f) a = 900,000, c = 1,000,000

11.1.6 Let {Xn} be simple random walk, with initial fortune a = 10 and probability p

of winning each bet. Compute P(τ 0 < ∞), where p = 0.4 and also where p = 0.6.

Interpret your results in words.

11.1.7 Let {Xn} be simple random walk, with initial fortune a = 5, and probability

p = 1/4 of winning each bet.

(a) Compute P(X1 = 6).
(b) Compute P(X1 = 4).
(c) Compute P(X2 = 7).
(d) Compute P(X2 = 7 | X1 = 6).
(e) Compute P(X2 = 7 | X1 = 4).
(f) Compute P(X1 = 6 | X2 = 7).
(g) Explain why the answer to part (f) equals what it equals.
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11.1.8 Let {Xn} be simple random walk, with initial fortune a = 1000 and probability

p = 2/5 of winning each bet.

(a) Compute E(X1).
(b) Compute E(X10).
(c) Compute E(X100).
(d) Compute E(X1000).
(e) Find the smallest value of n such that E(Xn) ≤ 0.

11.1.9 Let {Xn} be simple random walk, with initial fortune a = 100 and probability

p = 18/38 of winning each bet (as when betting on Red in roulette).

(a) Compute P(X1 ≥ a).
(b) Compute P(X2 ≥ a).
(c) Compute P(X3 ≥ a).
(d) Guess the value of limn→∞ P(Xn ≥ a).
(e) Interpret part (d) in plain English.

PROBLEMS

11.1.10 Suppose you start with $10 and repeatedly bet $2 (instead of $1), having prob-

ability p of winning each time. Suppose your goal is $100, i.e., you keep on betting

until you either lose all your money, or reach $100.

(a) As a function of p, what is the probability that you will reach $100 before losing all

your money? Be sure to justify your solution. (Hint: You may find yourself dividing

both 10 and 100 by 2.)

(b) Suppose p = 0.4. Compute a numerical value for the solution in part (a).

(c) Compare the probabilities in part (b) with the corresponding probabilities if you bet

just $1 each time. Which is larger?

(d) Repeat part (b) for the case where you bet $10 each time. Does the probability of

success increase or decrease?

CHALLENGES

11.1.11 Prove that the formula for the gambler’s ruin probability P(τ c < τ 0) is a

continuous function of p, by proving that it is continuous at p = 1/2. That is, prove

that

lim
p→1/2

1− ((1− p)/p)a

1− ((1− p)/p)c
=

a

c
.

DISCUSSION TOPICS

11.1.12 Suppose you repeatedly play roulette in a real casino, betting the same amount

each time, continuing forever as long as you have money to bet. Is it certain that you

will eventually lose all your money? Why or why not?

11.1.13 In Problem 11.1.10, parts (c) and (d), can you explain intuitively why the

probabilities change as they do, as we increase the amount we bet each time?

11.1.14 Suppose you start at a and need to reach c, where c > a > 0. You must keep

gambling until you reach either c or 0. Suppose you are playing a subfair game (i.e.,
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p < 1/2), but you can choose how much to bet each time (i.e., you can bet $1, or $2,

or more, though of course you cannot bet more than you have). What betting amounts

do you think1 will maximize your probability of success, i.e., maximize P(τ c < τ 0)?
(Hint: The results of Problem 11.1.10 may provide a clue.)

11.2 Markov Chains
Intuitively, a Markov chain represents the random motion of some object. We shall

write Xn for the position (or value) of the object at time n. There are then rules that

give the probabilities for where the object will jump next.

A Markov chain requires a state space S, which is the set of all places the object

can go. (For example, perhaps S = {1, 2, 3}, or S = {top, bottom}, or S is the set of all

positive integers.)

A Markov chain also requires transition probabilities, which give the probabilities

for where the object will jump next. Specifically, for i, j ∈ S, the number pi j is

the probability that, if the object is at i , it will next jump to j . Thus, the collection

{pi j : i, j ∈ S} of transition probabilities satisfies pi j ≥ 0 for all i, j ∈ S, and∑
j∈S

pi j = 1

for each i ∈ S.

We also need to consider where the Markov chain starts. Often, we will simply

set X0 = s for some particular state s ∈ S. More generally, we could have an initial

distribution {µi : i ∈ S}, where µi = P(X0 = i). In this case, we need µi ≥ 0 for

each i ∈ S, and ∑
i∈S

µi = 1.

To summarize, here S is the state space of all places the object can go; µi represents

the probability that the object starts at the point i ; and pi j represents the probability

that, if the object is at the point i , it will then jump to the point j on the next step. In

terms of the sequence of random values X0, X1, X2, . . ., we then have that

P(Xn+1 = j | Xn = i) = pi j

for any positive integer n and any i, j ∈ S. Note that we also require that this jump

probability does not depend on the chain’s previous history. That is, we require

P(Xn+1 = j | Xn = i, Xn−1 = xn−1, . . . , X0 = x0) = pi j

for all n and all i, j, x0, . . . , xn−1 ∈ S.

1For more advanced results about this, see, e.g., Theorem 7.3 of Probability and Measure, 3rd ed., by

P. Billingsley (John Wiley & Sons, New York, 1995).
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11.2.1 Examples of Markov Chains

We present some examples of Markov chains here.

EXAMPLE 11.2.1

Let S = {1, 2, 3} consist of just three elements, and define the transition probabilities

by p11 = 0, p12 = 1/2, p13 = 1/2, p21 = 1/3, p22 = 1/3, p23 = 1/3, p31 = 1/4,

p32 = 1/4, and p33 = 1/2. This means that, for example, if the chain is at the state 3,

then it has probability 1/4 of jumping to state 1 on the next jump, probability 1/4 of

jumping to state 2 on the next jump, and probability 1/2 of remaining at state 3 on the

next jump.

This Markov chain jumps around on the three points {1, 2, 3} in a random and

interesting way. For example, if it starts at the point 1, then it might jump to 2 or to 3

(with probability 1/2 each). If it jumps to (say) 3, then on the next step it might jump to

1 or 2 (probability 1/4 each) or 3 (probability 1/2). It continues making such random

jumps forever.

Note that we can also write the transition probabilities pi j in matrix form, as

(pi j ) =

 0 1/2 1/2
1/3 1/3 1/3
1/4 1/4 1/2


(so that p31 = 1/4, etc.). The matrix

(
pi j

)
is then called a stochastic matrix. This

matrix representation is convenient sometimes.

EXAMPLE 11.2.2

Again, let S = {1, 2, 3}. This time define the transition probabilities
{

pi j

}
in matrix

form, as

(pi j ) =

 1/4 1/4 1/2
1/3 1/3 1/3
0.01 0.01 0.98

 .

This also defines a Markov chain on S. For example, from the state 3, there is proba-

bility 0.01 of jumping to state 1, probability 0.01 of jumping to state 2, and probability

0.98 of staying in state 3.

EXAMPLE 11.2.3

Let S = {bedroom, kitchen, den}. Define the transition probabilities {pi j } in matrix

form by

(pi j ) =

 1/4 1/4 1/2
0 0 1

0.01 0.01 0.98

 .

This defines a Markov chain on S. For example, from the bedroom, the chain has

probability 1/4 of staying in the bedroom, probability 1/4 of jumping to the kitchen,

and probability 1/2 of jumping to the den.
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EXAMPLE 11.2.4

This time let S = {1, 2, 3, 4}, and define the transition probabilities {pi j } in matrix

form, as

(pi j ) =


0.2 0.4 0 0.4
0.4 0.2 0.4 0

0 0.4 0.2 0.4
0.4 0 0.4 0.2

 .

This defines a Markov chain on S. For example, from the state 4, it has probability 0.4
of jumping to the state 1, but probability 0 of jumping to the state 2.

EXAMPLE 11.2.5

This time, let S = {1, 2, 3, 4, 5, 6, 7}, and define the transition probabilities {pi j } in

matrix form, as

(pi j ) =



1 0 0 0 0 0 0

1/2 0 1/2 0 0 0 0

0 1/5 4/5 0 0 0 0

0 0 1/3 1/3 1/3 0 0

1/10 0 0 0 7/10 0 1/5
0 0 0 0 0 0 1

0 0 0 0 0 1 0


.

This defines a (complicated!) Markov chain on S.

EXAMPLE 11.2.6 Random Walk on the Circle

Let S = {0, 1, 2, . . . , d − 1}, and define the transition probabilities by saying that

pi i = 1/3 for all i ∈ S, and also pi j = 1/3 whenever i and j are “next to” each other

around the circle. That is, pi j = 1/3 whenever j = i , or j = i +1, or j = i −1. Also,

p0,d−1 = pd−1,0 = 1/3. Otherwise, pi j = 0.

If we think of the d elements of S as arranged in a circle, then our object, at each

step, either stays where it is, or moves one step clockwise, or moves one step counter-

clockwise — each with probability 1/3. (Note in particular that it can go around the

“corner” by jumping from d − 1 to 0, or from 0 to d − 1, with probability 1/3.)

EXAMPLE 11.2.7 Ehrenfest’s Urn

Consider two urns, urn #1 and urn #2, where d balls are divided between the two urns.

Suppose at each step, we choose one ball uniformly at random from among the d balls

and switch it to the opposite urn. We let Xn be the number of balls in urn #1 at time n.

Thus, there are d − Xn balls in urn #2 at time n.

Here, the state space is S = {0, 1, 2, . . . , d} because these are all the possible

numbers of balls in urn #1 at any time n.

Also, if there are i balls in urn #1 at some time, then there is probability i/n that

we next choose one of those i balls, in which case the number of balls in urn #1 goes

down to i − 1. Hence,

pi,i−1 = i/d.

Similarly,

pi,i+1 = (d − i)/d
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because there is probability (d − i)/d that we will instead choose one of the d − i

balls in urn #2. Thus, this Markov chain moves randomly among the possible numbers

{0, 1, . . . , d} of balls in urn #1 at each time.

One might expect that, if d is large and the Markov chain is run for a long time,

there would most likely be approximately d/2 balls in urn #1. (We shall consider such

questions in Section 11.2.4.)

The above examples should convince you that Markov chains on finite state spaces

come in all shapes and sizes. Markov chains on infinite state spaces are also important.

Indeed, we have already seen one such class of Markov chains.

EXAMPLE 11.2.8 Simple Random Walk

Let S = {. . . ,−2,−1, 0, 1, 2, . . .} be the set of all integers. Then S is infinite, so we

cannot write the transition probabilities {pi j } in matrix form.

Fix a ∈ S, and let X0 = a. Fix a real number p with 0 < p < 1, and let pi,i+1 = p

and pi,i−1 = 1 − p for each i ∈ Z, with pi j = 0 if j 6= i ± 1. Thus, this Markov

chain begins at the point a (with probability 1) and at each step either increases by 1

(with probability p) or decreases by 1 (with probability 1 − p). It is easily seen that

this Markov chain corresponds precisely to the random walk (i.e., repeated gambling)

model of Section 11.1.2.

Finally, we note that in a group, you can create your own Markov chain, as follows

(try it — it’s fun!).

EXAMPLE 11.2.9

Form a group of between 5 and 50 people. Each group member should secretly pick

out two other people from the group, an “A person” and “B person.” Also, each group

member should have a coin.

Take any object, such as a ball, or a pen, or a stuffed frog. Give the object to one

group member to start. This person should then immediately flip the coin. If the coin

comes up heads, the group member gives (or throws!) the object to his or her A person.

If it comes up tails, the object goes to his or her B person. The person receiving the

object should then immediately flip the coin and continue the process. (Saying your

name when you receive the object is a great way for everyone to meet each other!)

Continue this process for a large number of turns. What patterns do you observe?

Does everyone eventually receive the object? With what frequency? How long does it

take the object to return to where it started? Make as many interesting observations as

you can; some of them will be related to the topics that follow.

11.2.2 Computing with Markov Chains

Suppose a Markov chain {Xn} has transition probabilities {pi j } and initial distribution

{µi }. Then P(X0 = i) = µi for all states i . What about P(X1 = i)? We have the

following result.
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Theorem 11.2.1 Consider a Markov chain {Xn}with state space S, transition prob-

abilities {pi j }, and initial distribution {µi }. Then for any i ∈ S,

P(X1 = i) =
∑
k∈S

µk pki .

PROOF From the law of total probability,

P(X1 = i) =
∑
k∈S

P(X0 = k, X1 = i).

But P(X0 = k, X1 = i) = P(X0 = k) P(X1 = i | X0 = k) = µk pki and the result

follows.

Consider an example of this.

EXAMPLE 11.2.10

Again, let S = {1, 2, 3}, and

(pi j ) =

 1/4 1/4 1/2
1/3 1/3 1/3
0.01 0.01 0.98

 .

Suppose that P(X0 = 1) = 1/7, P(X0 = 2) = 2/7, and P(X0 = 3) = 4/7. Then

P(X1 = 3) =
∑
k∈S

µk pk3 = (1/7)(1/2)+ (2/7)(1/3)+ (4/7)(0.98) = 0.73.

Thus, about 73% of the time, this chain will be in state 3 after one step.

To proceed, let us write

Pi (A) = P(A | X0 = i)

for the probability of the event A, assuming that the chain starts in the state i , that is,

assuming that µi = 1 and µ j = 0 for j 6= i . We then see that Pi (Xn = j) is the

probability that, if the chain starts in state i and is run for n steps, it will end up in state

j . Can we compute this?

For n = 0, we must have X0 = i . Hence, Pi (X0 = j) = 1 if i = j , while

Pi (X0 = j) = 0 if i 6= j .

For n = 1, we see that Pi (X1 = j) = pi j . That is, the probability that we will be

at the state j after one step is given by the transition probability pi j .

What about for n = 2? If we start at i and end up at j after 2 steps, then we have

to be at some state after 1 step. Let k be this state. Then we see the following.

Theorem 11.2.2 We have Pi (X1 = k, X2 = j) = pik pk j .

PROOF If we start at i , then the probability of jumping first to k is equal to pik .

Given that we have jumped first to k, the probability of then jumping to j is given by
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pk j . Hence,

Pi (X1 = k, X2 = j) = P(X1 = k, X2 = j | X0 = i)

= P(X1 = k | X0 = i) P(X2 = k | X1 = j, X0 = i)

= pik pk j .

Using this, we obtain the following.

Theorem 11.2.3 We have Pi (X2 = j) =
∑

k∈S pik pk j .

PROOF By the law of total probability,

Pi (X2 = j) =
∑
k∈S

Pi (X1 = k, X2 = j),

so the result follows from Theorem 11.2.2.

EXAMPLE 11.2.11

Consider again the chain of Example 11.2.1, with S = {1, 2, 3} and

(pi j ) =

 0 1/2 1/2
1/3 1/3 1/3
1/4 1/4 1/2

 .

Then

P1(X2 = 3) =
∑
k∈S

p1k pk3 = p11 p13 + p12 p23 + p13 p33

= (0)(1/2)+ (1/2)(1/3)+ (1/2)(1/2) = 1/6+ 1/4 = 5/12.

By induction (see Problem 11.2.18), we obtain the following.

Theorem 11.2.4 We have

Pi (Xn = j) =
∑

i1,i2,...,in−1∈S

pi i1
pi1i2

pi2i3
. . . pin−2in−1

pin−1 j .

