Chapter 10

Relationships Among
Variables

CHAPTER OUTLINE

Section 1 Related Variables

Section 2 Categorical Response and Predictors

Section 3 Quantitative Response and Predictors

Section 4 Quantitative Response and Categorical Predictors
Section 5 Categorical Response and Quantitative Predictors
Section 6 Further Proofs (Advanced)

In this chapter, we are concerned with perhaps the most important application of sta-
tistical inference: the problem of analyzing whether or not a relationship exists among
variables and what form the relationship takes. As a particular instance of this, recall
the example and discussion in Section 5.1.

Many of the most important problems in science and society are concerned with re-
lationships among variables. For example, what is the relationship between the amount
of carbon dioxide placed into the atmosphere and global temperatures? What is the re-
lationship between class size and scholastic achievement by students? What is the
relationship between weight and carbohydrate intake in humans? What is the relation-
ship between lifelength and the dosage of a certain drug for cancer patients? These are
all examples of questions whose answers involve relationships among variables. We
will see that statistics plays a key role in answering such questions.

In Section 10.1, we provide a precise definition of what it means for variables to
be related, and we distinguish between two broad categories of relationship, namely,
association and cause—effect. Also, we discuss some of the key ideas involved in col-
lecting data when we want to determine whether a cause—effect relationship exists. In
the remaining sections, we examine the various statistical methodologies that are used
to analyze data when we are concerned with relationships.

We emphasize the use of frequentist methodologies in this chapter. We give some
examples of the Bayesian approach, but there are some complexities involved with the
distributional problems associated with Bayesian methods that are best avoided at this
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stage. Sampling algorithms for the Bayesian approach have been developed, along the
lines of those discussed in Chapter 7 (see also Chapter 11), but their full discussion
would take us beyond the scope of this text. It is worth noting, however, that Bayesian
analyses with diffuse priors will often yield results very similar to those obtained via
the frequentist approach.

As discussed in Chapter 9, model checking is an important feature of any statistical
analysis. For the models used in this chapter, a full discussion of the more rigorous P-
value approach to model checking requires more development than we can accomplish
in this text. As such, we emphasize the informal approach to model checking, via
residual and probability plots. This should not be interpreted as a recommendation that
these are the preferred methods for such models.

10.1 | Related Variables

Consider a population IT with two variables X, Y : IT — R! defined on it. What does
it mean to say that the variables X and Y are related? Perhaps our first inclination is to
say that there must be a formula relating the two variables, such as ¥ = a + b.X? for
some choice of constants a and b, or ¥ = exp(X), etc. But consider a population IT
of humans and suppose X (7) is the weight of 7 in kilograms and Y (x) is the height
of individual # € II in centimeters. From our experience, we know that taller people
tend to be heavier, so we believe that there is some kind of relationship between height
and weight. We know, too, that there cannot be an exact formula that describes this
relationship, because people with the same weight will often have different heights,
and people with the same height will often have different weights.

10.1.1 The Definition of Relationship

If we think of all the people with a given weight x, then there will be a distribution
of heights for all those individuals z that have weight x. We call this distribution the
conditional distribution of Y, given that X = x.

We can now express what we mean by our intuitive idea that X and Y are related,
for, as we change the value of the weight that we condition on, we expect the condi-
tional distribution to change. In particular, as x increases, we expect that the location
of the conditional distribution will increase, although other features of the distribution
may change as well. For example, in Figure 10.1.1 we provide a possible plot of two
approximating densities for the conditional distributions of ¥ given X = 70 kg and
the conditional distribution of ¥ given X = 90 kg.

We see that the conditional distribution has shifted up when X goes from 70 to 90
kg but also that the shape of the distribution has changed somewhat as well. So we can
say that a relationship definitely exists between X and Y, at least in this population. No-
tice that, as defined so far, X and Y are not random variables, but they become so when
we randomly select 7 from the population. In that case, the conditional distributions
referred to become the conditional probability distributions of the random variable Y,
given that we observe X = 70 and X = 90, respectively.
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Figure 10.1.1: Plot of two approximating densities for the conditional distribution of ¥ given
X = 70 kg (dashed line) and the conditional distribution of ¥ given X = 90 kg (solid line).

We will adopt the following definition to precisely specify what we mean when we
say that variables are related.

Definition 10.1.1 Variables X and Y are related variables if there is any change in
the conditional distribution of Y, given X = x, as x changes.

We could instead define what it means for variables to be unrelated. We say that
variables X and Y are unrelated if they are independent. This is equivalent to Definition
10.1.1, because two variables are independent if and only if the conditional distribution
of one given the other does not depend on the condition (Exercise 10.1.1).

There is an apparent asymmetry in Definition 10.1.1, because the definition consid-
ers only the conditional distribution of ¥ given X and not the conditional distribution
of X given Y. But, if there is a change in the conditional distribution of ¥ given X = x,
as we change x, then by the above comment, X and Y are not independent; thus there
must be a change in the conditional distribution of X given ¥ = y, as we change y
(also see Problem 10.1.23).

Notice that the definition is applicable no matter what kind of variables we are
dealing with. So both could be quantitative variables, or both categorical variables, or
one could be a quantitative variable while the other is a categorical variable.

Definition 10.1.1 says that X and Y are related if any change is observed in the
conditional distribution. In reality, this would mean that there is practically always a
relationship between variables X and Y. It seems likely that we will always detect some
difference if we carry out a census and calculate all the relevant conditional distribu-
tions. This is where the idea of the strength of a relationship among variables becomes
relevant, for if we see large changes in the conditional distributions, then we can say a
strong relationship exists. If we see only very small changes, then we can say a very
weak relationship exists that is perhaps of no practical importance.
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The Role of Statistical Models

If a relationship exists between two variables, then its form is completely described by
the set of conditional distributions of ¥ given X. Sometimes it may be necessary to
describe the relationship using all these conditional distributions. In many problems,
however, we look for a simpler presentation. In fact, we often assume a statistical
model that prescribes a simple form for how the conditional distributions change as we
change X.

Consider the following example.

EXAMPLE 10.1.1 Simple Normal Linear Regression Model

In Section 10.3.2, we will discuss the simple normal linear regression model, where
the conditional distribution of quantitative variable Y, given the quantitative variable
X = x, is assumed to be distributed

N(B) + Byx, %),

where f, ,, and % are unknown. For example, ¥ could be the blood pressure of an
individual and X the amount of salt the person consumed each day.

In this case, the conditional distributions have constant shape and change, as x
changes, only through the conditional mean. The mean moves along the line given by
L1+ B,x for some intercept £ and slope f,. If this model is correct, then the variables
are unrelated if and only if f, = 0, as this is the only situation in which the conditional
distributions can remain constant as we change x. I

Statistical models, like that described in Example 10.1.1, can be wrong. There
is nothing requiring that two quantitative variables must be related in that way. For
example, the conditional variance of Y can vary with x, and the very shape of the
conditional distribution can vary with x, too. The model of Example 10.1.1 is an
instance of a simplifying assumption that is appropriate in many practical contexts.
However, methods such as those discussed in Chapter 9 must be employed to check
model assumptions before accepting statistical inferences based on such a model. We
will always consider model checking as part of our discussion of the various models
used to examine the relationship among variables.

Response and Predictor Variables

Often, we think of Y as a dependent variable (depending on X) and of X as an indepen-
dent variable (free to vary). Our goal, then, is to predict the value of Y given the value
of X. In this situation, we call Y the response variable and X the predictor variable.

Sometimes, though, there is really nothing to distinguish the roles of X and Y. For
example, suppose that X is the weight of an individual in kilograms and Y is the height
in centimeters. We could then think of predicting weight from height or conversely. It
is then immaterial which we choose to condition on.

In many applications, there is more than one response variable and more than one
predictor variable X. We will not consider the situation in which we have more than
one response variable, but we will consider the case in which X = (X1,..., X) is
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k-dimensional. Here, the various predictors that make up X could be all categorical,
all quantitative, or some mixture of categorical and quantitative variables.
The definition of a relationship existing between response variable Y and the set of

predictors (X7, ..., Xj) is exactly as in Definition 10.1.1. In particular, a relationship
exists between Y and (X1, . .., Xj) if there is any change in the conditional distribution
of Y given (X1, ..., Xx) = (x1, ..., x;) when (x1, ..., xx) is varied. If such a relation-

ship exists, then the form of the relationship is specified by the full set of conditional
distributions. Again, statistical models are often used where simplifying assumptions
are made about the form of the relationship. Consider the following example.

EXAMPLE 10.1.2 The Normal Linear Model with k Predictors

In Section 10.3.4, we will discuss the normal multiple linear regression model. For
this, the conditional distribution of quantitative variable Y, given that the quantitative
predictors (X7, ..., X3) = (x1, ..., xx), is assumed to be the

N(By + Box1 + -+ Bry1Xk, 072

distribution, where 8, ..., By, and o2 are unknown. For example, Y could be blood
pressure, X the amount of daily salt intake, X, the age of the individual, X3 the weight
of the individual, etc.

In this case, the conditional distributions have constant shape and change, as the
values of the predictors (x1, ..., xx) change only through the conditional mean, which
changes according to the function f 4 f,x1 +- - - 4 B, xx. Notice that, if this model
is correct, then the variables are unrelated if and only if f, = --- = f;,; = 0, as this
is the only situation in which the conditional distributions can remain constant as we
change (x1,...,x¢).1

When we split a set of variables Y, X1, ..., Xj into response Y and predictors
(X1, ..., Xi), we are implicitly saying that we are directly interested only in the con-
ditional distributions of Y given (X7, ..., X%). There may be relationships among the
predictors X7, ..., Xz, however, and these can be of interest.

For example, suppose we have two predictors X and X3, and the conditional dis-
tribution of X given X7 is virtually degenerate at a value a + ¢ X, for some constants
a and c. Then it is not a good idea to include both X; and X, in a model, such as
that discussed in Example 10.1.2, as this can make the analysis very sensitive to small
changes in the data. This is known as the problem of multicollinearity. The effect of
multicollinearity, and how to avoid it, will not be discussed any further in this text. This
is, however, a topic of considerable practical importance.

Regression Models

Suppose that the response Y is quantitative and we have k predictors (X7, ..., Xi).
One of the most important simplifying assumptions used in practice is the regression
assumption, namely, we assume that, as we change (X1, ..., Xj), the only thing that
can possibly change about the conditional distribution of ¥ given (X1, ..., Xk), is the
conditional mean E(Y | X1, ..., Xx). The importance of this assumption is that, to an-
alyze the relationship between Y and (X1, ..., X}), we now need only consider how
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E(Y|Xy,..., Xy) changes as (X1, ..., Xx) changes. Indeed, if £(Y | X1,..., Xk)
does not change as (Xi, ..., Xx) changes, then there is no relationship between Y
and the predictors. Of course, this kind of an analysis is dependent on the regression
assumption holding, and the methods of Section 9.1 must be used to check this. Regres-
sion models — namely, statistical models where we make the regression assumption
— are among the most important statistical models used in practice. Sections 10.3 and
10.4 discuss several instances of regression models.
Regression models are often presented in the form

Y=EY|X1,....X0) + Z, (10.1.1)

where Z = Y — E(Y | X1, ..., X}) is known as the error term. We see immedi-
ately that, if the regression assumption applies, then the conditional distribution of Z
given (X1, ..., Xj) is fixed as we change (X1, ..., X;) and, conversely, if the con-
ditional distribution of Z given (X1, ..., X) is fixed as we change (X1, ..., Xi),
then the regression assumption holds. So when the regression assumption applies,
(10.1.1) provides a decomposition of Y into two parts: (1) a part possibly dependent on
(X1,..., Xx), namely, E(Y | X1, ..., Xk), and (2) a part that is always independent
of (X1, ..., Xi), namely, the error Z. Note that Examples 10.1.1 and 10.1.2 can be
written in the form (10.1.1), where Z ~ N (0, ¢2).

10.1.2 | Cause—Effect Relationships and Experiments

Suppose now that we have variables X and Y defined on a population IT and have
concluded that a relationship exists according to Definition 10.1.1. This may be based
on having conducted a full census of II, or, more typically, we will have drawn a
simple random sample from IT and then used the methods of the remaining sections of
this chapter to conclude that such a relationship exists. If Y is playing the role of the
response and if X is the predictor, then we often want to be able to assert that changes
in X are causing the observed changes in the conditional distributions of Y. Of course,
if there are no changes in the conditional distributions, then there is no relationship
between X and Y and hence no cause—effect relationship, either.

For example, suppose that the amount of carbon dioxide gas being released in the
atmosphere is increasing, and we observe that mean global temperatures are rising. If
we have reason to believe that the amount of carbon dioxide released can have an effect
on temperature, then perhaps it is sensible to believe that the increase in carbon dioxide
emissions is causing the observed increase in mean global temperatures. As another
example, for many years it has been observed that smokers suffer from respiratory
diseases much more frequently than do nonsmokers. It seems reasonable, then, to
conclude that smoking causes an increased risk for respiratory disease. On the other
hand, suppose we consider the relationship between weight and height. It seems clear
that a relationship exists, but it does not make any sense to say that changes in one of
the variables is causing the changes in the conditional distributions of the other.
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Confounding Variables

When can we say that an observed relationship between X and Y is a cause—effect
relationship? If a relationship exists between X and Y, then we know that there are at
least two values x| and x; such that fy(- | X = x1) # fy(-| X = xp), i.e., these two
conditional distributions are not equal. If we wish to say that this difference is caused
by the change in X, then we have to know categorically that there is no other variable
Z defined on II that confounds with X. The following example illustrates the idea of
two variables confounding.

EXAMPLE 10.1.3

Suppose that IT is a population of students such that most females hold a part-time
job and most males do not. A researcher is interested in the distribution of grades, as
measured by grade point average (GPA), and is looking to see if there is a relationship
between GPA and gender. On the basis of the data collected, the researcher observes
a difference in the conditional distribution of GPA given gender and concludes that a
relationship exists between these variables. It seems clear, however, that an assertion
of a cause—effect relationship existing between GPA and gender is not warranted, as
the difference in the conditional distributions could also be attributed to the difference
in part-time work status rather than gender. In this example, part-time work status and
gender are confounded. I

A more careful analysis might rescue the situation described in Example 10.1.3, for
if X and Z denote the confounding variables, then we could collect data on Z as well
and examine the conditional distributions fy (-| X = x, Z = z). In Example 10.1.3,
these will be the conditional distributions of GPA, given gender and part-time work
status. If these conditional distributions change as we change x, for some fixed value
of z, then we could assert that a cause—effect relationship exists between X and Y
provided there are no further confounding variables. Of course, there are probably still
more confounding variables, and we really should be conditioning on all of them. This
brings up the point that, in any practical application, we almost certainly will never
even know all the potential confounding variables.

Controlling Predictor Variable Assignments

Fortunately, there is sometimes a way around the difficulties raised by confounding
variables. Suppose we can control the value of the variable X for any 7 € II, i.e.,
we can assign the value x to 7 so that X(x) = x for any of the possible values of x.
In Example 10.1.3, this would mean that we could assign a part-time work status to
any student in the population. Now consider the following idealized situation. Imagine
assigning every element 7 € II the value X (7) = x; and then carrying out a census
to obtain the conditional distribution fy(-| X = x1). Now imagine assigning every
m € II the value X (7) = xz and then carrying out a census to obtain the conditional
distribution fy(-| X = x3). If there is any difference in fy(-| X = x;) and fy(-| X =
X2), then the only possible reason is that the value of X differs. Therefore, if fy(-| X =
x1) # fr(-| X = x2), we can assert that a cause—effect relationship exists.
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A difficulty with the above argument is that typically we can never exactly deter-
mine fy(-| X = x1) and fy(-| X = x2). But in fact, we may be able to sample from
them; then the methods of statistical inference become available to us to infer whether
or not there is any difference. Suppose we take a random sample 71, ..., 7,4, from
IT and randomly assign 7] of these the value X = x;, with the remaining 7z ’s assigned
the value x,. We obtain the Y values y11, ..., y1,, for those 7 ’s assigned the value x;
and obtain the Y values )21, . .., ¥2,, for those z ’s assigned the value x;. Then it is ap-
parent that yy1, ..., ¥1,, is a sample from fy(-| X = x1) and y21, ..., ¥24, is a sample
from fy(-| X = x3). In fact, provided that n; + n, is small relative to the population
size, then we can consider these as i.i.d. samples from these conditional distributions.

So we see that in certain circumstances, it is possible to collect data in such a way
that we can make inferences about whether or not a cause—effect relationship exists.
We now specify the characteristics of the relevant data collection technique.

Conditions for Cause—Effect Relationships

First, if our inferences are to apply to a population I, then we must have a random
sample from that population. This is just the characteristic of what we called a sampling
study in Section 5.4, and we must do this to avoid any selection effects. So if the
purpose of a study is to examine the relationship between the duration of migraine
headaches and the dosage of a certain drug, the investigator must have a random sample
from the population of migraine headache sufferers.

Second, we must be able to assign any possible value of the predictor variable X
to any selected 7. If we cannot do this, or do not do this, then there may be hidden
confounding variables (sometimes called /urking variables) that are influencing the
conditional distributions of Y. So in a study of the effects of the dosage of a drug
on migraine headaches, the investigator must be able to impose the dosage on each
participant in the study.

Third, after deciding what values of X we will use in our study, we must randomly
allocate these values to members of the sample. This is done to avoid the possibility of
selection effects. So, after deciding what dosages to use in the study of the effects of
the dosage of a drug on migraine headaches, and how many participants will receive
each dosage, the investigator must randomly select the individuals who will receive
each dosage. This will (hopefully) avoid selection effects, such as only the healthiest
individuals getting the lowest dosage, etc.

When these requirements are met, we refer to the data collection process as an
experiment. Statistical inference based on data collected via an experiment has the ca-
pability of inferring that cause—effect relationships exist, so this represents an important
and powerful scientific tool.

A Hierarchy of Studies

Combining this discussion with Section 5.4, we see a hierarchy of data collection meth-
ods. Observational studies reside at the bottom of the hierarchy. Inferences drawn
from observational studies must be taken with a degree of caution, for selection effects
could mean that the results do not apply to the population intended, and the existence
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of confounding variables means that we cannot make inferences about cause—effect re-
lationships. For sampling studies, we know that any inferences drawn will be about
the appropriate population; but the existence of confounding variables again causes
difficulties for any statements about the existence of cause—effect relationships, e.g.,
just taking random samples of males and females from the population IT of Example
10.1.3 will not avoid the confounding variables. At the top of the hierarchy reside
experiments.

It is probably apparent that it is often impossible to conduct an experiment. In
Example 10.1.3, we cannot assign the value of gender, so nothing can be said about the
existence of a cause—effect relationship between GPA and gender.

There are many notorious examples in which assertions are made about the exis-
tence of cause—effect relationships but for which no experiment is possible. For exam-
ple, there have been a number of studies conducted where differences have been noted
among the 1Q distributions of various racial groups. It is impossible, however, to con-
trol the variable racial origin, so it is impossible to assert that the observed differences
in the conditional distributions of I1Q, given race, are caused by changes in race.

Another example concerns smoking and lung cancer in humans. It has been pointed
out that it is impossible to conduct an experiment, as we cannot assign values of the
predictor variable (perhaps different amounts of smoking) to humans at birth and then
observe the response, namely, whether someone contracts lung cancer or not. This
raises an important point. We do not simply reject the results of analyses based on
observational studies or sampling studies because the data did not arise from an ex-
periment. Rather, we treat these as evidence — potentially flawed evidence, but still
evidence.

Think of eyewitness evidence in a court of law suggesting that a crime was com-
mitted by a certain individual. Eyewitness evidence may be unreliable, but if two or
three unconnected eyewitnesses give similar reports, then our confidence grows in the
reliability of the evidence. Similarly, if many observational and sampling studies seem
to indicate that smoking leads to an increased risk for contracting lung cancer, then our
confidence grows that a cause—effect relationship does indeed exist. Furthermore, if we
can identify potentially confounding variables, then observational or sampling studies
can be conducted taking these into account, increasing our confidence still more. Ul-
timately, we may not be able to definitively settle the issue via an experiment, but it is
still possible to build overwhelming evidence that smoking and lung cancer do have a
cause—effect relationship.

10.1.3 | Design of Experiments

Suppose we have a response Y and a predictor X (sometimes called a factor in experi-
mental contexts) defined on a population I, and we want to collect data to determine
whether a cause—effect relationship exists between them. Following the discussion in
Section 10.1.1, we will conduct an experiment. There are now a number of decisions
to be made, and our choices constitute what we call the design of the experiment.

For example, we are going to assign values of X to the sampled elements, now
called experimental units, n1, ..., 7, from I1. Which of the possible values of X
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should we use? When X can take only a small finite number of values, then it is
natural to use these values. On the other hand, when the number of possible values of
X is very large or even infinite, as with quantitative predictors, then we have to choose
values of X to use in the experiment.

Suppose we have chosen the values xp, ..., x; for X. We refer to x1,...,x; as
the levels of X; any particular assignment x; to a 7 ; in the sample will be called a
treatment. Typically, we will choose the levels so that they span the possible range of
X fairly uniformly. For example, if X is temperature in degrees Celsius, and we want
to examine the relationship between Y and X for X in the range [0, 100], then, using
k =5 levels, we might take x1 = 0, x; = 25, x3 = 50, x4 = 75, and x5 = 100.

Having chosen the levels of X, we then have to choose how many treatments of each
level we are going to use in the experiment, i.e., decide how many response values 7;
we are going to observe at level x; fori =1, ..., k.

