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In this chapter, we consider stochastic processes, which are processes that proceed
randomly in time. That is, rather than consider fixed random variables X , Y , etc., or
even sequences of independent and identically distributed (i.i.d.) random variables, we
shall instead consider sequences X0 X1 X2 where Xn represents some random
quantity at time n. In general, the value Xn at time n might depend on the quantity
Xn 1 at time n 1, or even the values Xm for other times m n. Stochastic processes
have a different “avor” from ordinary random variables — because they proceed in
time, they seem more “alive.”

We begin with a simple but very interesting case, namely, simple random walk.

11.1 Simple Random Walk
Simple random walk can be thought of as a model for repeated gambling. Specifically,
suppose you start with $a, and repeatedly make $1 bets. At each bet, you have proba­
bility p of winning $1 and probability q of losing $1, where p q 1. If Xn is the
amount of money you have at time n (henceforth, your fortune at time n), then X0 a,
while X1 could be a 1 or a 1 depending on whether you win or lose your first
bet. Then X2 could be a 2 (if you win your first two bets), or a (if you win once and
lose once), or a 2 (if you lose your first two bets). Continuing in this way, we obtain
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616 Section 11.1: Simple Random Walk

a whole sequence X0 X1 X2 of random values, corresponding to your fortune at
times 0 1 2 .

We shall refer to the stochastic process Xn as simple random walk. Another way
to define this model is to start with random variables Zi that are i.i.d. with P Zi
1 p and P Zi 1 1 p q, where 0 p 1. (Here, Zi 1 if you win
the i th bet, while Zi 1 if you lose the i th bet.) We then set X0 a, and for n 1
we set

Xn a Z1 Z2 Zn .

The following is a specific example of this.

EXAMPLE 11.1.1
Consider simple random walk with a 8 and p 1 3, so you start with $8 and have
probability 1 3 of winning each bet. Then the probability that you have $9 after one
bet is given by

P X1 9 P 8 Z1 9 P Z1 1 1 3,

as it should be. Also, the probability that you have $7 after one bet is given by

P X1 7 P 8 Z1 7 P Z1 1 2 3.

On the other hand, the probability that you have $10 after two bets is given by

P X2 10 P 8 Z1 Z2 10 P Z1 Z2 1 1 3 1 3 1 9.

EXAMPLE 11.1.2
Consider again simple random walk with a 8 and p 1 3. Then the probability
that you have $7 after three bets is given by

P X3 7 P 8 Z1 Z2 Z3 7 P Z1 Z2 Z3 1 .

Now, there are three different ways we could have Z1 Z2 Z3 1, namely: (a)
Z1 1, while Z2 Z3 1; (b) Z2 1, while Z1 Z3 1; or (c) Z3 1,
while Z1 Z2 1. Each of these three options has probability 1 3 2 3 2 3 .
Hence,

P X3 7 1 3 2 3 2 3 1 3 2 3 2 3 1 3 2 3 2 3 4 9.

If the number of bets is much larger than three, then it becomes less and less con­
venient to compute probabilities in the above manner. A more systematic approach is
required. We turn to that next.

11.1.1 The Distribution of the Fortune

We first compute the distribution of Xn , i.e., the probability that your fortune Xn after
n bets takes on various values.
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Theorem 11.1.1 Let Xn be simple randomwalk as before, and let n be a positive
integer. If k is an integer such that n k n and n k is even, then

P Xn a k
n

n k
2

p n k 2q n k 2.

For all other values of k, we have P Xn a k 0. Furthermore, E Xn
a n 2p 1

PROOF See Section 11.7.

This theorem tells us the entire distribution, and expected value, of the fortune Xn
at time n.

EXAMPLE 11.1.3
Suppose p 1 3 n 8 and a 1. Then P Xn 6 0 because 6 1 5, and
n 5 13 is not even. Also, P Xn 13 0 because 13 1 12 and 12 n. On
the other hand,

P Xn 5 P Xn 1 4
n

n 4
2

p n 4 2q n 4 2 8

6
1 3 6 2 3

8 7

2
1 3 6 2 3 1 0 0256.

Also, E Xn a n 2p 1 1 8 2 3 1 5 3.

Regarding E Xn , we immediately obtain the following corollary.

Corollary 11.1.1 If p 1 2, then E Xn a for all n 0. If p 1 2, then
E Xn a for all n 1. If p 1 2, then E Xn a for all n 1.

This corollary has the following interpretation. If p 1 2, then the game is fair,
i.e., both you and your opponent have equal chance of winning each bet. Thus, the
corollary says that for fair games, your expected fortune E Xn will never change
from its initial value, a.

On the other hand, if p 1 2, then the game is subfair, i.e., your opponent’s
chances are better than yours. In this case, the corollary says your expected fortune
will decrease, i.e., be less than its initial value of a. Similarly, if p 1 2 then the
game is superfair, and the corollary says your expected fortune will increase, i.e., be
more than its initial value of a.

Of course, in a real gambling casino, the game is always subfair (which is how the
casino makes its profit). Hence, in a real casino, the average amount of money with
which you leave will always be less than the amount with which you entered!

EXAMPLE 11.1.4
Suppose a 10 and p 1 4. Then E Xn 10 n 2p 1 10 3n 4 Hence,
we always have E Xn 10, and indeed E Xn 0 if n 14. That is, your expected
fortune is never more than your initial value of $10 and in fact is negative after 14 or
more bets.
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Finally, we note as an aside that it is possible to change your probabilities by chang­
ing your gambling strategy, as in the following example. Hence, the preceding analysis
applies only to the strategy of betting just $1 each time.

EXAMPLE 11.1.5
Consider the “double ’til you win” gambling strategy, defined as follows. We first bet
$1. Each time we lose, we double our bet on the succeeding turn. As soon as we win
once, we stop playing (i.e., bet zero from then on).

It is easily seen that, with this gambling strategy, we will be up $1 as soon as we
win a bet (which must happen eventually because p 0). Hence, with probability 1
we will gain $1 with this gambling strategy for any positive value of p.

This is rather surprising, because if 0 p 1 2 then the odds in this game are
against us. So it seems that we have “cheated fate,” and indeed we have. On the other
hand, we may need to lose an arbitrarily large amount of money before we win our $1,
so “infinite capital” is required to follow this gambling strategy. If only finite capital
is available, then it is impossible to cheat fate in this manner. For a proof of this, see
more advanced probability books, e.g., page 64 of A First Look at Rigorous Probability
Theory, 2nd ed., by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).

11.1.2 The Gambler’s Ruin Problem

The previous subsection considered the distribution and expected value of the fortune
Xn at a fixed time n. Here, we consider the gambler’s ruin problem, which requires
the consideration of many different n at once, i.e., considers the time evolution of the
process.

Let Xn be simple random walk as before, for some initial fortune a and some
probability p of winning each bet. Assume a is a positive integer. Furthermore, let
c a be some other integer. The gambler’s ruin question is: If you repeatedly bet $1,
then what is the probability that you will reach a fortune of $c before you lose all your
money by reaching a fortune $0? In other words, will the random walk hit c before
hitting 0? Informally, what is the probability that the gambler gets rich (i.e., has $c)
before going broke?

More formally, let

0 min n 0 : Xn 0 ,

c min n 0 : Xn c

be the first hitting times of 0 and c, respectively. That is, 0 is the first time your fortune
reaches 0, while c is the first time your fortune reaches c.

The gambler’s ruin question is: What is

P c 0 ,

the probability of hitting c before hitting 0? This question is not so easy to answer,
because there is no limit to how long it might take until either c or 0 is hit. Hence, it is
not sufficient to just compute the probabilities after 10 bets, or 20 bets, or 100 bets, or
even 1,000,000 bets. Fortunately, it is possible to answer this question, as follows.
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Theorem 11.1.2 Let Xn be simple random walk, with some initial fortune a
and probability p of winning each bet. Assume 0 a c. Then the probability
P c 0 of hitting c before 0 is given by

P c 0

a c p 1 2
1 q

p

a

1 q
p

c p 1 2.

PROOF See Section 11.7 for the proof.

Consider some applications of this result.

EXAMPLE 11.1.6
Suppose you start with $5 (i.e., a 5) and your goal is to win $10 before going broke
(i.e., c 10). If p 0 500, then your probability of success is a c 0 500. If
p 0 499, then your probability of success is given by

1
0 501

0 499

5

1
0 501

0 499

10 1

,

which is approximately 0 495. If p 0 501, then your probability of success is given
by

1
0 499

0 501

5

1
0 499

0 501

10 1

,

which is approximately 0 505. We thus see that in this case, small changes in p lead to
small changes in the probability of winning at gambler’s ruin.

EXAMPLE 11.1.7
Suppose now that you start with $5000 (i.e., a 5000) and your goal is to win $10,000
before going broke (i.e., c 10 000). If p 0 500, then your probability of success
is a c 0 500, same as before. On the other hand, if p 0 499, then your probability
of success is given by

1
0 501

0 499

5000

1
0 501

0 499

10,000 1

,

which is approximately 2 10 9, i.e., two parts in a billion! Finally, if p 0 501,
then your probability of success is given by

1
0 499

0 501

5000

1
0 499

0 501

10,000 1

,

which is extremely close to 1. We thus see that in this case, small changes in p lead to
extremely large changes in the probability of winning at gambler’s ruin. For example,
even a tiny disadvantage on each bet can lead to a very large disadvantage in the long
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run! The reason for this is that, to get from 5000 to 10,000, many bets must be made,
so small changes in p have a huge effect overall.

Finally, we note that it is also possible to use the gambler’s ruin result to compute
P 0 , the probability that the walk will ever hit 0 (equivalently, that you will
ever lose all your money), as follows.

Theorem 11.1.3 Let Xn be simple random walk, with initial fortune a 0 and
probability p of winning each bet. Then the probability P 0 that the walk
will ever hit 0 is given by

P 0
1 p 1 2
q p a p 1 2.

PROOF See Section 11.7 for the proof.

EXAMPLE 11.1.8
Suppose a 2 and p 2 3. Then the probability that you will eventually lose all
your money is given by q p a 1 3 2 3 2 1 4. Thus, starting with just $2,
we see that 3/4 of the time, you will be able to bet forever without ever losing all your
money.

On the other hand, if p 1 2, then no matter how large a is, it is certain that you
will eventually lose all your money.

Summary of Section 11.1

A simple random walk is a sequence Xn of random variables, with X0 1 and
P Xn 1 Xn 1 p 1 P Xn 1 Xn 1 .

It follows that P Xn a k n
n k
2

p n k 2q n k 2 for k n n

2 n 4 n, and E Xn a n 2p 1 .

If 0 a c, then the gambler’s ruin probability of reaching c before 0 is equal
to a c if p 1 2, otherwise to 1 1 p p a 1 1 p p c .

EXERCISES

11.1.1 Let Xn be simple random walk, with initial fortune a 12 and probability
p 1 3 of winning each bet. Compute P Xn x for the following values of n and
x .
(a) n 0 x 13
(b) n 1 x 12
(c) n 1 x 13
(d) n 1 x 11
(e) n 1 x 14
(f) n 2 x 12
(g) n 2 x 13
(h) n 2 x 14
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(i) n 2 x 15
(j) n 20 x 15
(k) n 20 x 16
(l) n 20 x 18
(m) n 20 x 10
11.1.2 Let Xn be simple random walk, with initial fortune a 5 and probability
p 2 5 of winning each bet.
(a) Compute P X1 6 X2 5 .
(b) Compute P X1 4 X2 5 .
(c) Compute P X2 5 .
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is
this so?
11.1.3 Let Xn be simple random walk, with initial fortune a 7 and probability
p 1 6 of winning each bet.
(a) Compute P X1 X3 8 .
(b) Compute P X1 6 X3 8 .
(c) Compute P X3 8 .
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is
this so?
11.1.4 Suppose a 1000 and p 0 49.
(a) Compute E Xn for n 0 1 2 10 20 100, and 1000.
(b) How large does n need to be before E Xn 0?
11.1.5 Let Xn be simple random walk, with initial fortune a and probability p
0 499 of winning each bet. Compute the gambler’s ruin probability P c 0 for the
following values of a and c. Interpret your results in words.
(a) a 9 c 10
(b) a 90 c 100
(c) a 900 c 1000
(d) a 9000 c 10,000
(e) a 90,000, c 100,000
(f) a 900,000, c 1,000,000
11.1.6 Let Xn be simple random walk, with initial fortune a 10 and probability p
of winning each bet. Compute P 0 , where p 0 4 and also where p 0 6.
Interpret your results in words.
11.1.7 Let Xn be simple random walk, with initial fortune a 5, and probability
p 1 4 of winning each bet.
(a) Compute P X1 6 .
(b) Compute P X1 4 .
(c) Compute P X2 7 .
(d) Compute P X2 7 X1 6 .
(e) Compute P X2 7 X1 4 .
(f) Compute P X1 6 X2 7 .
(g) Explain why the answer to part (f) equals what it equals.
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11.1.8 Let Xn be simple random walk, with initial fortune a 1000 and probability
p 2 5 of winning each bet.
(a) Compute E X1 .
(b) Compute E X10 .
(c) Compute E X100 .
(d) Compute E X1000 .
(e) Find the smallest value of n such that E Xn 0.
11.1.9 Let Xn be simple random walk, with initial fortune a 100 and probability
p 18 38 of winning each bet (as when betting on Red in roulette).
(a) Compute P X1 a .
(b) Compute P X2 a .
(c) Compute P X3 a .
(d) Guess the value of limn P Xn a .
(e) Interpret part (d) in plain English.

PROBLEMS

11.1.10 Suppose you start with $10 and repeatedly bet $2 (instead of $1), having prob­
ability p of winning each time. Suppose your goal is $100, i.e., you keep on betting
until you either lose all your money, or reach $100.
(a) As a function of p, what is the probability that you will reach $100 before losing all
your money? Be sure to justify your solution. (Hint: You may find yourself dividing
both 10 and 100 by 2.)
(b) Suppose p 0 4. Compute a numerical value for the solution in part (a).
(c) Compare the probabilities in part (b) with the corresponding probabilities if you bet
just $1 each time. Which is larger?
(d) Repeat part (b) for the case where you bet $10 each time. Does the probability of
success increase or decrease?