PROOF See Problem 11.2.18.

Theorem 11.2.4 thus gives a complete formula for the probability, starting at a

state i at time 0, that the chain will be at some other state j at time n. We see from

Theorem 11.2.4 that, once we know the transition probabilities pi j for all i, j ∈ S,

then we can compute the values of Pi (Xn = j) for all i, j ∈ S, and all positive

integers n. (The computations get pretty messy, though!) The quantities Pi (Xn = j)
are sometimes called the higher-order transition probabilities.

Consider an application of this.
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EXAMPLE 11.2.12

Consider once again the chain with S = {1, 2, 3} and

(pi j ) =

 0 1/2 1/2
1/3 1/3 1/3
1/4 1/4 1/2

 .

Then

P1(X3 = 3) =
∑
k∈S

∑
`∈S

p1k pk` p`3

= p11 p11 p13 + p11 p12 p23 + p11 p13 p33 + p12 p21 p13 + p12 p22 p23 + p12 p23 p33

+ p13 p31 p13 + p13 p32 p23 + p13 p33 p33

= (0)(0)(1/2)+ (0)(1/2)(1/3)+ (0)(1/2)(1/2)+ (1/2)(1/3)(1/2)

+ (1/2)(1/3)(1/3)+ (1/2)(1/4)(1/2)+ (1/2)(1/4)(1/2)

+ (1/2)(1/4)(1/3)+ (1/2)(1/2)(1/2)

= 31/72.

Finally, we note that if we write A for the matrix (pi j ), write v0 for the row vec-

tor (µi ) = (P(X0 = i)), and write v1 for the row vector (P(X1 = i)), then Theo-

rem 11.2.1 can be written succinctly using matrix multiplication as v1 = v0 A. That

is, the (row) vector of probabilities for the chain after one step v1 is equal to the (row)

vector of probabilities for the chain after zero steps v0, multiplied by the matrix A of

transition probabilities. In fact, if we write vn for the row vector (P(Xn = i)), then

proceeding by induction, we see that vn+1 = vn A for each n. Therefore, vn = v0 An ,

where An is the nth power of the matrix A. In this context, Theorem 11.2.4 has a par-

ticularly nice interpretation. It says that Pi (Xn = j) is equal to the (i, j) entry of the

matrix An , i.e., the nth power of the matrix A.

11.2.3 Stationary Distributions

Suppose we have Markov chain transition probabilities {pi j } on a state space S. Let

{π i : i ∈ S} be a probability distribution on S, so that π i ≥ 0 for all i , and
∑

i∈S π i =
1. We have the following definition.

Definition 11.2.1 The distribution {π i : i ∈ S} is stationary for a Markov chain

with transition probabilities {pi j } on a state space S, if
∑

i∈S π i pi j = π j for all

j ∈ S.

The reason for the terminology “stationary” is that, if the chain begins with those

probabilities, then it will always have those same probabilities, as the following theo-

rem and corollary show.

Theorem 11.2.5 Suppose {π i : i ∈ S} is a stationary distribution for a Markov

chain with transition probabilities {pi j } on a state space S. Suppose that for some

integer n, we have P(Xn = i) = π i for all i ∈ S. Then we also have P(Xn+1 =
i) = π i for all i ∈ S.
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PROOF If {π i } is stationary, then we compute that

P(Xn+1 = j) =
∑
i∈S

P(Xn = i, Xn+1 = j)

=
∑
i∈S

P(Xn = i) P(Xn+1 = j | Xn = i) =
∑
i∈S

π i pi j = π j .

By induction, we obtain the following corollary.

Corollary 11.2.1 Suppose {π i : i ∈ S} is a stationary distribution for a Markov

chain with transition probabilities {pi j } on a state space S. Suppose that for some

integer n, we have P(Xn = i) = π i for all i ∈ S. Then we also have P(Xm = i) =
π i for all i ∈ S and all integers m > n.

The above theorem and corollary say that, once a Markov chain is in its stationary

distribution, it will remain in its stationary distribution forevermore.

EXAMPLE 11.2.13

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/4 1/4
1/2 1/4 1/4
1/2 1/4 1/4

 .

No matter where this Markov chain is, it always jumps with the same probabilities,

i.e., to state 1 with probability 1/2, to state 2 with probability 1/4, or to state 3 with

probability 1/4.

Indeed, if we set π1 = 1/2, π2 = 1/4, and π3 = 1/4, then we see that pi j = π j

for all i, j ∈ S. Hence,∑
i∈S

π i pi j =
∑
i∈S

π iπ j = π j

∑
i∈S

π i = π j (1) = π j .

Thus, {π i } is a stationary distribution. Hence, once in the distribution {π i }, the chain

will stay in the distribution {π i } forever.

EXAMPLE 11.2.14

Consider a Markov chain with S = {0, 1} and

(pi j ) =

(
0.1 0.9
0.6 0.4

)
.

If this chain had a stationary distribution {π i }, then we must have that

π0(0.1)+ π1(0.6) = π0,

π0(0.9)+ π1(0.4) = π1.

The first equation gives π1(0.6) = π0(0.9), so π1 = (3/2)(π0). This is also consistent

with the second equation. In addition, we require that π0 + π1 = 1, i.e., that π0 +
(3/2)π0 = 1, so that π0 = 2/5. Then π1 = (3/2)(2/5) = 3/5.
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We then check that the settings π0 = 2/5 and π1 = 3/5 satisfy the above equa-

tions. Hence, {π i } is indeed a stationary distribution for this Markov chain.

EXAMPLE 11.2.15

Consider next the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 .

We see that this Markov chain has the property that, in addition to having
∑

j∈S pi j =
1, for all i , it also has

∑
i∈S pi j = 1, for all j . That is, not only do the rows of the

matrix (pi j ) sum to 1, but so do the columns. (Such a matrix is sometimes called

doubly stochastic.)

Let π1 = π2 = π3 = 1/3, so that {π i } is the uniform distribution on S. Then we

compute that∑
i∈S

π i pi j =
∑
i∈S

(1/3)pi j = (1/3)
∑
i∈S

pi j = (1/3)(1) = π j .

Because this is true for all j , we see that {π i } is a stationary distribution for this Markov

chain.

EXAMPLE 11.2.16

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/4 1/4
1/3 1/3 1/3
0 1/4 3/4

 .

Does this Markov chain have a stationary distribution?

Well, if it had a stationary distribution {π i }, then the following equations would

have to be satisfied:

π1 = (1/2)π1 + (1/3)π2 + (0)π3,

π2 = (1/4)π1 + (1/3)π2 + (1/4)π3,

π3 = (1/4)π1 + (1/3)π2 + (3/4)π3.

The first equation gives π1 = (2/3)π2. The second equation then gives

(1/4)π3 = π2 − (1/4)π1 − (1/3)π2 = π2 − (1/4)(2/3)π2 − (1/3)π2 = (1/2)π2,

so that π3 = 2π2.

But we also require π1 + π2 + π3 = 1, i.e., (2/3)π2 + π2 + 2π2 = 1, so that

π2 = 3/11. Then π1 = 2/11, and π3 = 6/11.

It is then easily checked that the distribution given by π1 = 2/11, π2 = 3/11, and

π3 = 6/11 satisfies the preceding equations, so it is indeed a stationary distribution for

this Markov chain.
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EXAMPLE 11.2.17

Consider again random walk on the circle, as in Example 11.2.6. We observe that for

any state j , there are precisely three states i (namely, the state i = j , the state one

clockwise from j , and the state one counterclockwise from j) with pi j = 1/3. Hence,∑
i∈S pi j = 1. That is, the transition matrix (pi j ) is again doubly stochastic.

It then follows, just as in Example 11.2.15, that the uniform distribution, given by

π i = 1/d for i = 0, 1, . . . , d − 1, is a stationary distribution for this Markov chain.

EXAMPLE 11.2.18

For Ehrenfest’s urn (see Example 11.2.7), it is not obvious what might be a stationary

distribution. However, a possible solution emerges by thinking about each ball individ-

ually. Indeed, any given ball usually stays still but occasionally gets flipped from one

urn to the other. So it seems reasonable that in stationarity, it should be equally likely

to be in either urn, i.e., have probability 1/2 of being in urn #1.

If this is so, then the total number of balls in urn #1 would have the distribution

Binomial(n, 1/2), since there would be n balls, each having probability 1/2 of being

in urn #1.

To test this, we set π i =
(

d
i

)
/2d , for i = 0, 1, . . . , d . We then compute that if

1 ≤ j ≤ d − 1, then∑
i∈S

π i pi j = π j−1 p j−1, j + π j+1 p j+1, j

=

(
d

j − 1

)
1

2d

d − ( j − 1)

d
+

(
d

j + 1

)
1

2d

j + 1

d

=

(
d − 1

j − 1

)
1

2d
+

(
d − 1

j

)
1

2d
.

Next, we use the identity known as Pascal’s triangle, which says that(
d − 1

j − 1

)
+

(
d − 1

j

)
=

(
d

j

)
.

Hence, we conclude that ∑
i∈S

π i pi j =

(
d

j

)
1

2d
= π j .

With minor modifications (see Problem 11.2.19), the preceding argument works for

j = 0 and j = d as well. We therefore conclude that
∑

i∈S π i pi j = π j , for all j ∈ S.

Hence, {π i } is a stationary distribution.

One easy way to check for stationarity is the following.

Definition 11.2.2 A Markov chain is said to be reversible with respect to a distrib-

ution {π i } if, for all i, j ∈ S, we have π i pi j = π j p j i .

Theorem 11.2.6 If a Markov chain is reversible with respect to {π i }, then {π i } is a

stationary distribution for the chain.
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PROOF We compute, using reversibility, that for any j ∈ S,∑
i∈S

π i pi j =
∑
i∈S

π j p j i = π j

∑
i∈S

p j i = π j (1) = π j .

Hence, {π i } is a stationarity distribution.

EXAMPLE 11.2.19

Suppose S = {1, 2, 3, 4, 5}, and the transition probabilities are given by

(pi j ) =


1/3 2/3 0 0 0

1/3 0 2/3 0 0

0 1/3 0 2/3 0

0 0 1/3 0 2/3
0 0 0 1/3 2/3

 .

It is not immediately clear what stationary distribution this chain may possess. Fur-

thermore, to compute directly as in Example 11.2.16 would be quite messy.

On the other hand, we observe that for 1 ≤ i ≤ 4, we always have pi,i+1 =
2 pi+1,i . Hence, if we set π i = C2i for some C > 0, then we will have

π i pi,i+1 = C2i pi,i+1 = C2i 2 pi+1,i ,

while

π i+1 pi+1,i = C2i+1 pi+1,i .

Hence, π i pi,i+1 = π i+1 pi+1,i for each i .

Furthermore, pi j = 0 if i and j differ by at least 2. It follows that π i pi j = π j p j i

for each i, j ∈ S. Hence, the chain is reversible with respect to {π i }, and so {π i } is a

stationary distribution for the chain.

Finally, we solve for C . We need
∑

i∈S π i = 1. Hence, we must have C =

1/
∑

i∈S 2i = 1/
∑5

i=1 2i = 1/63. Thus, π i = 2i/63, for i ∈ S.

11.2.4 Markov Chain Limit Theorem

Suppose now that {Xn} is a Markov chain, which has a stationary distribution {π i }. We

have already seen that, if P(Xn = i) = π i for all i for some n, then also P(Xm = i) =
π i for all i for all m > n.

Suppose now that it is not the case that P(Xn = i) = π i for all i . One might still

expect that, if the chain is run for a long time (i.e., n → ∞), then the probability of

being at a particular state i ∈ S might converge to π i , regardless of the initial state

chosen. That is, one might expect that

lim
n→∞

P(Xn = i) = π i , (11.2.1)

for each i ∈ S , regardless of the initial distribution {µi }.
This is not true in complete generality, as the following two examples show. How-

ever, we shall see in Theorem 11.2.8 that this is indeed true for most Markov chains.
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EXAMPLE 11.2.20

Suppose that S = {1, 2} and that the transition probabilities are given by

(pi j ) =

(
1 0

0 1

)
.

That is, this Markov chain never moves at all! Suppose also that µ1 = 1, i.e., that we

always have X0 = 1.

In this case, any distribution is stationary for this chain. In particular, we can take

π1 = π2 = 1/2 as a stationary distribution. On the other hand, we clearly have

P1(Xn = 1) = 1 for all n. Because π1 = 1/2, and 1 6= 1/2, we do not have

limn→∞ P(Xn = i) = π i in this case.

We shall see later that this Markov chain is not “irreducible,” which is the obstacle

to convergence.

EXAMPLE 11.2.21

Suppose again that S = {1, 2}, but that this time the transition probabilities are given

by

(pi j ) =

(
0 1

1 0

)
.

That is, this Markov chain always moves from 1 to 2, and from 2 to 1. Suppose again

that µ1 = 1, i.e., that we always have X0 = 1.

We may again take π1 = π2 = 1/2 as a stationary distribution (in fact, this time

the stationary distribution is unique). On the other hand, this time we clearly have

P1(Xn = 1) = 1 for n even, and P1(Xn = 1) = 0 for n odd. Hence, again we do not

have limn→∞ P1(Xn = 1)→ π1 = 1/2.
We shall see that here the obstacle to convergence is that the Markov chain is “pe-

riodic,” with period 2.

In light of these examples, we make some definitions.

Definition 11.2.3 A Markov chain is irreducible if it is possible for the chain to

move from any state to any other state. Equivalently, the Markov chain is irreducible

if for any i, j ∈ S, there is a positive integer n with Pi (Xn = j) > 0.

Thus, the Markov chain of Example 11.2.20 is not irreducible because it is not

possible to get from state 1 to state 2. Indeed, in that case, P1(Xn = 2) = 0 for all n.

EXAMPLE 11.2.22

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/2 0

1/2 1/4 1/4
1/2 1/4 1/4

 .

For this chain, it is not possible to get from state 1 to state 3 in one step. On the other

hand, it is possible to get from state 1 to state 2, and then from state 2 to state 3. Hence,

this chain is still irreducible.
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EXAMPLE 11.2.23

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/2 0

3/4 1/4 0

1/2 1/4 1/4

 .

For this chain, it is not possible to get from state 1 to state 3 in one step. Furthermore,

it is not possible to get from state 2 to state 3, either. In fact, there is no way to ever get

from state 1 to state 3, in any number of steps. Hence, this chain is not irreducible.

Clearly, if a Markov chain is not irreducible, then the Markov chain convergence

(11.2.1) will not always hold, because it will be impossible to ever get to certain states

of the chain.

We also need the following definition.

Definition 11.2.4 Given Markov chain transitions {pi j } on a state space S, and

a state i ∈ S, the period of i is the greatest common divisor (g.c.d.) of the set

{n ≥ 1 : p
(n)
i i > 0}, where p

(n)
i i = P(Xn = i | X0 = i).

That is, the period of i is the g.c.d. of the times at which it is possible to travel from

i to i . For example, the period of i is 2 if it is only possible to travel from i to i in an

even number of steps. (Such was the case for Example 11.2.21.) On the other hand, if

pi i > 0, then clearly the period of i is 1.