In any experiment, we will have a finite amount of resources (money, time, etc.) at
our disposal, which determines the sample size n from II. The question then is how
should we choose the n; so that n; + --- + ny = n? If we know nothing about the
conditional distributions fy(-| X = x;), then it makes sense to use balance, namely,
choose n| = --- = ny.

On the other hand, suppose we know that some of the fy(-| X = x;) will exhibit
greater variability than others. For example, we might measure variability by the vari-
ance of fy(-| X = x;). Then it makes sense to allocate more treatments to the levels of
X where the response is more variable. This is because it will take more observations
to make accurate inferences about characteristics of such an fy (- | X = x;) than for the
less variable conditional distributions.

As discussed in Sections 6.3.4 and 6.3.5, we also want to choose the #n; so that any
inferences we make have desired accuracy. Methods for choosing the sample sizes 7;,
similar to those discussed in Chapter 7, have been developed for these more compli-
cated designs, but we will not discuss these any further here.

Suppose, then, that we have determined {(x1, n1), ..., (x¢, nx)} . We refer to this
set of ordered pairs as the experimental design.

Consider some examples.

EXAMPLE 10.1.4

Suppose that IT is a population of students at a given university. The administration
is concerned with determining the value of each student being assigned an academic
advisor. The response variable Y will be a rating that a student assigns on a scale of 1 to
10 (completely dissatisfied to completely satisfied with their university experience) at
the end of a given semester. We treat ¥ as a quantitative variable. A random sample of
n = 100 students is selected from I1, and 50 of these are randomly selected to receive
advisers while the remaining 50 are not assigned advisers.

Here, the predictor X is a categorical variable that indicates whether or not the
student has an advisor. There are only £ = 2 levels, and both are used in the experiment.
If x; = 0 denotes no advisor and x, = 1 denotes having an advisor, then n| = ny = 50
and we have a balanced experiment. The experimental design is given by

{(0,50), (1, 50)}.
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At the end of the experiment, we want to use the data to make inferences about
the conditional distributions fy(-| X = 0) and fy(-| X = 1) to determine whether a
cause—effect relationship exists. The methods of Section 10.4 will be relevant for this.
|

EXAMPLE 10.1.5
Suppose that IT is a population of dairy cows. A feed company is concerned with the
relationship between weight gain, measured in kilograms, over a specific time period
and the amount of a supplement, measured in grams/liter, of an additive put into the
cows’ feed. Here, the response Y is the weight gain — a quantitative variable. The pre-
dictor X is the concentration of the additive. Suppose X can plausibly range between
0 and 2, so it is also a quantitative variable.

The experimenter decides to use £ = 4 levels with x; = 0.00,x, = 0.66, x3 =
1.32, and x4 = 2.00. Further, the sample sizes n;y = n, = n3 = ng = 10 were
determined to be appropriate. So the balanced experimental design is given by

{(0.00, 10), (0.66, 10), (1.32, 10), (2.00, 10)}.

At the end of the experiment, we want to make inferences about the conditional distri-
butions fy(-| X = 0.00), fy(-| X = 0.66), fy(-| X = 1.32), and fy(-| X = 2.00).
The methods of Section 10.3 are relevant for this. I

Control Treatment, the Placebo Effect, and Blinding

Notice that in Example 10.1.5, we included the level X = 0, which corresponds to
no application of the additive. This is called a control treatment, as it gives a baseline
against which we can assess the effect of the predictor. In many experiments, it is
important to include a control treatment.

In medical experiments, there is often a placebo effect — that is, a disease sufferer
given any treatment will often record an improvement in symptoms. The placebo effect
is believed to be due to the fact that a sufferer will start to feel better simply because
someone is paying attention to the condition. Accordingly, in any experiment to de-
termine the efficacy of a drug in alleviating disease symptoms, it is important that a
control treatment be used as well. For example, if we want to investigate whether or
not a given drug alleviates migraine headaches, then among the dosages we select for
the experiment, we should make sure that we include a pill containing none of the drug
(the so-called sugar pill); that way we can assess the extent of the placebo effect. Of
course, the recipients should not know whether they are receiving the sugar pill or the
drug. This is called a blind experiment. If we also conceal the identity of the treatment
from the experimenters, so as to avoid any biasing of the results on their part, then this
is known as a double-blind experiment.

In Example 10.1.5, we assumed that it is possible to take a sample from the popula-
tion of all dairy cows. Strictly speaking, this is necessary if we want to avoid selection
effects and make sure that our inferences apply to the population of interest. In prac-
tice, however, taking a sample of experimental units from the full population of interest
is often not feasible. For example, many medical experiments are conducted on ani-
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mals, and these are definitely not random samples from the population of the particular
animal in question, e.g., rats.

In such cases, however, we simply recognize the possibility that selection effects or
lurking variables could render invalid the conclusions drawn from such analyses when
they are to be applied to the population of interest. But we still regard the results as
evidence concerning the phenomenon under study. It is the job of the experimenter to
come as close as possible to the idealized situation specified by a valid experiment; for
example, randomization is still employed when assigning treatments to experimental
units so that selection effects are avoided as much as possible.

Interactions

In the experiments we have discussed so far, there has been one predictor. In many
practical contexts, there is more than one predictor. Suppose, then, that there are two
predictors X and W and that we have decided on the levels x1, ..., x; for X and the
levels wi, ..., w; for W. One possibility is to look at the conditional distributions
JyClX =x;) fori =1,...,kand fy(-|W = w;) for j = 1,...,/ to determine
whether X and W individually have a relationship with the response Y. Such an ap-
proach, however, ignores the effect of the two predictors together. In particular, the
way the conditional distributions fy(-| X = x, W = w) change as we change x may
depend on w; when this is the case, we say that there is an interaction between the
predictors.

To investigate the possibility of an interaction existing between X and W, we must
sample from each of the k/ distributions fy (- | X =x;, W = w;) fori =1, ...,k and
j =1,...,1. The experimental design then takes the form

{(x1, wi,m11), (o2, w1, 121) 5 - o, (ks W1, BEL))S

where n;; gives the number of applications of the treatment (x,-, w j). We say that the
two predictors X and W are completely crossed in such a design because each value
of X used in the experiment occurs with each value of W used in the experiment.
Of course, we can extend this discussion to the case where there are more than two
predictors. We will discuss in Section 10.4.3 how to analyze data to determine whether
there are any interactions between predictors.

EXAMPLE 10.1.6

Suppose we have a population IT of students at a particular university and are investi-
gating the relationship between the response Y, given by a student’s grade in calculus,
and the predictors W and X. The predictor 7 is the number of hours of academic
advising given monthly to a student; it can take the values 0, 1, or 2. The predictor X
indicates class size, where X = 0 indicates small class size and X = 1 indicates large
class size. So we have a quantitative response Y, a quantitative predictor W taking
three values, and a categorical predictor X taking two values. The crossed values of
the predictors (W, X) are given by the set

{(0,0),(1,0),(2,0), (0, 1), (1, 1), 2, D},

so there are six treatments. To conduct the experiment, the university then takes a
random sample of 6x students and randomly assigns # students to each treatment. i
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Sometimes we include additional predictors in an experimental design even when
we are not primarily interested in their effects on the response Y. We do this because we
know that such a variable has a relationship with Y. Including such predictors allows
us to condition on their values and so investigate more precisely the relationship Y has
with the remaining predictors. We refer to such a variable as a blocking variable.

EXAMPLE 10.1.7

Suppose the response variable Y is yield of wheat in bushels per acre, and the predictor
variable X is an indicator variable for which of three types of wheat is being planted in
an agricultural study. Each type of wheat is going to be planted on a plot of land, where
all the plots are of the same size, but it is known that the plots used in the experiment
will vary considerably with respect to their fertility. Note that such an experiment
is another example of a situation in which it is impossible to randomly sample the
experimental units (the plots) from the full population of experimental units.

Suppose the experimenter can group the available experimental units into plots of
low fertility and high fertility. We call these two classes of fields blocks. Let I indicate
the type of plot. So W is a categorical variable taking two values. It then seems clear
that the conditional distributions fy (- | X = x, W = w) will be much less variable than
the conditional distributions fy (- | X = x).

In this case, W is serving as a blocking variable. The experimental units in a par-
ticular block, the one of low fertility or the one of high fertility, are more homogeneous
than the full set of plots, so variability will be reduced and inferences will be more
accurate.

Summary of Section 10.1

e We say two variables are related if the conditional distribution of one given the
other changes at all, as we change the value of the conditioning variable.

e To conclude that a relationship between two variables is a cause—effect relation-
ship, we must make sure that (through conditioning) we have taken account of
all confounding variables.

e Statistics provides a practical way of avoiding the effects of confounding vari-
ables via conducting an experiment. For this, we must be able to assign the val-
ues of the predictor variable to experimental units sampled from the population
of interest.

e The design of experiments is concerned with determining methods of collecting
the data so that the analysis of the data will lead to accurate inferences concerning
questions of interest.

EXERCISES |

10.1.1 Prove that discrete random variables X and Y are unrelated if and only if X and
Y are independent.

10.1.2 Suppose that two variables X and Y defined on a finite population IT are func-
tionally related as ¥ = g(X) for some unknown nonconstant function g. Explain how
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this situation is covered by Definition 10.1.1, i.e., the definition will lead us to conclude
that X and Y are related. What about the situation in which g(x) = ¢ for some value ¢
for every x? (Hint: Use the relative frequency functions of the variables.)

10.1.3 Suppose that a census is conducted on a population and the joint distribution of
(X, Y) is obtained as in the following table.

Y=1 Y=2 Y=3
X=1] 0.15 0.18 0.40
X=2]| 0.12 0.09 0.06

Determine whether or not a relationship exists between Y and X.

10.1.4 Suppose that a census is conducted on a population and the joint distribution of
(X, Y) is obtained as in the following table.

Y=1 Y=2 Y=3
X=1] 1/6 1/6 1,3
xX=2|1/12 1/12 1/6

Determine whether or not a relationship exists between Y and X.

10.1.5 Suppose that X is a random variable and ¥ = X?. Determine whether or not X
and Y are related. What happens when X has a degenerate distribution?

10.1.6 Suppose a researcher wants to investigate the relationship between birth weight
and performance on a standardized test administered to children at two years of age. If
a relationship is found, can this be claimed to be a cause—effect relationship? Explain
why or why not?

10.1.7 Suppose a large study of all doctors in Canada was undertaken to determine
the relationship between various lifestyle choices and lifelength. If the conditional
distribution of lifelength given various smoking habits changes, then discuss what can
be concluded from this study.

10.1.8 Suppose a teacher wanted to determine whether an open- or closed-book exam
was a more appropriate way to test students on a particular topic. The response variable
is the grade obtained on the exam out of 100. Discuss how the teacher could go about
answering this question.

10.1.9 Suppose a researcher wanted to determine whether or not there is a cause—
effect relationship between the type of political ad (negative or positive) seen by a
voter from a particular population and the way the voter votes. Discuss your advice to
the researcher about how best to conduct the study.

10.1.10 If two random variables have a nonzero correlation, are they necessarily re-
lated? Explain why or why not.

10.1.11 An experimenter wants to determine the relationship between weight change
Y over a specified period and the use of a specially designed diet. The predictor variable
X is a categorical variable indicating whether or not a person is on the diet. A total of
200 volunteers signed on for the study; a random selection of 100 of these were given
the diet and the remaining 100 continued their usual diet.

(a) Record the experimental design.
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(b) If the results of the study are to be applied to the population of all humans, what
concerns do you have about how the study was conducted?

(c) It is felt that the amount of weight lost or gained also is dependent on the initial
weight W of a participant. How would you propose that the experiment be altered to
take this into account?

10.1.12 A study will be conducted, involving the population of people aged 15 to 19 in
a particular country, to determine whether a relationship exists between the response Y
(amount spent in dollars in a week on music downloads) and the predictors W (gender)
and X (age in years).

(a) If observations are to be taken from every possible conditional distribution of Y
given the two factors, then how many such conditional distributions are there?

(b) Identify the types of each variable involved in the study.

(c) Suppose there are enough funds available to monitor 2000 members of the popula-
tion. How would you recommend that these resources be allocated among the various
combinations of factors?

(d) If a relationship is found between the response and the predictors, can this be
claimed to be a cause—effect relationship? Explain why or why not.

(e) Suppose that in addition, it was believed that family income would likely have an
effect on Y and that families could be classified into low and high income. Indicate
how you would modify the study to take this into account.

10.1.13 A random sample of 100 households, from the set of all households contain-
ing two or more members in a given geographical area, is selected and their television
viewing habits are monitored for six months. A random selection of 50 of the house-
holds is sent a brochure each week advertising a certain program. The purpose of
the study is to determine whether there is any relationship between exposure to the
brochure and whether or not this program is watched.

(a) Identify suitable response and predictor variables.

(b) If a relationship is found, can this be claimed to be a cause—effect relationship?
Explain why or why not.

10.1.14 Suppose we have a quantitative response variable ¥ and two categorical pre-
dictor variables W and X, both taking values in {0, 1}. Suppose the conditional distri-
butions of Y are given by

YIW=0,X=0~N(3,5)
YIW=1,X=0~N(@3,5)
YIW=0,X=1~N(,5)
YIW=1,X=1~N(®4,5).

Does W have a relationship with Y? Does X have a relationship with ¥? Explain your
answers.

10.1.15 Suppose we have a quantitative response variable ¥ and two categorical pre-
dictor variables W and X, both taking values in {0, 1}. Suppose the conditional distri-
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butions of Y are given by

YIW=0,X=0~N(2,5)
YIW=1,X=0~N(,5)
YIW=0,X=1~N(®4,5)
YIW=1,X=1~N(@4,5).

Does W have a relationship with Y? Does X have a relationship with ¥? Explain your
answers.

10.1.16 Do the predictors interact in Exercise 10.1.14? Do the predictors interact in
Exercise 10.1.15? Explain your answers.

10.1.17 Suppose we have variables X and Y defined on the population IT = {1, 2, ...,
10}, where X (i) = 1 when i is odd and X (i) = O when i is even, Y (i) = 1 when i is
divisible by 3 and Y (i) = 0 otherwise.

(a) Determine the relative frequency function of X.

(b) Determine the relative frequency function of Y.

(c) Determine the joint relative frequency function of (X, Y).

(d) Determine all the conditional distributions of ¥ given X.

(e) Are X and Y related? Justify your answer.

10.1.18 A mathematical approach to examining the relationship between variables X
and Y is to see whether there is a function g such that ¥ = g(X). Explain why this
approach does not work for many practical applications where we are examining the
relationship between variables. Explain how statistics treats this problem.

10.1.19 Suppose a variable X takes the values 1 and 2 on a population and the condi-
tional distributions of ¥ given X are N (0, 5) when X = 1, and N(0, 7) when X = 2.
Determine whether X and Y are related and if so, describe their relationship.

10.1.20 A variable Y has conditional distribution given X specified by N(1 + 2x, |x|)
when X = x. Determine if X and Y are related and if so, describe what their relation-
ship is.

10.1.21 Suppose that X ~ Uniform[—1, 1] and ¥ = X?. Determine the correlation
between Y and X. Are X and Y related?

PROBLEMS

10.1.22 If there is more than one predictor involved in an experiment, do you think
it is preferable for the predictors to interact or not? Explain your answer. Can the
experimenter control whether or not predictors interact?

10.1.23 Prove directly, using Definition 10.1.1, that when X and Y are related variables
defined on a finite population IT, then Y and X are also related.

10.1.24 Suppose that X, Y, Z are independent N (0, 1) random variables and that U =
X+Z,V =Y+ Z. Determine whether or not the variables U and V' are related. (Hint:
Calculate Cov(U, V) .)

10.1.25 Suppose that (X, Y, Z) ~ Multinomial(n, 1/3,1/3,1/3). Are X and Y re-
lated?
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10.1.26 Suppose that (X, Y) ~ Bivariate-Normal(u;, o, 01, 02, p). Show that X and
Y are unrelated if and only if Corr(X, ¥) = 0.

10.1.27 Suppose that (X, Y, Z) have probability function py,y,z. If Y is related to X
but not to Z, then prove that py,y, z(x, y,z) = prix(v | X)) px1z(x | 2) pz(2).

10.2 | Categorical Response and Predictors

There are two possible situations when we have a single categorical response Y and a
single categorical predictor X. The categorical predictor is either random or determin-
istic, depending on how we sample. We examine these two situations separately.

10.2.1 | Random Predictor

We consider the situation in which X is categorical, taking values in {1, ..., a}, and
Y is categorical, taking values in {1, ..., b}. If we take a sample 7 1, ..., 7, from the
population, then the values X (;) = x; are random, as are the values Y (z;) = y;.

Suppose the sample size n is very small relative to the population size (so we can
assume that i.i.d. sampling is applicable). Then, letting 0;; = P(X =i,Y = j), we
obtain the likelihood function (see Problem 10.2.15)

a b

L. ... 0u | G131 Gy = [T 60 (10.2.1)

i=1j=1

where f;; is the number of sample values with (X, Y) = (i, j). An easy computation
(see Problem 10.2.16) shows that the MLE of (81, ..., 8k) is given by 9,-,- = fij/n
and that the standard error of this estimate (because the incidence of a sample member
falling in the (7, j)-th cell is distributed Bernoulli(6;;) and using Example 6.3.2) is

given by
[0:;(1=0;))
E—

We are interested in whether or not there is a relationship between X and Y. To
answer this, we look at the conditional distributions of Y given X. The conditional
distributions of Y given X, using 8;. = 6;1 + --- 4+ 6; = P(X = 1), are given in the
following table.

Y=1 Y=5b
X=1]01/01. - 01/01

X=a|0a/0a - 0u/0a
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Then estimating 8;; /0;. by @,-J-/@,-. = fij/fi., where f;. = fi1+-- -+ fip, the estimated
conditional distributions are as in the following table.

Y=1 ... V=50
X=1| /i~ - fu/h
X'=a fal'/fa~ fab'/fw

If we conclude that there is a relationship between X and Y, then we look at the table of
estimated conditional distributions to determine the form of the relationship, i.e., how
the conditional distributions change as we change the value of X we are conditioning
on.

How, then, do we infer whether or not a relationship exists between X and Y?
No relationship exists between Y and X if and only if the conditional distributions of
Y given X = x do not change with x. This is the case if and only if X and Y are
independent, and this is true if and only if

0ij=PX=i,Y=j)=PX=0)P(Y =/)=0,0,,

for every i and j where 8.; = 01; + --- + 0, = P(Y = j). Therefore, to assess
whether or not there is a relationship between X and Y, it is equivalent to assess the
null hypothesis Hy : 0;; = 0;.0.; for every i and j.

How should we assess whether or not the observed data are surprising when Hp
holds? The methods of Section 9.1.2, and in particular Theorem 9.1.2, can be applied
here, as we have that

(F11, F12, ..., Fyp) ~ Multinomial(n, 81.0.1,01.0.2,...,0,.0.p)

when Hj holds, where Fj; is the count in the (i, j)-t4 cell.
To apply Theorem 9.1.2, we need the MLE of the parameters of the model under
Hjy. The likelihood, when Hy holds, is

a b

L@\ 0000, 001 Gy, ) = [T 016.)7 . (1022)
i=1j=1

From this, we deduce (see Problem 10.2.17) that the MLE’s of the 6;. and . ; are given
by 0;. = f;./n and 0. j = f.j/n. Therefore, the relevant chi-squared statistic is

Zz(fj ”0 61)

i=1j=

Under Hp, the parameter space has dimension (a — 1) + (b —1) =a + b— 2, so we
compare the observed value of X? with the y2((a — 1) (b — 1)) distribution because
ab—1—a—-b+2=(@-1)b-1).

Consider an example.
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EXAMPLE 10.2.1 Piston Ring Data
The following table gives the counts of piston ring failures, where variable Y is the
compressor number and variable X is the leg position based on a sample of » = 166.
These data were taken from Statistical Methods in Research and Production, by O. L.
Davies (Hafner Publishers, New York, 1961).

Here, Y takes four values and X takes three values (N = North, C = Central, and S
= South).

Y=1 Y=2 Y=3 Y=4
X=N 17 11 11 14
X=C 17 9 8 7
X=5 12 13 19 28

The question of interest is whether or not there is any relation between compressor and
leg position. Because fi. = 53, f,. = 41, and f3. = 72, the conditional distributions
of Y given X are estimated as in the rows of the following table.

Y=1 Y =2 Y =3 Y =4

N | 17/53=0.321 11/53 =0.208 11/53 =0.208 14/53 = 0.264
C|17/41=0415 9/41=0222 8/41=0.195 7/41=0.171
S | 12/72=0.167 13/72=0.181 19/72=0.264 28/72 = 0.389

el
Il

Comparing the rows, it certainly looks as if there is a difference in the conditional
distributions, but we must assess whether or not the observed differences can be ex-
plained as due to sampling error. To see if the observed differences are real, we carry
out the chi-squared test.

Under the null hypothesis of independence, the MLE’s are given by

0 46 0 33 0 38 0 49
01=15- 02=16> 03=1> 04=rTe

for the Y probabilities, and by

41 )
2 =150 3 =1

>

A 53
01 = %>

for the X probabilities. Then the estimated expected counts nd;.0. ;j are given by the
following table.