CHALLENGES

11.1.11 Prove that the formula for the gambler’s ruin probability P c 0 is a
continuous function of p, by proving that it is continuous at p 1 2. That is, prove
that

lim
p 1 2

1 1 p p a

1 1 p p c

a

c

DISCUSSION TOPICS

11.1.12 Suppose you repeatedly play roulette in a real casino, betting the same amount
each time, continuing forever as long as you have money to bet. Is it certain that you
will eventually lose all your money? Why or why not?
11.1.13 In Problem 11.1.10, parts (c) and (d), can you explain intuitively why the
probabilities change as they do, as we increase the amount we bet each time?
11.1.14 Suppose you start at a and need to reach c, where c a 0. You must keep
gambling until you reach either c or 0. Suppose you are playing a subfair game (i.e.,
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p 1 2), but you can choose how much to bet each time (i.e., you can bet $1, or $2,
or more, though of course you cannot bet more than you have). What betting amounts
do you think1 will maximize your probability of success, i.e., maximize P c 0 ?
(Hint: The results of Problem 11.1.10 may provide a clue.)

11.2 Markov Chains
Intuitively, a Markov chain represents the random motion of some object. We shall
write Xn for the position (or value) of the object at time n. There are then rules that
give the probabilities for where the object will jump next.

A Markov chain requires a state space S, which is the set of all places the object
can go. (For example, perhaps S 1 2 3 , or S top, bottom , or S is the set of all
positive integers.)

A Markov chain also requires transition probabilities, which give the probabilities
for where the object will jump next. Specifically, for i j S, the number pi j is
the probability that, if the object is at i , it will next jump to j . Thus, the collection
pi j : i j S of transition probabilities satisfies pi j 0 for all i j S, and

j S

pi j 1

for each i S.
We also need to consider where the Markov chain starts. Often, we will simply

set X0 s for some particular state s S. More generally, we could have an initial
distribution i : i S where i P X0 i . In this case, we need i 0 for
each i S, and

i S
i 1.

To summarize, here S is the state space of all places the object can go; i represents
the probability that the object starts at the point i ; and pi j represents the probability
that, if the object is at the point i , it will then jump to the point j on the next step. In
terms of the sequence of random values X0 X1 X2 , we then have that

P Xn 1 j Xn i pi j

for any positive integer n and any i j S. Note that we also require that this jump
probability does not depend on the chain’s previous history. That is, we require

P Xn 1 j Xn i Xn 1 xn 1 X0 x0 pi j

for all n and all i j x0 xn 1 S.

1For more advanced results about this, see, e.g., Theorem 7.3 of Probability and Measure, 3rd ed., by
P. Billingsley (John Wiley & Sons, New York, 1995).
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11.2.1 Examples of Markov Chains

We present some examples of Markov chains here.

EXAMPLE 11.2.1
Let S 1 2 3 consist of just three elements, and define the transition probabilities
by p11 0, p12 1 2, p13 1 2, p21 1 3, p22 1 3, p23 1 3, p31 1 4,
p32 1 4, and p33 1 2. This means that, for example, if the chain is at the state 3,
then it has probability 1 4 of jumping to state 1 on the next jump, probability 1 4 of
jumping to state 2 on the next jump, and probability 1 2 of remaining at state 3 on the
next jump.

This Markov chain jumps around on the three points 1 2 3 in a random and
interesting way. For example, if it starts at the point 1, then it might jump to 2 or to 3
(with probability 1 2 each). If it jumps to (say) 3, then on the next step it might jump to
1 or 2 (probability 1 4 each) or 3 (probability 1 2). It continues making such random
jumps forever.

Note that we can also write the transition probabilities pi j in matrix form, as

pi j
0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

(so that p31 1 4, etc.). The matrix pi j is then called a stochastic matrix. This
matrix representation is convenient sometimes.

EXAMPLE 11.2.2
Again, let S 1 2 3 . This time define the transition probabilities pi j in matrix
form, as

pi j
1 4 1 4 1 2
1 3 1 3 1 3
0 01 0 01 0 98

.

This also defines a Markov chain on S. For example, from the state 3, there is proba­
bility 0.01 of jumping to state 1, probability 0.01 of jumping to state 2, and probability
0.98 of staying in state 3.

EXAMPLE 11.2.3
Let S bedroom, kitchen, den . Define the transition probabilities pi j in matrix
form by

pi j
1 4 1 4 1 2
0 0 1

0 01 0 01 0 98
.

This defines a Markov chain on S. For example, from the bedroom, the chain has
probability 1 4 of staying in the bedroom, probability 1 4 of jumping to the kitchen,
and probability 1 2 of jumping to the den.
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EXAMPLE 11.2.4
This time let S 1 2 3 4 , and define the transition probabilities pi j in matrix
form, as

pi j

0 2 0 4 0 0 4
0 4 0 2 0 4 0
0 0 4 0 2 0 4
0 4 0 0 4 0 2

.

This defines a Markov chain on S. For example, from the state 4, it has probability 0 4
of jumping to the state 1, but probability 0 of jumping to the state 2.

EXAMPLE 11.2.5
This time, let S 1 2 3 4 5 6 7 , and define the transition probabilities pi j in
matrix form, as

pi j

1 0 0 0 0 0 0
1 2 0 1 2 0 0 0 0
0 1 5 4 5 0 0 0 0
0 0 1 3 1 3 1 3 0 0

1 10 0 0 0 7 10 0 1 5
0 0 0 0 0 0 1
0 0 0 0 0 1 0

.

This defines a (complicated!) Markov chain on S.

EXAMPLE 11.2.6 Random Walk on the Circle
Let S 0 1 2 d 1 and define the transition probabilities by saying that
pii 1 3 for all i S, and also pi j 1 3 whenever i and j are “next to” each other
around the circle. That is, pi j 1 3 whenever j i , or j i 1, or j i 1. Also,
p0 d 1 pd 1 0 1 3. Otherwise, pi j 0.

If we think of the d elements of S as arranged in a circle, then our object, at each
step, either stays where it is, or moves one step clockwise, or moves one step counter­
clockwise — each with probability 1 3. (Note in particular that it can go around the
“corner” by jumping from d 1 to 0, or from 0 to d 1, with probability 1 3.)

EXAMPLE 11.2.7 Ehrenfest’s Urn
Consider two urns, urn #1 and urn #2, where d balls are divided between the two urns.
Suppose at each step, we choose one ball uniformly at random from among the d balls
and switch it to the opposite urn. We let Xn be the number of balls in urn #1 at time n.
Thus, there are d Xn balls in urn #2 at time n.

Here, the state space is S 0 1 2 d because these are all the possible
numbers of balls in urn #1 at any time n.

Also, if there are i balls in urn #1 at some time, then there is probability i n that
we next choose one of those i balls, in which case the number of balls in urn #1 goes
down to i 1. Hence,

pi i 1 i d.

Similarly,
pi i 1 d i d
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because there is probability d i d that we will instead choose one of the d i
balls in urn #2. Thus, this Markov chain moves randomly among the possible numbers
0 1 d of balls in urn #1 at each time.

One might expect that, if d is large and the Markov chain is run for a long time,
there would most likely be approximately d 2 balls in urn #1. (We shall consider such
questions in Section 11.2.4.)

The above examples should convince you that Markov chains on finite state spaces
come in all shapes and sizes. Markov chains on infinite state spaces are also important.
Indeed, we have already seen one such class of Markov chains.

EXAMPLE 11.2.8 Simple Random Walk
Let S 2 1 0 1 2 be the set of all integers. Then S is infinite, so we
cannot write the transition probabilities pi j in matrix form.

Fix a S, and let X0 a. Fix a real number p with 0 p 1, and let pi i 1 p
and pi i 1 1 p for each i Z, with pi j 0 if j i 1. Thus, this Markov
chain begins at the point a (with probability 1) and at each step either increases by 1
(with probability p) or decreases by 1 (with probability 1 p). It is easily seen that
this Markov chain corresponds precisely to the random walk (i.e., repeated gambling)
model of Section 11.1.2.

Finally, we note that in a group, you can create your own Markov chain, as follows
(try it — it’s fun!).

EXAMPLE 11.2.9
Form a group of between 5 and 50 people. Each group member should secretly pick
out two other people from the group, an “A person” and “B person.” Also, each group
member should have a coin.

Take any object, such as a ball, or a pen, or a stuffed frog. Give the object to one
group member to start. This person should then immediately flip the coin. If the coin
comes up heads, the group member gives (or throws!) the object to his or her A person.
If it comes up tails, the object goes to his or her B person. The person receiving the
object should then immediately flip the coin and continue the process. (Saying your
name when you receive the object is a great way for everyone to meet each other!)

Continue this process for a large number of turns. What patterns do you observe?
Does everyone eventually receive the object? With what frequency? How long does it
take the object to return to where it started? Make as many interesting observations as
you can; some of them will be related to the topics that follow.

11.2.2 Computing with Markov Chains

Suppose a Markov chain Xn has transition probabilities pi j and initial distribution

i . Then P X0 i i for all states i . What about P X1 i ? We have the
following result.
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Theorem 11.2.1 Consider a Markov chain Xn with state space S, transition prob­
abilities pi j , and initial distribution i . Then for any i S,

P X1 i
k S

k pki .

PROOF From the law of total probability,

P X1 i
k S

P X0 k X1 i .

But P X0 k X1 i P X0 k P X1 i X0 k k pki and the result
follows.

Consider an example of this.

EXAMPLE 11.2.10
Again, let S 1 2 3 , and

pi j
1 4 1 4 1 2
1 3 1 3 1 3
0 01 0 01 0 98

.

Suppose that P X0 1 1 7, P X0 2 2 7, and P X0 3 4 7. Then

P X1 3
k S

k pk3 1 7 1 2 2 7 1 3 4 7 0 98 0 73.

Thus, about 73% of the time, this chain will be in state 3 after one step.
To proceed, let us write

Pi A P A X0 i

for the probability of the event A assuming that the chain starts in the state i , that is,
assuming that i 1 and j 0 for j i . We then see that Pi Xn j is the
probability that, if the chain starts in state i and is run for n steps, it will end up in state
j . Can we compute this?

For n 0, we must have X0 i . Hence, Pi X0 j 1 if i j , while
Pi X0 j 0 if i j .

For n 1, we see that Pi X1 j pi j . That is, the probability that we will be
at the state j after one step is given by the transition probability pi j .

What about for n 2? If we start at i and end up at j after 2 steps, then we have
to be at some state after 1 step. Let k be this state. Then we see the following.

Theorem 11.2.2 We have Pi X1 k X2 j pik pk j .

PROOF If we start at i , then the probability of jumping first to k is equal to pik .
Given that we have jumped first to k, the probability of then jumping to j is given by
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pk j . Hence,

Pi X1 k X2 j P X1 k X2 j X0 i

P X1 k X0 i P X2 k X1 j X0 i

pik pk j .

Using this, we obtain the following.

Theorem 11.2.3 We have Pi X2 j k S pik pk j

PROOF By the law of total probability,

Pi X2 j
k S

Pi X1 k X2 j ,

so the result follows from Theorem 11.2.2.

EXAMPLE 11.2.11
Consider again the chain of Example 11.2.1, with S 1 2 3 and

pi j
0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

.

Then

P1 X2 3
k S

p1k pk3 p11 p13 p12 p23 p13 p33

0 1 2 1 2 1 3 1 2 1 2 1 6 1 4 5 12.

By induction (see Problem 11.2.18), we obtain the following.

Theorem 11.2.4 We have

Pi Xn j
i1 i2 in 1 S

pii1 pi1i2 pi2i3 pin 2in 1 pin 1 j

PROOF See Problem 11.2.18.

Theorem 11.2.4 thus gives a complete formula for the probability, starting at a
state i at time 0, that the chain will be at some other state j at time n. We see from
Theorem 11.2.4 that, once we know the transition probabilities pi j for all i j S,
then we can compute the values of Pi Xn j for all i j S and all positive
integers n. (The computations get pretty messy, though!) The quantities Pi Xn j
are sometimes called the higher­order transition probabilities.

Consider an application of this.
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EXAMPLE 11.2.12
Consider once again the chain with S 1 2 3 and

pi j
0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

.

Then

P1 X3 3
k S S

p1k pk p 3

p11 p11 p13 p11 p12 p23 p11 p13 p33 p12 p21 p13 p12 p22 p23 p12 p23 p33
p13 p31 p13 p13 p32 p23 p13 p33 p33

0 0 1 2 0 1 2 1 3 0 1 2 1 2 1 2 1 3 1 2

1 2 1 3 1 3 1 2 1 4 1 2 1 2 1 4 1 2

1 2 1 4 1 3 1 2 1 2 1 2

31 72.

Finally, we note that if we write A for the matrix pi j , write 0 for the row vec­
tor i P X0 i , and write 1 for the row vector P X1 i , then Theo­
rem 11.2.1 can be written succinctly using matrix multiplication as 1 0 A That
is, the (row) vector of probabilities for the chain after one step 1 is equal to the (row)
vector of probabilities for the chain after zero steps 0, multiplied by the matrix A of
transition probabilities. In fact, if we write n for the row vector P Xn i , then
proceeding by induction, we see that n 1 nA for each n. Therefore, n 0An,
where An is the nth power of the matrix A. In this context, Theorem 11.2.4 has a par­
ticularly nice interpretation. It says that Pi Xn j is equal to the i j entry of the
matrix An, i.e., the nth power of the matrix A.

11.2.3 Stationary Distributions

Suppose we have Markov chain transition probabilities pi j on a state space S. Let
i : i S be a probability distribution on S, so that i 0 for all i , and i S i

1 We have the following definition.

Definition 11.2.1 The distribution i : i S is stationary for a Markov chain
with transition probabilities pi j on a state space S, if i S i pi j j for all
j S.

The reason for the terminology “stationary” is that, if the chain begins with those
probabilities, then it will always have those same probabilities, as the following theo­
rem and corollary show.

Theorem 11.2.5 Suppose i : i S is a stationary distribution for a Markov
chain with transition probabilities pi j on a state space S. Suppose that for some
integer n, we have P Xn i i for all i S. Then we also have P Xn 1
i i for all i S.
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PROOF If i is stationary, then we compute that

P Xn 1 j
i S

P Xn i Xn 1 j

i S

P Xn i P Xn 1 j Xn i
i S

i pi j j .

By induction, we obtain the following corollary.

Corollary 11.2.1 Suppose i : i S is a stationary distribution for a Markov
chain with transition probabilities pi j on a state space S. Suppose that for some
integer n, we have P Xn i i for all i S. Then we also have P Xm i
i for all i S and all integers m n.

The above theorem and corollary say that, once a Markov chain is in its stationary
distribution, it will remain in its stationary distribution forevermore.