Clearly, if the period of some state is greater than 1, then again (11.2.1) will not

always hold, because the chain will be able to reach certain states at certain times only.

This prompts the following definition.

Definition 11.2.5 A Markov chain is aperiodic if the period of each state is equal

to 1.

EXAMPLE 11.2.24

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 0 1 0

0 0 1

1 0 0

 .

For this chain, from state 1 it is possible only to get to state 2. And from state 2 it

is possible only to get to state 3. Then from state 3 it is possible only to get to state

1. Hence, it is possible only to return to state 1 after an integer multiple of 3 steps.

Hence, state 1 (and, indeed, all three states) has period equal to 3, and the chain is not

aperiodic.

EXAMPLE 11.2.25

Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 0 1 0

0 0 1

1/2 0 1/2

 .
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For this chain, from state 1 it is possible only to get to state 2. And from state 2 it is

possible only to get to state 3. However, from state 3 it is possible to get to either state

1 or state 3. Hence, it is possible to return to state 1 after either 3 or 4 steps. Because

the g.c.d. of 3 and 4 is 1, we conclude that the period of state 1 (and, indeed, of all

three states) is equal to 1, and the chain is indeed aperiodic.

We note the following simple fact.

Theorem 11.2.7 If a Markov chain has pi j > 0 for all i, j ∈ S, then the chain is

irreducible and aperiodic.

PROOF If pi j > 0 for all i, j ∈ S, then Pi (X1 = j) > 0 for all i, j ∈ S. Hence,

the Markov chain must be irreducible.

Also, if pi j > 0 for all i, j ∈ S, then the set {n ≥ 1 : p
(n)
i i > 0} contains the value

n = 1 (and, indeed, all positive integers n). Hence, its greatest common divisor must

be 1. Therefore, each state i has period 1, so the chain is aperiodic.

In terms of the preceding definitions, we have the following very important theorem

about Markov chain convergence.

Theorem 11.2.8 Suppose a Markov chain is irreducible and aperiodic and has a

stationary distribution {π i }. Then regardless of the initial distribution {µi }, we have

limn→∞ P(Xn = i) = π i for all states i .

PROOF For a proof of this, see more advanced probability books, e.g., pages 92–93

of A First Look at Rigorous Probability Theory, 2nd ed., by J. S. Rosenthal (World

Scientific Publishing, Singapore, 2006).

Theorem 11.2.8 shows that stationary distributions are even more important. Not

only does a Markov chain remain in a stationary distribution once it is there, but for

most chains (irreducible and aperiodic ones), the probabilities converge to the station-

ary distribution in any case. Hence, the stationary distribution provides fundamental

information about the long-term behavior of the Markov chain.

EXAMPLE 11.2.26

Consider again the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/4 1/4
1/2 1/4 1/4
1/2 1/4 1/4

 .

We have already seen that if we set π1 = 1/2, π2 = 1/4, and π3 = 1/4, then {π i }
is a stationary distribution. Furthermore, we see that pi j > 0 for all i, j ∈ S, so by

Theorem 11.2.7 the Markov chain must be irreducible and aperiodic.

We conclude that limn→∞ P(Xn = i) = π i for all states i . For example, limn→∞

P(Xn = 1) = 1/2. (Also, this limit does not depend on the initial distribution, so, for

example, limn→∞ P1(Xn = 1) = 1/2 and limn→∞ P2(Xn = 1) = 1/2, as well.)

In fact, for this example we will have P(Xn = i) = π i for all i provided n ≥ 1.
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EXAMPLE 11.2.27

Consider again the Markov chain of Example 11.2.14, with S = {0, 1} and

(pi j ) =

(
0.1 0.9
0.6 0.4

)
.

We have already seen that this Markov chain has a stationary distribution, given by

π0 = 2/5 and π1 = 3/5.

Furthermore, because pi j > 0 for all i, j ∈ S, this Markov chain is irreducible

and aperiodic. Therefore, we conclude that limn→∞ P(Xn = i) = π i . So, if (say)

n = 100, then we will have P(X100 = 0) ≈ 2/5, and P(X100 = 1) ≈ 3/5. Once again,

this conclusion does not depend on the initial distribution, so, e.g., limn→∞ P0(Xn =
i) = limn→∞ P1(Xn = i) = π i as well.

EXAMPLE 11.2.28

Consider again the Markov chain of Example 11.2.16, with S = {1, 2, 3}, and

(pi j ) =

 1/2 1/4 1/4
1/3 1/3 1/3
0 1/4 3/4

 .

We have already seen that this chain has a stationary distribution {π i } given by π1 =
2/11, π2 = 3/11, and π3 = 6/11.

Now, in this case, we do not have pi j > 0 for all i, j ∈ S because p31 = 0. On the

other hand, p32 > 0 and p21 > 0, so by Theorem 11.2.3, we have

P3(X2 = 1) =
∑
k∈S

p3k pk1 ≥ p32 p21 > 0.

Hence, the chain is still irreducible.

Similarly, we have P3(X2 = 3) ≥ p32 p23 > 0, and P3(X3 = 3) ≥ p32 p21 p13 > 0.

Therefore, because the g.c.d. of 2 and 3 is 1, we see that the g.c.d. of the set of n with

P3(Xn = 3) > 0 is also 1. Hence, the chain is still aperiodic.

Because the chain is irreducible and aperiodic, it follows from Theorem 11.2.8 that

limn→∞ P(Xn = i) = π i , for all states i . Hence, limn→∞ P(Xn = 1) = 2/11,
limn→∞ P(Xn = 2) = 3/11, and limn→∞ P(Xn = 3) = 6/11. Thus, if (say) n =
500, then we expect that P(X500 = 1) ≈ 2/11, P(X500 = 2) ≈ 3/11, and P(X500 =
3) ≈ 6/11.

Summary of Section 11.2

• A Markov chain is a sequence {Xn} of random variables, having transition prob-

abilities {pi j } such that P(Xn+1 = j | Xn = i) = pi j , and having an initial

distribution {µi } such that P(X0 = i) = µi .

• There are many different examples of Markov chains.

• All probabilities for all the Xn can be computed in terms of {µi } and {pi j }.

• A distribution {π i } is stationary for the chain if
∑

i∈S π i pi j = π j for all j ∈ S.
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• If the Markov chain is irreducible and aperiodic, and {π i } is stationary, then

limn→∞ P(Xn = i) = π i for all i ∈ S.

EXERCISES

11.2.1 Consider a Markov chain with S = {1, 2, 3}, µ1 = 0.7, µ2 = 0.1, µ3 = 0.2,

and

(pi j ) =

 1/4 1/4 1/2
1/6 1/2 1/3
1/8 3/8 1/2

 .

Compute the following quantities.

(a) P(X0 = 1)
(b) P(X0 = 2)
(c) P(X0 = 3)
(d) P(X1 = 2 | X0 = 1)
(e) P(X3 = 2 | X2 = 1)
(f) P(X1 = 2 | X0 = 2)
(g) P(X1 = 2).

11.2.2 Consider a Markov chain with S = {high, low}, µhigh = 1/3, µlow = 2/3, and

(pi j ) =

(
1/4 3/4
1/6 5/6

)
.

Compute the following quantities.

(a) P(X0 = high)
(b) P(X0 = low)
(c) P(X1 = high | X0 = high)
(d) P(X3 = high | X2 = low)
(e) P(X1 = high)

11.2.3 Consider a Markov chain with S = {0, 1}, and

(pi j ) =

(
0.2 0.8
0.3 0.7

)
.

(a) Compute Pi (X2 = j) for all four combinations of i, j ∈ S.

(b) Compute P0(X3 = 1).

11.2.4 Consider again the Markov chain with S = {0, 1} and

(pi j ) =

(
0.2 0.8
0.3 0.7

)
.

(a) Compute a stationary distribution {π i } for this chain.

(b) Compute limn→∞ P0(Xn = 0).
(c) Compute limn→∞ P1(Xn = 0).
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11.2.5 Consider the Markov chain of Example 11.2.5, with S = {1, 2, 3, 4, 5, 6, 7}
and

(pi j ) =



1 0 0 0 0 0 0

1/2 0 1/2 0 0 0 0

0 1/5 4/5 0 0 0 0

0 0 1/3 1/3 1/3 0 0

1/10 0 0 0 7/10 0 1/5
0 0 0 0 0 0 1

0 0 0 0 0 1 0


.

Compute the following quantities.

(a) P2(X1 = 1)
(b) P2(X1 = 2)
(c) P2(X1 = 3)
(d) P2(X2 = 1)
(e) P2(X2 = 2)
(f) P2(X2 = 3)
(g) P2(X3 = 3)
(h) P2(X3 = 1)
(i) P2(X1 = 7)
(j) P2(X2 = 7)
(k) P2(X3 = 7)
(l) maxn P2(Xn = 7) (i.e., the largest probability of going from state 2 to state 7 in n

steps, for any n)

(m) Is this Markov chain irreducible?

11.2.6 For each of the following transition probability matrices, determine (with ex-

planation) whether it is irreducible, and whether it is aperiodic.

(a)

(pi j ) =

(
0.2 0.8
0.3 0.7

)
(b)

(pi j ) =

 1/4 1/4 1/2
1/6 1/2 1/3
1/8 3/8 1/2


(c)

(pi j ) =

(
0 1

0.3 0.7

)
(d)

(pi j ) =

 0 1 0

1/3 1/3 1/3
0 1 0


(e)

(pi j ) =

 0 1 0

0 0 1

1 0 0
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(f)

(pi j ) =

 0 1 0

0 0 1

1/2 0 1/2


11.2.7 Compute a stationary distribution for the Markov chain of Example 11.2.4.

(Hint: Do not forget Example 11.2.15.)

11.2.8 Show that the random walk on the circle process (see Example 11.2.6) is

(a) irreducible.

(b) aperiodic.

(c) reversible with respect to its stationary distribution.

11.2.9 Show that the Ehrenfest’s Urn process (see Example 11.2.7) is

(a) irreducible.

(b) not aperiodic.

(c) reversible with respect to its stationary distribution.

11.2.10 Consider the Markov chain with S = {1, 2, 3}, and

(pi j ) =

 0 1 0

0 0 1

1/2 1/2 0

 .

(a) Determine (with explanation) whether or not the chain is irreducible.

(b) Determine (with explanation) whether or not the chain is aperiodic.

(c) Compute a stationary distribution for the chain.

(d) Compute (with explanation) a good approximation to P1(X500 = 2).

11.2.11 Repeat all four parts of Exercise 11.2.10 if S = {1, 2, 3} and

(pi j ) =

 0 1/2 1/2
0 0 1

1/2 1/2 0

 .

11.2.12 Consider a Markov chain with S = {1, 2, 3} and

(pi j ) =

 0.3 0.3 0.4
0.2 0.2 0.6
0.1 0.2 0.7

 .

(a) Is this Markov chain irreducible and aperiodic? Explain. (Hint: Do not forget

Theorem 11.2.7.)

(b) Compute P1(X1 = 3).
(c) Compute P1(X2 = 3).
(d) Compute P1(X3 = 3).
(e) Compute limn→∞ P1(Xn = 3). (Hint: find a stationary distribution for the chain.)

11.2.13 For the Markov chain of the previous exercise, compute P1(X1 + X2 ≥ 5).

11.2.14 Consider a Markov chain with S = {1, 2, 3} and

(pi j ) =

 1 0 0

0 0 1

0 1 0

 .



Chapter 11: Advanced Topic — Stochastic Processes 641

(a) Compute the period of each state.

(b) Is this Markov chain aperiodic? Explain.

11.2.15 Consider a Markov chain with S = {1, 2, 3} and

(pi j ) =

 0 1 0

0.5 0 0.5
0 1 0

 .

(a) Is this Markov chain irreducible? Explain.

(b) Is this Markov chain aperiodic? Explain.

PROBLEMS

11.2.16 Consider a Markov chain with S = {1, 2, 3, 4, 5}, and

(pi j ) =


1/5 4/5 0 0 0

1/5 0 4/5 0 0

0 1/5 0 4/5 0

0 0 1/5 0 4/5
0 0 0 1/5 4/5

 .

Compute a stationary distribution {π i } for this chain. (Hint: Use reversibility, as in

Example 11.2.19.)

11.2.17 Suppose 100 lily pads are arranged in a circle, numbered 0, 1, . . . , 99 (with

pad 99 next to pad 0). Suppose a frog begins at pad 0 and each second either jumps one

pad clockwise, or jumps one pad counterclockwise, or stays where it is — each with

probability 1/3. After doing this for a month, what is the approximate probability that

the frog will be at pad 55? (Hint: The frog is doing random walk on the circle, as in

Example 11.2.6. Also, the results of Example 11.2.17 and Theorem 11.2.8 may help.)

11.2.18 Prove Theorem 11.2.4. (Hint: Proceed as in the proof of Theorem 11.2.3, and

use induction.)

11.2.19 In Example 11.2.18, prove that
∑

i∈S π i pi j = π j when j = 0 and when

j = d .

DISCUSSION TOPICS

11.2.20 With a group, create the “human Markov chain” of Example 11.2.9. Make as

many observations as you can about the long-term behavior of the resulting Markov

chain.

11.3 Markov Chain Monte Carlo
In Section 4.5, we saw that it is possible to estimate various quantities (such as prop-

erties of real objects through experimentation, or the value of complicated sums or

integrals) by using Monte Carlo techniques, namely, by generating appropriate random
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variables on a computer. Furthermore, we have seen in Section 2.10 that it is quite easy

to generate random variables having certain special distributions. The Monte Carlo

method was used several times in Chapters 6, 7, 9, and 10 to assist in the implementa-

tion of various statistical methods.

However, for many (in fact, most!) probability distributions, there is no simple,

direct way to simulate (on a computer) random variables having such a distribution.

We illustrate this with an example.

EXAMPLE 11.3.1

Let Z be a random variable taking values on the set of all integers, with

P(Z = j) = C( j − 1/2)4e−3| j | cos2( j) (11.3.1)

for j = . . . ,−2,−1, 0, 1, 2, 3, . . ., where C = 1/
∑∞

j=−∞( j − 1/2)4e−3| j | cos2( j).

Now suppose that we want to compute the quantity A = E((Z − 20)2).
Well, if we could generate i.i.d. random variables Y1, Y2, . . . , YM with distribution

given by (11.3.1), for very large M , then we could estimate A by

A ≈ Â =
1

M

M∑
i=1

(Yi − 20)2.

Then Â would be a Monte Carlo estimate of A.

The problem, of course, is that it is not easy to generate random variables Yi with

this distribution. In fact, it is not even easy to compute the value of C .

Surprisingly, the difficulties described in Example 11.3.1 can sometimes be solved

using Markov chains. We illustrate this idea as follows.

EXAMPLE 11.3.2

In the context of Example 11.3.1, suppose we could find a Markov chain on the state

space S = {. . . ,−2,−1, 0, 1, 2, . . .} of all integers, which was irreducible and aperi-

odic and which had a stationary distribution given by π j = C( j − 1/2)4e−3| j | cos2( j)
for j ∈ S.

If we did, then we could run the Markov chain for a long time N , to get random

values X0, X1, X2, . . . , X N . For large enough N , by Theorem 11.2.8, we would have

P(X N = j) ≈ π j = C( j − 1/2)4e−3| j | cos2( j).