Y=1 Yy=2 Y=3 Y=4
N | 14.6867 10.5361 12.1325 15.6446
C | 11.3614  8.1506  9.3855 12.1024
S| 199518 14.3133 16.4819 21.2530

S
Il

The standardized residuals (using (9.1.6))

A

fU - }’léiﬂ.j
Jndi6.,(1=0,0.)

are as in the following table.
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Y=1 Y=2 Y=3 Y=4
N[ 06322 01477 —03377 —0.4369
C| 17332 03051 -04656 —1.5233
S| —-1.8979 —0.3631  0.6536  1.5673

SRR
Il

All of the standardized residuals seem reasonable, and we have that X? = 11.7223
with P(x2(6) > 11.7223) = 0.0685, which is not unreasonably small.

So, while there may be some indication that the null hypothesis of no relationship
is false, this evidence is not overwhelming. Accordingly, in this case, we may assume
that Y and X are independent and use the estimates of cell probabilities obtained under
this assumption. I

We must also be concerned with model checking, i.e., is the model that we have as-
sumed for the data (x1, y1), ..., (x4, yu) correct? If these observations are i.i.d., then
indeed the model is correct, as that is all that is being effectively assumed. So we need
to check that the observations are a plausible i.i.d. sample. Because the minimal suffi-
cient statistic is given by (f11, ..., fap), such a test could be based on the conditional
distribution of the sample (x1, y1), ..., (xu, yn) given (f11, ..., fap). The distribution
theory for such tests is computationally difficult to implement, however, and we do not
pursue this topic further in this text.

10.2.2 | Deterministic Predictor

Consider again the situation in which X is categorical, taking values in {1, ..., a}, and
Y is categorical, taking values in {1, ..., b}. But now suppose that we take a sample
T1,..., T, fromthe population, where we have specified that #n; sample members have
the value X = i, etc. This could be by assignment, when we are trying to determine
whether a cause—effect relationship exists; or we might have a populations Iy, ..., I,
and want to see whether there is any difference in the distribution of ¥ between popu-
lations. Note that ny + - - - +n, = n.

In both cases, we again want to make inferences about the conditional distributions
of Y given X as represented by the following table.

Y=1 --- Y=5b
X=1|0yx=1 - Opx=
X=a|Oyx=a - Opx=a

A difference in the conditional distributions means there is a relationship between Y
and X. If we denote the number of observations in the ith sample that have ¥ = j
by fi;, then assuming the sample sizes are small relative to the population sizes, the
likelihood function is given by

a b
LO1x=1s - Opx=a | 1,31) 5., G va)) = [ [ []@s1x=0"7,  (10.2.3)
i=1j=1



Chapter 10: Relationships Among Variables 531

and the MLE is given by 9”)(:,- = fij/n; (Problem 10.2.18).
There is no relationship between Y and X if and only if the conditional distributions
do not vary as we vary X, or if and only if

Ho:0jix=1="---=0jix=a =0,

forall j =1,..., b for some probability distribution 81, . .., 8. Under Hy, the likeli-
hood function is given by

b .
LO1....00 1 G131 ) = [ 67 (10.2.4)

and the MLE of 0; is given by @j = f.j/n (see Problem 10.2.19). Then, applying
Theorem 9.1.2, we have that the statistic

= idy? n<9>
ZZ

i=1 j=

has an approximate y%((a — 1)(b— 1)) distribution under Hy because there are a(h—1)
free parameters in the full model, (b — 1) parameters in the independence model, and
ab—-1)—bB-D)=@-Dd-1).

Consider an example.

EXAMPLE 10.2.2

This example is taken from a famous applied statistics book, Statistical Methods, 6th
ed., by G. Snedecor and W. Cochran (Iowa State University Press, Ames, 1967). In-
dividuals were classified according to their blood type Y (O, A, B, and AB, although
the AB individuals were eliminated, as they were small in number) and also classified
according to X, their disease status (peptic ulcer = P, gastric cancer = G, or control =
C). So we have three populations; namely, those suffering from a peptic ulcer, those
suffering from gastric cancer, and those suffering from neither. We suppose further
that the individuals involved in the study can be considered as random samples from
the respective populations.

The data are given in the following table.

Y=0 Y=A Y=B Total
=P 983 679 134 1796
=G 383 416 84 883
X=C 2892 2625 570 6087

The estimated conditional distributions of Y given X are then as follows.

Y=0 Y=A Y=B

P | 983/1796 =0.547  679/1796 = 0.378 134/1796 = 0.075
G 383/883 = 0.434 416/883 = 0.471 84/883 = 0.095
C | 2892/6087 =0.475 2625/6087 = 0.431 570/6087 = 0.093

SEep
I
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We now want to assess whether or not there is any evidence for concluding that a
difference exists among these conditional distributions. Under the null hypothesis that
no difference exists, the MLE’s of the probabilities §1 = P(Y =0), 8, = P(Y =A),
and 63 = P(Y =B) are given by

A 983 + 383 4 2892
= =04

o 1796 + 883 + 6087 0

R 679 + 416 + 2625

0, = + + = 0.4244,
1796 + 883 + 6087

R 134 + 84 4+ 570

03 = ot = 0.0899.
1796 + 883 + 6087

Then the estimated expected counts n,@_ j are given by the following table.

Y=0 Y=A Y=B

=P | 8723172  762.2224 161.4604
=G | 428.8731 374.7452  79.3817
X =C | 2956.4559 2583.3228 547.2213

The standardized residuals (using (9.1.6)) (fi; — n;0 )/ (ni0(1 — 6 j))l/ 2 are given by
the following table.

Y=0 Y=A Y =B
X=P 52219 =3.9705 —2.2643
X=G | =3.0910 2.8111 0.5441
X=C| —1.6592 1.0861 1.0227

We have that X2 = 40.5434 and P(y2(4) > 40.5434) = 0.0000, so we have strong
evidence against the null hypothesis of no relationship existing between Y and X. Ob-
serve the large residuals when X =Pand Y =0, Y = A.

We are left with examining the conditional distributions to ascertain what form
the relationship between ¥ and X takes. A useful tool in this regard is to plot the
conditional distributions in bar charts, as we have done in Figure 10.2.1. From this, we
see that the peptic ulcer population has a greater proportion of blood type O than the
other populations.

1.0 —
09 —
08 —
0.7 —
0.6 —

05 —
04 —
03 —
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0.0 — -

T T T
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|
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<
n
uJ

Figure 10.2.1: Plot of the conditional distributions of Y, given X, in Example 10.2.2.
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10.2.3 | Bayesian Formulation

We now add a prior density z for the unknown values of the parameters of the models
discussed in Sections 10.2.1 and 10.2.2. Depending on how we choose 7, and de-
pending on the particular computation we want to carry out, we could be faced with
some difficult computational problems. Of course, we have the Monte Carlo methods
available in such circumstances, which can often render a computation fairly straight-
forward.

The most common choice of prior in these circumstances is to choose a conjugate
prior. Because the likelihoods discussed in this section are as in Example 7.1.3, we see
immediately that Dirichlet priors will be conjugate for the full model in Section 10.2.1
and that products of independent Dirichlet priors will be conjugate for the full model
in Section 10.2.2.

In Section 10.2.1, the general likelihood — i.e., no restrictions on the 8;; — is of
the form

L@, ... 0] (1.31) .. (x,,,yn))—HHef”.
i=lj=

If we place a Dirichlet(a 1, .. ., a4p) prior on the parameter, then the posterior density
is proportional to

o

i=1j=

so the posterior is a Dirichlet(f11 4+ a11, - - -, fap + aqp) distribution.
In Section 10.2.2, the general likelihood is of the form

LOnx=1. - Obpx=a | @1, 31) ..., o yn)) = H H(9,|X_ )i

i=1j=
Because Zf-:l Ojix=i = 1 foreachi = 1,...,a, we must place a prior on each
distribution (01 x=;, ..., 0px=i). If we choose the prior on the ith distribution to be
Dirichlet(a1y;, . . . , &4);), then the posterior density is proportional to
f/ +(X”,
Il H 0
i=1j=

We recognize this as the product of independent Dirichlet distributions, with the poste-
rior distribution on (011x=, . . ., Opx=) equal to a

Dirichlet(fi1 + a )i, - - - » fib + ap)i)

distribution.
A special and important case of the Dirichlet priors corresponds to the situation in
which we feel that we have no information about the parameter. In such a situation, it
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makes sense to choose all the parameters of the Dirichlet to be 1, so that the priors are
all uniform.

There are many characteristics of a Dirichlet distribution that can be evaluated in
closed form, e.g., the expectation of any polynomial (see Problem 10.2.20). But still
there will be many quantities for which exact computations will not be available. It
turns out that we can always easily generate samples from Dirichlet distributions, pro-
vided we have access to a generator for beta distributions. This is available with most
statistical packages. We now discuss how to do this.

EXAMPLE 10.2.3 Generating from a Dirichlet(a, . .., ax) Distribution
The technique we discuss here is a commonly used method for generating from multi-
variate distributions. If we want to generate a value of the random vector (X7, ..., Xj),
then we can proceed as follows. First, generate a value x; from the marginal distrib-
ution of X7. Next, generate a value x; from the conditional distribution of X, given
X1 = x1. Then generate a value x3 from the conditional distribution of X3, given that
X1 =x; and X, = xp, etc.

If the distribution of X is discrete, then we have that the probability of a particular
vector of values (x1, x2, ..., X;) arising via this scheme is

PX1 =x)P(X2 =x2| X1 =x1)- - P(Xg = x| X1 = x1, ..., Xj—1 = Xp—1).

Expanding each of these conditional probabilities, we obtain

P(X, = xl)P(X1=X1,X2=X2) P = X =g, Xie=k)

P(X1=x1) PX1=x1,... Xk—1=Xp—1)
which equals P(X; = x1,..., Xp—1 = Xp—1, Xy = x), and so (x1, x2, ..., Xx) is
a value from the joint distribution of (X1, ..., X%). This approach also works for ab-

solutely continuous distributions, and the proof is the same but uses density functions
instead.

In the case of (X1, ..., X3—1) ~ Dirichlet(aq, ..., ar), we have that (see Chal-
lenge 10.2.23) X ~Beta(a, a2 +-- -+ ax) and X; given X1 = x1, ..., Xj—] = xi—]
has the same distribution as (1 — x; — - -+ — x;_1)U;, where

U; ~ Beta(a;, ajy1 + - + ag)

and Us, ..., Ur—; are independent. Note that X = 1 — X] — --- — Xj_; for any
Dirichlet distribution. So we generate X; ~ Beta(ay, az + - - - 4+ ax), generate U ~
Beta(ajz, a3 + - - - + ay) and put X, = (1 —X1)U,, generate Us ~ Beta(asz, ag+---+
ar) and put X3 = (1 — X — X»)Us, etc.

Below, we present a table of a sample of » = 5 values from a Dirichlet(2, 3, 1, 1.5)
distribution.

X1 X7 X3 X4
0.116159 0.585788 0.229019 0.069034
0.166639 0.566369 0.056627 0.210366
0.411488 0.183686 0.326451 0.078375
0.483124 0.316647 0.115544 0.084684
51 0.117876 0.147869 0.418013 0.316242

W~

Appendix B contains the code used for this. It can be modified to generate from any
Dirichlet distribution. i
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Summary of Section 10.2

e In this section, we have considered the situation in which we have a categorical
response variable and a categorical predictor variable.

e We distinguished two situations. The first arises when the value of the predictor
variable is not assigned, and the second arises when it is.

e In both cases, the test of the null hypothesis that no relationship exists involved
the chi-squared test.

EXERCISES |

10.2.1 The following table gives the counts of accidents for two successive years in a
particular city.

June July August
Year1 | 60 100 80
Year2 | 80 100 60

Is there any evidence of a difference in the distribution of accidents for these months
between the two years?

10.2.2 The following data are from a study by Linus Pauling (1971) (“The significance
of the evidence about ascorbic acid and the common cold,” Proceedings of the National
Academy of Sciences, Vol. 68, p. 2678), concerned with examining the relationship
between taking vitamin C and the incidence of colds. Of 279 participants in the study,
140 received a placebo (sugar pill) and 139 received vitamin C.

No Cold Cold
Placebo 31 109
Vitamin C 17 122

Assess the null hypothesis that there is no relationship between taking vitamin C and
the incidence of the common cold.

10.2.3 A simulation experiment is carried out to see whether there is any relationship
between the first and second digits of a random variable generated from a Uniform[0, 1]
distribution. A total of 1000 uniforms were generated; if the first and second digits were
in {0, 1, 2, 3, 4} they were recorded as a 0, and as a 1 otherwise. The cross-classified
data are given in the following table.

Second digit 0  Second digit 1
First digit 0 240 250
First digit 1 255 255

Assess the null hypothesis that there is no relationship between the digits.

10.2.4 Grades in a first-year calculus course were obtained for randomly selected stu-
dents at two universities and classified as pass or fail. The following data were ob-
tained.

Fail Pass
University 1 | 33 143
University 2 | 22 263
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Is there any evidence of a relationship between calculus grades and university?

10.2.5 The following data are recorded in Statistical Methods for Research Workers,
by R. A. Fisher (Hafner Press, New York, 1922), and show the classifications of 3883
Scottish children by gender (X) and hair color (Y).

Y=fair Y=red Y =medium Y =dark Y =jetblack
X=m 592 119 849 504 36
X=f 544 97 677 451 14

(a) Is there any evidence for a relationship between hair color and gender?
(b) Plot the appropriate bar chart(s).

(c) Record the residuals and relate these to the results in parts (a) and (b). What do you
conclude about the size of any deviation from independence?

10.2.6 Suppose we have a controllable predictor X that takes four different values, and
we measure a binary-valued response Y. A random sample of 100 was taken from the
population and the value of X was randomly assigned to each individual in such a way
that there are 25 sample members taking each of the possible values of X. Suppose that
the following data were obtained.

X=1 X=2 X=3 X=4
0 12 10 16 14
1 13 15 9 1

Y
Y

(a) Assess whether or not there is any evidence against a cause—effect relationship
existing between X and Y.

(b) Explain why it is possible in this example to assert that any evidence found that a
relationship exists is evidence that a cause—effect relationship exists.

10.2.7 Write out in full how you would generate a value from a Dirichlet(1, 1, 1, 1)
distribution.

10.2.8 Suppose we have two categorical variables defined on a population IT and we
conduct a census. How would you decide whether or not a relationship exists between
X and Y? If you decided that a relationship existed, how would you distinguish between
a strong and a weak relationship?

10.2.9 Suppose you simultaneously roll two dice »n times and record the outcomes.
Based on these values, how would you assess the null hypothesis that the outcome on
each die is independent of the outcome on the other?

10.2.10 Suppose a professor wants to assess whether or not there is any difference
in the final grade distributions (A, B, C, D, and F) between males and females in a
particular class. To assess the null hypothesis that there is no difference between these
distributions, the professor carries out a chi-squared test.

(a) Discuss how the professor carried out this test.

(b) If the professor obtained evidence against the null hypothesis, discuss what con-
cerns you have over the use of the chi-squared test.

10.2.11 Suppose that a chi-squared test is carried out, based on a random sample of
n from a population, to assess whether or not two categorical variables X and Y are
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independent. Suppose the P-value equals 0.001 and the investigator concludes that
there is evidence against independence. Discuss how you would check to see if the
deviation from independence was of practical significance.

PROBLEMS

10.2.12 In Example 10.2.1, place a uniform prior on the parameters (a Dirichlet distri-
bution with all parameters equal to 1) and then determine the posterior distribution of
the parameters.

10.2.13 In Example 10.2.2, place a uniform prior on the parameters of each population
(a Dirichlet distribution with all parameters equal to 1) and such that the three priors
are independent. Then determine the posterior distribution.
10.2.14 In a2 x 2 table with probabilities &;;, prove that the row and column variables
are independent if and only if

01102 1

012021

namely, we have independence if and only if the cross-ratio equals 1.

10.2.15 Establish that the likelihood in (10.2.1) is correct when the population size is
infinite (or when we are sampling with replacement from the population).

10.2.16 (MV) Prove that the MLE of (011, ...,684) in (10.2.1) is given by 9,-j =
fij/n. Assume that f;; > 0 for every i, j. (Hint: Use the facts that a continuous
function on this parameter space Q must achieve its maximum at some point in Q
and that, if the function is continuously differentiable at such a point, then all its first-
order partial derivatives are zero there. This will allow you to conclude that the unique
solution to the score equations must be the point where the log-likelihood is maximized.
Try the case where a = 2, b = 2 first.)

10.2.17 (MV) Prove that the MLE of (01.,...,8,.,60.1,...,60.) in (10.2.2) is given
by 0;. = f;./n and 9.j = f.j/n. Assume that f;. > 0, f; > 0 for every i, j. (Hint:
Use the hint in Problem 10.2.16.)

10.2.18 (MV) Prove that the MLE of (01 x=1, ..., 0px=q) in (10.2.3) is given by

0 jlx=i = fij/n;. Assume that f;; > 0 for every 7, j. (Hint: Use the hint in Problem
10.2.16.)

10.2.19 (MV) Prove that the MLE of (01, ..., 8p) in (10.2.4) is given by 9j = f;/n.
Assume that f; > 0 for every i, j. (Hint: Use the hint in Problem 10.2.16.)

10.2.20 Suppose that X = (X1, ..., Xy—1) ~ Dirichlet(ay, ..., ar). Determine

E(le1 e X,lf) in terms of the gamma function, when/; > O fori =1,... k.
COMPUTER PROBLEMS |

10.2.21 Suppose that (81, 6>, 683, 64) ~ Dirichlet(1, 1,1, 1), as in Exercise 10.2.7.
Generate a sample of size N = 10* from this distribution and use this to estimate the
expectations of the ;. Compare these estimates with their exact values. (Hint: There
is some relevant code in Appendix B for the generation; see Appendix C for formulas
for the exact values of these expectations.)
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10.2.22 For Problem 10.2.12, generate a sample of size N = 10* from the posterior
distribution of the parameters and use this to estimate the posterior expectations of the
cell probabilities. Compare these estimates with their exact values. (Hint: There is
some relevant code in Appendix B for the generation; see Appendix C for formulas for
the exact values of these expectations.)

CHALLENGES|
10.2.23 (MV) Establish the validity of the method discussed in Example 10.2.3 for
generating from a Dirichlet(a 1, . . ., ax) distribution.

10.3 | Quantitative Response and Predictors

When the response and predictor variables are all categorical, it can be difficult to for-
mulate simple models that adequately describe the relationship between the variables.
We are left with recording the conditional distributions and plotting these in bar charts.
When the response variable is quantitative, however, useful models have been formu-
lated that give a precise mathematical expression for the form of the relationship that
may exist. We will study these kinds of models in the next three sections. This section
concentrates on the situation in which all the variables are quantitative.

10.3.1 The Method of Least Squares

The method of least squares is a general method for obtaining an estimate of a distribu-
tion mean. It does not require specific distributional assumptions and so can be thought
of as a distribution-free method (see Section 6.4).

Suppose we have a random variable Y, and we want to estimate £(Y) based on a
sample (y1, ..., y»). The following principle is commonly used to generate estimates.

The least-squares principle says that we select the point ¢ (y1, ..., yu),
in the set of possible values for £(Y), that minimizes the sum of squared
deviations (hence, “least squares™) given by > 7 (i — t(y1, ..., yn))?.
Such an estimate is called a least-squares estimate.

Note that a least-squares estimate is defined for every sample size, even n = 1.
To implement least squares, we must find the minimizing point ¢ (y1, . .., y,). Per-
haps a first guess at this value is the sample average y. Because >/, (vi — ¥)(J —

O, yn) =G =t ya) Qi yi —ny) = 0, we have

D=ty =D i = AT — W)
i=1 i=1

= D= H2D i =Gt + DG =t )
i=1 i=1 i=1

= > 0= +nG—tOn...om) . (10.3.1)
i=1
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Therefore, the smallest possible value of (10.3.1)is >/, (v; — 72), and this is assumed
by taking #(y1, ..., y») = y. Note, however, that y might not be a possible value for
E(Y) and that, in such a case, it will not be the least-squares estimate. In general,
(10.3.1) says that the least-squares estimate is the value #(y1, . . ., y,) that is closest to
y and is a possible value for E(Y).

Consider the following example.

EXAMPLE 10.3.1
Suppose that ¥ has one of the distributions on S = {0, 1} given in the following table.

y=0 y=1
p1(») 1/2 1/2
p2 () 1/3 2/3

Then the mean of Y is given by

1 1 1 1 2 2

Now suppose we observe the sample (0,0, 1,1, 1) and so y = 3/5. Because the
possible values for E(Y) are in {1/2,2/3}, we see that (0,0, 1, 1, 1) = 2/3 because
(3/5 —2/3)* = 0.004 while (3/5 — 1/2)> = 0.01.8

Whenever the set of possible values for £(Y) is an interval (a, b) , however, and
P(Y € (a,b)) =1, then y € (a, b). This implies that y is the least-squares estimator
of E(Y). So we see that in quite general circumstances, y is the least-squares estimate.

There is an equivalence between least squares and the maximum likelihood method
when we are dealing with normal distributions.

EXAMPLE 10.3.2 Least Squares with Normal Distributions
Suppose that (y1, ..., y,) is a sample from an N (u, a%) distribution, where u is un-
known. Then the MLE of u is obtained by finding the value of x that maximizes

no_
L)y, ..oy =expl———= G—u)’t.
20
Equivalently, the MLE maximizes the log-likelihood

n _
Iy, .oy = ——G — w.
20

So we need to find the value of 4 that minimizes (y — x)? just as with least squares.