EXAMPLE 11.2.13
Consider the Markov chain with S 1 2 3 , and

pi j
1 2 1 4 1 4
1 2 1 4 1 4
1 2 1 4 1 4

.

No matter where this Markov chain is, it always jumps with the same probabilities,
i.e., to state 1 with probability 1 2, to state 2 with probability 1 4, or to state 3 with
probability 1 4.

Indeed, if we set 1 1 2, 2 1 4, and 3 1 4, then we see that pi j j
for all i j S. Hence,

i S
i pi j

i S
i j j

i S
i j 1 j .

Thus, i is a stationary distribution. Hence, once in the distribution i , the chain
will stay in the distribution i forever.

EXAMPLE 11.2.14
Consider a Markov chain with S 0 1 and

pi j
0 1 0 9
0 6 0 4

.

If this chain had a stationary distribution i , then we must have that

0 0 1 1 0 6 0,

0 0 9 1 0 4 1.

The first equation gives 1 0 6 0 0 9 , so 1 3 2 0 . This is also consistent
with the second equation. In addition, we require that 0 1 1, i.e., that 0
3 2 0 1, so that 0 2 5. Then 1 3 2 2 5 3 5.
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We then check that the settings 0 2 5 and 1 3 5 satisfy the above equa­
tions. Hence, i is indeed a stationary distribution for this Markov chain.

EXAMPLE 11.2.15
Consider next the Markov chain with S 1 2 3 , and

pi j
0 1 2 1 2
1 2 0 1 2
1 2 1 2 0

.

We see that this Markov chain has the property that, in addition to having j S pi j
1, for all i , it also has i S pi j 1, for all j . That is, not only do the rows of the
matrix pi j sum to 1, but so do the columns. (Such a matrix is sometimes called
doubly stochastic.)

Let 1 2 3 1 3, so that i is the uniform distribution on S. Then we
compute that

i S
i pi j

i S

1 3 pi j 1 3
i S

pi j 1 3 1 j .

Because this is true for all j , we see that i is a stationary distribution for this Markov
chain.

EXAMPLE 11.2.16
Consider the Markov chain with S 1 2 3 , and

pi j
1 2 1 4 1 4
1 3 1 3 1 3
0 1 4 3 4

.

Does this Markov chain have a stationary distribution?
Well, if it had a stationary distribution i , then the following equations would

have to be satisfied:

1 1 2 1 1 3 2 0 3,

2 1 4 1 1 3 2 1 4 3,

3 1 4 1 1 3 2 3 4 3.

The first equation gives 1 2 3 2. The second equation then gives

1 4 3 2 1 4 1 1 3 2 2 1 4 2 3 2 1 3 2 1 2 2,

so that 3 2 2.
But we also require 1 2 3 1, i.e., 2 3 2 2 2 2 1, so that

2 3 11. Then 1 2 11, and 3 6 11.
It is then easily checked that the distribution given by 1 2 11, 2 3 11, and

3 6 11 satisfies the preceding equations, so it is indeed a stationary distribution for
this Markov chain.
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EXAMPLE 11.2.17
Consider again random walk on the circle, as in Example 11.2.6. We observe that for
any state j , there are precisely three states i (namely, the state i j , the state one
clockwise from j , and the state one counterclockwise from j ) with pi j 1 3. Hence,

i S pi j 1 That is, the transition matrix pi j is again doubly stochastic.
It then follows, just as in Example 11.2.15, that the uniform distribution, given by

i 1 d for i 0 1 d 1, is a stationary distribution for this Markov chain.

EXAMPLE 11.2.18
For Ehrenfest’s urn (see Example 11.2.7), it is not obvious what might be a stationary
distribution. However, a possible solution emerges by thinking about each ball individ­
ually. Indeed, any given ball usually stays still but occasionally gets flipped from one
urn to the other. So it seems reasonable that in stationarity, it should be equally likely
to be in either urn, i.e., have probability 1/2 of being in urn #1.

If this is so, then the total number of balls in urn #1 would have the distribution
Binomial n 1 2 , since there would be n balls, each having probability 1 2 of being
in urn #1.

To test this, we set i
d
i 2d for i 0 1 d. We then compute that if

1 j d 1, then

i S
i pi j j 1 p j 1 j j 1 p j 1 j

d

j 1

1

2d
d j 1

d

d

j 1

1

2d
j 1

d
d 1

j 1

1

2d
d 1

j

1

2d
.

Next, we use the identity known as Pascal’s triangle, which says that

d 1

j 1

d 1

j

d

j
.

Hence, we conclude that

i S
i pi j

d

j

1

2d
j .

With minor modifications (see Problem 11.2.19), the preceding argument works for
j 0 and j d as well. We therefore conclude that i S i pi j j for all j S.
Hence, i is a stationary distribution.

One easy way to check for stationarity is the following.

Definition 11.2.2 AMarkov chain is said to be reversible with respect to a distrib­
ution i if, for all i j S, we have i pi j j p ji .

Theorem 11.2.6 If a Markov chain is reversible with respect to i , then i is a
stationary distribution for the chain.
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PROOF We compute, using reversibility, that for any j S,

i S
i pi j

i S
j p ji j

i S

p ji j 1 j .

Hence, i is a stationarity distribution.

EXAMPLE 11.2.19
Suppose S 1 2 3 4 5 , and the transition probabilities are given by

pi j

1 3 2 3 0 0 0
1 3 0 2 3 0 0
0 1 3 0 2 3 0
0 0 1 3 0 2 3
0 0 0 1 3 2 3

.

It is not immediately clear what stationary distribution this chain may possess. Fur­
thermore, to compute directly as in Example 11.2.16 would be quite messy.

On the other hand, we observe that for 1 i 4, we always have pi i 1
2 pi 1 i . Hence, if we set i C2i for some C 0, then we will have

i pi i 1 C2i pi i 1 C2i2 pi 1 i ,

while
i 1 pi 1 i C2i 1 pi 1 i .

Hence, i pi i 1 i 1 pi 1 i for each i .
Furthermore, pi j 0 if i and j differ by at least 2. It follows that i pi j j p ji

for each i j S. Hence, the chain is reversible with respect to i and so i is a
stationary distribution for the chain.

Finally, we solve for C. We need i S i 1 Hence, we must have C
1 i S 2

i 1 5
i 1 2

i 1 63. Thus, i 2i 63 for i S.

11.2.4 Markov Chain Limit Theorem

Suppose now that Xn is a Markov chain, which has a stationary distribution i . We
have already seen that, if P Xn i i for all i for some n, then also P Xm i
i for all i for all m n.
Suppose now that it is not the case that P Xn i i for all i . One might still

expect that, if the chain is run for a long time (i.e., n ), then the probability of
being at a particular state i S might converge to i , regardless of the initial state
chosen. That is, one might expect that

lim
n

P Xn i i , (11.2.1)

for each i S regardless of the initial distribution i .
This is not true in complete generality, as the following two examples show. How­

ever, we shall see in Theorem 11.2.8 that this is indeed true for most Markov chains.



634 Section 11.2: Markov Chains

EXAMPLE 11.2.20
Suppose that S 1 2 and that the transition probabilities are given by

pi j
1 0
0 1

.

That is, this Markov chain never moves at all! Suppose also that 1 1, i.e., that we
always have X0 1.

In this case, any distribution is stationary for this chain. In particular, we can take
1 2 1 2 as a stationary distribution. On the other hand, we clearly have

P1 Xn 1 1 for all n. Because 1 1 2, and 1 1 2, we do not have
limn P Xn i i in this case.

We shall see later that this Markov chain is not “irreducible,” which is the obstacle
to convergence.

EXAMPLE 11.2.21
Suppose again that S 1 2 , but that this time the transition probabilities are given
by

pi j
0 1
1 0

.

That is, this Markov chain always moves from 1 to 2, and from 2 to 1. Suppose again
that 1 1, i.e., that we always have X0 1.

We may again take 1 2 1 2 as a stationary distribution (in fact, this time
the stationary distribution is unique). On the other hand, this time we clearly have
P1 Xn 1 1 for n even, and P1 Xn 1 0 for n odd. Hence, again we do not
have limn P1 Xn 1 1 1 2

We shall see that here the obstacle to convergence is that the Markov chain is “pe­
riodic,” with period 2.

In light of these examples, we make some definitions.

Definition 11.2.3 A Markov chain is irreducible if it is possible for the chain to
move from any state to any other state. Equivalently, theMarkov chain is irreducible
if for any i j S, there is a positive integer n with Pi Xn j 0.

Thus, the Markov chain of Example 11.2.20 is not irreducible because it is not
possible to get from state 1 to state 2. Indeed, in that case, P1 Xn 2 0 for all n.

EXAMPLE 11.2.22
Consider the Markov chain with S 1 2 3 , and

pi j
1 2 1 2 0
1 2 1 4 1 4
1 2 1 4 1 4

.

For this chain, it is not possible to get from state 1 to state 3 in one step. On the other
hand, it is possible to get from state 1 to state 2, and then from state 2 to state 3. Hence,
this chain is still irreducible.
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EXAMPLE 11.2.23
Consider the Markov chain with S 1 2 3 , and

pi j
1 2 1 2 0
3 4 1 4 0
1 2 1 4 1 4

.

For this chain, it is not possible to get from state 1 to state 3 in one step. Furthermore,
it is not possible to get from state 2 to state 3, either. In fact, there is no way to ever get
from state 1 to state 3, in any number of steps. Hence, this chain is not irreducible.

Clearly, if a Markov chain is not irreducible, then the Markov chain convergence
(11.2.1) will not always hold, because it will be impossible to ever get to certain states
of the chain.

We also need the following definition.

Definition 11.2.4 Given Markov chain transitions pi j on a state space S, and
a state i S, the period of i is the greatest common divisor (g.c.d.) of the set
n 1 : p n

ii 0 where p n
ii P Xn i X0 i

That is, the period of i is the g.c.d. of the times at which it is possible to travel from
i to i . For example, the period of i is 2 if it is only possible to travel from i to i in an
even number of steps. (Such was the case for Example 11.2.21.) On the other hand, if
pii 0, then clearly the period of i is 1.

Clearly, if the period of some state is greater than 1, then again (11.2.1) will not
always hold, because the chain will be able to reach certain states at certain times only.
This prompts the following definition.

Definition 11.2.5 A Markov chain is aperiodic if the period of each state is equal
to 1.

EXAMPLE 11.2.24
Consider the Markov chain with S 1 2 3 , and

pi j
0 1 0
0 0 1
1 0 0

.

For this chain, from state 1 it is possible only to get to state 2. And from state 2 it
is possible only to get to state 3. Then from state 3 it is possible only to get to state
1. Hence, it is possible only to return to state 1 after an integer multiple of 3 steps.
Hence, state 1 (and, indeed, all three states) has period equal to 3, and the chain is not
aperiodic.

EXAMPLE 11.2.25
Consider the Markov chain with S 1 2 3 , and

pi j
0 1 0
0 0 1
1 2 0 1 2

.
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For this chain, from state 1 it is possible only to get to state 2. And from state 2 it is
possible only to get to state 3. However, from state 3 it is possible to get to either state
1 or state 3. Hence, it is possible to return to state 1 after either 3 or 4 steps. Because
the g.c.d. of 3 and 4 is 1, we conclude that the period of state 1 (and, indeed, of all
three states) is equal to 1, and the chain is indeed aperiodic.

We note the following simple fact.

Theorem 11.2.7 If a Markov chain has pi j 0 for all i j S, then the chain is
irreducible and aperiodic.

PROOF If pi j 0 for all i j S, then Pi X1 j 0 for all i j S. Hence,
the Markov chain must be irreducible.

Also, if pi j 0 for all i j S, then the set n 1 : p n
ii 0 contains the value

n 1 (and, indeed, all positive integers n). Hence, its greatest common divisor must
be 1. Therefore, each state i has period 1, so the chain is aperiodic.

In terms of the preceding definitions, we have the following very important theorem
about Markov chain convergence.

Theorem 11.2.8 Suppose a Markov chain is irreducible and aperiodic and has a
stationary distribution i . Then regardless of the initial distribution i , we have
limn P Xn i i for all states i .

PROOF For a proof of this, see more advanced probability books, e.g., pages 92–93
of A First Look at Rigorous Probability Theory, 2nd ed., by J. S. Rosenthal (World
Scientific Publishing, Singapore, 2006).

Theorem 11.2.8 shows that stationary distributions are even more important. Not
only does a Markov chain remain in a stationary distribution once it is there, but for
most chains (irreducible and aperiodic ones), the probabilities converge to the station­
ary distribution in any case. Hence, the stationary distribution provides fundamental
information about the long­term behavior of the Markov chain.

EXAMPLE 11.2.26
Consider again the Markov chain with S 1 2 3 , and

pi j
1 2 1 4 1 4
1 2 1 4 1 4
1 2 1 4 1 4

.

We have already seen that if we set 1 1 2, 2 1 4, and 3 1 4, then i
is a stationary distribution. Furthermore, we see that pi j 0 for all i j S, so by
Theorem 11.2.7 the Markov chain must be irreducible and aperiodic.

We conclude that limn P Xn i i for all states i . For example, limn
P Xn 1 1 2. (Also, this limit does not depend on the initial distribution, so, for
example, limn P1 Xn 1 1 2 and limn P2 Xn 1 1 2, as well.)

In fact, for this example we will have P Xn i i for all i provided n 1.
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EXAMPLE 11.2.27
Consider again the Markov chain of Example 11.2.14, with S 0 1 and

pi j
0 1 0 9
0 6 0 4

.

We have already seen that this Markov chain has a stationary distribution, given by
0 2 5 and 1 3 5.
Furthermore, because pi j 0 for all i j S, this Markov chain is irreducible

and aperiodic. Therefore, we conclude that limn P Xn i i . So, if (say)
n 100, thenwe will have P X100 0 2 5, and P X100 1 3 5. Once again,
this conclusion does not depend on the initial distribution, so, e.g., limn P0 Xn
i limn P1 Xn i i as well.

EXAMPLE 11.2.28
Consider again the Markov chain of Example 11.2.16, with S 1 2 3 , and

pi j
1 2 1 4 1 4
1 3 1 3 1 3
0 1 4 3 4

.

We have already seen that this chain has a stationary distribution i given by 1
2 11, 2 3 11, and 3 6 11.

Now, in this case, we do not have pi j 0 for all i j S because p31 0. On the
other hand, p32 0 and p21 0, so by Theorem 11.2.3, we have

P3 X2 1
k S

p3k pk1 p32 p21 0.