Hence, if we set Y1 = X N , then we would have P(Y1 = j) approximately equal to

(11.3.1), for all integers j . That is, the value of X N would be approximately as good

as a true random variable Y1 with this distribution.

Once the value of Y1 was generated, then we could repeat the process by again

running the Markov chain, this time to generate new random values

X
[2]
0 , X

[2]
1 , X

[2]
2 , . . . , X

[2]
N

(say). We would then have

P(X
[2]
N = j) ≈ π j = C( j − 1/2)4e−3| j | cos2( j).
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Hence, if we set Y2 = X
[2]
N , then we would have P(Y2 = j) approximately equal to

(11.3.1), for all integers j .

Continuing in this way, we could generate values Y1, Y2, Y3, . . . , YM , such that

these are approximately i.i.d. from the distribution given by (11.3.1). We could then,

as before, estimate A by

A ≈ Â =
1

M

M∑
i=1

(Yi − 20)2.

This time, the approximation has two sources of error. First, there is Monte Carlo

error because M might not be large enough. Second, there is Markov chain error,

because N might not be large enough. However, if M and N are both very large, then

Â will be a good approximation to A.

We summarize the method of the preceding example in the following theorem.

Theorem 11.3.1 (The Markov chain Monte Carlo method) Suppose we wish to

estimate the expected value A = E (h(Z)) , where P(Z = j) = π j for j ∈ S, with

P(Z = j) = 0 for j 6∈ S. Suppose for i = 1, 2, . . . ,M , we can generate values

X
[i]
0 , X

[i]
1 , X

[i]
2 , . . . , X

[i]
N from some Markov chain that is irreducible, aperiodic, and

has {π j } as a stationary distribution. Let

Â =
1

M

M∑
i=1

h(X
[i]
N ).

If M and N are sufficiently large, then A ≈ Â.

It is somewhat inefficient to run M different Markov chains. Instead, practitioners

often just run a single Markov chain, and average over the different values of the chain.

For an irreducible Markov chain run long enough, this will again converge to the right

answer, as the following theorem states.

Theorem 11.3.2 (The single-chain Markov chain Monte Carlo method) Suppose

we wish to estimate the expected value A = E (h(Z)) , where P(Z = j) = π j

for j ∈ S, with P(Z = j) = 0 for j 6∈ S. Suppose we can generate values

X0, X1, X2, . . . , X N from some Markov chain that is irreducible, aperiodic, and

has {π j } as a stationary distribution. For some integer B ≥ 0, let

Â =
1

N − B + 1

N∑
i=B+1

h(X i ).

If N − B is sufficiently large, then A ≈ Â.

Here, B is the burn-in time, designed to remove the influence of the chain’s starting

value X0. The best choice of B remains controversial among statisticians. However, if

the starting value X0 is “reasonable,” then it is okay to take B = 0, provided that N is

sufficiently large. This is what was done, for instance, in Example 7.3.2.
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These theorems indicate that, if we can construct a Markov chain that has {π i }
as a stationary distribution, then we can use that Markov chain to estimate quantities

associated with {π i }. This is a very helpful trick, and it has made the Markov chain

Monte Carlo method into one of the most popular techniques in the entire subject of

computational statistics.

However, for this technique to be useful, we need to be able to construct a Markov

chain that has {π i } as a stationary distribution. This sounds like a difficult problem!

Indeed, if {π i } were very simple, then we would not need to use Markov chain Monte

Carlo at all. But if {π i } is complicated, then how can we possibly construct a Markov

chain that has that particular stationary distribution?

Remarkably, this problem turns out to be much easier to solve than one might

expect. We now discuss one of the best solutions, the Metropolis–Hastings algorithm.

11.3.1 The Metropolis–Hastings Algorithm

Suppose we are given a probability distribution {π i } on a state space S. How can we

construct a Markov chain on S that has {π i } as a stationary distribution?

One answer is given by the Metropolis–Hastings algorithm. It designs a Markov

chain that proceeds in two stages. In the first stage, a new point is proposed from

some proposal distribution. In the second stage, the proposed point is either accepted

or rejected. If the proposed point is accepted, then the Markov chain moves there. If

it is rejected, then the Markov chain stays where it is. By choosing the probability

of accepting to be just right, we end up creating a Markov chain that has {π i } as a

stationary distribution.

The details of the algorithm are as follows. We start with a state space S, and

a probability distribution {π i } on S. We then choose some (simple) Markov chain

transition probabilities {qi j : i, j ∈ S} called the proposal distribution. Thus, we

require that qi j ≥ 0, and
∑

j∈S qi j = 1 for each i ∈ S. However, we do not assume

that {π i } is a stationary distribution for the chain {qi j }; indeed, the chain {qi j } might

not even have a stationary distribution.

Given Xn = i , the Metropolis–Hastings algorithm computes the value Xn+1 as

follows.

1. Choose Yn+1 = j according to the Markov chain {qi j }.

2. Set αi j = min
{

1,
π j q j i

π i qi j

}
(the acceptance probability).

3. With probability αi j , let Xn+1 = Yn+1 = j (i.e., accepting the proposal Yn+1).

Otherwise, with probability 1 − αi j , let Xn+1 = Xn = i (i.e., rejecting the

proposal Yn+1).

The reason for this unusual algorithm is given by the following theorem.

Theorem 11.3.3 The preceding Metropolis–Hastings algorithm results in a Markov

chain X0, X1, X2, . . . , which has {π i } as a stationary distribution.
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PROOF See Section 11.7 for the proof.

We consider some applications of this algorithm.

EXAMPLE 11.3.3

As in Example 11.3.1, suppose S = {. . . ,−2,−1, 0, 1, 2, . . .}, and

π j = C( j − 1/2)4e−3| j | cos2( j),

for j ∈ S. We shall construct a Markov chain having {π i } as a stationary distribution.

We first need to choose some simple Markov chain {qi j }. We let {qi j } be simple

random walk with p = 1/2, so that qi j = 1/2 if j = i + 1 or j = i − 1, and qi j = 0

otherwise.

We then compute that if j = i + 1 or j = i − 1, then

αi j = min

{
1,

q j iπ j

qi jπ i

}
= min

{
1,
(1/2)C( j − 1/2)4e−3| j | cos2( j)

(1/2)C(i − 1/2)4e3i cos2(i)

}
= min

{
1,
( j − 1/2)4e−3| j | cos2( j)

(i − 1/2)4e3i cos2(i)

}
. (11.3.2)

Note that C has cancelled out, so that αi j does not depend on C . (In fact, this will

always be the case.) Hence, we see that αi j , while somewhat messy, is still very easy

for a computer to calculate.

Given Xn = i , the Metropolis–Hastings algorithm computes the value Xn+1 as

follows.

1. Let Yn+1 = Xn + 1 or Yn+1 = Xn − 1, with probability 1/2 each.

2. Let j = Yn+1, and compute αi j as in (11.3.2).

3. With probability αi j , let Xn+1 = Yn+1 = j . Otherwise, with probability 1−αi j ,

let Xn+1 = Xn = i .

These steps can all be easily performed on a computer. If we repeat this for n =
0, 1, 2, . . . , N−1, for some large number N of iterations, then we will obtain a random

variable X N , where P(X N = j) ≈ π j = C( j − 1/2)4e−3| j | cos2( j), for all j ∈ S.

EXAMPLE 11.3.4

Again, let S = {. . . ,−2,−1, 0, 1, 2, . . .}, and this time let π j = K e− j4
, for j ∈ S.

Let the proposal distribution {qi j } correspond to a simple random walk with p = 1/4,

so that Yn+1 = Xn + 1 with probability 1/4, and Yn+1 = Xn − 1 with probability 3/4.

In this case, we compute that if j = i + 1, then

αi j = min

{
1,

q j iπ j

qi jπ i

}
= min

{
1,
(3/4)K e− j4

(1/4)K e−i4

}
= min

{
1, 3e j4−i4

}
. (11.3.3)

If instead j = i − 1, then

αi j = min

{
1,

q j iπ j

qi jπ i

}
= min

{
1,
(1/4)K e− j4

(3/4)K e−i4

}
= min

{
1, (1/3)e j4−i4

}
. (11.3.4)
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(Note that the constant K has again cancelled out, as expected.) Hence, again αi j is

very easy for a computer to calculate.

Given Xn = i , the Metropolis–Hastings algorithm computes the value Xn+1 as

follows.

1. Let Yn+1 = Xn + 1 with probability 1/4, or Yn+1 = Xn − 1 with probability

3/4.

2. Let j = Yn+1, and compute αi j using (11.3.3) and (11.3.4).

3. With probability αi j , let Xn+1 = Yn+1 = j . Otherwise, with probability 1−αi j ,

let Xn+1 = Xn = i .

Once again, these steps can all be easily performed on a computer; if repeated for

some large number N of iterations, then P(X N = j) ≈ π j = K e− j4
for j ∈ S.

The Metropolis–Hastings algorithm can also be used for continuous random vari-

ables by using densities, as follows.

EXAMPLE 11.3.5

Suppose we want to generate a sample from the distribution with density proportional

to

f (y) = e−y4

(1+ |y|)3.

So the density is C f (y), where C = 1/
∫∞
−∞ f (y) dy. How can we generate a random

variable Y such that Y has approximately this distribution, i.e., has probability density

approximately equal to C f (y)?
Let us use a proposal distribution given by an N (x, 1) distribution, namely, a nor-

mal distribution with mean x and variance 1. That is, given Xn = x , we choose Yn+1

by Yn+1 ∼ N (x, 1). Because the N (x, 1) distribution has density (2π)−1/2 e−(y−x)2/2,

this corresponds to a proposal density of q(x, y) = (2π)−1/2 e−(y−x)2/2.

As for the acceptance probability α(x, y), we again use densities, so that

α(x, y) = min

{
1,

C f (y) q(y, x)

C f (x) q(x, y)

}
= min

{
1,

(
1+ |y|

1+ |x |

)3
Ce−y4

(2π)−1/2 e−(y−x)2/2

Ce−x4
(2π)−1/2 e−(x−y)2/2

}

= min

{
1,

(
1+ |y|

1+ |x |

)3

e−y4+x4

}
. (11.3.5)

Given Xn = x , the Metropolis–Hastings algorithm computes the value Xn+1 as

follows.

1. Generate Yn+1 ∼ N (Xn, 1).

2. Let y = Yn+1, and compute α(x, y), as before.

3. With probability α(x, y), let Xn+1 = Yn+1 = y. Otherwise, with probability

1− α(x, y), let Xn+1 = Xn = x .
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Once again, these steps can all be easily performed on a computer; if repeated for

some large number N of iterations, then the random variable X N will approximately

have density given by C f (y).

11.3.2 The Gibbs Sampler

In Section 7.3.3 we discussed the Gibbs sampler and its application in a Bayesian

statistics problem. As we will now demonstrate, the Gibbs sampler is a specialized

version of the Metropolis–Hastings algorithm, designed for multivariate distributions.

It chooses the proposal probabilities qi j just right so that we always have αi j = 1, i.e.,

so that no rejections are ever required.

Suppose that S = {. . . ,−2,−1, 0, 1, 2, . . .} × {. . . ,−2,−1, 0, 1, 2, . . .}, i.e., S is

the set of all ordered pairs of integers i = (i1, i2). (Thus, (2, 3) ∈ S, and (−6, 14) ∈ S,

etc.) Suppose that some distribution {π i } is defined on S. Define a proposal distribution

{q(1)i j } as follows.

Let V (i) = { j ∈ S : j2 = i2}. That is, V (i) is the set of all states j ∈ S such that i

and j agree in their second coordinate. Thus, V (i) is a vertical line in S, which passes

through the point i .

In terms of this definition of V (i), define q
(1)
i j = 0 if j 6∈ V (i), i.e., if i and j differ

in their second coordinate. If j ∈ V (i), i.e., if i and j agree in their second coordinate,

then define

q
(1)
i j =

π j∑
k∈V (i) πk

.

One interpretation is that, if Xn = i , and P(Yn+1 = j) = q
(1)
i j for j ∈ S, then the

distribution of Yn+1 is the conditional distribution of {π i }, conditional on knowing that

the second coordinate must be equal to i2.

In terms of this choice of q
(1)
i j , what is αi j ? Well, if j ∈ V (i), then i ∈ V ( j), and

also V ( j) = V (i). Hence,

αi j = min

{
1,
π j q

(1)
j i

π i q
(1)
i j

}
= min

1,
π j

(
π i/

∑
k∈V ( j) πk

)
π i

(
π j/

∑
l∈V (i) π l

)


= min

{
1,
π jπ i

π iπ j

}
= min {1, 1} = 1.

That is, this algorithm accepts the proposal Yn+1 with probability 1, and never rejects

at all!

Now, this algorithm by itself is not very useful because it proposes only states in

V (i), so it never changes the value of the second coordinate at all. However, we can

similarly define a horizontal line through i by H(i) = { j ∈ S : j1 = i1}, so that H(i)
is the set of all states j such that i and j agree in their first coordinate. That is, H(i) is

a horizontal line in S that passes through the point i .
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We can then define q
(2)
i j = 0 if j 6∈ H(i) (i.e., if i and j differ in their first coordi-

nate), while if j ∈ V (i) (i.e., if i and j agree in their first coordinate), then

q
(2)
i j =

π j∑
k∈H(i) πk

.

As before, we compute that for this proposal, we will always have αi j = 1, i.e., the

Metropolis–Hastings algorithm with this proposal will never reject.

The Gibbs sampler works by combining these two different Metropolis–Hastings

algorithms, by alternating between them. That is, given a value Xn = i , it produces a

value Xn+1 as follows.

1. Propose a value Yn+1 ∈ V (i), according to the proposal distribution {q(1)i j }.

2. Always accept Yn+1 and set j = Yn+1, thus moving vertically.

3. Propose a value Zn+1 ∈ H( j), according to the proposal distribution {q(2)i j }.

4. Always accept Zn+1, thus moving horizontally.

5. Set Xn+1 = Zn+1.

In this way, the Gibbs sampler does a “zigzag” through the state space S, alternately

moving in the vertical and in the horizontal direction.

In light of Theorem 11.3.2, we immediately obtain the following.

Theorem 11.3.4 The preceding Gibbs sampler algorithm results in a Markov chain

X0, X1, X2, . . . that has {π i } as a stationary distribution.

The Gibbs sampler thus provides a particular way of implementing the Metropolis–

Hastings algorithm in multidimensional problems, which never rejects the proposed

values.

Summary of Section 11.3

• In cases that are too complicated for ordinary Monte Carlo techniques, it is pos-

sible to use Markov chain Monte Carlo techniques instead, by averaging values

arising from a Markov chain.

• The Metropolis–Hastings algorithm provides a simple way to create a Markov

chain with stationary distribution {π i }. Given Xn , it generates a proposal Yn+1

from a proposal distribution {qi j }, and then either accepts this proposal (and sets

Xn+1 = Yn+1) with probability αi j , or rejects this proposal (and sets Xn+1 =
Xn) with probability 1− αi j .