In the case of the normal location model, we see that the least-squares estimate and
the MLE of 6 agree. This equivalence is true in general for normal models (e.g., the
location-scale normal model), at least when we are considering estimates of location
parameters. I

Some of the most important applications of least squares arise when we have that
the response is a random vector Y = (¥1,...,Y,) € R" (the prime " indicates that
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we consider Y as a column), and we observe a single observation y = (y1, ..., yn) €
R". The expected value of Y € R”" is defined to be the vector of expectations of its
component random variables, namely,

E(Y)
E(Y) = : e R".
E(Y,)

The least-squares principle then says that, based on the single observation y = (yy, . ..,
Vn), we must find

t()’)=t()’la---a)’n)=t1()’1w--a)’n)a---,tn()’la---aJ’n))/,

in the set of possible values for £(Y) (a subset of R"), that minimizes

D i =t ) (10.3.2)
i=1

So #(y) is the possible value for E(Y) that is closest to y, as the squared distance
between two points x, y € R" is given by >/ (x; — ¥i)3.

As is common in statistical applications, suppose that there are predictor variables
that may be related to ¥ and whose values are observed. In this case, we will replace
E(Y) by its conditional mean, given the observed values of the predictors. The least-
squares estimate of the conditional mean is then the value #(y1, ..., y,), in the set of
possible values for the conditional mean of Y, that minimizes (10.3.2). We will use this
definition in the following sections.

Finding the minimizing value of z(y) in (10.3.2) can be a challenging optimization
problem when the set of possible values for the mean is complicated. We will now
apply least squares to some important problems where the least-squares solution can
be found in closed form.

10.3.2 | The Simple Linear Regression Model

Suppose we have a single quantitative response variable Y and a single quantitative
predictor X, e.g., ¥ could be blood pressure measured in pounds per square inch and
X could be age in years. To study the relationship between these variables, we examine
the conditional distributions of Y, given X = x, to see how these change as we change
X.

We might choose to examine a particular characteristic of these distributions to see
how it varies with x. Perhaps the most commonly used characteristic is the conditional
mean of ¥ given X = x, or E(Y | X = x) (see Section 3.5).

In the regression model (see Section 10.1), we assume that the conditional distrib-
utions have constant shape and that they change, as we change x, at most through the
conditional mean. In the simple linear regression model, we assume that the only way
the conditional mean can change is via the relationship

E(Y|X =x)=p1+ fox,
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for some unknown values of f; € R! (the intercept term) and 8, € R! (the slope
coefficient). We also refer to £ and 5, as the regression coefficients.

Suppose we observe the independent values (x1, y1), ..., (x5, y») for (X, Y). Then,
using the simple linear regression model, we have that

Y B+ Baxa
E S | BT Ay : . (10.3.3)

Yy B1+ Baxa

Equation (10.3.3) tells us that the conditional expected value of the response
(Y1, ...,7Y,) isin a particular subset of R". Furthermore, (10.3.2) becomes

D i =) =D i — B — Boxi), (10.3.4)
i=1 i=l

and we must find the values of f; and f, that minimize (10.3.4). These values are
called the least-squares estimates of | and f,.
Before we show how to do this, consider an example.

EXAMPLE 10.3.3
Suppose we obtained the following n = 10 data points (x;, y;).

(3.9,89) (2.6,7.0) (2.4,46)  (41,10.7)  (=02,1.0)
(5.4,12.6) (0.6,3.3) (=5.6,—104) (—1.1,-2.3) (=2.1,—1.6)

In Figure 10.3.1, we have plotted these points together with the line y = 1 + x.

T T T
-5 0 5

X

Figure 10.3.1: A plot of the data points (x;, ;) (+) and the line y = 1 4 x in Example 10.3.3.

Notice that with #; = 1 and S, = 1, then

(vi—pB1 - ﬁzxi)z =@ —1—x)*
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is the squared vertical distance between the point (x;, y;) and the point on the line with
the same x value. So (10.3.4) is the sum of these squared deviations and in this case
equals

(89—-1-3.924(7.1-1-2.6)%+--- 4 (=1.6 — 1 +2.1)> = 141.15.

If ; = 1 and f, = 1 were the least-squares estimates, then 141.15 would be equal to
the smallest possible value of (10.3.4). In this case, it turns out (see Example 10.3.4)
that the least-squares estimates are given by the values f; = 1.33, f, = 2.06, and the
minimized value of (10.3.4) is given by 8.46, which is much smaller than 141.15.

So we see that, in finding the least-squares estimates, we are in essence finding
the line f| + fB,x that best fits the data, in the sense that the sum of squared vertical
deviations of the observed points to the line is minimized. i

Scatter Plots

As part of Example 10.3.3, we plotted the points (x1, y1), ..., (xs, ¥») in a graph. This
is called a scatter plot, and it is a recommended first step as part of any analysis of the
relationship between quantitative variables X and Y. A scatter plot can give us a very
general idea of whether or not a relationship exists and what form it might take.

It is important to remember, however, that the appearance of such a plot is highly
dependent on the scales we choose for the axes. For example, we can make a scatter
plot look virtually flat (and so indicate that no relationship exists) by choosing to place
too wide a range of tick marks on the y-axis. So we must always augment a scatter plot
with a statistical analysis based on numbers.

Least-Squares Estimates, Predictions, and Standard Errors

For the simple linear regression model, we can work out exact formulas for the least-
squares estimates of f;and f,.

Theorem 10.3.1 Suppose that £(Y | X = x) = S+ f,x, and we observe the inde-
pendent values (x1, y1), - .., (Xn, y») for (X, Y). Then the least-squares estimates
of £ and /5, are given by

Dot i = X) (i — )
Z?:l (xi — f)z

by =y —byx and by =

il

respectively, whenever > 7| (x; — ¥)> # 0.

PROOQOF | The proof of this result can be found in Section 10.6.

We call the line y = b1 +bax the least-squares line, or best-fitting line, and by +box
is the least-squares estimate of E(Y | X = x). Note that >/, (x; — %)? = 0 if and
only if x; = --- = x,. In such a case we cannot use least squares to estimate f; and
f,, although we can still estimate £(Y | X = x) (see Problem 10.3.19).
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Now that we have estimates by, b, of the regression coefficients, we want to use
these for inferences about 8 and f,. These estimates have the unbiasedness property.

Theorem 10.3.2 If E(Y | X = x) = B, + f,x, and we observe the independent
values (x1, y1), - .., (X, yn) for (X, Y), then

() EB1 1 X1 =x1,.... Xy = x) = B,
(i) EBy | X1 = x1, ..., X = %) = .

PROOF | The proof of this result can be found in Section 10.6. 1

Note that Theorem 10.3.2 and the theorem of total expectation imply that £(B;) = S,
and £ (B,) = f, unconditionally as well.

Adding the assumption that the conditional variances exist, we have the following
theorem.

Theorem 10.3.3 If E(Y | X = x) = 8, + fS,x, Var(Y | X = x) = o2 for every x,
and we observe the independent values (x1, y1), - .., (X, y») for (X, Y), then

(i) Var(By | X1 = x1, ..., Xy = x,) =02 (1/n + %%/ 27_) (xi — %)),
(i) Var(By | X1 = x1, ..., Xy = x,) = 02/ 301 (v — X)2,
(i) Cov(B1, B2 | X1 = X1, ..., Xn = Xp) = —0 2%/ D1 (x; — X)%.

PROOF | See Section 10.6 for the proof of this result. i

For the least-squares estimate b; + byx of the mean E(Y | X = x) = B + Bx, we
have the following result.

Corollary 10.3.1

e (x —x)?
Var(By + Box | X1 =x1,.... Xy =x,) =0*| -+ ————5 | (103.5)
no iy (i —X)

PROOF | See Section 10.6 for the proof of this result. I

A natural predictor of a future value of ¥, when X = x, is given by the conditional
mean E(Y | X = x) = f; + ff,x. Because we do not know the values of fand f,, we
use the estimated mean b1 4+ byx as the predictor.

When we are predicting Y at an x value that lies within the range of the observed
values of X, we refer to this as an inferpolation. When we want to predict at an x
value that lies outside this range, we refer to this as an extrapolation. Extrapolations
are much less reliable than interpolations. The farther away x is from the observed
range of X values, then, intuitively, the less reliable we feel such a prediction will be.
Such considerations should always be borne in mind. From (10.3.5), we see that the
variance of the prediction at the value X = x increases as x moves away from x. So to
a certain extent, the standard error does reflect this increased uncertainty, but note that
its form is based on the assumption that the simple linear regression model is correct.
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Even if we accept the simple linear regression model based on the observed data (we
will discuss model checking later in this section), this model may fail to apply for very
different values of x, and so the predictions would be in error.

We want to use the results of Theorem 10.3.3 and Corollary 10.3.1 to calculate
standard errors of the least-squares estimates. Because we do not know o2, however,
we need an estimate of this quantity as well. The following result shows that

1
n—2

§2 =

n
> i = b1 — boxi)? (10.3.6)
i=1

is an unbiased estimate of 2.

Theorem 10.3.4 If E(Y | X = x) = f; + fox, Var(Y | X = x) = o2 for every x,
and we observe the independent values (x1, y1), ..., (xu, y») for (X, Y), then

E(S2|X1 =x1,...,Xn=xn)=62.

PROOF | See Section 10.6 for the proof of this result. i

Therefore, the standard error of b1 is then given by

1/2
1 N x2 /
s\ t+————— s
no S (=)

and the standard error of b, is then given by

n -1/2
S(Z (x; —)E)2) .
i=1

Under further assumptions, these standard errors can be interpreted just as we inter-
preted standard errors of estimates of the mean in the location and location-scale nor-
mal models.

EXAMPLE 10.3.4 (Example 10.3.3 continued)
Using the data in Example 10.3.3 and the formulas of Theorem 10.3.1, we obtain ] =
1.33, b, = 2.06 as the least-squares estimates of the intercept and slope, respectively.
So the least-squares line is given by 1.33 4 2.06x. Using (10.3.6), we obtain s> = 1.06
as the estimate of o 2.

Using the formulas of Theorem 10.3.3, the standard error of b is 0.3408, while the
standard error of by is 0.1023.

The prediction of ¥ at X = 2.0 is given by 1.3342.06 (2) = 5.45. Using Corollary
10.3.1, this estimate has standard error 0.341. This prediction is an interpolation. i

The ANOVA Decomposition and the F-Statistic

The following result gives a decomposition of the total sum of squares > ', (vi — 7).
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Lemma 10.3.1 If (x1, 1), . .., (X4, y») are such that 37_, (x; — x)? # 0, then

n

D=3 =b > (5 =0+ D (i — b —boxi)”.
i=1 i=1

i=1

PROOF | The proof of this result can be found in Section 10.6. 1

We refer to
n
b3 > (xi — %)
i=1

as the regression sum of squares (RSS) and refer to
n
> i —bi —byx)
i=1

as the error sum of squares (ESS).

If we think of the total sum of squares as measuring the total observed variation in
the response values y;, then Lemma 10.3.1 provides a decomposition of this variation
into the RSS, measuring changes in the response due to changes in the predictor, and
the ESS, measuring changes in the response due to the contribution of random error.

It is common to write this decomposition in an analysis of variance table (ANOVA).

Source | Df Sum of Squares Mean Square
X 1 b3 > (xi —X)* by >0 (xi — %)
Error | n—2 37", (i—b —bx)?* s?

Total |[n—1 7, (i —7)?

Here, Df stands for degrees of freedom (we will discuss how the Df entries are cal-
culated in Section 10.3.4). The entries in the Mean Square column are calculated by
dividing the corresponding sum of squares by the Df entry.

To see the significance of the ANOVA table, note that, from Theorem 10.3.3,

n n
E(Bzz > i —x)? ' Xi =Xty Xy = xn) =2+ 2D (i — D2 (103.7)
i=1 i=1

which is equal to o2 if and only if , = 0 (we are always assuming here that the x;
vary). Given that the simple linear regression model is correct, we have that 5, = 0 if
and only if there is no relationship between the response and the predictor. Therefore,
b% Sy i — %)? is an unbiased estimator of o2 if and only if #, = 0. Because s>
is always an unbiased estimate of o (Theorem 10.3.4), a sensible statistic to use in
assessing Hy : i, = 0, is given by

e RSS B (- %)
" ESS/(n—2) 52 ’

(10.3.8)
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as this is the ratio of two unbiased estimators of ¢ when Hy is true. We then conclude
that we have evidence against Hy when F' is large, as (10.3.7) also shows that the
numerator will tend to be larger than o> when Hy is false. We refer to (10.3.8) as the
F-statistic. We will subsequently discuss the sampling distribution of F to see how to
determine when the value F is so large as to be evidence against Hyp.

EXAMPLE 10.3.5 (Example 10.3.3 continued)
Using the data of Example 10.3.3, we obtain

n
> -3 = 43701,
i=1
n

b%Z(x,-—)E)z = 42855,
i=1

n
> i —bi—bax)? = 437.01 — 42855 = 8.46,
i=1

and so

B3N (i —X)* 42855
B 52 ~1.06
Note that F' is much bigger than 1, and this seems to indicate a linear effect due to X. I

F = 404.29.

The Coefficient of Determination and Correlation

Lemma 10.3.1 implies that

_ b% D it (i — i)z
S i — )

satisfies 0 < R? < 1. Therefore, the closer R? is to 1, the more of the observed total
variation in the response is accounted for by changes in the predictor. In fact, we
interpret R?, called the coefficient of determination, as the proportion of the observed
variation in the response explained by changes in the predictor via the simple linear
regression.

The coefficient of determination is an important descriptive statistic, for, even if
we conclude that a relationship does exist, it can happen that most of the observed
variation is due to error. If we want to use the model to predict further values of the
response, then the coefficient of determination tells us whether we can expect highly
accurate predictions or not. A value of R? near 1 means highly accurate predictions,
whereas a value near 0 means that predictions will not be very accurate.

EXAMPLE 10.3.6 (Example 10.3.3 continued)

Using the data of Example 10.3.3, we obtain R? = 0.981. Therefore, 98.1% of the ob-
served variation in Y can be explained by the changes in X through the linear relation.
This indicates that we can expect fairly accurate predictions when using this model, at
least when we are predicting within the range of the observed X values. I

RZ
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Recall that in Section 3.3, we defined the correlation coefficient between random
variables X and Y to be

Cov(X,Y)
In Corollary 3.6.1, we proved that —1 < pyy < 1 with pyy = =£I1 if and only if
Y = a =+ cX for some constants ¢ € R! and ¢ > 0. So p yy can be taken as a measure
of the extent to which a linear relationship exists between X and Y.
If we do not know the joint distribution of (X, Y), then we will have to estimate
p xy- Based on the observations (x1, y1), ..., (x;, ¥»), the natural estimate to use is
the sample correlation coefficient

where
1 n
Sxy = mZ(xi _)E)(Yi _)_’)
i=1

is the sample covariance estimating Cov(X, Y), and sy, s, are the sample standard
deviations for the X and Y variables, respectively. Then —1 < ryy, < 1 with 7y, = %1
if and only if y; = a = cx; for some constants a € R! and ¢ > 0, for every i (the proof
is the same as in Corollary 3.6.1 using the joint distribution that puts probability mass
1/n at each point (x;, y;) — see Problem 3.6.16).

The following result shows that the coefficient of determination is the square of the
correlation between the observed X and Y values.

Theorem 10.3.5 If (x1, 1), . .., (Xu, yn) are such that 37, (x; — %) # 0,
S (i —7)? #0, then R* =7,

PROOF | We have

o (L =D 0i=p) _pZm =
R YN e YN (V) S YN (Vs

>

where we have used the formula for b, given in Theorem 10.3.1. 1

Confidence Intervals and Testing Hypotheses

We need to make some further assumptions in order to discuss the sampling distribu-
tions of the various statistics that we have introduced. We have the following results.
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Theorem 10.3.6 If Y, given X = x, is distributed N(8; + f,x, o?), and we ob-
serve the independent values (x1, y1), - - ., (xn, v») for (X, Y), then the conditional
distributions of By, By, and S2, given X1 = x1, ..., X,, = x,, are as follows.

Q) B ~ N(B1,02(1/n+x%/ 30 (xi — %)%))

(ii) By ~ N(B5, 02/ 37 (xi — %)%

(iii) B + Bax ~ N(By + Box,02(1/n+ (x —X)*/ 2/_, (xi — %)?))
(iv) (n — 2) §?/o? ~ y*(n — 2) independent of (B, By)

PROOF | The proof of this result can be found in Section 10.6. 1

Corollary 10.3.2
M) (B1 = B/ (SU/n + 32/ T (i = D)V ~ t(n = 2)
(i) (B2 — B) i (i —)HV2/S ~ t(n - 2)
(1ii)

Bi + Box — By — fByx _

S((1/n+ (x —=3)2)/ 20, (i — )1/

(iv) If F is defined as in (10.3.8), then Hp : B, = 0 is true if and only if F ~
F(,n-2).

t(n—2)

PROOQOF | The proof of this result can be found in Section 10.6. 1
Using Corollary 10.3.2(i), we have that

n 1/2
by is(l/n +5/ D (xi —»z>2) tyy2 (0 = 2)
i=1

is an exact y -confidence interval for £;. Also, from Corollary 10.3.2(ii),

0 -12
by s (Z (i = i)z) W4y)/2 (0 =2)
i=1

is an exact y -confidence interval for f,.
From Corollary 10.3.2(iv), we can test Hyp : f, = 0 by computing the P-value

2N )2
P(F L b2 (i 9 ) (10.3.9)

52

where F' ~ F(1, n —2), to see whether or not the observed value (10.3.8) is surprising.
This is sometimes called the ANOVA test. Note that Corollary 10.3.2(ii) implies that
we can also test Hy : f, = 0 by computing the P-value

n =212
P(|T| L b2 (B i =9 ) ) (10.3.10)

N
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where ' ~ t(n — 2). The proof of Corollary 10.3.2(iv) reveals that (10.3.9) and
(10.3.10) are equal.

EXAMPLE 10.3.7 (Example 10.3.3 continued)
Using software or Table D.4, we obtain 79975 (8) = 2.306. Then, using the data of
Example 10.3.3, we obtain a 0.95-confidence interval for #; as

" 1/2

by +s (1/n + %2/ Z (xi — 2)2) gy)/2(n = 2)
i=1

= 1.33 + (0.3408) (2.306) = [0.544, 2.116]

and a 0.95-confidence interval for f, as

) —1/2

by xs (Z (xi — i)2) [(14y)/2(n — 2)
i=1

=2.06 £ (0.1023) (2.306) = [1.824,2.296] .

The 0.95-confidence interval for #, does not include 0, so we have evidence against
the null hypothesis Hy : f, = 0 and conclude that there is evidence of a relationship
between X and Y. This is confirmed by the F-test of this null hypothesis, as it gives the
P-value P(F > 404.29) = 0.000 when F ~ F(1, 8).

Analysis of Residuals

In an application of the simple regression model, we must check to make sure that
the assumptions make sense in light of the data we have collected. Model checking is
based on the residuals y; — b1 — byx; (after standardization), as discussed in Section
9.1. Note that the 7th residual is just the difference between the observed value y; at x;
and the predicted value b + byx; at x;.

From the proof of Theorem 10.3.4, we have the following result.

Corollary 10.3.3
D) EY; —B1— Byxi | X1 =x1,..., Xy, =x,) =0

0o _ _ _ 2 1 i__z
(if) Var(Y; — By — Boxi | X1 = X1, ..., Xy = xn) = 0 (1—;—%)

This leads to the definition of the ith standardized residual as

Yi — b1 — box;
2
§ (1 — =i =/ 2 (v _f)z)

(10.3.11)

Corollary 10.3.3 says that (10.3.11), with ¢ replacing s, is a value from a distri-
bution with conditional mean 0 and conditional variance 1. Furthermore, when the
conditional distribution of the response given the predictors is normal, then the con-
ditional distribution of this quantity is N(0, 1) (see Problem 10.3.21). These results
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are approximately true for (10.3.11) for large n. Furthermore, it can be shown (see
Problem 10.3.20) that

Cov(Y; — B1 — Box;, Yj — By — Boxj | X1 =x1,..., Xy = xp)

Y A I
=0\t o e |
no ey Ok — X)
Therefore, under the normality assumption, the residuals are approximately indepen-
dent when 7 is large and

Xji — X

v ZZ=1 (xx — f)z

as n — oo. This will be the case whenever Var(.X) is finite (see Challenge 10.3.27)
or, in the design context, when the values of the predictor are chosen accordingly. So
one approach to model checking here is to see whether the values given by (10.3.11)
look at all like a sample from the N (0, 1) distribution. For this, we can use the plots
discussed in Chapter 9.

EXAMPLE 10.3.8 (Example 10.3.3 continued)
Using the data of Example 10.3.3, we obtain the following standardized residuals.

-0

—0.49643 0.43212 —1.73371 1.00487 0.08358
0.17348 0.75281 —0.28430 —1.43570 1.51027

These are plotted against the predictor x in Figure 10.3.2.

Standardized Residuals
.

I I I
-5 0 5

Figure 10.3.2: Plot of the standardized residuals in Example 10.3.8.

It is recommended that we plot the standardized residuals against the predictor, as
this may reveal some underlying relationship that has not been captured by the model.
This residual plot looks reasonable. In Figure 10.3.3, we have a normal probability plot
of the standardized residuals. These points lie close to the line through the origin with
slope equal to 1, so we conclude that we have no evidence against the model here. I
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Normal Score
L]

Standardized Residual

Figure 10.3.3: Normal probability plot of the standardized residuals in Example 10.3.8.

What do we do if model checking leads to a failure of the model? As discussed
in Chapter 9, perhaps the most common approach is to consider making various trans-
formations of the data to see whether there is a simple modification of the model that
will pass. We can make transformations, not only to the response variable Y, but to the
predictor variable X as well.