Hence, the chain is still irreducible.
Similarly, we have P3 X2 3 p32 p23 0, and P3 X3 3 p32 p21 p13 0.

Therefore, because the g.c.d. of 2 and 3 is 1, we see that the g.c.d. of the set of n with
P3 Xn 3 0 is also 1. Hence, the chain is still aperiodic.

Because the chain is irreducible and aperiodic, it follows from Theorem 11.2.8 that
limn P Xn i i , for all states i . Hence, limn P Xn 1 2 11
limn P Xn 2 3 11 and limn P Xn 3 6 11. Thus, if (say) n
500, then we expect that P X500 1 2 11, P X500 2 3 11, and P X500
3 6 11.

Summary of Section 11.2

AMarkov chain is a sequence Xn of random variables, having transition prob­
abilities pi j such that P Xn 1 j Xn i pi j , and having an initial
distribution i such that P X0 i i .

There are many different examples of Markov chains.

All probabilities for all the Xn can be computed in terms of i and pi j .

A distribution i is stationary for the chain if i S i pi j j for all j S.
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If the Markov chain is irreducible and aperiodic, and i is stationary, then
limn P Xn i i for all i S.

EXERCISES

11.2.1 Consider a Markov chain with S 1 2 3 , 1 0 7, 2 0 1, 3 0 2,
and

pi j
1 4 1 4 1 2
1 6 1 2 1 3
1 8 3 8 1 2

.

Compute the following quantities.
(a) P X0 1
(b) P X0 2
(c) P X0 3
(d) P X1 2 X0 1
(e) P X3 2 X2 1
(f) P X1 2 X0 2
(g) P X1 2
11.2.2 Consider a Markov chain with S high, low , high 1 3, low 2 3, and

pi j
1 4 3 4
1 6 5 6

.

Compute the following quantities.
(a) P X0 high
(b) P X0 low
(c) P X1 high X0 high
(d) P X3 high X2 low
(e) P X1 high

11.2.3 Consider a Markov chain with S 0 1 , and

pi j
0 2 0 8
0 3 0 7

.

(a) Compute Pi X2 j for all four combinations of i j S.
(b) Compute P0 X3 1 .

11.2.4 Consider again the Markov chain with S 0 1 and

pi j
0 2 0 8
0 3 0 7

.

(a) Compute a stationary distribution i for this chain.
(b) Compute limn P0 Xn 0 .
(c) Compute limn P1 Xn 0 .



Chapter 11: Advanced Topic — Stochastic Processes 639

11.2.5 Consider the Markov chain of Example 11.2.5, with S 1 2 3 4 5 6 7
and

pi j

1 0 0 0 0 0 0
1 2 0 1 2 0 0 0 0
0 1 5 4 5 0 0 0 0
0 0 1 3 1 3 1 3 0 0

1 10 0 0 0 7 10 0 1 5
0 0 0 0 0 0 1
0 0 0 0 0 1 0

.

Compute the following quantities.
(a) P2 X1 1
(b) P2 X1 2
(c) P2 X1 3
(d) P2 X2 1
(e) P2 X2 2
(f) P2 X2 3
(g) P2 X3 3
(h) P2 X3 1
(i) P2 X1 7
(j) P2 X2 7
(k) P2 X3 7
(l) maxn P2 Xn 7 (i.e., the largest probability of going from state 2 to state 7 in n
steps, for any n)
(m) Is this Markov chain irreducible?
11.2.6 For each of the following transition probability matrices, determine (with ex­
planation) whether it is irreducible, and whether it is aperiodic.
(a)

pi j
0 2 0 8
0 3 0 7

(b)

pi j
1 4 1 4 1 2
1 6 1 2 1 3
1 8 3 8 1 2

(c)

pi j
0 1
0 3 0 7

(d)

pi j
0 1 0
1 3 1 3 1 3
0 1 0

(e)

pi j
0 1 0
0 0 1
1 0 0
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(f)

pi j
0 1 0
0 0 1
1 2 0 1 2

11.2.7 Compute a stationary distribution for the Markov chain of Example 11.2.4.
(Hint: Do not forget Example 11.2.15.)
11.2.8 Show that the random walk on the circle process (see Example 11.2.6) is
(a) irreducible.
(b) aperiodic.
(c) reversible with respect to its stationary distribution.
11.2.9 Show that the Ehrenfest’s Urn process (see Example 11.2.7) is
(a) irreducible.
(b) not aperiodic.
(c) reversible with respect to its stationary distribution.

11.2.10 Consider the Markov chain with S 1 2 3 , and

pi j
0 1 0
0 0 1
1 2 1 2 0

.

(a) Determine (with explanation) whether or not the chain is irreducible.
(b) Determine (with explanation) whether or not the chain is aperiodic.
(c) Compute a stationary distribution for the chain.
(d) Compute (with explanation) a good approximation to P1 X500 2 .
11.2.11 Repeat all four parts of Exercise 11.2.10 if S 1 2 3 and

pi j
0 1 2 1 2
0 0 1
1 2 1 2 0

.

11.2.12 Consider a Markov chain with S 1 2 3 and

pi j
0 3 0 3 0 4
0 2 0 2 0 6
0 1 0 2 0 7

.

(a) Is this Markov chain irreducible and aperiodic? Explain. (Hint: Do not forget
Theorem 11.2.7.)
(b) Compute P1 X1 3 .
(c) Compute P1 X2 3 .
(d) Compute P1 X3 3 .
(e) Compute limn P1 Xn 3 . (Hint: find a stationary distribution for the chain.)
11.2.13 For the Markov chain of the previous exercise, compute P1 X1 X2 5 .
11.2.14 Consider a Markov chain with S 1 2 3 and

pi j
1 0 0
0 0 1
0 1 0

.
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(a) Compute the period of each state.
(b) Is this Markov chain aperiodic? Explain.
11.2.15 Consider a Markov chain with S 1 2 3 and

pi j
0 1 0
0 5 0 0 5
0 1 0

.

(a) Is this Markov chain irreducible? Explain.
(b) Is this Markov chain aperiodic? Explain.

PROBLEMS

11.2.16 Consider a Markov chain with S 1 2 3 4 5 , and

pi j

1 5 4 5 0 0 0
1 5 0 4 5 0 0
0 1 5 0 4 5 0
0 0 1 5 0 4 5
0 0 0 1 5 4 5

.

Compute a stationary distribution i for this chain. (Hint: Use reversibility, as in
Example 11.2.19.)
11.2.17 Suppose 100 lily pads are arranged in a circle, numbered 0 1 99 (with
pad 99 next to pad 0). Suppose a frog begins at pad 0 and each second either jumps one
pad clockwise, or jumps one pad counterclockwise, or stays where it is — each with
probability 1 3. After doing this for a month, what is the approximate probability that
the frog will be at pad 55? (Hint: The frog is doing random walk on the circle, as in
Example 11.2.6. Also, the results of Example 11.2.17 and Theorem 11.2.8 may help.)
11.2.18 Prove Theorem 11.2.4. (Hint: Proceed as in the proof of Theorem 11.2.3, and
use induction.)
11.2.19 In Example 11.2.18, prove that i S i pi j j when j 0 and when
j d.

DISCUSSION TOPICS

11.2.20 With a group, create the “human Markov chain” of Example 11.2.9. Make as
many observations as you can about the long­term behavior of the resulting Markov
chain.

11.3 Markov Chain Monte Carlo
In Section 4.5, we saw that it is possible to estimate various quantities (such as prop­
erties of real objects through experimentation, or the value of complicated sums or
integrals) by usingMonte Carlo techniques, namely, by generating appropriate random
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variables on a computer. Furthermore, we have seen in Section 2.10 that it is quite easy
to generate random variables having certain special distributions. The Monte Carlo
method was used several times in Chapters 6, 7, 9, and 10 to assist in the implementa­
tion of various statistical methods.

However, for many (in fact, most!) probability distributions, there is no simple,
direct way to simulate (on a computer) random variables having such a distribution.
We illustrate this with an example.

EXAMPLE 11.3.1
Let Z be a random variable taking values on the set of all integers, with

P Z j C j 1 2 4e 3 j cos2 j (11.3.1)

for j 2 1 0 1 2 3 , where C 1 j j 1 2 4e 3 j cos2 j

Now suppose that we want to compute the quantity A E Z 20 2 .
Well, if we could generate i.i.d. random variables Y1 Y2 YM with distribution

given by (11.3.1), for very large M , then we could estimate A by

A A
1

M

M

i 1

Yi 20 2.

Then A would be aMonte Carlo estimate of A.
The problem, of course, is that it is not easy to generate random variables Yi with

this distribution. In fact, it is not even easy to compute the value of C .

Surprisingly, the difficulties described in Example 11.3.1 can sometimes be solved
using Markov chains. We illustrate this idea as follows.

EXAMPLE 11.3.2
In the context of Example 11.3.1, suppose we could find a Markov chain on the state
space S 2 1 0 1 2 of all integers, which was irreducible and aperi­
odic and which had a stationary distribution given by j C j 1 2 4e 3 j cos2 j
for j S

If we did, then we could run the Markov chain for a long time N , to get random
values X0 X1 X2 XN . For large enough N , by Theorem 11.2.8, we would have

P XN j j C j 1 2 4e 3 j cos2 j .

Hence, if we set Y1 XN , then we would have P Y1 j approximately equal to
(11.3.1), for all integers j . That is, the value of XN would be approximately as good
as a true random variable Y1 with this distribution.

Once the value of Y1 was generated, then we could repeat the process by again
running the Markov chain, this time to generate new random values

X [2]
0 X [2]

1 X [2]
2 X [2]

N

(say). We would then have

P X [2]
N j j C j 1 2 4e 3 j cos2 j .
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Hence, if we set Y2 X [2]
N , then we would have P Y2 j approximately equal to

(11.3.1), for all integers j .
Continuing in this way, we could generate values Y1 Y2 Y3 YM , such that

these are approximately i.i.d. from the distribution given by (11.3.1). We could then,
as before, estimate A by

A A
1

M

M

i 1

Yi 20 2.

This time, the approximation has two sources of error. First, there is Monte Carlo
error because M might not be large enough. Second, there is Markov chain error,
because N might not be large enough. However, if M and N are both very large, then
A will be a good approximation to A.

We summarize the method of the preceding example in the following theorem.

Theorem 11.3.1 (The Markov chain Monte Carlo method) Suppose we wish to
estimate the expected value A E h Z where P Z j j for j S, with
P Z j 0 for j S. Suppose for i 1 2 M, we can generate values
X [i]
0 X [i]

1 X [i]
2 X [i]

N from someMarkov chain that is irreducible, aperiodic, and
has j as a stationary distribution. Let

A
1

M

M

i 1

h X [i]
N .

If M and N are sufficiently large, then A A.

It is somewhat inefficient to run M different Markov chains. Instead, practitioners
often just run a single Markov chain, and average over the different values of the chain.
For an irreducible Markov chain run long enough, this will again converge to the right
answer, as the following theorem states.

Theorem 11.3.2 (The single­chain Markov chain Monte Carlo method) Suppose
we wish to estimate the expected value A E h Z where P Z j j
for j S, with P Z j 0 for j S. Suppose we can generate values
X0 X1 X2 XN from some Markov chain that is irreducible, aperiodic, and
has j as a stationary distribution. For some integer B 0, let

A
1

N B 1

N

i B 1

h X i .

If N B is sufficiently large, then A A.

Here, B is the burn­in time, designed to remove the influence of the chain’s starting
value X0. The best choice of B remains controversial among statisticians. However, if
the starting value X0 is “reasonable,” then it is okay to take B 0, provided that N is
sufficiently large. This is what was done, for instance, in Example 7.3.2.
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These theorems indicate that, if we can construct a Markov chain that has i
as a stationary distribution, then we can use that Markov chain to estimate quantities
associated with i . This is a very helpful trick, and it has made the Markov chain
Monte Carlo method into one of the most popular techniques in the entire subject of
computational statistics.

However, for this technique to be useful, we need to be able to construct a Markov
chain that has i as a stationary distribution. This sounds like a difficult problem!
Indeed, if i were very simple, then we would not need to use Markov chain Monte
Carlo at all. But if i is complicated, then how can we possibly construct a Markov
chain that has that particular stationary distribution?

Remarkably, this problem turns out to be much easier to solve than one might
expect. We now discuss one of the best solutions, the Metropolis–Hastings algorithm.

11.3.1 The Metropolis–Hastings Algorithm

Suppose we are given a probability distribution i on a state space S. How can we
construct a Markov chain on S that has i as a stationary distribution?

One answer is given by the Metropolis–Hastings algorithm. It designs a Markov
chain that proceeds in two stages. In the first stage, a new point is proposed from
some proposal distribution. In the second stage, the proposed point is either accepted
or rejected. If the proposed point is accepted, then the Markov chain moves there. If
it is rejected, then the Markov chain stays where it is. By choosing the probability
of accepting to be just right, we end up creating a Markov chain that has i as a
stationary distribution.

The details of the algorithm are as follows. We start with a state space S, and
a probability distribution i on S. We then choose some (simple) Markov chain
transition probabilities qi j : i j S called the proposal distribution. Thus, we
require that qi j 0, and j S qi j 1 for each i S. However, we do not assume
that i is a stationary distribution for the chain qi j ; indeed, the chain qi j might
not even have a stationary distribution.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Choose Yn 1 j according to the Markov chain qi j .

2. Set i j min 1 jq ji

iqi j
(the acceptance probability).

3. With probability i j , let Xn 1 Yn 1 j (i.e., accepting the proposal Yn 1).
Otherwise, with probability 1 i j , let Xn 1 Xn i (i.e., rejecting the
proposal Yn 1).

The reason for this unusual algorithm is given by the following theorem.

Theorem 11.3.3 The precedingMetropolis–Hastings algorithm results in aMarkov
chain X0 X1 X2 which has i as a stationary distribution.
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PROOF See Section 11.7 for the proof.

We consider some applications of this algorithm.

EXAMPLE 11.3.3
As in Example 11.3.1, suppose S 2 1 0 1 2 and

j C j 1 2 4e 3 j cos2 j ,

for j S. We shall construct a Markov chain having i as a stationary distribution.
We first need to choose some simple Markov chain qi j . We let qi j be simple

random walk with p 1 2, so that qi j 1 2 if j i 1 or j i 1, and qi j 0
otherwise.