• Alternatively, the Gibbs sampler updates the coordinates one at a time from their

conditional distribution, such that we always have αi j = 1.
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EXERCISES

11.3.1 Suppose π i = Ce−(i−13)4 for i ∈ S = {. . . ,−2,−1, 0, 1, 2, . . .}, where C =

1/
∑∞

i=−∞ e−(i−13)4 . Describe in detail a Metropolis–Hastings algorithm for {π i },
which uses simple random walk with p = 1/2 for the proposals.

11.3.2 Suppose π i = C(i + 6.5)−8 for i ∈ S = {. . . ,−2,−1, 0, 1, 2, . . .}, where

C = 1/
∑∞

i=−∞(i + 6.5)−8. Describe in detail a Metropolis–Hastings algorithm for

{π i }, which uses simple random walk with p = 5/8 for the proposals.

11.3.3 Suppose π i = K e−i4−i6−i8
for i ∈ S = {. . . ,−2,−1, 0, 1, 2, . . .}, where

C = 1/
∑∞

i=−∞ e−i4−i6−i8
. Describe in detail a Metropolis–Hastings algorithm for

{π i }, which uses simple random walk with p = 7/9 for the proposals.

11.3.4 Suppose f (x) = e−x4−x6−x8
for x ∈ R1. Let K = 1/

∫∞
−∞ e−x4−x6−x8

dx .
Describe in detail a Metropolis–Hastings algorithm for the distribution having density

K f (x), which uses the proposal distribution N (x, 1), i.e., a normal distribution with

mean x and variance 1.

11.3.5 Let f (x) = e−x4−x6−x8
for x ∈ R1, and let K = 1/

∫∞
−∞ e−x4−x6−x8

dx .

Describe in detail a Metropolis–Hastings algorithm for the distribution having density

K f (x), which uses the proposal distribution N (x, 10), i.e., a normal distribution with

mean x and variance 10.

COMPUTER EXERCISES

11.3.6 Run the algorithm of Exercise 11.3.1. Discuss the output.

11.3.7 Run the algorithm of Exercise 11.3.2. Discuss the output.

PROBLEMS

11.3.8 Suppose S = {1, 2, 3, . . .}×{1, 2, 3, . . .}, i.e., S is the set of all pairs of positive

integers. For i = (i1, i2) ∈ S, suppose π i = C / 2i1+i2 for appropriate positive constant

C . Describe in detail a Gibbs sampler algorithm for this distribution {π i }.

COMPUTER PROBLEMS

11.3.9 Run the algorithm of Exercise 11.3.4. Discuss the output.

11.3.10 Run the algorithm of Exercise 11.3.5. Discuss the output.

DISCUSSION TOPICS

11.3.11 Why do you think Markov chain Monte Carlo algorithms have become so

popular in so many branches of science? (List as many reasons as you can.)

11.3.12 Suppose you will be using a Markov chain Monte Carlo estimate of the form

Â =
1

M

M∑
i=1

h(X
[i]
N ).
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Suppose also that, due to time constraints, your total number of iterations cannot be

more than one million. That is, you must have N M ≤ 1,000,000. Discuss the advan-

tages and disadvantages of the following choices of N and M .

(a) N =1,000,000 M = 1

(b) N = 1, M = 1,000,000

(c) N = 100, M = 10,000

(d) N = 10,000, M = 100

(e) N = 1000, M = 1000

(f) Which choice do you think would be best, under what circumstances? Why?

11.4 Martingales
In this section, we study a special class of stochastic processes called martingales. We

shall see that these processes are characterized by “staying the same on average.”

As motivation, consider again a simple random walk in the case of a fair game, i.e.,

with p = 1/2. Suppose, as in the gambler’s ruin setup, that you start at a and keep

going until you hit either c or 0, where 0 < a < c. Let Z be the value that you end up

with, so that we always have either Z = c or Z = 0. We know from Theorem 11.1.2

that in fact P(Z = c) = a/c, so that P(Z = 0) = 1− a/c.

Let us now consider the expected value of Z . We have that

E(Z) =
∑
z∈R1

z P(Z = z) = cP(Z = c)+ 0P(Z = 0) = c(a/c) = a.

That is, the average value of where you end up is a. But a is also the value at which

you started!

This is not a coincidence. Indeed, because p = 1/2 (i.e., the game was fair), this

means that “on average” you always stayed at a. That is, {Xn} is a martingale.

11.4.1 Definition of a Martingale

We begin with the definition of a martingale. For simplicity, we assume that the mar-

tingale is a Markov chain, though this is not really necessary.

Definition 11.4.1 Let X0, X1, X2, . . . be a Markov chain. The chain is a martingale

if for all n = 0, 1, 2, . . . , we have E(Xn+1 − Xn | Xn) = 0. That is, on average the

chain’s value does not change, regardless of what the current value Xn actually is.

EXAMPLE 11.4.1

Let {Xn} be simple random walk with p = 1/2. Then Xn+1 − Xn is equal to either 1

or −1, with probability 1/2 each. Hence,

E(Xn+1 − Xn | Xn) = (1)(1/2)+ (−1)(1/2) = 0,

so {Xn} stays the same on average and is a martingale. (Note that we will never actually

have Xn+1 − Xn = 0. However, on average we will have Xn+1 − Xn = 0.)
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EXAMPLE 11.4.2

Let {Xn} be simple random walk with p = 2/3. Then Xn+1 − Xn is equal to either 1

or −1, with probabilities 2/3 and 1/3, respectively. Hence,

E(Xn+1 − Xn | Xn) = (1)(2/3)+ (−1)(1/3) = 1/3 6= 0.

Thus, {Xn} is not a martingale in this case.

EXAMPLE 11.4.3

Suppose we start with the number 5 and then repeatedly do the following. We either add

3 to the number (with probability 1/4), or subtract 1 from the number (with probability

3/4). Let Xn be the number obtained after repeating this procedure n times. Then,

given the value of Xn , we see that Xn+1 = Xn +3 with probability 1/4, while Xn+1 =
Xn − 1 with probability 3/4. Hence,

E(Xn+1 − Xn | Xn) = (3)(1/4)+ (−1)(3/4) = 3/4− 3/4 = 0

and {Xn} is a martingale.

It is sometimes possible to create martingales in subtle ways, as follows.

EXAMPLE 11.4.4

Let {Xn} again be simple random walk, but this time for general p. Then Xn+1 − Xn

is equal to 1 with probability p, and to −1 with probability q = 1− p. Hence,

E(Xn+1 − Xn | Xn) = (1)(p)+ (−1)(q) = p − q = 2p − 1.

If p 6= 1/2, then this is not equal to 0. Hence, {Xn} does not stay the same on average,

so {Xn} is not a martingale.

On the other hand, let

Zn =

(
1− p

p

)Xn

,

i.e., Zn equals the constant (1− p)/p raised to the power of Xn . Then increasing Xn by

1 corresponds to multiplying Zn by (1− p)/p, while decreasing Xn by 1 corresponds

to dividing Zn by (1− p)/p, i.e., multiplying by p/(1− p). But Xn+1 = Xn + 1 with

probability p, while Xn+1 = Xn − 1 with probability q = 1 − p. Therefore, we see

that, given the value of Zn , we have

E(Zn+1 − Zn | Zn) =

(
1− p

p
Zn − Zn

)
p +

(
p

1− p
Zn − Zn

)
(1− p)

= ((1− p)Zn − pZn)+ (pZn − (1− p)Zn) = 0.

Accordingly, E(Zn+1− Zn | Zn) = 0, so that {Zn} stays the same on average, i.e., {Zn}
is a martingale.

11.4.2 Expected Values

Because martingales stay the same on average, we immediately have the following.
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Theorem 11.4.1 Let {Xn} be a martingale with X0 = a. Then E(Xn) = a for all

n.

This theorem sometimes provides very useful information, as the following exam-

ples demonstrate.

EXAMPLE 11.4.5

Let {Xn} again be simple random walk with p = 1/2. Then we have already seen that

{Xn} is a martingale. Hence, if X0 = a, then we will have E(Xn) = a for all n. That

is, for a fair game (i.e., for p = 1/2), no matter how long you have been gambling,

your average fortune will always be equal to your initial fortune a.

EXAMPLE 11.4.6

Suppose we start with the number 10 and then repeatedly do the following. We either

add 2 to the number (with probability 1/3), or subtract 1 from the number (with proba-

bility 2/3). Suppose we repeat this process 25 times. What is the expected value of the

number we end up with?

Without martingale theory, this problem appears to be difficult, requiring lengthy

computations of various possibilities for what could happen on each of the 25 steps.

However, with martingale theory, it is very easy.

Indeed, let Xn be the number after n steps, so that X0 = 10, X1 = 12 (with

probability 1/3) or X1 = 9 (with probability 2/3), etc. Then, because Xn+1 − Xn

equals either 2 (with probability 1/3) or −1 (with probability 2/3), we have

E(Xn+1 − Xn | Xn) = 2(1/3)+ (−1)(2/3) = 2/3− 2/3 = 0.

Hence, {Xn} is a martingale.

It then follows that E(Xn) = X0 = 10, for any n. In particular, E(X25) = 10.

That is, after 25 steps, on average the number will be equal to 10.

11.4.3 Stopping Times

If {Xn} is a martingale with X0 = a, then it is very helpful to know that E(Xn) = a

for all n. However, it is sometimes even more helpful to know that E(XT ) = a, where

T is a random time. Now, this is not always true; however, it is often true, as we shall

see. We begin with another definition.

Definition 11.4.2 Let {Xn} be a stochastic process, and let T be a random variable

taking values in {0, 1, 2, . . .}. Then T is a stopping time if for all m = 0, 1, 2, . . .,
the event {T = m} is independent of the values Xm+1, Xm+2, . . . . That is, when

deciding whether or not T = m (i.e., whether or not to “stop” at time m), we are

not allowed to look at the future values Xm+1, Xm+2, . . . .

EXAMPLE 11.4.7

Let {Xn} be simple random walk, let b be any integer, and let τ b = min{n ≥ 0 : Xn =
b} be the first time we hit the value b. Then τ b is a stopping time because the event

τ b = n depends only on X0, . . . , Xn , not on Xn+1, Xn+2, . . . .
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On the other hand, let T = τ b − 1, so that T corresponds to stopping just before

we hit b. Then T is not a stopping time because it must look at the future value Xm+1

to decide whether or not to stop at time m.

A key result about martingales and stopping times is the optional stopping theorem,

as follows.

Theorem 11.4.2 (Optional stopping theorem) Suppose {Xn} is a martingale with

X0 = a, and T is a stopping time. Suppose further that either

(a) the martingale is bounded up to time T , i.e., for some M > 0 we have |Xn| ≤ M

for all n ≤ T ; or

(b) the stopping time is bounded, i.e., for some M > 0 we have T ≤ M .

Then E(XT ) = a, i.e., on average the value of the process at the random time T is

equal to the starting value a.

PROOF For a proof and further discussion, see, e.g., page 273 of Probability: The-

ory and Examples, 2nd ed., by R. Durrett (Duxbury Press, New York, 1996).

Consider a simple application of this.

EXAMPLE 11.4.8

Let {Xn} be simple random walk with initial value a and with p = 1/2. Let r > a > s

be integers. Let T = min{τ r , τ s} be the first time the process hits either r or s. Then

r ≥ Xn ≥ s for n ≤ T , so that condition (a) of the optional stopping theorem applies.

We conclude that E(XT ) = a, i.e., that at time T , the walk will on average be equal to

a.

We shall see that the optional stopping theorem is useful in many ways.

EXAMPLE 11.4.9

We can use the optional stopping theorem to find the probability that the simple random

walk with p = 1/2 will hit r before hitting another value s.

Indeed, again let {Xn} be simple random walk with initial value a and p = 1/2,

with r > a > s integers and T = min{τ r , τ s}. Then as earlier, E(XT ) = a. We can

use this to solve for P(XT = r), i.e., for the probability that the walk hits r before

hitting s.

Clearly, we always have either XT = r or XT = s. Let h = P(XT = r). Then

E(XT ) = hr + (1 − h)s. Because E(XT ) = a, we must have a = hr + (1 − h)s.

Solving for h, we see that

P(XT = r) =
a − s

r − s
.

We conclude that the probability that the process will hit r before it hits s is equal

to (a − s)/(r − s). Note that absolutely no difficult computations were required to

obtain this result.

A special case of the previous example is particularly noteworthy.
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EXAMPLE 11.4.10

In the previous example, suppose r = c and s = 0. Then the value h = P(XT = r)
is precisely the same as the probability of success in the gambler’s ruin problem. The

previous example shows that h = (a − s)/(r − s) = a/c. This gives the same answer

as Theorem 11.1.2, but with far less effort.

It is impressive that, in the preceding example, martingale theory can solve the

gambler’s ruin problem so easily in the case p = 1/2. Our previous solution, without

using martingale theory, was much more difficult (see Section 11.7). Even more sur-

prising, martingale theory can also solve the gambler’s ruin problem when p 6= 1/2, as

follows.

EXAMPLE 11.4.11

Let {Xn} be simple random walk with initial value a and with p 6= 1/2. Let 0 < a < c

be integers. Let T = min {τ c, τ 0} be the first time the process hits either c or 0. To

solve the gambler’s ruin problem in this case, we are interested in g = P(XT = c).
We can use the optional stopping theorem to solve for the gambler’s ruin probability g,

as follows.

Now, {Xn} is not a martingale, so we cannot apply martingale theory to it. However,

let

Zn =

(
1− p

p

)Xn

.

Then {Zn} has initial value Z0 = ((1− p)/p)a . Also, we know from Example 11.4.4

that {Zn} is a martingale. Furthermore,

0 ≤ Zn ≤ max

{(
1− p

p

)c

,

(
1− p

p

)−c
}

for n ≤ T , so that condition (a) of the optional stopping theorem applies. We conclude

that

E(ZT ) = Z0 =

(
1− p

p

)a

.

Now, clearly, we always have either XT = c (with probability g) or XT = 0

(with probability 1 − g). In the former case, ZT = ((1 − p)/p)c, while in the latter

case, ZT = 1. Hence, E(ZT ) = g((1 − p)/p)c + (1 − g)(1). Because E(ZT ) =
((1− p) /p)a , we must have(

1− p

p

)a

= g

(
1− p

p

)c

+ (1− g)(1).

Solving for g, we see that

g =
((1− p)/p)a − 1

((1− p)/p)c − 1
.

This again gives the same answer as Theorem 11.1.2, this time for p 6= 1/2, but

again with far less effort.

Martingale theory can also tell us other surprising facts.
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EXAMPLE 11.4.12

Let {Xn} be simple random walk with p = 1/2 and with initial value a = 0. Will

the walk hit the value −1 some time during the first million steps? Probably yes, but

not for sure. Furthermore, conditional on not hitting −1, it will probably be extremely

large, as we now discuss.

Let T = min{106, τ−1}. That is, T is the first time the process hits −1, unless that

takes more than one million steps, in which case T = 106.

Now, {Xn} is a martingale. Also T is a stopping time (because it does not look

into the future when deciding whether or not to stop). Furthermore, we always have

T ≤ 106, so condition (b) of the optional stopping theorem applies. We conclude that

E(XT ) = a = 0.

On the other hand, by the law of total expectation, we have

E(XT ) = E(XT | XT = −1) P(XT = −1)+ E(XT | XT 6= −1) P(XT 6= −1).