An Application of Simple Linear Regression Analysis

The following data set is taken from Statistical Methods, 6th ed., by G. Snedecor and
W. Cochran (Iowa State University Press, Ames, 1967) and gives the record speed Y
in miles per hour at the Indianapolis Memorial Day car races in the years 1911-1941,
excepting the years 1917-1918. We have coded the year X starting at 0 in 1911 and
incrementing by 1 for each year. There are n = 29 data points (x;, ;). The goal of
the analysis is to obtain the least-squares line and, if warranted, make inferences about
the regression coefficients. We take the normal simple linear regression model as our
statistical model. Note that this is an observational study.

Year Speed | Year Speed | Year Speed
0 74.6 12 91.0 22 1042
1 78.7 13 98.2 23 1049
2 75.9 14 101.1 24 106.2
3 82.5 15 95.9 25 109.1
4 89.8 16 97.5 26 113.6
5 83.3 17 99.5 27 1172
8 88.1 18 97.6 28 115.0
9 88.6 19 1004 29 1143

10 89.6 20 96.6 30 115.1
11 94.5 21 104.1

Using Theorem 10.3.1, we obtain the least-squares line as y = 77.56814-1.27793x.
This line, together with a scatter plot of the values (x;, y;), is plotted in Figure 10.3.4.
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The fit looks quite good, but this is no guarantee of model correctness, and we must
carry out some form of model checking.

Figure 10.3.5 is a plot of the standardized residuals against the predictor. This plot
looks reasonable, with no particularly unusual pattern apparent. Figure 10.3.6 is a nor-
mal probability plot of the standardized residuals. The curvature in the center might
give rise to some doubt about the normality assumption. We generated a few samples
of n = 29 from an N (0, 1) distribution, however, and looking at the normal probabil-
ity plots (always recommended) reveals that this is not much cause for concern. Of
course, we should also carry out model checking procedures based upon the standard-
ized residuals and using P-values, but we do not pursue this topic further here.

Regression Plot
Speed = 77.5681 + 1.27793 Year
$=209865 R-Sq=940% R-Sq(ad)=93.8%

120 —

110 —f

100 —

Speed

90 —f

70 —

Year

Figure 10.3.4: A scatter plot of the data together with a plot of the least-squares line.

Residuals Versus Year

(response is Speed)

Standardized Residual

Year

Figure 10.3.5: A plot of the standardized residuals against the predictor.
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Normal Probability Plot of the Residuals

(response is Speed)

Normal Score
o
|

T T T T T T
2 -1 0 1 2 3

Standardized Residual

Figure 10.3.6: A normal probability plot of the standardized residuals.

Based on the results of our model checking, we decide to proceed to inferences
about the regression coefficients. The estimates and their standard errors are given in
the following table, where we have used the estimate of o2 given by s> = (2.999)2,
to compute the standard errors. We have also recorded the ¢-statistics appropriate for
testing each of the hypotheses Hy : f; = 0and Hp : f, = 0.

Coeflicient | Estimate Standard Error #-statistic
b1 77.568 1.118 69.39
£o 1.278 0.062 20.55

From this, we see that the P-value for assessing Hp : f, = 0 is given by
P(|T| = 20.55) = 0.000,

when T ~ ¢ (27), and so we have strong evidence against Hy. It seems clear that there
is a strong positive relationship between Y and X. Since the 0.975 point of the #(27)
distribution equals 2.0518, a 0.95-confidence interval for f, is given by

1.278 + (0.062) 2.0518 = [1.1508, 1.4052] .

The ANOVA decomposition is given in the following table.

Source Df Sum of Squares Mean Square
Regression 1 3797.0 3797.0
Error 27 242.8 9.0
Total 28 4039.8

Accordingly, we have that F = 3797.0/9.0 = 421.888 and, as F ~ F(1,27) when
Hy : f, = 0is true, P(F > 421.888) = 0.000, which simply confirms (as it must)
what we got from the preceding #-test.

The coefficient of determination is given by R? = 3797.0/4039.8 = 0.94. There-
fore, 94% of the observed variation in the response variable can be explained by the
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changes in the predictor through the simple linear regression. The value of R? indicates
that the fitted model will be an excellent predictor of future values, provided that the
value of X that we want to predict at is in the range (or close to it) of the values of X
used to fit the model.

10.3.3 | Bayesian Simple Linear Model (Advanced)

For the Bayesian formulation of the simple linear regression model with normal error,
we need to add a prior distribution for the unknown parameters of the model, namely,
B1, B2, and o%. There are many possible choices for this. A relevant prior is dependent
on the application.

To help simplify the calculations, we reparameterize the model as follows. Let
a1 = B+ frx and ar = f,. It is then easy to show (see Problem 10.3.24) that

i()/i — B = Ppxi)t = i(}/i — a1 — ox(x; — X))
= i;((y,- —7) = (a1 =) —aalx; =)
= ij(yl- -7 +n(ar — ) +a%i:<xi — %)’
—2a i:(xl- -5 — 7). (10.3.12)

The likelihood function, using this reparameterization, then equals

(2#02)_n/2 exp (—ﬁ Z; i —a1 —az (x; — i))z).

From (10.3.12), and setting

n

= D -3
i=1
n

= D> mi-,
i=1
n

Gy = D =D -7,

i=1

we can write this as
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2
—n/2 C n _
fore?) o oo (- =)
X €X —L 222
p 757 asc; a2Cxy
2 2 2
—n/2 c, —cia n -
= (27:0'2) exp (—%)exp (—m (a1 — y)z)

2
X exp (— O (a2 — a)z) ,

202
where the last equality follows from a3¢? — 2ascyy = ¢2 (az — a)? — c2a* witha =
Cxylc?.

This implies that, whenever the prior distribution on (a1, a») is such that a; and
a> are independent given o2, then the posterior distributions of a1 and a5 are also
independent given 2. Note also that  and a are the least-squares estimates (as well
as the MLE’s) of a1 and a3, respectively (see Problem 10.3.24).

Now suppose we take the prior to be

2 2 2
ailaz,c” ~ N(up,1707),
2 2 2
ar|lo” ~ N(up,1507),
1/02 ~ Gamma(x, v).

Note that a1 and a5 are independent given o 2.

As it turns out, this prior is conjugate, so we can easily determine an exact form for
the posterior distribution (see Problem 10.3.25). The joint posterior of (a1, a2, 1/0?)

is given by
1\ 1\
71 71 71
1\ 1\
ay|o? N c§+—2 c)zca+ﬂ—22 ) c)zc-i-—z o2,
2 72 73

— ~ Gamma (K + %, vxy) s

2

2
allaz, o

2

[\S]

where

5 -1 2
| 2 —cld® + ny2+%—(n+l%) nf+%)]

Vxy = % —
2 2
+ cfcaz-i-f—g— c)zc-i-f—l%

S
(o)
=N
IS}

+
< |§

kS
[\S}
| I
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Of course, we must select the values of the hyperparameters x, 71, 5, 72, k, and v
to fully specify the prior.

Now observe that for a diffuse analysis, i.e., when we have little or no prior infor-
mation about the parameters, we let 11 — 0o, 79 = 00, and v — 0, and the posterior
converges to

2 - 2
arlaz, 0 ~ N(@y,07/n),
azle® ~ N(a,o?/c}),

1/6? ~ Gamma(c +n/2,vy,)

where vy, = (1 /2){c§ - c)zcaz}. But this still leaves us with the necessity of choosing
the hyperparameter x. We will see, however, that this choice has only a small effect on
the analysis when 7 is not too small.

We can easily work out the marginal posterior distribution of the a;. For example,
in the diffuse case, the marginal posterior density of a3 is proportional to

% 1\ 12 &2 L] (1 e by |
() eo|sm@-o| () eof-a(5)
00 1 x+(n/2)—(1/2) C2 1 1
_ . _ =x _N2) _
-/ (=) o |~ (v + 5 2= ?) 5] 4(53):

Making the change of variable 1/62 — w, where

2

c 1
w= (vxy + ?x (a2 —a)2) -

in the preceding integral, shows that the marginal posterior density of @ is proportional

to

o2 —(k+(m+1)/2) oo

14+ —— (a2 —a)® / wEte/)=1/2) exp {—w} dw,
Zl)xy 0

which is proportional to

C2 —(2x+n+1)/2
(1+ x (az—a)2) )
2vyy

This establishes (see Problem 4.6.17) that the posterior distribution of a; is specified
by
ay —

a
2Vxy /2

So a y -HPD (highest posterior density) interval for a» is given by

P Wy, Qx +n)
a —_— — K n).
e\ @ a2

2k +n ~ t(2x + n).
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Note that these intervals will not change much as we change «, provided that » is not
too small.
We consider an application of a Bayesian analysis for such a model.

EXAMPLE 10.3.9 Haavelmo's Data on Income and Investment

The data for this example were taken from An Introduction to Bayesian Inference in
Econometrics, by A. Zellner (Wiley Classics, New York, 1996). The response variable
Y is income in U.S. dollars per capita (de[ ated), and the predictor variable X is invest-
ment in dollars per capita (de[ated) for the United States for the years 1922—-1941. The
data are provided in the following table.

Year Income Investment | Year Income Investment
1922 433 39 | 1932 372 22
1923 483 60 | 1933 381 17
1924 479 42 | 1934 419 27
1925 486 52 | 1935 449 33
1926 494 47 | 1936 511 48
1927 498 51 | 1937 520 51
1928 511 45 | 1938 477 33
1929 534 60 | 1939 517 46
1930 478 39 | 1940 548 54
1931 440 41 | 1941 629 100

In Figure 10.3.7, we present a normal probability plot of the standardized residuals,
obtained via a least-squares fit. In Figure 10.3.8, we present a plot of the standardized
residuals against the predictor. Both plots indicate that the model assumptions are
reasonable.

Suppose now that we analyze these data using the limiting diffuse prior with x = 2.
Here, we have that j = 483, ¢} = 64993, ¢; = 5710.55, and ¢, = 17408.3, so that
a = 17408.3/5710.55 = 3.05 and vy, = (64993 — 17408.3) /2 = 23792.35. The
posterior is then given by

ailas, 6> ~ N(483,5%/20),
ar|e? ~ N(3.05,02%/5710.55),
1/6> ~ Gamma(12,23792.35).

The primary interest here is in the investment multiplier a>. By the above results, a
0.95-HPD interval for a3, using ) 975(24) = 2.0639, is given by

P Dy, Qk +n—1)
a T B K n—
NerEh IR
1 2-23792.35
=3.05+ J 10.975(24) = 3.05 + (0.589) 2.0639
V24 5710.55

= (1.834, 4.266).
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Normal Probability Plot of the Residuals

(response is Income)

Normal Score
o
|

T T
-2 -1 0 1

Standardized Residual

Figure 10.3.7: Normal probability plot of the standardized residuals in Example 10.3.9.

Standardized Residuals

10 20 30 40 50 60 70 80 90 100
Investment

Figure 10.3.8: Plot of the standardized residuals against the predictor in Example 10.3.9.

10.3.4 | The Multiple Linear Regression Model (Advanced)

We now consider the situation in which we have a quantitative response Y and quanti-
tative predictors X7, . .., Xj. For the regression model, we assume that the conditional
distributions of Y, given the predictors, have constant shape and that they change, as the
predictors change, at most through the conditional mean £ (Y | X1 = x1, ..., Xk = x%).
For the linear regression model, we assume that this conditional mean is of the form

E(Y X1 =x1,.... Xk =x5) = X1 + - + Buxr. (10.3.13)

This is linear in the unknown S; € Rlfori=1,...,k.
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We will develop only the broad outline of the analysis of the multiple linear regres-
sion model here. All results will be stated without proofs provided. The proofs can be
found in more advanced texts. It is important to note, however, that all of these results
are just analogs of the results we developed by elementary methods in Section 10.3.2,
for the simple linear regression model.

Matrix Formulation of the Least-Squares Problem

For the analysis of the multiple linear regression model, we need some matrix concepts.
We will briefly discuss some of these here, but also see Appendix A 4.

Let 4 € R™*" denote a rectangular array of numbers with m rows and n columns,
and let a;; denote the entry in the ith row and jth column (referred to as the (i, j)-th
entry of A4). For example,

(12 1.0 00 23
A_(3.2 0.2 6.3)ER

denotes a 2 x 3 matrix and, for example, ay; = 0.2.

We can add two matrices of the same dimensions m and n by simply adding their
elements componentwise. So if 4, B € R™*" and C = 4+ B, then¢;; = a;; +
b;;. Furthermore, we can multiply a matrix by a real number ¢ by simply multiplying
every entry in the matrix by c¢. So if 4 € R™*", then B = c4 € R™*" and b;; =
cajj. We will sometimes write a matrix 4 € R™*" in terms of its columns as 4 =
(ar ... ay ) sothat here ; € R™. Finally, if A € R™*" and b € R", then we
define the product of A4 times b as 4b = byaj; + - - - + bya, € R™.

Suppose now that ¥ € R” and that £(Y) is constrained to lie in a set of the form

S={po1+-+Bk:pieRi=1,... k),

where vy, ..., vy are fixed vectors in R”. A set such as S is called a linear subspace of
R". When {v1, ..., vr} has the linear independence property, namely,

Bro1++--+ Bion =0

ifand only if f; = --- = f; = 0, then we say that S has dimension & and {v1, . .., v}
is a basis for S.
If we set
011 V2 v+ Dk
021 V22 - D2k wxck
V=_(1--v) = : : . € R"™%,
Onl Up2 -+ Unk

then we can write

Bron + Bovia + -+ frouk

Broa1 + Bovaa + - -+ + froa
EY) =1+ + Brox = .

Biont + Bovp2 + -+ Broak
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for some unknown point f = (81, B2, ..., S). When we observe y € R”, then the
least-squares estimate of £ (Y) is obtained by finding the value of £ that minimizes

n

Z (vi = Broit — Paviz — -+ — /)’kvik)2-

i=1

It can be proved that a unique minimizing value for f € R* exists whenever
{v1, ..., v} is a basis. The minimizing value of § will be denoted by & and is called
the least-squares estimate of . The point byvy + - - - + byvg = Vb is the least-squares
estimate of £(Y) and is sometimes called the vector of fitted values. The point y — V'b
is called the vector of residuals.

We now consider how to calculate 5. For this, we need to understand what it means
to multiply the matrix 4 € R™*¥ on the right by the matrix B € R**". The matrix
product AB is defined to be the m x n matrix whose (i, j)-th entry is given by

k
Zd[[b[j.
=1

Notice that the array 4 must have the same number of columns as the number of rows
of B for this product to be defined. The transpose of a matrix A € R”™*¥ is defined to
be

a0 dml
A = : : e Rkxm ,

atk - Amk

namely, the ith column of 4 becomes the ith row of A'. For a matrix 4 € RF*k | the
matrix inverse of A is defined to be the matrix 4~! such that

A4 =4 A =1,

where I € R**¥ has 1’s along its diagonal and 0’s everywhere else; it is called the k x k
identity matrix. It is not always the case that 4 € R¥*¥ has an inverse, but when it does
it can be shown that the inverse is unique. Note that there are many mathematical and
statistical software packages that include the facility for computing matrix products,
transposes, and inverses.

We have the following fundamental result.

Theorem 103.7 If E(Y) € S = {Bjo1+ -+ Bjok: B e R i=1,... k}
and the columns of V' = (v - - - vx) have the linear independence property, then
(V’ V)_l exists, the least-squares estimate of f is unique, and it is given by

by

b=| : |=r)y vy (10.3.14)
by




Chapter 10: Relationships Among Variables 561

Least-Squares Estimates, Predictions, and Standard Errors
For the linear regression model (10.3.13), we have that (writing X;; for the jth value
OfX,')
)| Bixii + -+ Brxik
E : Xij =x;; foralli, j | = :
Y, ﬂlxnl +"‘+ﬂkxnk
=pro1+-+ ok = VB,

where g = (B, ..., f;) and

X11 X1k
V=_Cvy vy ... vp)= : : e R"*k,
Xnl *°° Xnk
We will assume, hereafter, that the columns v, ..., vx of V have the linear indepen-

dence property. Then (replacing expectation by conditional expectation) it is immediate
that the least-squares estimate of £ is given by (10.3.14).

As with the simple linear regression model, we have a number of results concerning
the least-squares estimates. We state these here without proof.

Theorem 10.3.8 Ifthe (x;q, ..., xiz, y;) are independent observations fori =1, ...,
n, and the linear regression model applies, then

E(Bl' |Xij = Xij for all l,]) = ﬂi

fori =1,...,k.

So Theorem 10.3.8 states that the least-squares estimates are unbiased estimates of the
linear regression coefficients.

If we want to assess the accuracy of these estimates, then we need to be able to
compute their standard errors.

Theorem 10.3.9 Ifthe (x;1, ..., Xj, y;) are independent observations fori =1, .. .,
n, from the linear regression model, and if Var(Y | X; = x1, ..., X3 = x) = o2
for every x1, . .., xg, then

Cov(Bi, Bj | Xij = x;j forall i, j) = ocij, (10.3.15)

where ¢;; is the (i, j)-th entry in the matrix (V'V)~!.

We have the following result concerning the estimation of the mean
EY | X1 =x1,...,Xp) =xp = Bixi 4+ + Brxk

by the estimate b1x1 + - - - 4 bgxk.
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Corollary 10.3.4

Var(Bix1 + - - - + Bixi | X;j = x;; forall i, j)

k
=02 (Q_xlci +2) xixjey) =o’x'(V'V)7x, (10.3.16)
i=1

i<j

where x = (x1, ..., Xf).

We also use b1x) + -+ + brxx = b'x as a prediction of a new response value when
X1 =)C1,...,Xk = Xfk.

We see, from Theorem 10.3.9 and Corollary 10.3.4, that we need an estimate of o2
to compute standard errors. The estimate is given by

1 4 1
s = > i —bixi = = bpxp)? = ——(y — Xb) (v — Xb), (10.3.17)
n—k = n—k
and we have the following result.
Theorem 10.3.10 If the (x;y, ..., Xk, ;) are independent observations for i =
1, ..., n, from the linear regression model, and if Var(Y | X1 = x1, ..., X = x¢) =
a2, then

E(S?*| X;j = x;j forall i, j) = 0.

Combining (10.3.15) and (10.3.17), we deduce that the standard error of b; is s \/c;;.
Combining (10.3.16) and (10.3.17), we deduce that the standard error of byx; + - - - +
brxy is

A 12
S(inzcn- +22x,-xjc,-j) =s&'(V'V)"Ix)l2,
i=1

i<j

The ANOVA Decomposition and F-Statistics

When one of the predictors X7, ..., Xj is constant, then we say that the model has an
intercept term. By convention, we will always take this to be the first predictor. So
when we want the model to have an intercept term, we take X7 = 1 and f; is the
intercept, e.g., the simple linear regression model. Note that it is common to denote the
intercept term by £ so that Xo = | and X7, ..., X} denote the predictors that actually
change. We will also adopt this convention when it seems appropriate.

Basically, inclusion of an intercept term is very common, as this says that, when
the predictors that actually change have no relationship with the response Y, then the
intercept is the unknown mean of the response. When we do not include an intercept,
then this says we know that the mean response is 0 when there is no relationship be-
tween Y and the nonconstant predictors. Unless there is substantive, application-based
evidence to support this, we will generally not want to make this assumption.

Denoting the intercept term by £, so that X7 = 1, we have the following ANOVA
decomposition for this model that shows how to isolate the observed variation in Y that
can be explained by changes in the nonconstant predictors.
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Lemma 10.3.2 If, fori = 1, ..., n, the values (x;1, . .., Xjk, ¥;) are such that the
matrix ¥ has linearly independent columns, with v1 equal to a column of ones, then
by =y —byxy — -+ — byxy and

D=3 = D (balvia—F2) + - + bk — %))
g=il i=1

n
+ D (i —bixit — -+ — bxip) .
i=1

We call
n
RSS (X3, ..., Xp) = D (b (xiz = £2) + -+ + by (xix — 54))?
i=1
the regression sum of squares and

ESS = (3 — bixi1 — - - - — byxix)?

n

i=1

the error sum of squares. This leads to the following ANOVA table.

Source Df Sum of Squares Mean Square
Xo, ..., Xy | k—1 RSS(X2,...,Xx) RSS(Xp,...,Xp)/(k—1)
Error n—k ESS 52
Total n—1 >7  (y —j)?

When there is an intercept term, the null hypothesis of no relationship between the
response and the predictors is equivalent to Hy : f, = --- = f; = 0. As with the
simple linear regression model, the mean square for regression can be shown to be an
unbiased estimator of o2 if and only if the null hypothesis is true. Therefore, a sensible
statistic to use for assessing the null hypothesis is the F'-statistic

RSS(Xa, ..., X0/ (k= 1)
F= 2 s
N

with large values being evidence against the null.
Often, we want to assess the null hypothesis Hy : f;.; = - = f; = 0 or,
equivalently, the hypothesis that the model is given by

EY|X1=x1,...,Xs =x¢) = frx1 + -+ f1x1,

where / < k. This hypothesis says that the last k — / predictors X;11, ..., Xk, have no
relationship with the response.