We then compute that if j i 1 or j i 1, then

i j min 1
q ji j

qi j i
min 1

1 2 C j 1 2 4e 3 j cos2 j

1 2 C i 1 2 4e3i cos2 i

min 1
j 1 2 4e 3 j cos2 j

i 1 2 4e3i cos2 i
. (11.3.2)

Note that C has cancelled out, so that i j does not depend on C. (In fact, this will
always be the case.) Hence, we see that i j , while somewhat messy, is still very easy
for a computer to calculate.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Let Yn 1 Xn 1 or Yn 1 Xn 1, with probability 1 2 each.

2. Let j Yn 1, and compute i j as in (11.3.2).

3. With probability i j , let Xn 1 Yn 1 j . Otherwise, with probability 1 i j ,
let Xn 1 Xn i .

These steps can all be easily performed on a computer. If we repeat this for n
0 1 2 N 1 for some large number N of iterations, then we will obtain a random
variable XN , where P XN j j C j 1 2 4e 3 j cos2 j for all j S.

EXAMPLE 11.3.4
Again, let S 2 1 0 1 2 , and this time let j Ke j4 for j S.
Let the proposal distribution qi j correspond to a simple random walk with p 1 4,
so that Yn 1 Xn 1 with probability 1 4, and Yn 1 Xn 1 with probability 3 4.

In this case, we compute that if j i 1, then

i j min 1
q j i j

qi j i
min 1

3 4 Ke j4

1 4 Ke i4
min 1 3e j

4 i4 . (11.3.3)

If instead j i 1, then

i j min 1
q j i j

qi j i
min 1

1 4 Ke j4

3 4 Ke i4

min 1 1 3 e j
4 i4 . (11.3.4)
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(Note that the constant K has again cancelled out, as expected.) Hence, again i j is
very easy for a computer to calculate.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Let Yn 1 Xn 1 with probability 1 4, or Yn 1 Xn 1 with probability
3 4.

2. Let j Yn 1, and compute i j using (11.3.3) and (11.3.4).

3. With probability i j , let Xn 1 Yn 1 j . Otherwise, with probability 1 i j ,
let Xn 1 Xn i .

Once again, these steps can all be easily performed on a computer; if repeated for
some large number N of iterations, then P XN j j Ke j4 for j S.

The Metropolis–Hastings algorithm can also be used for continuous random vari­
ables by using densities, as follows.

EXAMPLE 11.3.5
Suppose we want to generate a sample from the distribution with density proportional
to

f y e y4 1 y 3.

So the density is C f y , where C 1 f y dy How can we generate a random
variable Y such that Y has approximately this distribution, i.e., has probability density
approximately equal to C f y ?

Let us use a proposal distribution given by an N x 1 distribution, namely, a nor­
mal distribution with mean x and variance 1. That is, given Xn x , we choose Yn 1

by Yn 1 N x 1 . Because the N x 1 distribution has density 2 1 2 e y x 2 2

this corresponds to a proposal density of q x y 2 1 2 e y x 2 2.
As for the acceptance probability x y , we again use densities, so that

x y min 1
C f y q y x

C f x q x y

min 1
1 y

1 x

3 Ce y4 2 1 2 e y x 2 2

Ce x4 2 1 2 e x y 2 2

min 1
1 y

1 x

3

e y4 x4 . (11.3.5)

Given Xn x , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Generate Yn 1 N Xn 1 .

2. Let y Yn 1, and compute x y as before.

3. With probability x y , let Xn 1 Yn 1 y. Otherwise, with probability
1 x y , let Xn 1 Xn x .
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Once again, these steps can all be easily performed on a computer; if repeated for
some large number N of iterations, then the random variable XN will approximately
have density given by C f y .

11.3.2 The Gibbs Sampler

In Section 7.3.3 we discussed the Gibbs sampler and its application in a Bayesian
statistics problem. As we will now demonstrate, the Gibbs sampler is a specialized
version of the Metropolis–Hastings algorithm, designed for multivariate distributions.
It chooses the proposal probabilities qi j just right so that we always have i j 1, i.e.,
so that no rejections are ever required.

Suppose that S 2 1 0 1 2 2 1 0 1 2 i.e., S is
the set of all ordered pairs of integers i i1 i2 . (Thus, 2 3 S, and 6 14 S,
etc.) Suppose that some distribution i is defined on S. Define a proposal distribution
q 1
i j as follows.
Let V i j S : j2 i2 . That is, V i is the set of all states j S such that i

and j agree in their second coordinate. Thus, V i is a vertical line in S, which passes
through the point i .

In terms of this definition of V i , define q 1
i j 0 if j V i , i.e., if i and j differ

in their second coordinate. If j V i , i.e., if i and j agree in their second coordinate,
then define

q 1
i j

j

k V i k
.

One interpretation is that, if Xn i , and P Yn 1 j q 1
i j for j S, then the

distribution of Yn 1 is the conditional distribution of i , conditional on knowing that
the second coordinate must be equal to i2.

In terms of this choice of q 1
i j , what is i j? Well, if j V i , then i V j , and

also V j V i . Hence,

i j min 1
jq

1
ji

iq
1
i j

min 1
j i k V j k

i j l V i l

min 1
j i

i j
min 1 1 1.

That is, this algorithm accepts the proposal Yn 1 with probability 1, and never rejects
at all!

Now, this algorithm by itself is not very useful because it proposes only states in
V i , so it never changes the value of the second coordinate at all. However, we can
similarly define a horizontal line through i by H i j S : j1 i1 , so that H i
is the set of all states j such that i and j agree in their first coordinate. That is, H i is
a horizontal line in S that passes through the point i .
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We can then define q 2
i j 0 if j H i (i.e., if i and j differ in their first coordi­

nate), while if j V i (i.e., if i and j agree in their first coordinate), then

q 2
i j

j

k H i k
.

As before, we compute that for this proposal, we will always have i j 1, i.e., the
Metropolis–Hastings algorithm with this proposal will never reject.

The Gibbs sampler works by combining these two different Metropolis–Hastings
algorithms, by alternating between them. That is, given a value Xn i , it produces a
value Xn 1 as follows.

1. Propose a value Yn 1 V i according to the proposal distribution q 1
i j .

2. Always accept Yn 1 and set j Yn 1 thus moving vertically.

3. Propose a value Zn 1 H j according to the proposal distribution q 2
i j .

4. Always accept Zn 1 thus moving horizontally.

5. Set Xn 1 Zn 1.

In this way, the Gibbs sampler does a “zigzag” through the state space S, alternately
moving in the vertical and in the horizontal direction.

In light of Theorem 11.3.2, we immediately obtain the following.

Theorem 11.3.4 The preceding Gibbs sampler algorithm results in a Markov chain
X0 X1 X2 that has i as a stationary distribution.

The Gibbs sampler thus provides a particular way of implementing the Metropolis–
Hastings algorithm in multidimensional problems, which never rejects the proposed
values.

Summary of Section 11.3

In cases that are too complicated for ordinary Monte Carlo techniques, it is pos­
sible to use Markov chain Monte Carlo techniques instead, by averaging values
arising from a Markov chain.

The Metropolis–Hastings algorithm provides a simple way to create a Markov
chain with stationary distribution i . Given Xn , it generates a proposal Yn 1
from a proposal distribution qi j , and then either accepts this proposal (and sets
Xn 1 Yn 1) with probability i j , or rejects this proposal (and sets Xn 1
Xn) with probability 1 i j .

Alternatively, the Gibbs sampler updates the coordinates one at a time from their
conditional distribution, such that we always have i j 1.
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EXERCISES

11.3.1 Suppose i Ce i 13 4
for i S 2 1 0 1 2 , where C

1 i e i 13 4
. Describe in detail a Metropolis–Hastings algorithm for i ,

which uses simple random walk with p 1 2 for the proposals.

11.3.2 Suppose i C i 6 5 8 for i S 2 1 0 1 2 , where
C 1 i i 6 5 8. Describe in detail a Metropolis–Hastings algorithm for

i , which uses simple random walk with p 5 8 for the proposals.

11.3.3 Suppose i Ke i4 i6 i8 for i S 2 1 0 1 2 , where
C 1 i e i4 i6 i8 . Describe in detail a Metropolis–Hastings algorithm for

i , which uses simple random walk with p 7 9 for the proposals.

11.3.4 Suppose f x e x4 x6 x8 for x R1. Let K 1 e x4 x6 x8 dx
Describe in detail a Metropolis–Hastings algorithm for the distribution having density
K f x , which uses the proposal distribution N x 1 , i.e., a normal distribution with
mean x and variance 1.
11.3.5 Let f x e x4 x6 x8 for x R1, and let K 1 e x4 x6 x8 dx .
Describe in detail a Metropolis–Hastings algorithm for the distribution having density
K f x , which uses the proposal distribution N x 10 , i.e., a normal distribution with
mean x and variance 10.

COMPUTER EXERCISES

11.3.6 Run the algorithm of Exercise 11.3.1. Discuss the output.

11.3.7 Run the algorithm of Exercise 11.3.2. Discuss the output.

PROBLEMS

11.3.8 Suppose S 1 2 3 1 2 3 , i.e., S is the set of all pairs of positive
integers. For i i1 i2 S, suppose i C 2i1 i2 for appropriate positive constant
C . Describe in detail a Gibbs sampler algorithm for this distribution i .

COMPUTER PROBLEMS

11.3.9 Run the algorithm of Exercise 11.3.4. Discuss the output.
11.3.10 Run the algorithm of Exercise 11.3.5. Discuss the output.

DISCUSSION TOPICS

11.3.11 Why do you think Markov chain Monte Carlo algorithms have become so
popular in so many branches of science? (List as many reasons as you can.)
11.3.12 Suppose you will be using a Markov chain Monte Carlo estimate of the form

A
1

M

M

i 1

h X [i]
N .



650 Section 11.4: Martingales

Suppose also that, due to time constraints, your total number of iterations cannot be
more than one million. That is, you must have NM 1,000,000. Discuss the advan­
tages and disadvantages of the following choices of N and M.
(a) N 1,000,000 M 1
(b) N 1, M 1,000,000
(c) N 100, M 10,000
(d) N 10,000, M 100

(e) N 1000, M 1000
(f) Which choice do you think would be best, under what circumstances? Why?

11.4 Martingales
In this section, we study a special class of stochastic processes called martingales. We
shall see that these processes are characterized by “staying the same on average.”

As motivation, consider again a simple random walk in the case of a fair game, i.e.,
with p 1 2. Suppose, as in the gambler’s ruin setup, that you start at a and keep
going until you hit either c or 0, where 0 a c. Let Z be the value that you end up
with, so that we always have either Z c or Z 0. We know from Theorem 11.1.2
that in fact P Z c a c, so that P Z 0 1 a c.

Let us now consider the expected value of Z . We have that

E Z
z R1

z P Z z cP Z c 0P Z 0 c a c a.

That is, the average value of where you end up is a. But a is also the value at which
you started!

This is not a coincidence. Indeed, because p 1 2 (i.e., the game was fair), this
means that “on average” you always stayed at a. That is, Xn is a martingale.

11.4.1 Definition of a Martingale

We begin with the definition of a martingale. For simplicity, we assume that the mar­
tingale is a Markov chain, though this is not really necessary.

Definition 11.4.1 Let X0 X1 X2 be aMarkov chain. The chain is amartingale
if for all n 0 1 2 , we have E Xn 1 Xn Xn 0. That is, on average the
chain’s value does not change, regardless of what the current value Xn actually is.

EXAMPLE 11.4.1
Let Xn be simple random walk with p 1 2. Then Xn 1 Xn is equal to either 1
or 1, with probability 1 2 each. Hence,

E Xn 1 Xn Xn 1 1 2 1 1 2 0,

so Xn stays the same on average and is a martingale. (Note that we will never actually
have Xn 1 Xn 0. However, on average we will have Xn 1 Xn 0.)
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EXAMPLE 11.4.2
Let Xn be simple random walk with p 2 3. Then Xn 1 Xn is equal to either 1
or 1, with probabilities 2 3 and 1 3 respectively. Hence,

E Xn 1 Xn Xn 1 2 3 1 1 3 1 3 0.

Thus, Xn is not a martingale in this case.

EXAMPLE 11.4.3
Suppose we start with the number 5 and then repeatedly do the following. We either add
3 to the number (with probability 1 4), or subtract 1 from the number (with probability
3 4). Let Xn be the number obtained after repeating this procedure n times. Then,
given the value of Xn, we see that Xn 1 Xn 3 with probability 1 4, while Xn 1
Xn 1 with probability 3 4. Hence,

E Xn 1 Xn Xn 3 1 4 1 3 4 3 4 3 4 0

and Xn is a martingale.

It is sometimes possible to create martingales in subtle ways, as follows.

EXAMPLE 11.4.4
Let Xn again be simple random walk, but this time for general p. Then Xn 1 Xn
is equal to 1 with probability p, and to 1 with probability q 1 p. Hence,

E Xn 1 Xn Xn 1 p 1 q p q 2p 1.

If p 1 2, then this is not equal to 0. Hence, Xn does not stay the same on average,
so Xn is not a martingale.

On the other hand, let

Zn
1 p

p

Xn

,

i.e., Zn equals the constant 1 p p raised to the power of Xn . Then increasing Xn by
1 corresponds to multiplying Zn by 1 p p, while decreasing Xn by 1 corresponds
to dividing Zn by 1 p p, i.e., multiplying by p 1 p . But Xn 1 Xn 1 with
probability p, while Xn 1 Xn 1 with probability q 1 p. Therefore, we see
that, given the value of Zn, we have

E Zn 1 Zn Zn
1 p

p
Zn Zn p

p

1 p
Zn Zn 1 p

1 p Zn pZn pZn 1 p Zn 0.

Accordingly, E Zn 1 Zn Zn 0, so that Zn stays the same on average, i.e., Zn
is a martingale.

11.4.2 Expected Values

Because martingales stay the same on average, we immediately have the following.
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Theorem 11.4.1 Let Xn be a martingale with X0 a. Then E Xn a for all
n.

This theorem sometimes provides very useful information, as the following exam­
ples demonstrate.

EXAMPLE 11.4.5
Let Xn again be simple random walk with p 1 2. Then we have already seen that
Xn is a martingale. Hence, if X0 a, then we will have E Xn a for all n. That
is, for a fair game (i.e., for p 1 2), no matter how long you have been gambling,
your average fortune will always be equal to your initial fortune a.

EXAMPLE 11.4.6
Suppose we start with the number 10 and then repeatedly do the following. We either
add 2 to the number (with probability 1 3), or subtract 1 from the number (with proba­
bility 2 3). Suppose we repeat this process 25 times. What is the expected value of the
number we end up with?