Also, clearly E(XT | XT = −1) = −1. Let u = P(XT = −1), so that P(XT 6=
−1) = 1− u. Then we conclude that 0 = (−1)u + E(XT | XT 6= −1)(1− u), so that

E(XT | XT 6= −1) =
u

1− u
.

Now, clearly, u will be very close to 1, i.e., it is very likely that within 106 steps the

process will have hit −1. Hence, E(XT | XT 6= −1) is extremely large.

We may summarize this discussion as follows. Nearly always we have XT = −1.

However, very occasionally we will have XT 6= −1. Furthermore, the average value

of XT when XT 6= −1 is so large that overall (i.e., counting both the case XT = −1

and the case XT 6= −1), the average value of XT is 0 (as it must be because {Xn} is a

martingale)!

If one is not careful, then it is possible to be tricked by martingale theory, as follows.

EXAMPLE 11.4.13

Suppose again that {Xn} is simple random walk with p = 1/2 and with initial value

a = 0. Let T = τ−1, i.e., T is the first time the process hits −1 (no matter how long

that takes).

Because the process will always wait until it hits −1, we always have XT = −1.

Because this is true with probability 1, we also have E(XT ) = −1.

On the other hand, again {Xn} is a martingale, so again it appears that we should

have E(XT ) = 0. What is going on?

The answer, of course, is that neither condition (a) nor condition (b) of the optional

stopping theorem is satisfied in this case. That is, there is no limit to how large T might

have to be or how large Xn might get for some n ≤ T . Hence, the optional stopping

theorem does not apply in this case, and we cannot conclude that E(XT ) = 0. Instead,

E(XT ) = −1 here.

Summary of Section 11.4

• A Markov chain {Xn} is a martingale if it stays the same on average, i.e., if

E(Xn+1 − Xn | Xn) = 0 for all n. There are many examples.
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• A stopping time T for the chain is a nonnegative integer-valued random variable

that does not look into the future of {Xn}. For example, perhaps T = τ b is the

first time the chain hits some state b.

• If {Xn} is a martingale with stopping time T , and if either T or {Xn}n≤T is

bounded, then E(XT ) = X0. This can be used to solve many problems, e.g.,

gambler’s ruin.

EXERCISES

11.4.1 Suppose we define a process {Xn} as follows. Given Xn , with probability 3/8
we let Xn+1 = Xn−4, while with probability 5/8 we let Xn+1 = Xn+C . What value

of C will make {Xn} be a martingale?

11.4.2 Suppose we define a process {Xn} as follows. Given Xn , with probability p we

let Xn+1 = Xn + 7, while with probability 1− p we let Xn+1 = Xn − 2. What value

of p will make {Xn} be a martingale?

11.4.3 Suppose we define a process {Xn} as follows. Given Xn , with probability p we

let Xn+1 = 2Xn , while with probability 1− p we let Xn+1 = Xn/2. What value of p

will make {Xn} be a martingale?

11.4.4 Let {Xn} be a martingale, with initial value X0 = 14. Suppose for some n, we

know that P(Xn = 8)+ P(Xn = 12)+ P(Xn = 17) = 1, i.e., Xn is always either 8,

12, or 17. Suppose further that P(Xn = 8) = 0.1. Compute P(Xn = 14).

11.4.5 Let {Xn} be a martingale, with initial value X0 = 5. Suppose we know that

P(X8 = 3) + P(X8 = 4) + P(X8 = 6) = 1, i.e., X8 is always either 3, 4, or 6.

Suppose further that P(X8 = 3) = 2 P(X8 = 6). Compute P(X8 = 4).

11.4.6 Suppose you start with 175 pennies. You repeatedly flip a fair coin. Each time

the coin comes up heads, you win a penny; each time the coin comes up tails, you lose

a penny.

(a) After repeating this procedure 20 times, how many pennies will you have on aver-

age?

(b) Suppose you continue until you have either 100 or 200 pennies, and then you stop.

What is the probability you will have 200 pennies when you stop?

11.4.7 Define a process {Xn} by X0 = 27, and Xn+1 = 3Xn with probability 1/4, or

Xn+1 = Xn/3 with probability 3/4. Let T = min {τ 1, τ 81} be the first time the process

hits either 1 or 81.

(a) Show that {Xn} is a martingale.

(b) Show that T is a stopping time.

(c) Compute E(XT ).
(d) Compute the probability P(XT = 1) that the process hits 1 before hitting 81.

PROBLEMS

11.4.8 Let {Xn} be a stochastic process, and let T1 be a stopping time. Let T2 = T1+ i

and T3 = T1 − i , for some positive integer i . Which of T2 and T3 is necessarily a

stopping time, and which is not? (Explain your reasoning.)
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11.4.9 Let {Xn} be a stochastic process, and let T1 and T2 be two different stopping

times. Let T3 = min {T1, T2}, and T4 = max {T1, T2}.
(a) Is T3 necessarily a stopping time? (Explain your reasoning.)

(b) Is T4 necessarily a stopping time? (Explain your reasoning.)

11.5 Brownian Motion
The simple random walk model of Section 11.1.2 (with p = 1/2) can be extended to

an interesting continuous-time model, called Brownian motion, as follows. Roughly,

the idea is to speed up time faster and faster by a factor of M (for very large M),

while simultaneously shrinking space smaller and smaller by a factor of 1/
√

M . The

factors of M and 1/
√

M are chosen just right so that, using the central limit theorem,

we can derive properties of Brownian motion. Indeed, using the central limit theorem,

we shall see that various distributions related to Brownian motion are in fact normal

distributions.

Historically, Brownian motion gets its name from Robert Brown, a botanist, who

in 1828 observed the motions of tiny particles in solution, under a microscope, as

they were bombarded from random directions by many unseen molecules. Brownian

motion was proposed as a model for the observed chaotic, random movement of such

particles. In fact, Brownian motion turns out not to be a very good model for such

movement (for example, Brownian motion has infinite derivative, which would only

make sense if the particles moved infinitely quickly!). However, Brownian motion has

many useful mathematical properties and is also very important in the theory of finance

because it is often used as a model of stock price fluctuations. A proper mathematical

theory of Brownian motion was developed in 1923 by Norbert Wiener2; as a result,

Brownian motion is also sometimes called the Wiener process.

We shall construct Brownian motion in two steps. First, we construct faster and

faster random walks, to be called {Y (M)t } where M is large. Then, we take the limit as

M →∞ to get Brownian motion.

11.5.1 Faster and Faster Random Walks

To begin, we let Z1, Z2, . . . be i.i.d. with P(Zi = +1) = P(Zi = −1) = 1/2. For

each M ∈ {1, 2, . . .}, define a discrete-time random process

{Y (M)i/M : i = 0, 1, . . .},

by Y
(M)
0 = 0, and

Y
(M)
(i+1)/M

= Y
(M)
i
M

+
1
√

M
Zi+1,

for i = 0, 1, 2, . . . so that

Y
(M)
i/M =

1
√

M
(Z1 + Z2 + · · · + Zi ).

2Wiener was such an absent-minded professor that he once got lost and could not find his house. In his

confusion, he asked a young girl for directions, without recognizing the girl as his daughter!
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Intuitively, then, {Y (M)i/M } is like an ordinary (discrete-time) random walk (with p =
1/2), except that time has been sped up by a factor of M and space has been shrunk

by a factor of
√

M (each step in the new walk moves a distance 1/
√

M). That is, this

process takes lots and lots of very small steps.

To make {Y (M)i/M } into a continuous-time process, we can then “fill in” the missing

values by making the function linear on the intervals [i/M, (i + 1) /M]. In this way,

we obtain a continuous-time process

{Y ∗(M)t : t ≥ 0},

which agrees with {Y (M)i/M } whenever t = 1/M . In Figure 11.5.1, we have plotted

{Y (10)
i/10 : i = 0, 1, . . . , 20}

(the dots) and the corresponding values of

{Y ∗(10)
t : 0 ≤ t ≤ 20}

(the solid line), arising from the realization

(Z1, . . . , Z20) = (1,−1,−1,−1,−1, 1, . . .) ,

where we have taken 1/
√

10 = 0.316.

2.01.91.81.71.61.51.41.31.21.11.00.90.80.70.60.50.40.30.20.10.0

0.9490.949

0.6320.6320.6320.6320.632

0.3160.3160.3160.3160.3160.316

0.0000.0000.0000.0000.000

0.3160.316

0.632

t

Y

Figure 11.5.1: Plot of some values of Y
(10)
i/10 and Y

∗(10)
t .

The collection of variables {Y ∗(M)t : t ≥ 0} is then a stochastic process but is now

indexed by the continuous time parameter t ≥ 0. This is an example of a continuous-

time stochastic process.

Now, the factors M and
√

M have been chosen carefully, as the following theorem

illustrates.
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Theorem 11.5.1 Let {Y ∗(M)t : t ≥ 0} be as defined earlier. Then for large M :

(a) For t ≥ 0, the distribution of Y
∗(M)
t is approximately N (0, t), i.e., normally

distributed with mean t .

(b) For s, t ≥ 0, the covariance

Cov
(

Y
∗(M)
t , Y

∗(M)
t

)
is approximately equal to min {s, t}.
(c) For t ≥ s ≥ 0, the distribution of the increment Y

∗(M)
t − Y

∗(M)
s is approxi-

mately N (0, t − s), i.e., normally distributed with mean 0 and variance t − s, and

is approximately independent of Y
∗(M)
s .

(d) Y
∗(M)
t is a continuous function of t .

PROOF See Section 11.7 for the proof of this result.

We shall use this limit theorem to construct Brownian motion.

11.5.2 Brownian Motion as a Limit

We have now developed the faster and faster processes {Y ∗(M)t : t ≥ 0}, and some

of their properties. Brownian motion is then defined as the limit as M → ∞ of the

processes {Y ∗(M)t : t ≥ 0}. That is, we define Brownian motion {Bt : t ≥ 0} by saying

that the distribution of {Bt : t ≥ 0} is equal to the limit as M →∞ of the distribution

of {Y ∗(M)t : t ≥ 0}. A graph of a typical run of Brownian motion is in Figure 11.5.2.

2.52.01.51.00.50.0

2

1

0

1

t

B

Figure 11.5.2: A typical outcome from Brownian motion.

In this way, all the properties of Y
∗(M)
t for large M , as developed in Theorem 11.5.1,

will apply to Brownian motion, as follows.
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Theorem 11.5.2 Let {Bt : t ≥ 0} be Brownian motion. Then

(a) Bt is normally distributed: Bt ∼ N (0, t) for any t ≥ 0;

(b) Cov(Bs, Bt ) = E(Bs Bt ) = min {s, t} for s, t ≥ 0;

(c) if 0 < s < t , then the increment Bt − Bs is normally distributed: Bt − Bs ∼
N (0, t − s), and furthermore Bt − Bs is independent of Bs ;

(d) the function {Bt }t≥0 is a continuous function.

This theorem can be used to compute many things about Brownian motion.

EXAMPLE 11.5.1

Let {Bt } be Brownian motion. What is P(B5 ≤ 3)?
We know that B5 ∼ N (0, 5). Hence, B5/

√
5 ∼ N (0, 1). We conclude that

P(B5 ≤ 3) = P(B5/
√

5 ≤ 3/
√

5) = 8(3/
√

5) = 0.910,

where

8(x) =

∫ x

−∞

1
√

2π
e−s2/2 ds

is the cdf of a standard normal distribution, and we have found the numerical value

from Table D.2. Thus, about 91% of the time, Brownian motion will be less than 3 at

time 5.

EXAMPLE 11.5.2

Let {Bt } be Brownian motion. What is P(B7 ≥ −4)?
We know that B7 ∼ N (0, 7). Hence, B7/

√
7 ∼ N (0, 1). We conclude that

P(B7 ≥ −4) = 1− P(B7 ≤ −4) = 1− P(B7/
√

7 ≤ −4/
√

7)

= 1−8(−4/
√

7) = 1− 0.065 = 0.935.

Thus, over 93% of the time, Brownian motion will be at least −4 at time 7.

EXAMPLE 11.5.3

Let {Bt } be Brownian motion. What is P(B8 − B6 ≤ −1.5)?
We know that B8−B6 ∼ N (0, 8−6) = N (0, 2). Hence, (B8−B6)/

√
2 ∼ N (0, 1).

We conclude that

P(B8 − B6 ≤ −1.5) = P((B8 − B6)/
√

2 ≤ −1.5/
√

2) = 8(−1.5/
√

2) = 0.144.

Thus, about 14% of the time, Brownian motion will decrease by at least 1.5 between

time 6 and time 8.

EXAMPLE 11.5.4

Let {Bt } be Brownian motion. What is P(B2 ≤ −0.5, B5 − B2 ≥ 1.5)?
By Theorem 11.5.2, we see that B5 − B2 and B2 are independent. Hence,

P(B2 ≤ −0.5, B5 − B2 ≥ 1.5) = P(B2 ≤ −0.5) P(B5 − B2 ≥ 1.5).

Now, we know that B2 ∼ N (0, 2). Hence, B2/
√

2 ∼ N (0, 1), and

P(B2 ≤ −0.5) = P(B2/
√

2 ≤ −0.5/
√

2) = 8(−0.5/
√

2).
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Similarly, B5 − B2 ∼ N (0, 3), so (B5 − B2)/
√

3 ∼ N (0, 1), and

P(B5 − B2 ≥ 1.5) = P((B5 − B2)/
√

3 ≥ 1.5/
√

3)

= 1− P((B5 − B2)/
√

3 < 1.5/
√

3) = 8(1.5/
√

3).

We conclude that

P(B2 ≤ −0.5, B5 − B2 ≥ 1.5) = P(B2 ≤ −0.5) P(B5 − B2 ≥ 1.5)

= 8(−0.5/
√

2)8(1.5/
√

3) = 0.292.

Thus, about 29% of the time, Brownian motion will be no more than −1/2 at time 2

and will then increase by at least 1.5 between time 2 and time 5.

We note also that, because Brownian motion was created from simple random

walks with p = 1/2, it follows that Brownian motion is a martingale. This implies

that E(Bt ) = 0 for all t , but of course, we already knew that because Bt ∼ N (0, t).
On the other hand, we can now use the optional stopping theorem (Theorem 11.4.2) to

conclude that E(BT ) = 0, where T is a stopping time (provided, as usual, that either

T or {Bt : t ≤ T } is bounded). This allows us to compute certain probabilities, as

follows.

EXAMPLE 11.5.5

Let {Bt } be Brownian motion. Let c < 0 < b. What is the probability the process will

hit c before it hits b?

To solve this problem, we let τ c be the first time the process hits c, and τ b be the

first time the process hits b. We then let T = min {τ c, τ b} be the first time the process

either hits c or hits b. The question becomes, what is P(τ c < τ b)? Equivalently, what

is P(BT = c)?
To solve this, we note that we must have E(BT ) = B0 = 0. But if h = P(BT = c),

then BT = c with probability h, and BT = b with probability 1 − h. Hence, we must

have 0 = E(BT ) = hc + (1− h)b, so that h = b/(b − c). We conclude that

P(BT = c) = P(τ c < τ b) =
b

b − c
.

(Recall that c < 0, so that b − c = |b| + |c| here.)