If we denote the least-squares estimates of f1, ..., B, obtained by fitting the smaller
model, by b7, ..., b}, then we have the following result.
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Lemma 10.3.3 If the (x;1, ..., X, ;) fori = 1, ..., n are values for which the
matrix V has linearly independent columns, with v1 equal to a column of ones, then

RSS(Xa, ..., Xp) = D (balriz — %) + -+ + belxix — %))’
i=1

n
> D (b3(xin— %) + -+ bf (xu — ®))°
i=1

= RSS(Xa,...,X)). (10.3.18)

On the right of the inequality in (10.3.18), we have the regression sum of squares
obtained by fitting the model based on the first / predictors. Therefore, we can interpret
the difference of the left and right sides of (10.3.18), namely,

RSS(Xy41, ..., Xx | X2, ..., X;) =RSS(X>, ..., Xz) —RSS(X>, ..., X))

as the contribution of the predictors X4, ..., X to the regression sum of squares
when the predictors X1, ..., X; are in the model. We get the following ANOVA ta-
ble (actually only the first three columns of the ANOVA table) corresponding to this
decomposition of the total sum of squares.

Source Df Sum of Squares
X2, ..., X I—1 RSS(Xa,...,X)
Xit, o Xi |l X0y oo, X0 | k=1 RSS(Xpyg1, ..., Xkl X2, ..., XD)
Error n—k ESS
Total n—1 S, (i —7)?
It can be shown that the null hypothesis Hy : f;,; = -+ = f; = 0 holds if and

only if
RSS(Xig1, .., Xk 1 X, ..., Xp)/ (k= 1)

is an unbiased estimator of o2. Therefore, a sensible statistic to use for assessing this
null hypothesis is the F'-statistic

_ RSS(Xpq1, .., Xi | Xoy oo, X0)/ (K =1)
- - ,
S

F

with large values being evidence against the null.

The Coefficient of Determination
The coefficient of determination for this model is given by
R?— RSS(Xy, ..., Xk)
i i =9

which, by Lemma 10.3.2, is always between 0 and 1. The value of R? gives the propor-
tion of the observed variation in Y that is explained by the inclusion of the nonconstant
predictors in the model.
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It can be shown that R? is the square of the multiple correlation coefficient between
Y and X7, ..., X;. However, we do not discuss the multiple correlation coefficient in
this text.

Confidence Intervals and Testing Hypotheses

For inference, we have the following result.

Theorem 10.3.11 Ifthe conditional distribution of ¥ given (X1, ..., Xi) = (x1, ...,
Xr)is N(Bix1+- - -+ Xk, o?) and if we observe the independent values (x;1, .. .,
Xik, i) fori =1, ..., n, then the conditional distributions of the B; and S2, given
Xij = x;; forall i, j, are as follows.

(i) Bi ~ N(B;, 0%cii)
(ii) Bix1 + - - - + Byxy is distributed

k
N(,lel + -+ Bixk, o2 (inzcii aF ZZx,-xjc,-j))
=l

i<j

(iii) (n — k) 8% /o2 ~ x%(n — k) independent of (B1, ..., By)

Corollary 10.3.5
(@) (B; = B)fsc;f* ~ t(n =)
(i1)
B oo Bixn — — .=

1X1 + -+ - + Brxg — B1x1 f)’//;Xk ~tn—k)

S (Zle xlei +23%,; x,-xjc,-j)
(iii) Ho : fry1 = - -+ = P = 01is true if and only if

RSS(X3, ..., Xx) —RSS(X>3, ..., X] k—1
o RSS(Xa, ..., Xp) (X2, ..., X)/( )~F(k—l,n—k)

SZ

Analysis of Residuals

In an application of the multiple regression model, we must check to make sure that
the assumptions make sense. Model checking is based on the residuals y; — byx;1 —
-+ — brx;y (after standardization), just as discussed in Section 9.1. Note that the ith
residual is simply the difference between the observed value y; at (x;1, ..., x;x) and
the predicted value byx;; + - - - + brxjx at (xi1, - - ., Xjk)-

We also have the following result (this can be proved as a Corollary of Theorem
10.3.10).
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Corollary 10.3.6

() EQY; — Bixiy — -+ = Byxig | V) = 0

(i) Cov(Y; — Bixi1 — - - — Bixik, Yj — Bixj1 — - - - — Byxji, | V) = 0%d;;, where
d;; is the (i, j)-th entry of the matrix / — V(V'V)~'V".

Therefore, the standardized residuals are given by

Vi —bixj1 — - = bpxj
sl

(10.3.19)

When s is replaced by ¢ in (10.3.19), Corollary 10.3.6 implies that this quantity has
conditional mean 0 and conditional variance 1. Furthermore, when the conditional
distribution of the response given the predictors is normal, then it can be shown that
the conditional distribution of this quantity is N (0, 1). These results are also approxi-
mately true for (10.3.19) for large n. Furthermore, it can be shown that the covariances
between the standardized residuals go to 0 as n — oo, under certain reasonable con-
ditions on distribution of the predictor variables. So one approach to model checking
here is to see whether the values given by (10.3.19) look at all like a sample from the
N(0, 1) distribution.

What do we do if model checking leads to a failure of the model? As in Chapter 9,
we can consider making various transformations of the data to see if there is a simple
modification of the model that will pass. We can make transformations not only to the
response variable Y, but to the predictor variables X7, ..., X as well.

An Application of Multiple Linear Regression Analysis

The computations needed to implement a multiple linear regression analysis cannot
be carried out by hand. These are much too time-consuming and error-prone. It is
therefore important that a statistician have a computer with suitable software available
when doing a multiple linear regression analysis.

The data in Table 10.1 are taken from Statistical Theory and Methodology in Sci-
ence and Engineering, 2nd ed., by K. A. Brownlee (John Wiley & Sons, New York,
1965). The response variable Y is stack loss (Loss), which represents 10 times the per-
centage of ammonia lost as unabsorbed nitric oxide. The predictor variables are X =
air flow (Air), X, = temperature of inlet water (Temp), and X3 = the concentration of
nitric acid (Acid). Also recorded is the day (Day) on which the observation was taken.

We consider the model Y | x1, x2, x3 ~ N(By+fx1 4 fx2+ f3x3, ). Note that
we have included an intercept term. Figure 10.3.9 is a normal probability plot of the
standardized residuals. This looks reasonable, except for one residual, —2.63822, that
diverges quite distinctively from the rest of the values, which lie close to the 45-degree
line. Printing out the standardized residuals shows that this residual is associated with
the observation on the twenty-first day. Possibly there was something unique about this
day’s operations, and so it is reasonable to discard this data value and refit the model.
Figure 10.3.10 is a normal probability plot obtained by fitting the model to the first
20 observations. This looks somewhat better, but still we might be concerned about at
least one of the residuals that deviates substantially from the 45-degree line.
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Day Air Temp Acid Loss | Day Air Temp Acid Loss
1 80 27 89 42 12 58 17 88 13
2 80 27 88 37 13 58 18 82 11
3 75 25 90 37 14 58 19 93 12
4 62 24 87 28 15 50 18 89 8
5 62 22 87 18 16 50 18 86 7
6 62 23 87 18 17 50 19 72 8
7 62 24 93 19 18 50 19 79 8
g8 62 24 93 20 19 50 20 80 9
9 58 23 87 15 20 56 20 82 15
10 58 18 80 14 21 70 20 91 15
11 58 18 89 14

Table 10.1: Data for Application of Multiple Linear Regression Analysis

Normal Score

Normal Probability Plot of the Residuals

(response is Loss)

T
-1

Standardized Residual

T
0

567

Figure 10.3.9: Normal probability plot of the standardized residuals based on all the data.

Normal Score

Normal Probability Plot of the Residuals

(response is Loss)

Standardized Residual

T
1

Figure 10.3.10: Normal probability plot of the standardized residuals based on the first 20 data

values.
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Following the analysis of these data in Fitting Equations to Data, by C. Daniel and
F. S. Wood (Wiley-Interscience, New York, 1971), we consider instead the model

InY |x1,x2,x3 ~ N(Bo + B1x1 + foxa + f3x3,02), (10.3.20)

i.e., we transform the response variable by taking its logarithm and use all of the data.
Often, when models do not fit, simple transformations like this can lead to major im-
provements. In this case, we see a much improved normal probability plot, as provided
in Figure 10.3.11.

Normal Probability Plot of the Residuals

(response is Loss)

Normal Score
o
|

T T T T T
-2 -1 0 1 2

Standardized Residual

Figure 10.3.11: Normal probability plot of the standardized residuals for all the data using In ¥
as the response.

We also looked at plots of the standardized residuals against the various predic-
tors, and these looked reasonable. Figure 10.3.12 is a plot of the standardized residuals
against the values of Air.

Residuals Versus Air

(response is Loss)

Standardized Residual

Figure 10.3.12: A plot of the standardized residuals for all the data, using In Y as the response,
against the values of the predictor Air.
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Now that we have accepted the model (10.3.20), we can proceed to inferences about
the unknowns of the model. The least-squares estimates of the f;,their standard errors
(Se), the corresponding ¢-statistics for testing the f; = 0, and the P-values for this are
given in the following table.

Coefficient Estimate Se t-statistic ~ P-value
Lo —0.948700 0.647700 —1.46 0.161
b1 0.034565 0.007343 4.71 0.000
ba 0.063460 0.020040 3.17 0.006
b3 0.002864 0.008510 0.34 0.742

The estimate of o2 is given by s2 = 0.0312.

To test the null hypothesis that there is no relationship between the response and
the predictors, or that, equivalently, Hy : f; = f, = 3 = 0, we have the following
ANOVA table.

Source Df Sum of Squares Mean Square
X1, X0, X3 | 3 49515 1.6505
Error 17 0.5302 0.0312
Total 20 5.4817

The value of the F-statistic is given by 1.6505/0.0312 = 52.900, and when F ~
F(3,17), we have that P (F > 52.900) = 0.000. So there is substantial evidence
against the null hypothesis. To see how well the model explains the variation in the
response, we computed the value of R? = 86.9%. Therefore, approximately 87% of
the observed variation in ¥ can be explained by changes in the predictors in the model.

While we have concluded that a relationship exists between the response and the
predictors, it may be that some of the predictors have no relationship with the response.
For example, the table of #-statistics above would seem to indicate that perhaps X3
(acid) is not affecting Y. We can assess this via the following ANOVA table, obtained
by fitting the model In Y | x1, x2, x3 ~ N(Bo + f1x1 + X2, 02).

Source Df Sum of Squares Mean Square
X1, X2 2 4.9480 2.4740
X3 X1, Xo 1 0.0035 0.0035
Error 17 0.5302 0.0312
Total 20 5.4817

Note that RSS(X3 | X1, X2) = 4.9515—4.9480 = 0.0035. The value of the F-statistic
for testing Hp : f3 = 0is 0.0035/0.0312 = 0.112, and when F ~ F(1,17), we
have that P(F > 0.112) = 0.742. So we have no evidence against the null hypothesis
and can drop X3 from the model. Actually, this is the same P-value as obtained via the
t-test of this null hypothesis, as, in general, the #-test that a single regression coefficient
is 0 is equivalent to the F-test. Similar tests of the need to include X7 and X7 do not
lead us to drop these variables from the model.

So based on the above results, we decide to drop X3 from the model and use the
equation

E(Y|X] =x1, Xs = x2) = —0.7522 + 0.035402.X] + 0.06346X,  (10.3.21)
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to describe the relationship between Y and the predictors. Note that the least-squares
estimates of f, 1, and 8, in (10.3.21) are obtained by refitting the model without
X3.

Summary of Section 10.3

e In this section, we examined the situation in which the response variable and the
predictor variables are quantitative.

e In this situation, the linear regression model provides a possible description of
the form of any relationship that may exist between the response and the predic-
tors.

e Least squares is a standard method for fitting linear regression models to data.

e The ANOVA is a decomposition of the total variation observed in the response
variable into a part attributable to changes in the predictor variables and a part
attributable to random error.

e If we assume a normal linear regression model, then we have inference methods
available such as confidence intervals and tests of significance. In particular, we
have available the F-test to assess whether or not a relationship exists between
the response and the predictors.

e A normal linear regression model is checked by examining the standardized
residuals.

EXERCISES |

10.3.1 Suppose that (x1, ..., x,) is a sample from a Bernoulli(d) distribution, where
6 € [0, 1] is unknown. What is the least-squares estimate of the mean of this distribu-
tion?

10.3.2 Suppose that (x1, ..., x,) is a sample from the Uniform[0, ], where § > 0 is
unknown. What is the least-squares estimate of the mean of this distribution?

10.3.3 Suppose that (xq, ..., x;) is a sample from the Exponential(9), where § > 0 is
unknown. What is the least-squares estimate of the mean of this distribution?

10.3.4 Consider the n = 11 data values in the following table.

Observation X Y Observation X Y
1 —5.00 —10.00 7 1.00 3.52
2 —4.00 —8.83 8 2.00 5.64
3 —3.00 -9.15 9 3.00 7.28
4 —2.00 —4.26 10 4.00 7.62
5 —1.00 —0.30 11 5.00 8.51
6 0.00 —0.04

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y and the predictor X.

(a) Plot the data in a scatter plot.
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(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the intercept and slope.

(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?

(1) Predict a future Y at X = 0.0. s this prediction an extrapolation or an interpolation?
Determine the standard error of this prediction.

(j) Predict a future Y at X = 6.0. Is this prediction an extrapolation or an interpolation?
Determine the standard error of this prediction.

(k) Predict a future Y at X = 20.0. Is this prediction an extrapolation or an interpola-
tion? Determine the standard error of this prediction. Compare this with the standard
errors obtained in parts (i) and (j) and explain the differences.

10.3.5 Consider the n = 11 data values in the following table.

Observation X Y Observation X Y
1 —5.00 65.00 7 1.00  6.52
2 —4.00 39.17 8 2.00 17.64
3 —-3.00 17.85 9 3.00 34.28
4 —2.00 7.74 10 4.00 55.62
5 —1.00 2.70 11 5.00 83.51
6 0.00 —0.04

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y and the predictor X.

(a) Plot the data in a scatter plot.

(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the intercept and slope.

(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?

10.3.6 Suppose the following data record the densities of an organism in a containment
vessel for 10 days. Suppose we consider the simple normal linear regression to describe
the relationship between the response Y (density) and the predictor X (day).
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Day Number/Liter | Day Number/Liter
1 1.6 6 1341.6
2 16.7 7 2042.9
3 65.2 8 7427.0
4 23.6 9 15571.8
5 345.3 10 33128.5

(a) Plot the data in a scatter plot.

(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) Can you think of a transformation of the response that might address any problems
found? If so, repeat parts (a) through (e) after performing this transformation. (Hint:
The scatter plot looks like exponential growth. What transformation is the inverse of
exponentiation?)

(g) Calculate 0.95-confidence intervals for the appropriate intercept and slope.

(h) Construct the appropriate ANOVA table to test whether or not there is a relationship
between the response and the predictors. What is your conclusion?

(1) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.

(j) Compute the proportion of variation explained by the predictor for the two models
you have considered. Compare the results.

(k) Predict a future ¥ at X = 12. Is this prediction an extrapolation or an interpolation?
10.3.7 A student takes weekly quizzes in a course and receives the following grades
over 12 weeks.

Week Grade | Week Grade
1 65 7 74
2 55 8 76
3 62 9 48
4 73 10 80
5 68 11 85
6 76 12 90

(a) Plot the data in a scatter plot with X = week and ¥ = grade.

(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) What are your conclusions based on the plot produced in (c)?

(e) Calculate 0.95-confidence intervals for the intercept and slope.

(f) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?

(g) What proportion of the observed variation in the response is explained by changes
in the predictor?
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10.3.8 Suppose that Y = E(Y | X) + Z, where X, Y and Z are random variables.

(a) Show that E(Z | X) = 0.

(b) Show that Cov(E (Y | X), Z) = 0. (Hint: Write Z = Y — E(Y | X) and use Theo-
rems 3.5.2 and 3.5.4.)

(c) Suppose that Z is independent of X. Show that this implies that the conditional
distribution of Y given X depends on X only through its conditional mean. (Hint:
Evaluate the conditional distribution function of ¥ given X = x.)

10.3.9 Suppose that X and Y are random variables such that a regression model de-
scribes the relationship between Y and X. If E(Y | X) = exp{f; + B, X}, then discuss
whether or not this is a simple linear regression model (perhaps involving a predictor
other than X).

10.3.10 Suppose that X and Y are random variables and Corr(X, Y) = 1. Does a
simple linear regression model hold to describe the relationship between Y and X? If
so, what is it?

10.3.11 Suppose that X and Y are random variables such that a regression model de-
scribes the relationship between Y and X. If E(Y | X) = f, + f,X?, then discuss
whether or not this is a simple linear regression model (perhaps involving a predictor
other than X).

10.3.12 Suppose that X ~ N (2, 3) independently of Z ~ N(0,1) and ¥ = X + Z.
Does this structure imply that the relationship between Y and X can be summarized by
a simple linear regression model? If so, what are £, f3,, and 02?2

10.3.13 Suppose that a simple linear model is fit to data. An analysis of the residuals
indicates that there is no reason to doubt that the model is correct; the ANOVA test
indicates that there is substantial evidence against the null hypothesis of no relationship
between the response and predictor. The value of R? is found to be 0.05. What is the
interpretation of this number and what are the practical consequences?

COMPUTER EXERCISES |

10.3.14 Suppose we consider the simple normal linear regression to describe the re-
lationship between the response Y (income) and the predictor X (investment) for the
data in Example 10.3.9.

(a) Plot the data in a scatter plot.

(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the intercept and slope.

(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?
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10.3.15 The following data are measurements of tensile strength (100 1b/in?) and hard-
ness (Rockwell E) on 20 pieces of die-cast aluminum.

Sample Strength Hardness | Sample Strength Hardness
1 293 53 11 298 60
2 349 70 12 292 51
3 340 78 13 380 95
4 340 55 14 345 88
5 340 64 15 257 51
6 354 71 16 265 54
7 322 82 17 246 52
8 334 67 18 286 64
9 247 56 19 324 83

10 348 86 20 282 56

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y (strength) and the predictor X (hardness).

(a) Plot the data in a scatter plot.

(b) Calculate the least-squares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the intercept and slope.

(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?

10.3.16 Tests were carried out to determine the effect of gas inlet temperature (degrees

Fahrenheit) and rotor speed (rpm) on the tar content (grains/cu ft) of a gas stream,
producing the following data.

Observation | Tar  Speed Temperature
1 60.0 2400 54.5
2 65.0 2450 58.5
3 63.5 2500 58.0
4 44.0 2700 62.5
5 54.5 2700 68.0
6 26.0 2775 45.5
7 54.0 2800 63.0
8 53.5 2900 64.5
9 33.5 3075 57.0

10 44.0 3150 64.0

Suppose we consider the normal linear regression model

YW =wX=x~NQB+pw+pfsx,0%
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to describe the relationship between Y (tar content) and the predictors  (rotor speed)
and X (temperature).

(a) Plot the response in scatter plots against each predictor.

(b) Calculate the least-squares equation.

(c) Plot the standardized residuals against # and X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the regression coefficients.

(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictors?

(1) In an ANOVA table, assess the null hypothesis that there is no effect due to W, given
that X is in the model.

(j) Estimate the mean of ¥ when W = 2750 and X = 50.0. If we consider this value
as a prediction of a future Y at these settings, is this an extrapolation or interpolation?

10.3.17 Suppose we consider the normal linear regression model
Y| X =x~ N+ fox + f3x?, 0?)

for the data of Exercise 10.3.5.

(a) Plot the response Y in a scatter plot against X.

(b) Calculate the least-squares equation.

(c) Plot the standardized residuals against X.

(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95-confidence intervals for the regression coefficients.

(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictor. What is your conclusion?

(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictors?

(i) In an ANOVA table, assess the null hypothesis that there is no effect due to X2,
given that X is in the model.

(j) Compare the predictions of ¥ at X = 6 using the simple linear regression model
and using the linear model with a linear and quadratic term.

PROBLEMS

10.3.18 Suppose that (x1, ..., x,) is a sample from the mixture distribution
0.5Uniform[0, 1] + 0.5Uniform[2, 6],

where § > 2 is unknown. What is the least-squares estimate of the mean of this
distribution?
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10.3.19 Consider the simple linear regression model and suppose that for the data col-
lected, we have Z;’zl (x; — )E)2 = 0. Explain how, and for which value of x, you
would estimate E(Y | X = x).

10.3.20 For the simple linear regression model, under the assumptions of Theorem
10.3.3, establish that

Cov(Y; — By — Bax;, Y; — By — Boxj | X1 =x1,..., Xy = xp)

n et ok — )2

where 6;; = 1 when i = j and is 0 otherwise. (Hint: Use Theorems 3.3.2 and 10.3.3.)

10.3.21 Establish that (10.3.11) is distributed N (0, 1) when S is replaced by ¢ in the
denominator. (Hint: Use Theorem 4.6.1 and Problem 10.3.20.)

10.3.22 (Prediction intervals) Under the assumptions of Theorem 10.3.6, prove that
the interval

. ( . 12
Xi —X
by +byx+s|{l14+-+——"— t(14y)2(n = 2),
( nooh —x)z) ’

based on independent (xi, y1), ..., (xx, v»), Will contain ¥ with probability equal to
y for a future independent (X, ¥) with X = x. (Hint: Theorems 4.6.1 and 3.3.2 and
Corollary 10.3.1.)

10.3.23 Consider the regression model with no intercept, given by E(Y | X = x) =
px,where f € R! is unknown. Suppose we observe the independent values x1, y1),
coes (s Vn)-

(a) Determine the least-squares estimate of £.

(b) Prove that the least-squares estimate b of § is unbiased and, when Var(Y | X = x) =
o2, prove that

o2

Var(B| X1 =x1,..., X, =x5) = ——.
pIREY
(c) Under the assumptions given in part (b), prove that

1 n
2 _ C— By )2
s _"—1,221 i = bx;)

is an unbiased estimator of ¢ 2.