Without martingale theory, this problem appears to be difficult, requiring lengthy
computations of various possibilities for what could happen on each of the 25 steps.
However, with martingale theory, it is very easy.

Indeed, let Xn be the number after n steps, so that X0 10 X1 12 (with
probability 1 3) or X1 9 (with probability 2 3), etc. Then, because Xn 1 Xn
equals either 2 (with probability 1 3) or 1 (with probability 2 3), we have

E Xn 1 Xn Xn 2 1 3 1 2 3 2 3 2 3 0.

Hence, Xn is a martingale.
It then follows that E Xn X0 10, for any n. In particular, E X25 10.

That is, after 25 steps, on average the number will be equal to 10.

11.4.3 Stopping Times

If Xn is a martingale with X0 a, then it is very helpful to know that E Xn a
for all n. However, it is sometimes even more helpful to know that E XT a, where
T is a random time. Now, this is not always true; however, it is often true, as we shall
see. We begin with another definition.

Definition 11.4.2 Let Xn be a stochastic process, and let T be a random variable
taking values in 0 1 2 . Then T is a stopping time if for all m 0 1 2 ,
the event T m is independent of the values Xm 1 Xm 2 . That is, when
deciding whether or not T m (i.e., whether or not to “stop” at time m), we are
not allowed to look at the future values Xm 1 Xm 2 .

EXAMPLE 11.4.7
Let Xn be simple random walk, let b be any integer, and let b min n 0 : Xn
b be the first time we hit the value b. Then b is a stopping time because the event
b n depends only on X0 Xn , not on Xn 1 Xn 2 .
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On the other hand, let T b 1, so that T corresponds to stopping just before
we hit b. Then T is not a stopping time because it must look at the future value Xm 1
to decide whether or not to stop at time m.

A key result about martingales and stopping times is the optional stopping theorem,
as follows.

Theorem 11.4.2 (Optional stopping theorem) Suppose Xn is a martingale with
X0 a, and T is a stopping time. Suppose further that either

(a) the martingale is bounded up to time T , i.e., for some M 0 we have Xn M
for all n T ; or
(b) the stopping time is bounded, i.e., for some M 0 we have T M .

Then E XT a i.e., on average the value of the process at the random time T is
equal to the starting value a.

PROOF For a proof and further discussion, see, e.g., page 273 of Probability: The­
ory and Examples, 2nd ed., by R. Durrett (Duxbury Press, New York, 1996).

Consider a simple application of this.

EXAMPLE 11.4.8
Let Xn be simple random walk with initial value a and with p 1 2. Let r a s
be integers. Let T min r s be the first time the process hits either r or s. Then
r Xn s for n T , so that condition (a) of the optional stopping theorem applies.
We conclude that E XT a, i.e., that at time T , the walk will on average be equal to
a.

We shall see that the optional stopping theorem is useful in many ways.

EXAMPLE 11.4.9
We can use the optional stopping theorem to find the probability that the simple random
walk with p 1 2 will hit r before hitting another value s.

Indeed, again let Xn be simple random walk with initial value a and p 1 2,
with r a s integers and T min r s Then as earlier, E XT a. We can
use this to solve for P XT r , i.e., for the probability that the walk hits r before
hitting s.

Clearly, we always have either XT r or XT s. Let h P XT r . Then
E XT hr 1 h s. Because E XT a, we must have a hr 1 h s.
Solving for h, we see that

P XT r
a s

r s
.

We conclude that the probability that the process will hit r before it hits s is equal
to a s r s . Note that absolutely no difficult computations were required to
obtain this result.

A special case of the previous example is particularly noteworthy.
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EXAMPLE 11.4.10
In the previous example, suppose r c and s 0. Then the value h P XT r
is precisely the same as the probability of success in the gambler’s ruin problem. The
previous example shows that h a s r s a c. This gives the same answer
as Theorem 11.1.2, but with far less effort.

It is impressive that, in the preceding example, martingale theory can solve the
gambler’s ruin problem so easily in the case p 1 2. Our previous solution, without
using martingale theory, was much more difficult (see Section 11.7). Even more sur­
prising, martingale theory can also solve the gambler’s ruin problem when p 1 2, as
follows.

EXAMPLE 11.4.11
Let Xn be simple random walk with initial value a and with p 1 2. Let 0 a c
be integers. Let T min c 0 be the first time the process hits either c or 0. To
solve the gambler’s ruin problem in this case, we are interested in g P XT c
We can use the optional stopping theorem to solve for the gambler’s ruin probability g,
as follows.

Now, Xn is not a martingale, so we cannot apply martingale theory to it. However,
let

Zn
1 p

p

Xn

.

Then Zn has initial value Z0 1 p p a . Also, we know from Example 11.4.4
that Zn is a martingale. Furthermore,

0 Zn max
1 p

p

c 1 p

p

c

for n T , so that condition (a) of the optional stopping theorem applies. We conclude
that

E ZT Z0
1 p

p

a

.

Now, clearly, we always have either XT c (with probability g) or XT 0
(with probability 1 g). In the former case, ZT 1 p p c, while in the latter
case, ZT 1. Hence, E ZT g 1 p p c 1 g 1 . Because E ZT
1 p p a , we must have

1 p

p

a

g
1 p

p

c

1 g 1 .

Solving for g, we see that

g
1 p p a 1

1 p p c 1
.

This again gives the same answer as Theorem 11.1.2, this time for p 1 2, but
again with far less effort.

Martingale theory can also tell us other surprising facts.
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EXAMPLE 11.4.12
Let Xn be simple random walk with p 1 2 and with initial value a 0. Will
the walk hit the value 1 some time during the first million steps? Probably yes, but
not for sure. Furthermore, conditional on not hitting 1, it will probably be extremely
large, as we now discuss.

Let T min 106 1 That is, T is the first time the process hits 1, unless that
takes more than one million steps, in which case T 106.

Now, Xn is a martingale. Also T is a stopping time (because it does not look
into the future when deciding whether or not to stop). Furthermore, we always have
T 106, so condition (b) of the optional stopping theorem applies. We conclude that
E XT a 0.

On the other hand, by the law of total expectation, we have

E XT E XT XT 1 P XT 1 E XT XT 1 P XT 1 .

Also, clearly E XT XT 1 1. Let u P XT 1 , so that P XT
1 1 u. Then we conclude that 0 1 u E XT XT 1 1 u so that

E XT XT 1
u

1 u
.

Now, clearly, u will be very close to 1, i.e., it is very likely that within 106 steps the
process will have hit 1. Hence, E XT XT 1 is extremely large.

We may summarize this discussion as follows. Nearly always we have XT 1.
However, very occasionally we will have XT 1. Furthermore, the average value
of XT when XT 1 is so large that overall (i.e., counting both the case XT 1
and the case XT 1), the average value of XT is 0 (as it must be because Xn is a
martingale)!

If one is not careful, then it is possible to be tricked bymartingale theory, as follows.

EXAMPLE 11.4.13
Suppose again that Xn is simple random walk with p 1 2 and with initial value
a 0. Let T 1, i.e., T is the first time the process hits 1 (no matter how long
that takes).

Because the process will always wait until it hits 1, we always have XT 1.
Because this is true with probability 1, we also have E XT 1.

On the other hand, again Xn is a martingale, so again it appears that we should
have E XT 0. What is going on?

The answer, of course, is that neither condition (a) nor condition (b) of the optional
stopping theorem is satisfied in this case. That is, there is no limit to how large T might
have to be or how large Xn might get for some n T . Hence, the optional stopping
theorem does not apply in this case, and we cannot conclude that E XT 0. Instead,
E XT 1 here.

Summary of Section 11.4

A Markov chain Xn is a martingale if it stays the same on average, i.e., if
E Xn 1 Xn Xn 0 for all n. There are many examples.
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A stopping time T for the chain is a nonnegative integer­valued random variable
that does not look into the future of Xn . For example, perhaps T b is the
first time the chain hits some state b.

If Xn is a martingale with stopping time T , and if either T or Xn n T is
bounded, then E XT X0. This can be used to solve many problems, e.g.,
gambler’s ruin.

EXERCISES

11.4.1 Suppose we define a process Xn as follows. Given Xn, with probability 3 8
we let Xn 1 Xn 4, while with probability 5 8 we let Xn 1 Xn C . What value
of C will make Xn be a martingale?
11.4.2 Suppose we define a process Xn as follows. Given Xn, with probability p we
let Xn 1 Xn 7, while with probability 1 p we let Xn 1 Xn 2. What value
of p will make Xn be a martingale?
11.4.3 Suppose we define a process Xn as follows. Given Xn, with probability p we
let Xn 1 2Xn, while with probability 1 p we let Xn 1 Xn 2. What value of p
will make Xn be a martingale?
11.4.4 Let Xn be a martingale, with initial value X0 14. Suppose for some n, we
know that P Xn 8 P Xn 12 P Xn 17 1, i.e., Xn is always either 8,
12, or 17. Suppose further that P Xn 8 0 1. Compute P Xn 14 .
11.4.5 Let Xn be a martingale, with initial value X0 5. Suppose we know that
P X8 3 P X8 4 P X8 6 1, i.e., X8 is always either 3, 4, or 6.
Suppose further that P X8 3 2 P X8 6 . Compute P X8 4 .
11.4.6 Suppose you start with 175 pennies. You repeatedly flip a fair coin. Each time
the coin comes up heads, you win a penny; each time the coin comes up tails, you lose
a penny.
(a) After repeating this procedure 20 times, how many pennies will you have on aver­
age?
(b) Suppose you continue until you have either 100 or 200 pennies, and then you stop.
What is the probability you will have 200 pennies when you stop?
11.4.7 Define a process Xn by X0 27, and Xn 1 3Xn with probability 1 4, or
Xn 1 Xn 3 with probability 3 4. Let T min 1 81 be the first time the process
hits either 1 or 81.
(a) Show that Xn is a martingale.
(b) Show that T is a stopping time.
(c) Compute E XT .
(d) Compute the probability P XT 1 that the process hits 1 before hitting 81.

PROBLEMS

11.4.8 Let Xn be a stochastic process, and let T1 be a stopping time. Let T2 T1 i
and T3 T1 i , for some positive integer i . Which of T2 and T3 is necessarily a
stopping time, and which is not? (Explain your reasoning.)
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11.4.9 Let Xn be a stochastic process, and let T1 and T2 be two different stopping
times. Let T3 min T1 T2 , and T4 max T1 T2 .
(a) Is T3 necessarily a stopping time? (Explain your reasoning.)
(b) Is T4 necessarily a stopping time? (Explain your reasoning.)

11.5 Brownian Motion
The simple random walk model of Section 11.1.2 (with p 1 2) can be extended to
an interesting continuous­time model, called Brownian motion, as follows. Roughly,
the idea is to speed up time faster and faster by a factor of M (for very large M),
while simultaneously shrinking space smaller and smaller by a factor of 1 M. The
factors of M and 1 M are chosen just right so that, using the central limit theorem,
we can derive properties of Brownian motion. Indeed, using the central limit theorem,
we shall see that various distributions related to Brownian motion are in fact normal
distributions.

Historically, Brownian motion gets its name from Robert Brown, a botanist, who
in 1828 observed the motions of tiny particles in solution, under a microscope, as
they were bombarded from random directions by many unseen molecules. Brownian
motion was proposed as a model for the observed chaotic, random movement of such
particles. In fact, Brownian motion turns out not to be a very good model for such
movement (for example, Brownian motion has infinite derivative, which would only
make sense if the particles moved infinitely quickly!). However, Brownian motion has
many useful mathematical properties and is also very important in the theory of finance
because it is often used as a model of stock price fluctuations. A proper mathematical
theory of Brownian motion was developed in 1923 by Norbert Wiener2; as a result,
Brownian motion is also sometimes called the Wiener process.

We shall construct Brownian motion in two steps. First, we construct faster and
faster random walks, to be called Y M

t where M is large. Then, we take the limit as
M to get Brownian motion.

11.5.1 Faster and Faster Random Walks

To begin, we let Z1 Z2 be i.i.d. with P Zi 1 P Zi 1 1 2 For
each M 1 2 , define a discrete­time random process

Y M
i M : i 0 1 ,

by Y M
0 0, and

Y M
i 1 M Y M

i
M

1

M
Zi 1,

for i 0 1 2 so that

Y M
i M

1

M
Z1 Z2 Zi .

2Wiener was such an absent­minded professor that he once got lost and could not find his house. In his
confusion, he asked a young girl for directions, without recognizing the girl as his daughter!
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Intuitively, then, Y M
i M is like an ordinary (discrete­time) random walk (with p

1 2), except that time has been sped up by a factor of M and space has been shrunk
by a factor of M (each step in the new walk moves a distance 1 M . That is, this
process takes lots and lots of very small steps.

To make Y M
i M into a continuous­time process, we can then “fill in” the missing

values by making the function linear on the intervals [i M i 1 M]. In this way,
we obtain a continuous­time process

Y M
t : t 0

which agrees with Y M
i M whenever t 1 M. In Figure 11.5.1, we have plotted

Y 10
i 10 : i 0 1 20

(the dots) and the corresponding values of

Y 10
t : 0 t 20

(the solid line), arising from the realization

Z1 Z20 1 1 1 1 1 1 ,

where we have taken 1 10 0 316

2.01.91.81.71.61.51.41.31.21.11.00.90.80.70.60.50.40.30.20.10.0

0.9490.949

0.6320.6320.6320.6320.632

0.3160.3160.3160.3160.3160.316

0.0000.0000.0000.0000.000

-0.316-0.316

-0.632

t

Y

Figure 11.5.1: Plot of some values of Y 10
i 10 and Y 10

t

The collection of variables Y M
t : t 0 is then a stochastic process but is now

indexed by the continuous time parameter t 0. This is an example of a continuous­
time stochastic process.

Now, the factors M and M have been chosen carefully, as the following theorem
illustrates.
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Theorem 11.5.1 Let Y M
t : t 0 be as defined earlier. Then for large M:

(a) For t 0, the distribution of Y M
t is approximately N 0 t , i.e., normally

distributed with mean t .
(b) For s t 0, the covariance

Cov Y M
t Y M

t

is approximately equal to min s t .
(c) For t s 0, the distribution of the increment Y M

t Y M
s is approxi­

mately N 0 t s , i.e., normally distributed with mean 0 and variance t s, and
is approximately independent of Y M

s .
(d) Y M

t is a continuous function of t .