Finally, we note that although Brownian motion is a continuous function, it turns

out that, with probability one, Brownian motion is not differentiable anywhere at all!

This is part of the reason that Brownian motion is not a good model for the movement of

real particles. (See Challenge 11.5.15 for a result related to this.) However, Brownian

motion has many other uses, including as a model for stock prices, which we now

describe.

11.5.3 Diffusions and Stock Prices

Brownian motion is used to construct various diffusion processes, as follows.

Given Brownian motion {Bt }, we can let

X t = a + δt + σ Bt ,
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where a and δ are any real numbers, and σ ≥ 0. Then {X t } is a diffusion.

Here, a is the initial value, δ (called the drift) is the average rate of increase, and σ
(called the volatility parameter) represents the amount of randomness of the diffusion.

Intuitively, X t is approximately equal to the linear function a + δt , but due to

the randomness of Brownian motion, X t takes on random values around this linear

function.

The precise distribution of X t can be computed, as follows.

Theorem 11.5.3 Let {Bt } be Brownian motion, and let X t = a + δt + σ Bt be a

diffusion. Then

(a) E(X t ) = a + δt ,
(b) Var(X t ) = σ 2t ,

(c) X t ∼ N (a + δt, σ 2t).

PROOF We know Bt ∼ N (0, 1), so E(Bt ) = 0 and Var(Bt ) = t . Also, a + δt is

not random (i.e., is a constant from the point of view of random variables). Hence,

E(X t ) = E(a + δt + σ Bt ) = a + δt + σ E(Bt ) = a + δt ,

proving part (a).

Similarly,

Var(X t ) = Var(a + δt + σ Bt ) = Var(σ Bt ) = σ
2Var(Bt ) = σ

2t ,

proving part (b).

Finally, because X t is a linear function of the normally distributed random variable

Bt , X t must be normally distributed by Theorem 4.6.1. This proves part (c).

Diffusions are often used as models for stock prices. That is, it is often assumed

that the price X t of a stock at time t is given by X t = a + δt + σ Bt for appropriate

values of a, δ, and σ .

EXAMPLE 11.5.6

Suppose a stock has initial price $20, drift of $3 per year, and volatility parameter 1.4.

What is the probability that the stock price will be over $30 after two and a half years?

Here, the stock price after t years is given by X t = 20 + 3t + 1.4Bt and is thus a

diffusion.

So, after 2.5 years, we have X2.5 = 20+ 7.5+ 1.4B2.5 = 27.5+ 1.4B2.5. Hence,

P(X2.5 > 30) = P(27.5+ 1.4B2.5 > 30) = P(B2.5 > (30− 27.5)/1.4)

= P(B2.5 > 1.79).

But like before,

P(B2.5 > 1.79) = 1− P(B2.5 ≤ 1.79) = 1− P(B2.5/
√

2.5 ≤ 1.79/
√

2.5)

= 1−8(1.79/
√

2.5) = 0.129.

We conclude that P(X2.5 > 30) = 0.129.
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Hence, there is just under a 13% chance that the stock will be worth more than $30

after two and a half years.

EXAMPLE 11.5.7

Suppose a stock has initial price $100, drift of −$2 per year, and volatility parameter

5.5. What is the probability that the stock price will be under $90 after just half a year?

Here, the stock price after t years is given by X t = 100 − 2t + 5.5Bt and is again

a diffusion. So, after 0.5 years, we have X0.5 = 100− 1.0+ 5.5B0.5 = 99+ 5.5B0.5.
Hence,

P(X0.5 < 90) = P(99+ 5.5B0.5 < 90) = P(B0.5 < (90− 99)/5.5)

= P(B0.5 < −1.64) = P(B0.5/
√

0.5 ≤ −1.64/
√

0.5)

= 8(−1.64/
√

0.5) = 8(−2.32) = 0.010.

Therefore, there is about a 1% chance that the stock will be worth less than $90 after

half a year.

More generally, the drift δ and volatility σ could be functions of the value X t ,

leading to more complicated diffusions {X t }, though we do not pursue this here.

Summary of Section 11.5

• Brownian motion {Bt }t≥0 is created from simple random walk with p = 1/2, by

speeding up time by a large factor M , and shrinking space by a factor 1/
√

M .

• Hence, B0 = 0, Bt ∼ N (0, t), and {Bt } has independent normal increments with

Bt − Bs ∼ N (0, t − s) for 0 ≤ s < t , and Cov(Bs, Bt ) = min(s, t), and {Bt } is

a continuous function.

• Diffusions (often used to model stock prices) are of the form X t = a+δt+σ Bt .

EXERCISES

11.5.1 Consider the speeded-up processes {Y (M)i/M } used to construct Brownian motion.

Compute the following quantities.

(a) P(Y
(1)
1 = 1)

(b) P(Y
(2)
1 = 1)

(c) P(Y
(2)
1 =

√
2) (Hint: Don’t forget that

√
2 = 2/

√
2.)

(d) P(Y
(M)
1 ≥ 1) for M = 1, M = 2, M = 3, and M = 4

11.5.2 Let {Bt } be Brownian motion. Compute P(B1 ≥ 1).

11.5.3 Let {Bt } be Brownian motion. Compute each of the following quantities.

(a) P(B2 ≥ 1)
(b) P(B3 ≤ −4)
(c) P(B9 − B5 ≤ 2.4)
(d) P(B26 − B11 > 9.8)
(e) P(B26.3 ≤ −6)
(f) P(B26.3 ≤ 0)
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11.5.4 Let {Bt } be Brownian motion. Compute each of the following quantities.

(a) P(B2 ≥ 1, B5 − B2 ≥ 2)
(b) P(B5 < −2, B13 − B5 ≥ 4)
(c) P(B8.4 > 3.2, B18.6 − B8.4 ≥ 0.9)

11.5.5 Let {Bt } be Brownian motion. Compute E(B13 B8). (Hint: Do not forget

part (b) of Theorem 11.5.2.)

11.5.6 Let {Bt } be Brownian motion. Compute E((B17 − B14)
2) in two ways.

(a) Use the fact that B17 − B14 ∼ N (0, 3).
(b) Square it out, and compute E(B2

17)− 2 E(B17 B14)+ E(B2
14).

11.5.7 Let {Bt } be Brownian motion.

(a) Compute the probability that the process hits −5 before it hits 15.

(b) Compute the probability that the process hits −15 before it hits 5.

(c) Which of the answers to Part (a) or (b) is larger? Why is this so?

(d) Compute the probability that the process hits 15 before it hits −5.

(e) What is the sum of the answers to parts (a) and (d)? Why is this so?

11.5.8 Let X t = 5 + 3t + 2Bt be a diffusion (so that a = 5, δ = 3, and σ = 2).

Compute each of the following quantities.

(a) E(X7)
(b) Var(X8.1)
(c) P(X2.5 < 12)
(d) P(X17 > 50)

11.5.9 Let X t = 10− 1.5 t + 4Bt . Compute E(X3 X5).

11.5.10 Suppose a stock has initial price $400 and has volatility parameter equal to 9.

Compute the probability that the stock price will be over $500 after 8 years, if the drift

per year is equal to

(a) $0.

(b) $5.

(c) $10.

(d) $20.

11.5.11 Suppose a stock has initial price $200 and drift of $3 per year. Compute

the probability that the stock price will be over $250 after 10 years, if the volatility

parameter is equal to

(a) 1.

(b) 4.

(c) 10.

(d) 100.

PROBLEMS

11.5.12 Let {Bt } be Brownian motion, and let X = 2B3 − 7B5. Compute the mean

and variance of X .

11.5.13 Prove that P(Bt < x) = P(Bt > −x) for any t ≥ 0 and any x ∈ R1.
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CHALLENGES

11.5.14 Compute P(Bs ≤ x | Bt = y), where 0 < s < t , and x, y ∈ R1. (Hint: You

will need to use conditional densities.)

11.5.15 (a) Let f : R1 → R1 be a Lipschitz function, i.e., a function for which there

exists K <∞ such that | f (x)− f (y)| ≤ K |x − y| for all x, y ∈ R1. Compute

lim
h↘0

( f (t + h)− f (t))2

h

for any t ∈ R1.

(b) Let {Bt } be Brownian motion. Compute

lim
h↘0

E

(
(Bt+h − Bt )

2

h

)
for any t > 0.

(c) What do parts (a) and (b) seem to imply about Brownian motion?

(d) It is a known fact that all functions that are continuously differentiable on a closed

interval are Lipschitz. In light of this, what does part (c) seem to imply about Brownian

motion?

DISCUSSION TOPICS

11.5.16 Diffusions such as those discussed here (and more complicated, varying co-

efficient versions) are very often used by major investors and stock traders to model

stock prices.

(a) Do you think that diffusions provide good models for stock prices?

(b) Even if diffusions did not provide good models for stock prices, why might in-

vestors still need to know about them?

11.6 Poisson Processes
Finally, we turn our attention to Poisson processes. These processes are models for

events that happen at random times Tn . For example, Tn could be the time of the

nth fire in a city, or the detection of the nth particle by a Geiger counter, or the nth car

passing a checkpoint on a road. Poisson processes provide a model for the probabilities

for when these events might take place.

More formally, we let a > 0, and let R1, R2, . . . be i.i.d. random variables, each

having the Exponential(a) distribution. We let T0 = 0, and for n ≥ 1,

Tn = R1 + R2 + · · · + Rn .

The value Tn thus corresponds to the (random) time of the nth event.

We also define a collection of counting variables Nt , as follows. For t ≥ 0, we let

Nt = max{n : Tn ≤ t}.
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That is, Nt counts the number of events that have happened by time t . (In particular,

N0 = 0. Furthermore, Nt = 0 for all t < T1, i.e., before the first event occurs.)

We can think of the collection of variables Nt for t ≥ 0 as being a stochastic

process, indexed by the continuous time parameter t ≥ 0. The process {Nt : t ≥ 0} is

thus another example, like Brownian motion, of a continuous-time stochastic process.

In fact, {Nt : t ≥ 0} is called a Poisson process (with intensity a). This name comes

from the following.

Theorem 11.6.1 For any t > 0, the distribution of Nt is Poisson(at).

PROOF See Section 11.7 for the proof of this result.

In fact, even more is true.

Theorem 11.6.2 Let 0 = t0 ≤ t1 < t2 < t3 < · · · < td . Then for i = 1, 2, . . . , d,

the distribution of Nti − Nti−1
is Poisson(a(ti − ti−1)). Furthermore, the random

variables Nti − Nti−1
, for i = 1, . . . , d, are independent.

PROOF See Section 11.7 for the proof of this result.

EXAMPLE 11.6.1

Let {Nt } be a Poisson process with intensity a = 5. What is P(N3 = 12)?
Here, N3 ∼ Poisson(3a) = Poisson(15). Hence, from the definition of the Poisson

distribution, we have

P(N3 = 12) = e−15(15)12 / 12! = 0.083,

which is a little more than 8%.

EXAMPLE 11.6.2

Let {Nt } be a Poisson process with intensity a = 2. What is P(N6 = 11)?
Here N6 ∼ Poisson(6a) = Poisson(12). Hence,

P(N6 = 11) = e−12(12)11/11! = 0.114,

or just over 11%.

EXAMPLE 11.6.3

Let {Nt } be a Poisson process with intensity a = 4. What is P(N2 = 3, N5 = 4)?
(Recall that here the comma means “and” in probability statements.)

We begin by writing P(N2 = 3, N5 = 4) = P(N2 = 3, N5 − N2 = 1). This

is just rewriting the question. However, it puts it into a context where we can use

Theorem 11.6.2.

Indeed, by that theorem, N2 and N5 − N2 are independent, with N2 ∼ Poisson(8)
and N5 − N2 ∼ Poisson(12). Hence,

P(N2 = 3, N5 = 4) = P(N2 = 3, N5 − N2 = 1)

= P(N2 = 3) P(N5 − N2 = 1)

= e−8 83

3!
e−12 121

1!
= 0.0000021.

We thus see that the event {N2 = 3, N5 = 4} is very unlikely in this case.
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Summary of Section 11.6

• Poisson processes are models of events that happen at random times Tn .

• It is assumed that the time Rn = Tn − Tn−1 between consecutive events in

Exponential(a) for some a > 0. Then Nt represents the total number of events

by time t .

• It follows that Nt ∼ Poisson(at), and in fact the process {Nt }t≥0 has independent

increments, with Nt − Ns ∼ Poisson(a(t − s)) for 0 ≤ s < t .

EXERCISES

11.6.1 Let {N (t)}t≥0 be a Poisson process with intensity a = 7. Compute the follow-

ing probabilities.

(a) P(N2 = 13)
(b) P(N5 = 3)
(c) P(N6 = 20).
(d) P(N50 = 340)
(e) P(N2 = 13, N5 = 3).
(f) P(N2 = 13, N6 = 20)
(g) P(N2 = 13, N5 = 3, N6 = 20)

11.6.2 Let {N (t)}t≥0 be a Poisson process with intensity a = 3. Compute P(N1/2 =
6) and P(N0.3 = 5).

11.6.3 Let {N (t)}t≥0 be a Poisson process with intensity a = 1/3. Compute P(N2 =
6) and P(N3 = 5).

11.6.4 Let {N (t)}t≥0 be a Poisson process with intensity a = 3. Compute P(N2 =
6, N3 = 5). Explain your answer.

11.6.5 Let {N (t)}t≥0 be a Poisson process with intensity a > 0. Compute (with expla-

nation) the conditional probability P (N2.6 = 2 | N2.9 = 2) .

11.6.6 Let {N (t)}t≥0 be a Poisson process with intensity a = 1/3. Compute (with

explanation) the following conditional probabilities.

(a) P(N6 = 5 | N9 = 5)
(b) P(N6 = 5 | N9 = 7)
(c) P(N9 = 5 | N6 = 7)
(d) P(N9 = 7 | N6 = 7)
(e) P(N9 = 12 | N6 = 7)

PROBLEMS

11.6.7 Let {Nt : t ≥ 0} be a Poisson process with intensity a > 0. Let 0 < s < t , and

let j be a positive integer.

(a) Compute (with explanation) the conditional probability P(Ns = j | Nt = j).
(b) Does the answer in part (a) depend on the value of the intensity a? Intuitively, why

or why not?

11.6.8 Let {Nt : t ≥ 0} be a Poisson process with intensity a > 0. Let T1 be the time

of the first event, as usual. Let 0 < s < t .
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(a) Compute P(Ns = 1 | Nt = 1). (If you wish, you may use the previous problem,

with j = 1.)

(b) Suppose t is fixed, but s is allowed to vary in the interval (0, t). What does the an-

swer to part (b) say about the “conditional distribution” of T1, conditional on knowing

that Nt = 1?

11.7 Further Proofs
Proof of Theorem 11.1.1

We want to prove that when {Xn} is a simple random walk, n is a positive integer, and

if k is an integer such that −n ≤ k ≤ n and n + k is even, then

P(Xn = a + k) =

(
n

n+k
2

)
p(n+k)/2q(n−k)/2.

For all other values of k, we have P(Xn = a + k) = 0. Furthermore,

E(Xn) = a + n(2p − 1).

Of the first n bets, let Wn be the number won, and let Ln be the number lost. Then

n = Wn + Ln . Also, Xn = a +Wn − Ln .