(d) Record an appropriate ANOVA decomposition for this model and a formula for R,
measuring the proportion of the variation observed in ¥ due to changes in X.

(e) When Y | X = x ~ N(fx, %), and we observe the independent values (x1, y1),
<oy (X, yn), prove that b ~ N (B, o2/ > xl.2).

(f) Under the assumptions of part (¢), and assuming that (n — 1)S?/6% ~ x%(n — 1)
independent of B (this can be proved), indicate how you would test the null hypothesis
of no relationship between Y and X.
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(g) How would you define standardized residuals for this model and use them to check
model validity?

10.3.24 For data (x1,y1), ..., (x4, ¥n), prove that if a1 = f1 + f,x and az = f,,
then 37_, (vi — By — Boxi)? equals

D=3+ nler =3 405 D (i — ) =202 D (xi = D31 — F).
i=1 i=1 i=1

From this, deduce that y and a = 37, (x; — ¥)(3; — ¥)/ D1 (x; — ¥)? are the least
squares of a1 and a2, respectively.

10.3.25 For the model discussed in Section 10.3.3, prove that the prior given by a1 | a2,
62 ~ N(uy, T%az), ar| o2 ~ N(uy, T%O’z), and 1/06% ~ Gamma(x, v) leads to the
posterior distribution stated there. Conclude that this prior is conjugate with the poste-
rior distribution, as specified. (Hint: The development is similar to Example 7.1.4, as
detailed in Section 7.5.)

10.3.26 For the model specified in Section 10.3.3, prove that when 7| — o0, 72 —
o0, and v — 0, the posterior distribution of a is given by the distribution of y +

(2vxy/n 2k + n))l/2 Z,where Z ~ t(2x +n) and vy, = (c}z, - azcjzc)/Z.

CHALLENGES |
10.3.27 If X1, ..., X}, is a sample from a distribution with finite variance, then prove
that B
Xi—X a.s.
= 0.

Z:l (Xk - )_()2

104 | Quantitative Response and Categorical
Predictors

In this section, we consider the situation in which the response is quantitative and the
predictors are categorical. There can be many categorical predictors, but we restrict
our discussion to at most two, as this gives the most important features of the general
case. The general case is left to a further course.

10.4.1 | One Categorical Predictor (One-Way ANOVA)

Suppose now that the response Y is quantitative and the predictor X is categorical,
taking a values or levels denoted 1, ..., a. With the regression model, we assume that
the only aspect of the conditional distribution of Y, given X = x, that changes as x
changes, is the mean. We let

B = E(Y|X=i)

denote the mean response when the predictor X is at level i. Note that this is immedi-
ately a linear regression model.
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We introduce the dummy variables

1 X=i
Xi=10 x £
fori =1,...,a. Notice that, whatever the value is of the response Y, only one of the

dummy variables takes the value 1, and the rest take the value 0. Accordingly, we can
write
EY|Xi=x1,...., X)) =x4 =p1x1+ -+ BoXa

because one and only one of the x; = 1, whereas the rest are 0. This has exactly
the same form as the model discussed in Section 10.3.4, as the X; are quantitative.
As such, all the results of Section 10.3.4 immediately apply (we will restate relevant
results here).

Inferences About Individual Means

Now suppose that we observe n; values (y,-l, R y,-,,,.) when X = i, and all the re-
sponse values are independent. Note that we have a independent samples. The least-
squares estimates of the f; are obtained by minimizing

> Z(Yij - B’

i=1 j=1

The least-squares estimates are then equal to (see Problem 10.4.14)

These can be shown to be unbiased estimators of the £;.

Assuming that the conditional distributions of Y, given X = x, all have variance
equal to 02, we have that the conditional variance of ¥; is given by o2 /n;i, and the
conditional covariance between ¥; and ¥ 7, when i # j, is 0. Furthermore, under these
conditions, an unbiased estimator of o2 is given by

a n;
st = Nl_a ZZ(YU -5

i=1 j=1

where N =nj + -+ + ny.
If, in addition, we assume the normal linear regression model, namely,

Y|X=i~N(;, 0%,

then ¥; ~ N(;, a2/n;) independent of (N — a) S?/6> ~ y>(N — a). Therefore, by
Definition 4.6.2, _

_Yi—pB

S/

~t(N —a),
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which leads to a y -confidence interval of the form

_ N
yi £ Tt(l—i-y)/Z(N —a)
1

N

for ;. Also, we can test the null hypothesis Hy : ; = ;o by computing the P-value
Vi — Pio Vi — Pio

) =2 (o (Rl v =)

where G(-; N — a) is the cdf of the 1 (N — a) distribution. Note that these inferences
are just like those derived in Section 6.3 for the location-scale normal model, except
we now use a different estimator of o2 (with more degrees of freedom).

P(ITIE

Inferences about Differences of Means and Two Sample
Inferences

Often we want to make inferences about a difference of means §; — f;. Note that
E(Y;—Y;)=p;—B;and
Var(Y; — )_’j) = Var(Y;) +Var()_’j) =o%(1/n; + 1/n;)

because Y; and Y ; are independent. By Theorem 4.6.1,

Y, = ¥; ~ N(B; = B, 0 (1/n; + 1/n))).
Furthermore, o
(.~ 1)~ (b= £,)
o(l/n; + l/I’lj)l/2
independent of (N — a) S2/0% ~ y2(N — a). Therefore, by Definition 4.6.2,

ro_ (Fi=T) = (Bi-8) WS
- o(l/nj +1/nj)1/? (N —a)o?
(Yi —¥;) = (B: = B))

T TSWm 1) ~tN —a). (10.4.1)

~ N(0, 1)

This leads to the y -confidence interval

o 1 1
Vi=yjEs |—+—114y)2(N —a)
n; flj

for the difference of means ; — ;. We can test the null hypothesis Hy : ; = B}, 1.e.,
that the difference in the means equals 0, by computing the P-value

Vi —Vj il 2izd
.1 T 1

n; n; n; n;

PLIT| = s N—a
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When a = 2, i.e., there are just two values for X, we refer to (10.4.1) as the
two-sample t-statistic, and the corresponding inference procedures are called the two-
sample t-confidence interval and the two-sample t-test for the difference of means. In
this case, if we conclude that f; # f,, then we are saying that a relationship exists
between Y and X.

The ANOVA for Assessing a Relationship with the Predictor

Suppose, in the general case when @ > 2, we are interested in assessing whether or not
there is a relationship between the response and the predictor. There is no relationship
if and only if all the conditional distributions are the same; this is true, under our
assumptions, if and only if | = --- = f,, i.e., if and only if all the means are equal.
So testing the null hypothesis that there is no relationship between the response and the
predictor is equivalent to testing the null hypothesis Hy : f; = --- = f, = p for some
unknown J.

If the null hypothesis is true, the least-squares estimate of S is given by y, the
overall average response value. In this case, we have that the total variation decomposes
as (see Problem 10.4.15)

ZZ (vij — J7)2 = Z”i Gi — )+ ZZ (vij —)7i)2 ,
i=

i=1 j=1 i=1 j=1

and so the relevant ANOVA table for testing Hy is given below.

Source Df Sum of Squares Mean Square

X a—1 X n@Gi—y)7 SiniGi =)/ (a—1)
Error | N—a 0370, (v —)7,-)2 52

Total | N—1 3¢ 3% (w —3)

To assess Hy, we use the F-statistic

S G —3)*/@—1)

F =
52

because, under the null hypothesis, both the numerator and the denominator are un-
biased estimators of ¢2. When the null hypothesis is false, the numerator tends to be
larger than ¢2. When we add the normality assumption, we have that F ~ F(a — 1, N
—a), and so we compute the P-value

P(F X Gi =3 - 1))

52

to assess whether the observed value of F' is so large as to be surprising. Note that
when a = 2, this P-value equals the P-value obtained via the two-sample ¢-test.
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Multiple Comparisons

If we reject the null hypothesis of no differences among the means, then we want to
see where the differences exist. For this, we use inference methods based on (10.4.1).
Of course, we have to worry about the problem of multiple comparisons, as discussed
in Section 9.3. Recall that this problem arises whenever we are testing many null
hypotheses using a specific critical value, such as 5%, as a cutoff for a P-value, to
decide whether or not a difference exists. The cutoff value for an individual P-value
is referred to as the individual error rate. In effect, even if no differences exist, the
probability of concluding that at least one difference exists, the family error rate, can
be quite high.

There are a number of procedures designed to control the family error rate when
making multiple comparisons. The simplest is to lower the individual error rate, as
the family error rate is typically an increasing function of this quantity. This is the
approach we adopt here, and we rely on statistical software to compute and report the
family error rate for us. We refer to this procedure as Fisher’s multiple comparison
test.

Model Checking

To check the model, we look at the standardized residuals (see Problem 10.4.17) given
by .
Yij —Ji

s /1 =4

nj

(10.4.2)

We will restrict our attention to various plots of the standardized residuals for model
checking.
We now consider an example.

EXAMPLE 10.4.1

A study was undertaken to determine whether or not eight different types of fat are

absorbed in different amounts during the cooking of donuts. Results were collected

based on cooking six different donuts and then measuring the amount of fat in grams

absorbed. We take the variable X to be the type of fat and use the model of this section.
The collected data are presented in the following table.

Fat1 | 164 177 168 156 172 195
Fat2 | 172 197 167 161 180 190
Fat3 | 177 184 187 169 179 197
Fat4 | 178 196 177 181 184 191
Fat5 | 163 177 144 165 166 178
Fat6 | 163 193 176 172 176 178
Fat7 | 150 179 146 141 169 183
Fat8 | 164 169 155 149 170 167

A normal probability plot of the standardized residuals is provided in Figure 10.4.1.
A plot of the standardized residuals against type of fat is provided in Figure 10.4.2.
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Neither plot gives us significant grounds for concern over the validity of the model,
although there is some indication of a difference in the variability of the response as
the type of fat changes. Another useful plot in this situation is a side-by-side boxplot,
as it shows graphically where potential differences may lie. Such a plot is provided in
Figure 10.4.3.

The following table gives the mean amounts of each fat absorbed.

Fat 1 Fat 2 Fat 3 Fat 4 Fat 5 Fat 6 Fat7 Fat 8
172.00 177.83 182.17 184.50 16550 176.33 161.33 162.33

The grand mean response is given by 172.8.
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Figure 10.4.1: Normal probability plot of the standardized residuals in Example 10.4.1.
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Figure 10.4.2: Standardized residuals versus type of fat in Example 10.4.1.
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Figure 10.4.3: Side-by-side boxplots of the response versus type of fat in Example 10.4.1.

To assess the null hypothesis of no differences among the types of fat, we calculate
the following ANOVA table.

Source | Df Sum of Squares Mean Square
X 7 3344 478
Error | 40 5799 145
Total | 47 9143

Then we use the F-statistic given by F = 478/145 = 3.3. Because F' ~ F (7,40)
under Hy, we obtain the P-value P (F > 3.3) = 0.007. Therefore, we conclude that
there is a difference among the fat types at the 0.05 level.

To ascertain where the differences exist, we look at all pairwise differences. There
are 8 - 7/2 = 28 such comparisons. If we use the 0.05 level to determine whether
or not a difference among means exists, then software computes the family error rate
as 0.481, which seems uncomfortably high. When we use the 0.01 level, the family
error rate falls to 0.151. With the individual error rate at 0.003, the family error rate is
0.0546. Using the individual error rate of 0.003, the only differences detected among
the means are those between Fat 4 and Fat 7, and Fat 4 and Fat 8. Note that Fat 4 has
the highest absorption whereas Fats 7 and 8 have the lowest absorptions.

Overall, the results are somewhat inconclusive, as we see some evidence of dif-
ferences existing, but we are left with some anomalies as well. For example, Fats 4
and 5 are not different and neither are Fats 7 and 5, but Fats 4 and 7 are deemed to be
different. To resolve such conlicts requires either larger sample sizes or a more refined
experiment so that the comparisons are more accurate. i
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10.4.2 | Repeated Measures (Paired Comparisons)

Consider & quantitative variables Y1, ..., Y; defined on a population I1. Suppose that
our purpose is to compare the distributions of these variables. Typically, these will be
similar variables, all measured in the same units.

EXAMPLE 10.4.2

Suppose that IT is a set of students enrolled in a first-year program requiring students
to take both calculus and physics, and we want to compare the marks achieved in these
subjects. If we let Y1 denote the calculus grade and Y> denote the physics grade, then
we want to compare the distributions of these variables. I

EXAMPLE 10.4.3

Suppose we want to compare the distributions of the duration of headaches for two
treatments (A4 and B) in a population of migraine headache sufferers. We let Y1 denote
the duration of a headache after being administered treatment 4, and let ¥> denote the
duration of a headache after being administered treatment B. I

The repeated-measures approach to the problem of comparing the distributions of
Y1, ..., Yk, involves taking a random sample z 1, ..., 7, from II and, for each x;,
obtaining the k-dimensional value (Y1(7;), ..., Yi(w;)) = (i1, - - -, Vir). This gives
a sample of n from a k-dimensional distribution. Obviously, this is called repeated
measures because we are taking the measurements Yi(z;), ..., Yx(x;) on the same
;.

An alternative to repeated measures is to take £ independent samples from IT
and, for each of these samples, to obtain the values of one and only one of the vari-
ables Y;. There is an important reason why the repeated-measures approach is pre-
ferred: We expect less variation in the values of differences, like ¥; — Y;, under
repeated-measures sampling, than we do under independent sampling because the val-
ues Yi(m), ..., Yx(x) are being taken on the same member of the population in re-
peated measures.

To see this more clearly, suppose all of the variances and covariances exist for the
joint distribution of Y7, ..., Y;. This implies that

Var(Y; — Y;) = Var(¥;) 4+ Var(Y;) — 2 Cov(Y;, ¥;). (10.4.3)

Because Y; and Y; are similar variables, being measured on the same individual, we
expect them to be positively correlated. Now with independent sampling, we have that
Var(Y; — Y;) =Var(Y;) + Var(Y;), so the variances of differences should be smaller
with repeated measures than with independent sampling.

When we assume that the distributions of the ¥; differ at most in their means, then it
makes sense to make inferences about the differences of the population means y; —u ;,
using the differences of the sample means y; — y;. In the repeated-measures context,

we can write
n

- 1
Vimyi=— > oni = ).

=1



Chapter 10: Relationships Among Variables 585

Because the individual components of this sum are independent and so,

Var(Y;) + Var(Y;) —2Cov(Y;, ¥))
" .

Var(¥; — fj) =

We can consider the differences di = y1; — y1j, ..., du = yni — yuj to be a sample
of n from a one-dimensional distribution with mean y; —  ; and variance o2 given by

(10.4.3). Accordingly, we estimate u; — u; by d=7jy; — y; and estimate o? by

n

2= 1 > (d —a)’. (10.4.4)

n—1li=

If we assume that the joint distribution of Yy, ..., Y is multivariate normal (this
means that any linear combination of these variables is normally distributed — see
Problem 9.1.18), then this forces the distribution of ¥; — Y; to be N(u; — u;, o).
Accordingly, we have all the univariate techniques discussed in Chapter 6 for inferences
about u; — p;.

The discussion so far has been about whether the distributions of variables differed.
Assuming these distributions differ at most in their means, this leads to a comparison of
the means. We can, however, record an observation as (X, Y), where X takes values
in{1,...,k} and X = i means that Y = Y;. Then the conditional distribution of Y
given X = i is the same as the distribution of ¥;. Therefore, if we conclude that the
distributions of the Y; are different, we can conclude that a relationship exists between
Y and X. In Example 10.4.2, this means that a relationship exists between a student’s
grade and whether or not the grade was in calculus or physics. In Example 10.4.3, this
means that a relationship exists between length of a headache and the treatment.

When can we assert that such a relationship is in fact a cause—effect relationship?
Applying the discussion in Section 10.1.2, we know that we have to be able to assign
the value of X to a randomly selected element of the population. In Example 10.4.2,
we see this is impossible, so we cannot assert that such a relationship is a cause—effect
relationship. In Example 10.4.3, however, we can indeed do this — namely, for a
randomly selected individual, we randomly assign a treatment to the first headache
experienced during the study period and then apply the other treatment to the second
headache experienced during the study period.

A full discussion of repeated measures requires more advanced concepts in statis-
tics. We restrict our attention now to the presentation of an example when k = 2,
which is commonly referred to as paired comparisons.

EXAMPLE 10.4.4 Blood Pressure Study

The following table came from a study of the effect of the drug captopril on blood
pressure, as reported in Applied Statistics, Principles and Examples by D. R. Cox and
E. J. Snell (Chapman and Hall, London, 1981). Each measurement is the difference in
the systolic blood pressure before and after having been administered the drug.

-9 -4 =21 -3 =20
=31 =17 =26 =26 -—10
=23 -33 -19 -19 =23
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Figure 10.4.4 is a normal probability plot for these data and, because this looks rea-
sonable, we conclude that the inference methods based on the assumption of normality
are acceptable. Note that here we have not standardized the variable first, so we are
only looking to see if the plot is reasonably straight.

Normal score
[ ]

I I I I I
-32 24 -16 -8 0
Blood pressure difference

Figure 10.4.4: Normal probability plot for the data in Example 10.4.4.

The mean difference is given by d = —18.93 with standard deviation s = 9.03.
Accordingly, the standard error of the estimate of the difference in the means, using
(10.4.4), is given by s/+/15 = 2.33. A 0.95-confidence interval for the difference in
the mean systolic blood pressure, before and after being administered captopril, is then

d+ % t0.975(n — 1) = —18.93 %+ 2.33 19975 (14) = (—23.93, —13.93).
n
Because this does not include 0, we reject the null hypothesis of no difference in the
means at the 0.05 level. The actual P-value for the two-sided test is given by

P(T| > | — 18.93/2.33]) = 0.000

because T ~ ¢(14) under the null hypothesis Hy that the means are equal. Therefore,
we have strong evidence against Hp. It seems that we have strong evidence that the
drug is leading to a drop in blood pressure. I

10.4.3 | Two Categorical Predictors (Two-Way ANOVA)

Now suppose that we have a single quantitative response Y and two categorical pre-
dictors 4 and B, where A takes a levels and B takes b levels. One possibility is to
consider running two one-factor studies. One study will examine the relationship be-
tween Y and A4, and the second study will examine the relationship between Y and B.
There are several disadvantages to such an approach, however.

First, and perhaps foremost, doing two separate analyses will not allow us to de-
termine the joint relationship 4 and B have with Y. This relates directly to the concept
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of interaction between predictors. We will soon define this concept more precisely,
but basically, if 4 and B interact, then the conditional relationship between Y and 4,
given B = j, changes in some substantive way as we change j. If the predictors A4
and B do not interact, then indeed we will be able to examine the relationship between
the response and each of the predictors separately. But we almost never know that this
is the case beforehand and must assess whether or not an interaction exists based on
collected data.

A second reason for including both predictors in the analysis is that this will often
lead to a reduction in the contribution of random error to the results. By this, we mean
that we will be able to explain some of the observed variation in Y by the inclusion
of the second variable in the model. This depends, however, on the additional variable
having a relationship with the response. Furthermore, for the inclusion of a second
variable to be worthwhile, this relationship must be strong enough to justify the loss in
degrees of freedom available for the estimation of the contribution of random error to
the experimental results. As we will see, including the second variable in the analysis
results in a reduction in the degrees of freedom in the Error row of the ANOVA table.
Degrees of freedom are playing the role of sample size here. The fewer the degrees of
freedom in the Error row, the less accurate our estimate of o2 will be.

When we include both predictors in our analysis, and we have the opportunity to
determine the sampling process, it is important that we cross the predictors. By this,
we mean that we observe Y at each combination

(4, B)=(G,j)ell,...,al x{1,...,b).

Suppose, then, that we have n;; response values at the (4, B) = (i, j) setting of the
predictors. Then, letting

E(Y|(4,B) =(,)) =B

be the mean response when 4 =i and B = j, and introducing the dummy variables

w1 A=iB=j
Y10 A#iorB+#],

we can write

E(Y|X; = xjyforalli,j)= gy x11+ faxar+--+ BapXap
a b

= Z Bijxij-
1

i=1j=

The relationship between Y and the predictors is completely encompassed in the changes
inthe B;; as i and j change. From this, we can see that a regression model for this sit-
uation is immediately a linear regression model.
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Inferences About Individual Means and Differences of Means

Now let y;;x denote the kth response value when X;; = 1. Then, as in Section 10.4.1,
the least-squares estimate of f3;; is given by

1 nij

ZJ/ijk,

bij =yij = o
i =

the mean of the observations when X;; = 1. If in addition we assume that the condi-
tional distributions of ¥, given the predictors all have variance equal to o2, then with
N =ny| +ny + - -+ + ngp, we have that

nij

a b
=5 _1 b ZZZ ik = Fj)’* (10.4.5)

i=1 j=I1k=1

is an unbiased estimator of 2. Therefore, using (10.4.5), the standard error of y;; is
given by s/, /n;;.
With the normality assumption, we have that )_/, i~ N (,b’,»_ is o2/ n;j;), independent
of
(N — ab) §?
T ~ ){Z(N - ab)

This leads to the y -confidence intervals

_ N
Vij £ ——=t(14y)2(N — ab)
I/ll'j

N

[1 1
Fij = Pk £ [— + — t(14y)2(N — ab)
ij iy | ong (I+y)/

for the difference of means 8;; — By

for B;; and

The ANOVA for Assessing Interaction and Relationships with
the Predictors

We are interested in whether or not there is any relationship between Y and the pre-
dictors. There is no relationship between the response and the predictors if and only
if all the f3;; are equal. Before testing this, however, it is customary to test the null
hypothesis that there is no interaction between the predictors. The precise definition of
no interaction here is that

Bij=wmi+v;
forall7 and j for some constants u; and v ;, i.e., the means can be expressed additively.
Note that if we fix B = j and let 4 vary, then these response curves (a response curve
is a plot of the means of one variable while holding the value of the second variable

fixed) are all parallel. This is an equivalent way of saying that there is no interaction
between the predictors.
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In Figure 10.4.5, we have depicted response curves in which the factors do not in-
teract, and in Figure 10.4.6 we have depicted response curves in which they do. Note
that the solid lines, for example, joining £, and f,;, are there just to make it easier to
display the parallelism (or lack thereof) and have no other significance.