PROOF See Section 11.7 for the proof of this result.

We shall use this limit theorem to construct Brownian motion.

11.5.2 Brownian Motion as a Limit

We have now developed the faster and faster processes Y M
t : t 0 , and some

of their properties. Brownian motion is then defined as the limit as M of the
processes Y M

t : t 0 . That is, we define Brownian motion Bt : t 0 by saying
that the distribution of Bt : t 0 is equal to the limit as M of the distribution
of Y M

t : t 0 . A graph of a typical run of Brownian motion is in Figure 11.5.2.

2.52.01.51.00.50.0

2

1

0

-1

t

B

Figure 11.5.2: A typical outcome from Brownian motion.

In this way, all the properties of Y M
t for largeM , as developed in Theorem 11.5.1,

will apply to Brownian motion, as follows.
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Theorem 11.5.2 Let Bt : t 0 be Brownian motion. Then
(a) Bt is normally distributed: Bt N 0 t for any t 0;
(b) Cov Bs Bt E BsBt min s t for s t 0;
(c) if 0 s t , then the increment Bt Bs is normally distributed: Bt Bs
N 0 t s , and furthermore Bt Bs is independent of Bs ;
(d) the function Bt t 0 is a continuous function.

This theorem can be used to compute many things about Brownian motion.

EXAMPLE 11.5.1
Let Bt be Brownian motion. What is P B5 3 ?

We know that B5 N 0 5 . Hence, B5 5 N 0 1 . We conclude that

P B5 3 P B5 5 3 5 3 5 0 910,

where

x
x 1

2
e s2 2 ds

is the cdf of a standard normal distribution, and we have found the numerical value
from Table D.2. Thus, about 91% of the time, Brownian motion will be less than 3 at
time 5.

EXAMPLE 11.5.2
Let Bt be Brownian motion. What is P B7 4 ?

We know that B7 N 0 7 . Hence, B7 7 N 0 1 . We conclude that

P B7 4 1 P B7 4 1 P B7 7 4 7

1 4 7 1 0 065 0 935.

Thus, over 93% of the time, Brownian motion will be at least 4 at time 7.

EXAMPLE 11.5.3
Let Bt be Brownian motion. What is P B8 B6 1 5 ?

We know that B8 B6 N 0 8 6 N 0 2 . Hence, B8 B6 2 N 0 1 .
We conclude that

P B8 B6 1 5 P B8 B6 2 1 5 2 1 5 2 0 144.

Thus, about 14% of the time, Brownian motion will decrease by at least 1.5 between
time 6 and time 8.

EXAMPLE 11.5.4
Let Bt be Brownian motion. What is P B2 0 5 B5 B2 1 5 ?

By Theorem 11.5.2, we see that B5 B2 and B2 are independent. Hence,

P B2 0 5 B5 B2 1 5 P B2 0 5 P B5 B2 1 5 .

Now, we know that B2 N 0 2 . Hence, B2 2 N 0 1 , and

P B2 0 5 P B2 2 0 5 2 0 5 2 .
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Similarly, B5 B2 N 0 3 , so B5 B2 3 N 0 1 , and

P B5 B2 1 5 P B5 B2 3 1 5 3

1 P B5 B2 3 1 5 3 1 5 3 .

We conclude that

P B2 0 5 B5 B2 1 5 P B2 0 5 P B5 B2 1 5

0 5 2 1 5 3 0 292.

Thus, about 29% of the time, Brownian motion will be no more than 1 2 at time 2
and will then increase by at least 1.5 between time 2 and time 5.

We note also that, because Brownian motion was created from simple random
walks with p 1 2, it follows that Brownian motion is a martingale. This implies
that E Bt 0 for all t , but of course, we already knew that because Bt N 0 t .
On the other hand, we can now use the optional stopping theorem (Theorem 11.4.2) to
conclude that E BT 0 where T is a stopping time (provided, as usual, that either
T or Bt : t T is bounded). This allows us to compute certain probabilities, as
follows.

EXAMPLE 11.5.5
Let Bt be Brownian motion. Let c 0 b. What is the probability the process will
hit c before it hits b?

To solve this problem, we let c be the first time the process hits c, and b be the
first time the process hits b. We then let T min c b be the first time the process
either hits c or hits b. The question becomes, what is P c b ? Equivalently, what
is P BT c ?

To solve this, we note that we must have E BT B0 0. But if h P BT c ,
then BT c with probability h, and BT b with probability 1 h. Hence, we must
have 0 E BT hc 1 h b so that h b b c . We conclude that

P BT c P c b
b

b c
.

(Recall that c 0, so that b c b c here.)

Finally, we note that although Brownian motion is a continuous function, it turns
out that, with probability one, Brownian motion is not differentiable anywhere at all!
This is part of the reason that Brownian motion is not a goodmodel for the movement of
real particles. (See Challenge 11.5.15 for a result related to this.) However, Brownian
motion has many other uses, including as a model for stock prices, which we now
describe.

11.5.3 Diffusions and Stock Prices

Brownian motion is used to construct various diffusion processes, as follows.
Given Brownian motion Bt , we can let

Xt a t Bt ,
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where a and are any real numbers, and 0. Then X t is a diffusion.
Here, a is the initial value, (called the drift) is the average rate of increase, and

(called the volatility parameter) represents the amount of randomness of the diffusion.
Intuitively, Xt is approximately equal to the linear function a t , but due to

the randomness of Brownian motion, Xt takes on random values around this linear
function.

The precise distribution of X t can be computed, as follows.

Theorem 11.5.3 Let Bt be Brownian motion, and let X t a t Bt be a
diffusion. Then
(a) E X t a t ,
(b) Var X t

2t ,
(c) X t N a t 2t .

PROOF We know Bt N 0 1 , so E Bt 0 and Var Bt t . Also, a t is
not random (i.e., is a constant from the point of view of random variables). Hence,

E X t E a t Bt a t E Bt a t ,

proving part (a).
Similarly,

Var X t Var a t Bt Var Bt
2Var Bt

2t ,

proving part (b).
Finally, because Xt is a linear function of the normally distributed random variable

Bt , Xt must be normally distributed by Theorem 4.6.1. This proves part (c).

Diffusions are often used as models for stock prices. That is, it is often assumed
that the price X t of a stock at time t is given by X t a t Bt for appropriate
values of a, , and .

EXAMPLE 11.5.6
Suppose a stock has initial price $20, drift of $3 per year, and volatility parameter 1 4.
What is the probability that the stock price will be over $30 after two and a half years?

Here, the stock price after t years is given by Xt 20 3t 1 4Bt and is thus a
diffusion.

So, after 2 5 years, we have X2 5 20 7 5 1 4B2 5 27 5 1 4B2 5 Hence,

P X2 5 30 P 27 5 1 4B2 5 30 P B2 5 30 27 5 1 4

P B2 5 1 79 .

But like before,

P B2 5 1 79 1 P B2 5 1 79 1 P B2 5 2 5 1 79 2 5

1 1 79 2 5 0 129.

We conclude that P X2 5 30 0 129.
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Hence, there is just under a 13% chance that the stock will be worth more than $30
after two and a half years.

EXAMPLE 11.5.7
Suppose a stock has initial price $100, drift of $2 per year, and volatility parameter
5 5. What is the probability that the stock price will be under $90 after just half a year?

Here, the stock price after t years is given by X t 100 2t 5 5Bt and is again
a diffusion. So, after 0 5 years, we have X0 5 100 1 0 5 5B0 5 99 5 5B0 5
Hence,

P X0 5 90 P 99 5 5B0 5 90 P B0 5 90 99 5 5

P B0 5 1 64 P B0 5 0 5 1 64 0 5

1 64 0 5 2 32 0 010.

Therefore, there is about a 1% chance that the stock will be worth less than $90 after
half a year.

More generally, the drift and volatility could be functions of the value X t ,
leading to more complicated diffusions X t , though we do not pursue this here.

Summary of Section 11.5

Brownian motion Bt t 0 is created from simple random walk with p 1 2, by
speeding up time by a large factor M, and shrinking space by a factor 1 M.

Hence, B0 0 Bt N 0 t , and Bt has independent normal increments with
Bt Bs N 0 t s for 0 s t , and Cov Bs Bt min s t , and Bt is
a continuous function.

Diffusions (often used to model stock prices) are of the form X t a t Bt .

EXERCISES

11.5.1 Consider the speeded­up processes Y M
i M used to construct Brownian motion.

Compute the following quantities.
(a) P Y 1

1 1

(b) P Y 2
1 1

(c) P Y 2
1 2 (Hint: Don’t forget that 2 2 2.)

(d) P Y M
1 1 for M 1, M 2, M 3, and M 4

11.5.2 Let Bt be Brownian motion. Compute P B1 1 .

11.5.3 Let Bt be Brownian motion. Compute each of the following quantities.
(a) P B2 1
(b) P B3 4
(c) P B9 B5 2 4
(d) P B26 B11 9 8
(e) P B26 3 6
(f) P B26 3 0
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11.5.4 Let Bt be Brownian motion. Compute each of the following quantities.
(a) P B2 1 B5 B2 2
(b) P B5 2 B13 B5 4
(c) P B8 4 3 2 B18 6 B8 4 0 9
11.5.5 Let Bt be Brownian motion. Compute E B13B8 . (Hint: Do not forget
part (b) of Theorem 11.5.2.)
11.5.6 Let Bt be Brownian motion. Compute E B17 B14 2 in two ways.
(a) Use the fact that B17 B14 N 0 3 .
(b) Square it out, and compute E B2

17 2 E B17B14 E B2
14 .

11.5.7 Let Bt be Brownian motion.
(a) Compute the probability that the process hits 5 before it hits 15.
(b) Compute the probability that the process hits 15 before it hits 5.
(c) Which of the answers to Part (a) or (b) is larger? Why is this so?
(d) Compute the probability that the process hits 15 before it hits 5.
(e) What is the sum of the answers to parts (a) and (d)? Why is this so?
11.5.8 Let X t 5 3t 2Bt be a diffusion (so that a 5, 3, and 2).
Compute each of the following quantities.
(a) E X7
(b) Var X8 1
(c) P X2 5 12
(d) P X17 50
11.5.9 Let Xt 10 1 5 t 4Bt . Compute E X3X5 .

11.5.10 Suppose a stock has initial price $400 and has volatility parameter equal to 9.
Compute the probability that the stock price will be over $500 after 8 years, if the drift
per year is equal to
(a) $0.
(b) $5.
(c) $10.
(d) $20.

11.5.11 Suppose a stock has initial price $200 and drift of $3 per year. Compute
the probability that the stock price will be over $250 after 10 years, if the volatility
parameter is equal to
(a) 1.
(b) 4.
(c) 10.
(d) 100.

PROBLEMS

11.5.12 Let Bt be Brownian motion, and let X 2B3 7B5. Compute the mean
and variance of X .

11.5.13 Prove that P Bt x P Bt x for any t 0 and any x R1.
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CHALLENGES

11.5.14 Compute P Bs x Bt y , where 0 s t , and x y R1. (Hint: You
will need to use conditional densities.)
11.5.15 (a) Let f : R1 R1 be a Lipschitz function, i.e., a function for which there
exists K such that f x f y K x y for all x y R1. Compute

lim
h 0

f t h f t 2

h

for any t R1.
(b) Let Bt be Brownian motion. Compute

lim
h 0

E
Bt h Bt 2

h

for any t 0.
(c) What do parts (a) and (b) seem to imply about Brownian motion?
(d) It is a known fact that all functions that are continuously differentiable on a closed
interval are Lipschitz. In light of this, what does part (c) seem to imply about Brownian
motion?

DISCUSSION TOPICS

11.5.16 Diffusions such as those discussed here (and more complicated, varying co­
efficient versions) are very often used by major investors and stock traders to model
stock prices.
(a) Do you think that diffusions provide good models for stock prices?
(b) Even if diffusions did not provide good models for stock prices, why might in­
vestors still need to know about them?

11.6 Poisson Processes
Finally, we turn our attention to Poisson processes. These processes are models for
events that happen at random times Tn. For example, Tn could be the time of the
nth fire in a city, or the detection of the nth particle by a Geiger counter, or the nth car
passing a checkpoint on a road. Poisson processes provide a model for the probabilities
for when these events might take place.

More formally, we let a 0, and let R1 R2 be i.i.d. random variables, each
having the Exponential a distribution. We let T0 0, and for n 1,

Tn R1 R2 Rn .

The value Tn thus corresponds to the (random) time of the nth event.
We also define a collection of counting variables Nt , as follows. For t 0, we let

Nt max n : Tn t
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That is, Nt counts the number of events that have happened by time t . (In particular,
N0 0. Furthermore, Nt 0 for all t T1, i.e., before the first event occurs.)

We can think of the collection of variables Nt for t 0 as being a stochastic
process, indexed by the continuous time parameter t 0. The process Nt : t 0 is
thus another example, like Brownian motion, of a continuous­time stochastic process.

In fact, Nt : t 0 is called a Poisson process (with intensity a). This name comes
from the following.

Theorem 11.6.1 For any t 0, the distribution of Nt is Poisson at .

PROOF See Section 11.7 for the proof of this result.

In fact, even more is true.

Theorem 11.6.2 Let 0 t0 t1 t2 t3 td . Then for i 1 2 d,
the distribution of Nti Nti 1 is Poisson a ti ti 1 . Furthermore, the random
variables Nti Nti 1 for i 1 d are independent.

PROOF See Section 11.7 for the proof of this result.

EXAMPLE 11.6.1
Let Nt be a Poisson process with intensity a 5. What is P N3 12 ?

Here, N3 Poisson 3a Poisson 15 . Hence, from the definition of the Poisson
distribution, we have

P N3 12 e 15 15 12 12! 0 083,

which is a little more than 8%.

EXAMPLE 11.6.2
Let Nt be a Poisson process with intensity a 2. What is P N6 11 ?

Here N6 Poisson 6a Poisson 12 . Hence,

P N6 11 e 12 12 11 11! 0 114,

or just over 11%.

EXAMPLE 11.6.3
Let Nt be a Poisson process with intensity a 4. What is P N2 3 N5 4 ?
(Recall that here the comma means “and” in probability statements.)

We begin by writing P N2 3 N5 4 P N2 3 N5 N2 1 This
is just rewriting the question. However, it puts it into a context where we can use
Theorem 11.6.2.