Adding these two equations together, we conclude that n + Xn = Wn + Ln + a +
Wn − Ln = a + 2Wn . Solving for Wn , we see that Wn = (n + Xn − a)/2. Because

Wn must be an integer, it follows that n + Xn − a must be even. We conclude that

P(Xn = a + k) = 0 unless n + k is even.

On the other hand, solving for Xn , we see that Xn = a + 2Wn − n, or Xn −
a = 2Wn − n. Because 0 ≤ Wn ≤ n, it follows that −n ≤ Xn − a ≤ n, i.e., that

P(Xn = a + k) = 0 if k < −n or k > n.

Suppose now that k + n is even, and −n ≤ k ≤ n. Then from the above, P(Xn =
a + k) = P(Wn = (n + k)/2). But the distribution of Wn is clearly Binomial(n, p).
We conclude that

P(Xn = a + k) =

(
n

n+k
2

)
p(n+k)/2q(n−k)/2,

provided that k + n is even and −n ≤ k ≤ n.

Finally, because Wn ∼ Binomial(n, p), therefore E(Wn) = np. Hence, because

Xn = a+2Wn−n, therefore E(Xn) = a+2E(Wn)−n = a+2np−n = a+n(2p−1),
as claimed.

Proof of Theorem 11.1.2

We want to prove that when {Xn} is a simple random walk, with some initial fortune a

and probability p of winning each bet, and 0 < a < c, then the probability P(τ c < τ 0)
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of hitting c before 0 is given by

P(τ c < τ 0) =


a/c p = 1/2

1−
(

q
p

)a

1−
(

q
p

)c p 6= 1/2.

To begin, let us write s(b) for the probability P(τ c < τ 0)when starting at the initial

fortune b, for any 0 ≤ b ≤ c. We are interested in computing s(a). However, it turns

out to be easier to solve for all of the values s(0), s(1), s(2), . . . , s(c) simultaneously,

and this is the trick we use.

We have by definition that s(0) = 0 (i.e., if we start with $0, then we can never

win) and s(c) = 1 (i.e., if we start with $c, then we have already won). So, those two

cases are easy. However, the values of s(b) for 1 ≤ b ≤ c − 1 are not obtained as

easily.

Our trick will be to develop equations that relate the values s(b) for different values

of b. Indeed, suppose 1 ≤ b ≤ c − 1. It is difficult to compute s(b) directly. However,

it is easy to understand what will happen on the first bet — we will either lose $1 with

probability p, or win $1 with probability q . That leads to the following result.

Lemma 11.7.1 For 1 ≤ b ≤ c − 1, we have

s(b) = ps(b + 1)+ qs(b − 1). (11.7.1)

PROOF Suppose first that we win the first bet, i.e., that Z1 = 1. After this first

bet, we will have fortune b + 1. We then get to “start over” in our quest to reach c

before reaching 0, except this time starting with fortune b+1 instead of b. Hence, after

winning this first bet, our chance of reaching c before reaching 0 is now s(b+ 1). (We

still do not know what s(b + 1) is, but at least we are making a connection between

s(b) and s(b + 1).)
Suppose instead that we lose this first bet, i.e., that Z1 = −1. After this first bet,

we will have fortune b− 1. We then get to “start over” with fortune b− 1 instead of b.

Hence, after this first bet, our chance of reaching c before reaching 0 is now s(b − 1).
We can combine all of the preceding information, as follows.

s(b) = P(τ c < τ 0)

= P(Z1 = 1, τ c < τ 0)+ P(Z1 = −1, τ c < τ 0)

= ps(b + 1)+ qs(b − 1)

That is, s(b) = p s(b + 1)+ q s(b − 1), as claimed.

So, where are we? We had c + 1 unknowns, s(0), s(1), . . . , s(c). We now know

the two equations s(0) = 0 and s(c) = 1, plus the c − 1 equations of the form s(b) =
p s(b+1)+q s(b−1) for b = 1, 2, . . . , c−1. In other words, we have c+1 equations

in c + 1 unknowns, so we can now solve our problem!

The solution still requires several algebraic steps, as follows.



670 Section 11.7: Further Proofs

Lemma 11.7.2 For 1 ≤ b ≤ c − 1, we have

s(b + 1)− s(b) =
q

p
(s(b)− s(b − 1)).

PROOF Recalling that p + q = 1, we rearrange (11.7.1) as follows.

s(b) = p s(b + 1)+ q s(b − 1)

(p + q)s(b) = p s(b + 1)+ q s(b − 1)

q(s(b)− s(b − 1)) = p(s(b + 1)− s(b))

And finally,

s(b + 1)− s(b) =
q

p
(s(b)− s(b − 1)),

which gives the result.

Lemma 11.7.3 For 0 ≤ b ≤ c, we have

s(b) =
b−1∑
i=0

(
q

p

)i

s(1). (11.7.2)

PROOF Applying the equation of Lemma 11.7.2 with b = 1, we obtain

s(2)− s(1) =
q

p
(s(1)− s(0)) =

q

p
s(1)

(because s(0) = 0). Applying it again with b = 2, we obtain

s(3)− s(2) =
q

p
(s(2)− s(1)) =

(
q

p

)2

(s(1)− s(0)) =

(
q

p

)2

s(1).

By induction, we see that

s(b + 1)− s(b) =

(
q

p

)b

s(1),

for b = 0, 1, 2, . . . , c − 1. Hence, we compute that for b = 0, 1, 2, . . . , c,

s(b)

= (s(b)− s(b − 1))+ (s(b − 1)− s(b − 2))+ (s(b − 2)− s(b − 3))+ · · ·

+ (s(1)− s(0))

=
b−1∑
i=0

(s(i + 1)− s(i)) =
b−1∑
i=0

(
q

p

)i

s(1).

This gives the result.
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We are now able to finish the proof of Theorem 11.1.2.

If p = 1/2, then q/p = 1, so (11.7.2) becomes s(b) = bs(1). But s(c) = 1, so we

must have cs(1) = 1, i.e., s(1) = 1/c. Then s(b) = bs(1) = b/c. Hence, s(a) = a/c
in this case.

If p 6= 1/2, then q/p 6= 1, so (11.7.2) is a geometric series, and becomes

s(b) =
(q/p)b − 1

(q/p)− 1
s(1).

Because s(c) = 1, we must have

1 =
(q/p)c − 1

(q/p)− 1
s(1),

so

s(1) =
(q/p)− 1

(q/p)c − 1
.

Then

s(b) =
(q/p)b − 1

(q/p)− 1
s(1) =

(q/p)b − 1

(q/p)− 1

(q/p)− 1

(q/p)c − 1
=
(q/p)b − 1

(q/p)c − 1
.

Hence,

s(a) =
(q/p)a − 1

(q/p)c − 1

in this case.

Proof of Theorem 11.1.3

We want to prove that when {Xn} is a simple random walk, with initial fortune a > 0

and probability p of winning each bet, then the probability P(τ 0 < ∞) that the walk

will ever hit 0 is given by

P(τ 0 <∞) =

{
1 p ≤ 1/2
(q/p)a p > 1/2.

By continuity of probabilities, we see that

P(τ 0 <∞) = lim
c→∞

P(τ 0 < τ c) = lim
c→∞

(1− P(τ c < τ 0)) .

Hence, if p = 1/2, then P(τ 0 <∞) = limc→∞ (1− a/c) = 1.

Now, if p 6= 1/2, then

P(τ 0 <∞) = lim
c→∞

(
1−

1− (q/p)a

1− (q/p)c

)
.

If p < 1/2, then q/p > 1, so limc→∞(q/p)c = ∞, and P(τ 0 <∞) = 1. If p > 1/2,
then q/p < 1, so limc→∞(q/p)c = 0, and P(τ 0 <∞) = (q/p)a .
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Proof of Theorem 11.3.3

We want to prove that the Metropolis–Hastings algorithm results in a Markov chain

X0, X1, X2, . . . , which has {π i } as a stationary distribution.

We shall prove that the resulting Markov chain is reversible with respect to {π i },
i.e., that

π i P(Xn+1 = j | Xn = i) = π j P(Xn+1 = i | Xn = j), (11.7.3)

for i, j ∈ S. It will then follow from Theorem 11.2.6 that {π i } is a stationary distribu-

tion for the chain.

We thus have to prove (11.7.3). Now, (11.7.3) is clearly true if i = j , so we can

assume that i 6= j .

But if i 6= j , and Xn = i , then the only way we can have Xn+1 = j is if Yn+1 = j

(i.e., we propose the state j , which we will do with probability pi j ). Also we accept

this proposal (which we will do with probability αi j ). Hence,

P(Xn+1 = j | Xn = i) = qi jαi j = qi j min

{
1,
π j q j i

π i qi j

}
= min

{
qi j ,

π j q j i

π i

}
.

It follows that π i P(Xn+1 = j | Xn = i) = min{π i qi j , π j q j i }.
Similarly, we compute that π j P(Xn+1 = i | Xn = j) = min{π j q j i , π i qi j }. It

follows that (11.7.3) is true.

Proof of Theorem 11.5.1

We want to prove that when {Y ∗(M)t : t ≥ 0} is as defined earlier, then for large M:

(a) For t ≥ 0, the distribution of Y
∗(M)
t is approximately N (0, t), i.e., normally dis-

tributed with mean t.

(b) For s, t ≥ 0, the covariance

Cov
(

Y
∗(M)
t , Y

∗(M)
t

)
is approximately equal to min {s, t}.
(c) For t ≥ s ≥ 0, the distribution of the increment

Y
∗(M)
t − Y ∗(M)s

is approximately N (0, t− s), i.e., normally distributed with mean 0 and variance t− s,

and is approximately independent of Y
∗(M)
s .

(d) Y
∗(M)
t is a continuous function of t .

Write brc for the greatest integer not exceeding r , so that, e.g., b7.6c = 7. Then we

see that for large M , t is very close to bt Mc /M , so that Y
∗(M)
t is very close (formally,

within O(1/M) in probability) to

A = Y
(M)
bt Mc/M =

1
√

M
(Z1 + Z2 + · · · + Zbt Mc).



Chapter 11: Advanced Topic — Stochastic Processes 673

Now, A is equal to 1/
√

M times the sum of bt Mc different i.i.d. random variables,

each having mean 0 and variance 1. It follows from the central limit theorem that A

converges in distribution to the distribution N (0, t) as M →∞. This proves part (a).

For part (b), note that also Y
∗(M)
s is very close to

B = Y
(M)
bs Mc/M =

1
√

M
(Z1 + Z2 + · · · + Zbs Mc).

Because E(Zi ) = 0, we must have E(A) = E(B) = 0, so that Cov(A, B) = E(AB).
For simplicity, assume s ≤ t; the case s > t is similar. Then we have

Cov(A, B) = E(AB)

=
1

M
E
(
(Z1 + Z2 + · · · + Zbs Mc)(Z1 + Z2 + · · · + Zbt Mc)

)
=

1

M
E

(
bs Mc∑
i=1

bt Mc∑
j=1

Zi Z j

)
=

1

M

bs Mc∑
i=1

bt Mc∑
j=1

E(Zi Z j ).

Now, we have E(Zi Z j ) = 0 unless i = j , in which case E(Zi Z j ) = 1. There will

be precisely bs Mc terms in the sum for which i = j , namely, one for each value of i

(since t ≥ s). Hence,

Cov(A, B) =
bs Mc

M
,

which converges to s as M →∞. This proves part (b).

Part (c) follows very similarly to part (a). Finally, part (d) follows because the

function Y
(M)
t was constructed in a continuous manner (as in Figure 11.5.1).

Proof of Theorem 11.6.1

We want to prove that for any t > 0, the distribution of Nt is Poisson(at).

We first require a technical lemma.

Lemma 11.7.4 Let gn(t) = e−at an tn−1/(n − 1)! be the density of the

Gamma(n, a) distribution. Then for n ≥ 1,∫ t

0

gn(s) ds =
∞∑

i=n

e−at (at)i/ i!. (11.7.4)

PROOF If t = 0, then both sides are 0. For other t , differentiating with respect to

t , we see (setting j = i − 1) that ∂
∂t

∑∞
i=n e−at (at)i/ i! =

∑∞
i=n(−ae−at (at)i/ i! +

e−at ai t i−1/(i − 1)!) =
∑∞

i=n(−e−at ai+1t i/ i!)+
∑∞

j=n−1 e−at a j+1t j/j! =

e−at a(n−1)+1tn−1/(n−1)! = gn(t) =
∂
∂t

∫ t

0
gn(s) ds. Because this is true for all t ≥ 0,

we see that (11.7.4) is satisfied for any n ≥ 0.

Recall (see Example 2.4.16) that the Exponential(λ) distribution is the same as the

Gamma(1, λ) distribution. Furthermore, (see Problem 2.9.15) if X ∼ Gamma(α1, λ)
and Y ∼ Gamma(α2, λ) are independent, then X + Y ∼ Gamma(α1 + α2, λ).
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Now, in our case, we have Tn = R1+ R2+ · · ·+ Rn , where Ri ∼ Exponential(a) =
Gamma(1, a). It follows that Tn ∼ Gamma(n, a). Hence, the density of Tn is gn(t) =
e−at an tn−1/(n − 1)!.

Now, the event that Nt ≥ n (i.e., that the number of events by time t is at least n) is

the same as the event that Tn ≤ t (i.e., that the nth event occurs before time n). Hence,

P(Nt ≥ n) = P(Tn ≤ t) =

∫ t

0

gn(s) ds.

Then by Lemma 11.7.4,

P(Nt ≥ n) =
∞∑

i=n

e−at (at)i

i!
(11.7.5)

for any n ≥ 1. If n = 0, then both sides are 1, so in fact (11.7.5) holds for any n ≥ 0.

Using this, we see that

P(Nt = j) = P(Nt ≥ j)− P(Nt ≥ j + 1)

=

(
∞∑

i= j

e−at (at)i/ i!

)
−

(
∞∑

i= j+1

e−at (at)i/ i!

)
= e−at (at) j/j!.

It follows that Nt ∼ Poisson(at), as claimed.

Proof of Theorem 11.6.2

We want to prove that when 0 = t0 ≤ t1 < t2 < t3 < · · · < td , then for i = 1, 2, . . . , d,

the distribution of Nti − Nti−1
is Poisson(a(ti − ti−1)). Furthermore, the random

variables Nti − Nti−1
, for i = 1, . . . , d, are independent.

From the memoryless property of the exponential distributions (see Problem 2.4.14),

it follows that regardless of the values of Ns for s ≤ ti−1, this will have no effect on

the distribution of the increments Nt − Nti−1
for t > ti−1. That is, the process {Nt }

starts fresh at each time ti−1, except from a different initial value Nti−1
instead of from

N0 = 0.

Hence, the distribution of Nti−1+u − Nti−1
for u ≥ 0 is identical to the distribution

of Nu − N0 = Nu and is independent of the values of Ns for s ≤ ti−1. Because we

already know that Nu ∼ Poisson(au), it follows that Nti−1+u − Nti−1
∼ Poisson(au)

as well. In particular, Nti − Nti−1
∼ Poisson(a(ti − ti−1)) as well, with Nti − Nti−1

independent of {Ns : s ≤ ti−1}. The result follows.