Indeed, by that theorem, N2 and N5 N2 are independent, with N2 Poisson 8
and N5 N2 Poisson 12 . Hence,

P N2 3 N5 4 P N2 3 N5 N2 1

P N2 3 P N5 N2 1

e 8 8
3

3!
e 12 12

1

1!
0 0000021.

We thus see that the event N2 3 N5 4 is very unlikely in this case.
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Summary of Section 11.6

Poisson processes are models of events that happen at random times Tn.

It is assumed that the time Rn Tn Tn 1 between consecutive events in
Exponential a for some a 0. Then Nt represents the total number of events
by time t .

It follows that Nt Poisson at , and in fact the process Nt t 0 has independent
increments, with Nt Ns Poisson a t s for 0 s t .

EXERCISES

11.6.1 Let N t t 0 be a Poisson process with intensity a 7. Compute the follow­
ing probabilities.
(a) P N2 13
(b) P N5 3
(c) P N6 20 .
(d) P N50 340
(e) P N2 13 N5 3 .
(f) P N2 13 N6 20
(g) P N2 13 N5 3 N6 20

11.6.2 Let N t t 0 be a Poisson process with intensity a 3. Compute P N1 2
6 and P N0 3 5 .

11.6.3 Let N t t 0 be a Poisson process with intensity a 1 3. Compute P N2
6 and P N3 5 .
11.6.4 Let N t t 0 be a Poisson process with intensity a 3. Compute P N2
6 N3 5 . Explain your answer.
11.6.5 Let N t t 0 be a Poisson process with intensity a 0. Compute (with expla­
nation) the conditional probability P N2 6 2 N2 9 2
11.6.6 Let N t t 0 be a Poisson process with intensity a 1 3. Compute (with
explanation) the following conditional probabilities.
(a) P N6 5 N9 5
(b) P N6 5 N9 7
(c) P N9 5 N6 7
(d) P N9 7 N6 7
(e) P N9 12 N6 7

PROBLEMS

11.6.7 Let Nt : t 0 be a Poisson process with intensity a 0. Let 0 s t , and
let j be a positive integer.
(a) Compute (with explanation) the conditional probability P Ns j Nt j
(b) Does the answer in part (a) depend on the value of the intensity a? Intuitively, why
or why not?
11.6.8 Let Nt : t 0 be a Poisson process with intensity a 0. Let T1 be the time
of the first event, as usual. Let 0 s t .
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(a) Compute P Ns 1 Nt 1 (If you wish, you may use the previous problem,
with j 1.)
(b) Suppose t is fixed, but s is allowed to vary in the interval 0 t . What does the an­
swer to part (b) say about the “conditional distribution” of T1, conditional on knowing
that Nt 1?

11.7 Further Proofs
Proof of Theorem 11.1.1

We want to prove that when Xn is a simple random walk, n is a positive integer, and
if k is an integer such that n k n and n k is even, then

P Xn a k
n

n k
2

p n k 2q n k 2.

For all other values of k, we have P Xn a k 0. Furthermore,

E Xn a n 2p 1 .

Of the first n bets, let Wn be the number won, and let Ln be the number lost. Then
n Wn Ln . Also, Xn a Wn Ln.

Adding these two equations together, we conclude that n Xn Wn Ln a
Wn Ln a 2Wn Solving for Wn, we see that Wn n Xn a 2. Because
Wn must be an integer, it follows that n Xn a must be even. We conclude that
P Xn a k 0 unless n k is even.

On the other hand, solving for Xn, we see that Xn a 2Wn n, or Xn
a 2Wn n. Because 0 Wn n, it follows that n Xn a n, i.e., that
P Xn a k 0 if k n or k n.

Suppose now that k n is even, and n k n. Then from the above, P Xn
a k P Wn n k 2 . But the distribution of Wn is clearly Binomial n p .
We conclude that

P Xn a k
n

n k
2

p n k 2q n k 2,

provided that k n is even and n k n.
Finally, because Wn Binomial n p , therefore E Wn np. Hence, because

Xn a 2Wn n, therefore E Xn a 2E Wn n a 2np n a n 2p 1 ,
as claimed.

Proof of Theorem 11.1.2

We want to prove that when Xn is a simple random walk, with some initial fortune a
and probability p of winning each bet, and 0 a c, then the probability P c 0
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of hitting c before 0 is given by

P c 0

a c p 1 2
1 q

p

a

1 q
p

c p 1 2.

To begin, let us write s b for the probability P c 0 when starting at the initial
fortune b, for any 0 b c. We are interested in computing s a . However, it turns
out to be easier to solve for all of the values s 0 s 1 s 2 s c simultaneously,
and this is the trick we use.

We have by definition that s 0 0 (i.e., if we start with $0, then we can never
win) and s c 1 (i.e., if we start with $c, then we have already won). So, those two
cases are easy. However, the values of s b for 1 b c 1 are not obtained as
easily.

Our trick will be to develop equations that relate the values s b for different values
of b. Indeed, suppose 1 b c 1. It is difficult to compute s b directly. However,
it is easy to understand what will happen on the first bet — we will either lose $1 with
probability p, or win $1 with probability q. That leads to the following result.

Lemma 11.7.1 For 1 b c 1, we have

s b ps b 1 qs b 1 . (11.7.1)

PROOF Suppose first that we win the first bet, i.e., that Z1 1. After this first
bet, we will have fortune b 1. We then get to “start over” in our quest to reach c
before reaching 0, except this time starting with fortune b 1 instead of b. Hence, after
winning this first bet, our chance of reaching c before reaching 0 is now s b 1 . (We
still do not know what s b 1 is, but at least we are making a connection between
s b and s b 1 .)

Suppose instead that we lose this first bet, i.e., that Z1 1. After this first bet,
we will have fortune b 1. We then get to “start over” with fortune b 1 instead of b.
Hence, after this first bet, our chance of reaching c before reaching 0 is now s b 1 .

We can combine all of the preceding information, as follows.

s b P c 0

P Z1 1 c 0 P Z1 1 c 0

ps b 1 qs b 1

That is, s b p s b 1 q s b 1 , as claimed.

So, where are we? We had c 1 unknowns, s 0 s 1 s c . We now know
the two equations s 0 0 and s c 1, plus the c 1 equations of the form s b
p s b 1 q s b 1 for b 1 2 c 1. In other words, we have c 1 equations
in c 1 unknowns, so we can now solve our problem!

The solution still requires several algebraic steps, as follows.
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Lemma 11.7.2 For 1 b c 1, we have

s b 1 s b
q

p
s b s b 1 .

PROOF Recalling that p q 1 we rearrange (11.7.1) as follows.

s b p s b 1 q s b 1

p q s b p s b 1 q s b 1

q s b s b 1 p s b 1 s b

And finally,

s b 1 s b
q

p
s b s b 1 ,

which gives the result.

Lemma 11.7.3 For 0 b c, we have

s b
b 1

i 0

q

p

i

s 1 . (11.7.2)

PROOF Applying the equation of Lemma 11.7.2 with b 1, we obtain

s 2 s 1
q

p
s 1 s 0

q

p
s 1

(because s 0 0). Applying it again with b 2, we obtain

s 3 s 2
q

p
s 2 s 1

q

p

2

s 1 s 0
q

p

2

s 1 .

By induction, we see that

s b 1 s b
q

p

b

s 1 ,

for b 0 1 2 c 1. Hence, we compute that for b 0 1 2 c,

s b

s b s b 1 s b 1 s b 2 s b 2 s b 3

s 1 s 0
b 1

i 0

s i 1 s i
b 1

i 0

q

p

i

s 1 .

This gives the result.
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We are now able to finish the proof of Theorem 11.1.2.
If p 1 2, then q p 1, so (11.7.2) becomes s b bs 1 . But s c 1, so we

must have cs 1 1, i.e., s 1 1 c. Then s b bs 1 b c. Hence, s a a c
in this case.

If p 1 2, then q p 1, so (11.7.2) is a geometric series, and becomes

s b
q p b 1

q p 1
s 1 .

Because s c 1, we must have

1
q p c 1

q p 1
s 1 ,

so

s 1
q p 1

q p c 1
.

Then

s b
q p b 1

q p 1
s 1

q p b 1

q p 1

q p 1

q p c 1

q p b 1

q p c 1
.

Hence,

s a
q p a 1

q p c 1

in this case.

Proof of Theorem 11.1.3

We want to prove that when Xn is a simple random walk, with initial fortune a 0
and probability p of winning each bet, then the probability P 0 that the walk
will ever hit 0 is given by

P 0
1 p 1 2
q p a p 1 2.

By continuity of probabilities, we see that

P 0 lim
c

P 0 c lim
c

1 P c 0 .

Hence, if p 1 2, then P 0 limc 1 a c 1.
Now, if p 1 2, then

P 0 lim
c

1
1 q p a

1 q p c .

If p 1 2 then q p 1, so limc q p c , and P 0 1 If p 1 2
then q p 1, so limc q p c 0, and P 0 q p a .
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Proof of Theorem 11.3.3

We want to prove that the Metropolis–Hastings algorithm results in a Markov chain
X0 X1 X2 which has i as a stationary distribution.

We shall prove that the resulting Markov chain is reversible with respect to i ,
i.e., that

i P Xn 1 j Xn i j P Xn 1 i Xn j , (11.7.3)

for i j S It will then follow from Theorem 11.2.6 that i is a stationary distribu­
tion for the chain.

We thus have to prove (11.7.3). Now, (11.7.3) is clearly true if i j , so we can
assume that i j .

But if i j , and Xn i , then the only way we can have Xn 1 j is if Yn 1 j
(i.e., we propose the state j , which we will do with probability pi j ). Also we accept
this proposal (which we will do with probability i j ). Hence,

P Xn 1 j Xn i qi j i j qi j min 1
jq ji

iqi j
min qi j

jq j i

i
.

It follows that i P Xn 1 j Xn i min iqi j jq ji
Similarly, we compute that j P Xn 1 i Xn j min jq ji iqi j It

follows that (11.7.3) is true.

Proof of Theorem 11.5.1

We want to prove that when Y M
t : t 0 is as defined earlier, then for large M:

(a) For t 0, the distribution of Y M
t is approximately N 0 t , i.e., normally dis­

tributed with mean t.
(b) For s t 0, the covariance

Cov Y M
t Y M

t

is approximately equal to min s t .
(c) For t s 0, the distribution of the increment

Y M
t Y M

s

is approximately N 0 t s , i.e., normally distributed with mean 0 and variance t s,
and is approximately independent of Y M

s .
(d) Y M

t is a continuous function of t .

Write r for the greatest integer not exceeding r , so that, e.g., 7 6 7. Then we
see that for large M, t is very close to tM M, so that Y M

t is very close (formally,
within O 1 M in probability) to

A Y M
tM M

1

M
Z1 Z2 Z tM .
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Now, A is equal to 1 M times the sum of tM different i.i.d. random variables,
each having mean 0 and variance 1. It follows from the central limit theorem that A
converges in distribution to the distribution N 0 t as M . This proves part (a).

For part (b), note that also Y M
s is very close to

B Y M
sM M

1

M
Z1 Z2 Z sM .

Because E Zi 0, we must have E A E B 0, so that Cov A B E AB .
For simplicity, assume s t the case s t is similar. Then we have

Cov A B E AB
1

M
E Z1 Z2 Z sM Z1 Z2 Z tM

1

M
E

sM

i 1

tM

j 1

Zi Z j
1

M

sM

i 1

tM

j 1

E Zi Z j .

Now, we have E Zi Z j 0 unless i j , in which case E Zi Z j 1. There will
be precisely sM terms in the sum for which i j , namely, one for each value of i
(since t s). Hence,

Cov A B
sM

M
,

which converges to s as M . This proves part (b).
Part (c) follows very similarly to part (a). Finally, part (d) follows because the

function Y M
t was constructed in a continuous manner (as in Figure 11.5.1).

Proof of Theorem 11.6.1

We want to prove that for any t 0, the distribution of Nt is Poisson at .

We first require a technical lemma.

Lemma 11.7.4 Let gn t e atantn 1 n 1 ! be the density of the
Gamma n a distribution. Then for n 1,

t

0
gn s ds

i n

e at at i i!. (11.7.4)

PROOF If t 0, then both sides are 0. For other t , differentiating with respect to
t , we see (setting j i 1) that t i n e

at at i i! i n ae at at i i!
e atai t i 1 i 1 ! i n e atai 1t i i! j n 1 e

ata j 1t j j!

e ata n 1 1tn 1 n 1 ! gn t t
t
0 gn s ds. Because this is true for all t 0,

we see that (11.7.4) is satisfied for any n 0.

Recall (see Example 2.4.16) that the Exponential distribution is the same as the
Gamma 1 distribution. Furthermore, (see Problem 2.9.15) if X Gamma 1
and Y Gamma 2 are independent, then X Y Gamma 1 2 .
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Now, in our case, we have Tn R1 R2 Rn, where Ri Exponential a
Gamma 1 a . It follows that Tn Gamma n a . Hence, the density of Tn is gn t
e atantn 1 n 1 !.

Now, the event that Nt n (i.e., that the number of events by time t is at least n) is
the same as the event that Tn t (i.e., that the nth event occurs before time n). Hence,

P Nt n P Tn t
t

0
gn s ds

Then by Lemma 11.7.4,

P Nt n
i n

e at at i

i !
(11.7.5)

for any n 1. If n 0 then both sides are 1, so in fact (11.7.5) holds for any n 0.
Using this, we see that

P Nt j P Nt j P Nt j 1

i j

e at at i i!
i j 1

e at at i i! e at at j j!.

It follows that Nt Poisson at , as claimed.

Proof of Theorem 11.6.2

We want to prove that when 0 t0 t1 t2 t3 td , then for i 1 2 d,
the distribution of Nti Nti 1 is Poisson a ti ti 1 . Furthermore, the random
variables Nti Nti 1 for i 1 d are independent.

From thememoryless property of the exponential distributions (see Problem 2.4.14),
it follows that regardless of the values of Ns for s ti 1, this will have no effect on
the distribution of the increments Nt Nti 1 for t ti 1. That is, the process Nt
starts fresh at each time ti 1, except from a different initial value Nti 1 instead of from
N0 0.

Hence, the distribution of Nti 1 u Nti 1 for u 0 is identical to the distribution
of Nu N0 Nu and is independent of the values of Ns for s ti 1. Because we
already know that Nu Poisson au , it follows that Nti 1 u Nti 1 Poisson au
as well. In particular, Nti Nti 1 Poisson a ti ti 1 as well, with Nti Nti 1

independent of Ns : s ti 1 . The result follows.