E(Y|4, B) A

v

Figure 10.4.5: Response curves for expected response with two predictors, with 4 taking three
levels and B taking two levels. Because they are parallel, the predictors do not interact.

E(Y|AB) A

Figure 10.4.6: Response curves for expected response with two predictors, with 4 taking three
levels and B taking two levels. They are not parallel, so the predictors interact.

To test the null hypothesis of no interaction, we must first fit the model where
Bij = u; + v, i.e., find the least-squares estimates of the f;; under these constraints.
We will not pursue the mathematics of obtaining these estimates here, but rely on
software to do this for us and to compute the sum of squares relevant for testing the
null hypothesis of no interaction (from the results of Section 10.3.4, we know that this
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is obtained by differencing the regression sum of squares obtained from the full model
and the regression sums of squares obtained from the model with no interaction).

If we decide that an interaction exists, then it is immediate that both 4 and B have
an effect on Y (if 4 does not have an effect, then 4 and B cannot interact — see
Problem 10.4.16); we must look at differences among the y;; to determine the form
of the relationship. If we decide that no interaction exists, then A has an effect if and
only if the y; vary, and B has an effect if and only if the v; vary. We can test the
null hypothesis Hy : u; = --- = u, of no effect due to 4 and the null hypothesis
Hy : v = --- = vp of no effect due to V' separately, once we have decided that no
interaction exists.

The details for deriving the relevant sums of squares for all these hypotheses are
not covered here, but many statistical packages will produce an ANOVA table, as given
below.

Source | Df Sum of Squares

A a—1 RSS(4)

B b—1 RSS(B)

AxB | (@a—1)(b—-1) RSS(4 x B)

Error | N —ab St X Sy (e = )’
Total | N—1 Dot Zl/)':l ZZL (vijk = J7)2

Note that if we had included only 4 in the model, then there would be N — a degrees
of freedom for the estimation of ¢2. By including B, we lose (N — a) — (N — ab) =
a (b — 1) degrees of freedom for the estimation of ¢ 2.

Using this table, we first assess the null hypothesis Hp : no interaction between A4
and B, using F ~ F((a — 1) (b — 1), N — ab) under Hp, via the P-value

P(F> RSS(4 x B)/(a—1) (b — 1)),

52

where 52 is given by (10.4.5). If we decide that no interaction exists, then we assess
the null hypothesis Hp : no effect due to 4, using F ~ F(a — 1, N — ab) under Hy,

via the P-value RSS(A .
P(F> )/ (@ = )),
s
and assess Hp : no effect due to B, using ' ~ F(b — 1, N — ab) under Hy, via the

P-value
P (F - RSS(B)S/Z(b — 1)) .

Model Checking

To check the model, we look at the standardized residuals given by (see Problem
10.4.18) _
Yijk — Jij

sy/T=1/n;;

(10.4.6)
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We will restrict our attention to various plots of the standardized residuals for model
checking.
We consider an example of a two-factor analysis.

EXAMPLE 10.4.5

The data in the following table come from G. E. P. Box and D. R. Cox, “An analysis of
transformations” (Journal of the Royal Statistical Society, 1964, Series B, p. 211) and
represent survival times, in hours, of animals exposed to one of three different types of
poisons and allocated four different types of treatments. We let 4 denote the treatments
and B denote the type of poison, so we have 3 x 4 = 12 different (4, B) combinations.
Each combination was administered to four different animals; i.e., n;; = 4 for every i
and j.

Al A2 A3 A4

B1]3.1,45,46,43 8.2,11.0,88,7.2 43,45,63,75 4.5,7.1,6.6,6.2
B213.6,29,40,23 9.2,6.1,49,124 44,35,3.1,40 5.6,10.2,7.1,3.8
B3122,2.1,18,23 3.0,3.7,3.8,2.9 2.3,25,24,22 3.0,3.6,3.1,3.3

A normal probability plot for these data, using the standardized residuals after fit-
ting the two-factor model, reveals a definite problem. In the above reference, a trans-
formation of the response to the reciprocal 1,/Y is suggested, based on a more sophis-
ticated analysis, and this indeed leads to much more appropriate standardized residual
plots. Figure 10.4.7 is a normal probability plot for the standardized residuals based on
the reciprocal response. This normal probability plot looks reasonable.

3 ]
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[ ®
& 1 — .o..
3 -~
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g | -~
2 ....c—".
8 -1 00’
(9] °®
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e \ \ \ \ \

-2 -1 0 1 2

Normal Scores

Figure 10.4.7: Normal probability plot of the standardized residuals in Example 10.4.5 using
the reciprocal of the response.

Figure 10.4.8 is a plot of the standardized residuals against the various (4, B)
combinations, where we have coded the combination (i, j) as b(i — 1) + j with
b=3,i =1,2,3,4,and j = 1,2, 3. This coding assigns a unique integer to each
combination (i, j) and is convenient when comparing scatter plots of the response for
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each treatment. Again, this residual plot looks reasonable.
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Figure 10.4.8: Scatter plot for the data in Example 10.4.5 of the standardized residuals against
each value of (A4, B) using the reciprocal of the response.

Below we provide the least-squares estimates of the f8;; for the transformed model.

Al A2 A3 A4

B1 ] 0.24869 0.11635 0.18627 0.16897
B2 ] 032685 0.13934 0.27139 0.17015
B3] 0.48027 0.30290 0.42650 0.30918

The ANOVA table for the data, as obtained from a standard statistical package, is given
below.

Source | Df Sum of Squares Mean Square
A 3 0.20414 0.06805

B 2 0.34877 0.17439
Ax B 6 0.01571 0.00262
Error 36 0.08643 0.00240
Total 47 0.65505

From this, we determine that s = 1/0.00240 = 4.89898 x 102, and so the standard
errors of the least-squares estimates are all equal to s /2 = 0.0244949.

To test the null hypothesis of no interaction between 4 and B, we have, using
F ~ F(6, 36) under Hy, the P-value

0.00262
P\F > = P (F > 1.09) = 0.387.
0.00240

We have no evidence against the null hypothesis.
So we can go on to test the null hypothesis of no effect due to 4 and we have, using
F ~ F (2,36) under Hy, the P-value

0.06805
P\F > = P(F > 28.35) = 0.000.
0.00240
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We reject this null hypothesis.
Similarly, testing the null hypothesis of no effect due to B, we have, using F' ~
F (2, 36) under Hy, the P-value

P (F > 0'17439) = P(F > 72.66) = 0.000.
0.00240
We reject this null hypothesis as well.

Accordingly, we have decided that the appropriate model is the additive model
given by E(1/Y (4, B)) = (i,j) = u; + v; (we are still using the transformed
response 1/Y). We can also write this as E(1/Y | (4, B)) = (i,)) = (,ul- +a) +
(1) i— a) for any choice of a. Therefore, there is no unique estimate of the additive
effects due to 4 or B. However, we still have unique least-squares estimates of the
means, which are obtained (using software) by fitting the model with constraints on the
Bi; corresponding to no interaction existing. These are recorded in the following table.

Al A2 A3 A4

B1 | 0.26977 0.10403 0.21255 0.13393
B2 | 031663 0.15089 0.25942 0.18080
B3] 046941 0.30367 0.41219 0.33357

As we have decided that there is no interaction between 4 and B, we can assess
single-factor effects by examining the response means for each factor separately. For
example, the means for investigating the effect of A are given in the following table.

Al A2 A3 A4
0.352 0.186 0.295 0.216

We can compare these means using procedures based on the ¢-distribution. For exam-
ple, a 0.95-confidence interval for the difference in the means at levels A1 and 42 is
given by

K 0.00240
V1. — V2. £ —— 1 36) = (0.352—-0.186) + 2.0281
V1= Niv ke (36) ( JERY. B
(0.13732, 0.19468). (10.4.7)

This indicates that we would reject the null hypothesis of no difference between these
means at the 0.05 level.

Notice that we have used the estimate of o2 based on the full model in (10.4.7).
Logically, it would seem to make more sense to use the estimate based on fitting the
additive model because we have decided that it is appropriate. When we do so, this is
referred to as pooling, as it can be shown that the new error estimate is calculated by
adding RSS(4 x B) to the original ESS and dividing by the sum of the 4 x B degrees
of freedom and the error degrees of freedom. Not to pool is regarded as a somewhat
more conservative procedure. i
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10.4.4 | Randomized Blocks

With two-factor models, we generally want to investigate whether or not both of these
factors have a relationship with the response Y. Suppose, however, that we know that a
factor B has a relationship with ¥, and we are interested in investigating whether or not
another factor 4 has a relationship with Y. Should we run a single-factor experiment
using the predictor 4, or run a two-factor experiment including the factor B?

The answer is as we have stated at the start of Section 10.4.2. Including the factor
B will allow us, if B accounts for a lot of the observed variation, to make more accurate
comparisons. Notice, however, that if B does not have a substantial effect on Y, then
its inclusion will be a waste, as we sacrificed a(b — 1) degrees of freedom that would
otherwise go toward the estimation of 2.

So it is important that we do indeed know that B has a substantial effect. In such
a case, we refer to B as a blocking variable. It is important again that the blocking
variable B be crossed with 4. Then we can test for any effect due to 4 by first testing
for an interaction between A and B; if no such interaction is found, then we test for an
effect due to 4 alone, just as we have discussed in Section 10.4.3.

A special case of using a blocking variable arises when we have n;; = 1 for all i and
J. In this case, N = ab, so there are no degrees of freedom available for the estimation
of error. In fact, we have that (see Problem 10.4.19) s2 = 0. Still, such a design has
practical value, provided we are willing to assume that there is no interaction between
A and B. This is called a randomized block design.

For a randomized block design, we have that

, _ RSS(4x B)
e Y (10.4.8)

is an unbiased estimate of o2, and so we have (¢ — 1) (b — 1) degrees of freedom for
the estimation of error. Of course, this will not be correct if 4 and B do interact,
but when they do not, this can be a highly efficient design, as we have removed the
effect of the variation due to B and require only ab observations for this. When the
randomized block design is appropriate, we test for an effect due to A, using F ~
F(a—1,(a—1)(b—1))under Hp, via the P-value

p(F>w)_

52

10.4.5 | One Categorical and One Quantitative Predictor

It is also possible that the response is quantitative while some of the predictors are
categorical and some are quantitative. We now consider the situation where we have
one categorical predictor A, taking a values, and one quantitative predictor . We
assume that the regression model applies. Furthermore, we restrict our attention to the
situation where we suppose that, within each level of 4, the mean response varies as

E(Yl(Aa W)) = (la U)) :ﬂil +ﬁi2wa
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so that we have a simple linear regression model within each level of A.
If we introduce the dummy variables

wi-t 4=
Xij = [ 0 A#i
fori =1,...,aand j = 1, 2, then we can write the linear regression model as

E(Y | (Xij) = (xij)) = (Buxit + B1ox12) + -+ - + (Bar¥a1 + BaaXa2)-

Here, f; is the intercept and f;, is the slope specifying the relationship between Y and
W when A = i. The methods of Section 10.3.4 are then available for inference about
this model.

We also have a notion of interaction in this context, as we say that the two pre-
dictors interact if the slopes of the lines vary across the levels of 4. So saying that
no interaction exists is the same as saying that the response curves are parallel when
graphed for each level of 4. If an interaction exists, then it is definite that both 4 and
W have an effect on Y. Thus the null hypothesis that no interaction exists is equivalent
toHy: frp="---=fa

If we decide that no interaction exists, then we can test for no effect due to W by
testing the null hypothesis that the common slope is equal to 0, or we can test the null
hypothesis that there is no effect due to 4 by testing Hy : f;; = --- = S, 1.€., that
the intercept terms are the same across the levels of 4.

We do not pursue the analysis of this model further here. Statistical software is
available, however, that will calculate the relevant ANOVA table for assessing the var-
ious null hypotheses.

Analysis of Covariance

Suppose we are running an experimental design and for each experimental unit we can
measure, but not control, a quantitative variable ¥ that we believe has an effect on the
response Y. If the effect of this variable is appreciable, then good statistical practice
suggests we should include this variable in the model, as we will reduce the contri-
bution of error to our experimental results and thus make more accurate comparisons.
Of course, we pay a price when we do this, as we lose degrees of freedom that would
otherwise be available for the estimation of error. So we must be sure that /" does have
a significant effect in such a case. Also, we do not test for an effect of such a variable,
as we presumably know it has an effect. This technique is referred to as the analysis of
covariance and is obviously similar in nature to the use of blocking variables.

Summary of Section 10.4

e We considered the situation involving a quantitative response and categorical
predictor variables.
e By the introduction of dummy variables for the predictor variables, we can con-

sider this situation as a particular application of the multiple regression model of
Section 10.3.4.
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e If we decide that a relationship exists, then we typically try to explain what
form this relationship takes by comparing means. To prevent finding too many
statistically significant differences, we lower the individual error rate to ensure a
sensible family error rate.

e When we have two predictors, we first check to see if the factors interact. If the
two predictors interact, then both have an effect on the response.

e A special case of a two-way analysis arises when one of the predictors serves as
a blocking variable. It is generally important to know that the blocking variable
has an effect on the response, so that we do not waste degrees of freedom by
including it.

e Sometimes we can measure variables on individual experimental units that we
know have an effect on the response. In such a case, we include these variables
in our model, as they will reduce the contribution of random error to the analysis
and make our inferences more accurate.

EXERCISES |

10.4.1 The following values of a response Y were obtained for three settings of a
categorical predictor 4.

1|29976 0.3606 4.7716 1.5652
2| 0.7468 1.3308 2.2167 —0.3184
3121192 23739 0.3335 3.3015

FNGENGIN
Il

Suppose we assume the normal regression model for these data with one categorical
predictor.

(a) Produce a side-by-side boxplot for the data.

(b) Plot the standardized residuals against A (if you are using a computer for your cal-
culations, also produce a normal probability plot of the standardized residuals). Does
this give you grounds for concern that the model assumptions are incorrect?

(c) Carry out a one-way ANOVA to test for any difference among the conditional means
of Y given 4.

(d) If warranted, construct 0.95-confidence intervals for the differences between the
means and summarize your findings.

10.4.2 The following values of a response Y were obtained for three settings of a
categorical predictor 4.

1| 0.090 0.800 33.070 —1.890
2| 5.120 1.580  1.760 1.740
315080 —=3.510 4.420 1.190

NG N N
I

Suppose we assume the normal regression model for these data with one categorical
predictor.

(a) Produce a side-by-side boxplot for the data.



Chapter 10: Relationships Among Variables 597

(b) Plot the standardized residuals against A (if you are using a computer for your cal-
culations, also produce a normal probability plot of the standardized residuals). Does
this give you grounds for concern that the model assumptions are incorrect?

(c) If concerns arise about the validity of the model, can you “fix” the problem?

(d) If you have been able to fix any problems encountered with the model, carry out a
one-way ANOVA to test for any differences among the conditional means of ¥ given
A.

(e) If warranted, construct 0.95-confidence intervals for the differences between the
means and summarize your findings.

10.4.3 The following table gives the percentage moisture content of two different types

of cheeses determined by randomly sampling batches of cheese from the production
process.

Cheese 1 | 39.02,38.79, 35.74,35.41, 37.02, 36.00
Cheese 2 | 38.96,39.01, 35.58, 35.52, 35.70, 36.04
Suppose we assume the normal regression model for these data with one categorical
predictor.

(a) Produce a side-by-side boxplot for the data.

(b) Plot the standardized residuals against Cheese (if you are using a computer for
your calculations, also produce a normal probability plot of the standardized residuals).
Does this give you grounds for concern that the model assumptions are incorrect?

(c) Carry out a one-way ANOVA to test for any differences among the conditional

means of ¥ given Cheese. Note that this is the same as a ¢-test for the difference in the
means.

10.4.4 In an experiment, rats were fed a stock ration for 100 days with various amounts
of gossypol added. The following weight gains in grams were recorded.

228, 229,218,216, 224, 208, 235, 229,

0
0.00% Gossypol | 533" 519, 204, 220. 232, 200, 208, 232
186, 229, 220, 208, 228, 198, 222, 273
0 9 9 9 9 b b b b
0.04% Gossypol 216, 198, 213
0.07% Gossypol | 112> 193, 183,180,143, 204, T14, T8,

178, 134, 208, 196

130, 87, 135, 116, 118, 165, 151, 59,
126, 64, 78, 94, 150, 160, 122, 110, 178
154,130, 118, 118, 118, 104, 112, 134,
98, 100, 104

0.10% Gossypol

0.13% Gossypol

Suppose we assume the normal regression model for these data and treat gossypol as a
categorical predictor taking five levels.

(a) Create a side-by-side boxplot graph for the data. Does this give you any reason
to be concerned about the assumptions that underlie an analysis based on the normal
regression model?

(b) Produce a plot of the standardized residuals against the factor gossypol (if you are

using a computer for your calculations, also produce a normal probability plot of the
standardized residuals). What are your conclusions?
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(c) Carry out a one-way ANOVA to test for any differences among the mean responses
for the different amounts of gossypol.

(d) Compute 0.95-confidence intervals for all the pairwise differences of means and
summarize your conclusions.

10.4.5 In an investigation into the effect of deficiencies of trace elements on a variable
Y measured on sheep, the data in the following table were obtained.

Control 13.2,13.6,11.9,13.0, 14.5,13.4
Cobalt 11.9,12.2,13.9,12.8,12.7,12.9
Copper 14.2,14.0, 15.1, 14.9, 13.7, 15.8
Cobalt + Copper | 15.0,15.6, 14.5,15.8,13.9,14.4

Suppose we assume the normal regression model for these data with one categorical
predictor.

(a) Produce a side-by-side boxplot for the data.

(b) Plot the standardized residuals against the predictor (if you are using a computer for
your calculations, also produce a normal probability plot of the standardized residuals).
Does this give you grounds for concern that the model assumptions are incorrect?

(c) Carry out a one-way ANOVA to test for any differences among the conditional
means of ¥ given the predictor.

(d) If warranted, construct 0.95-confidence intervals for all the pairwise differences
between the means and summarize your findings.

10.4.6 Two diets were given to samples of pigs over a period of time, and the following
weight gains (in Ibs) were recorded.

Diet A | 8,4,14,15,11,10,6,12,13,7
DietB | 7,13,22,15,12, 14,18, 8,21, 23,10, 17

Suppose we assume the normal regression model for these data.
(a) Produce a side-by-side boxplot for the data.

(b) Plot the standardized residuals against Diet. Also produce a normal probability plot
of the standardized residuals. Does this give you grounds for concern that the model
assumptions are incorrect?

(c) Carry out a one-way ANOVA to test for a difference between the conditional means
of Y given Diet.

(d) Construct 0.95-confidence intervals for differences between the means.

10.4.7 Ten students were randomly selected from the students in a university who took
first-year calculus and first-year statistics. Their grades in these courses are recorded
in the following table.

Student 1 2 3 4 5 6 7 8 9 10
Calculus | 66 61 77 62 66 68 64 75 59 71
Statistics | 66 63 79 63 67 70 71 80 63 74

Suppose we assume the normal regression model for these data.
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(a) Produce a side-by-side boxplot for the data.

(b) Treating the calculus and statistics marks as separate samples, carry out a one-way
ANOVA to test for any difference between the mean mark in calculus and the mean
mark in statistics. Produce the appropriate plots to check for model assumptions.

(c) Now take into account that each student has a calculus mark and a statistics mark
and test for any difference between the mean mark in calculus and the mean mark in
statistics. Produce the appropriate plots to check for model assumptions. Compare
your results with those obtained in part (b).

(d) Estimate the correlation between the calculus and statistics marks.

10.4.8 The following data were recorded in Statistical Methods, 6th ed., by G. Snedecor
and W. Cochran (Iowa State University Press, Ames, 1967) and represent the average
number of florets observed on plants in seven plots. Each of the plants was planted
with either high corms or low corms (a type of underground stem).

Plot1 Plot2 Plot3 Plot4 Plot5 Plot6 Plot7
Corm High | 11.2 13.3 12.8 13.7 12.2 11.9 12.1
Corm Low 14.6 12.6 15.0 15.6 12.7 12.0 13.1

Suppose we assume the normal regression model for these data.

(a) Produce a side-by-side boxplot for the data.

(b) Treating the Corm High and Corm Low measurements as separate samples, carry
out a one-way ANOVA to test for any difference between the population means. Pro-
duce the appropriate plots to check for model assumptions.

(c) Now take into account that each plot has a Corm High and Corm Low measurement.
Compare your results with those obtained in part (b). Produce the appropriate plots to
check for model assumptions.

(d) Estimate the correlation between the calculus and statistics marks.

10.4.9 Suppose two measurements, Y1 and Y, corresponding to different treatments,
are taken on the same individual who has been randomly sampled from a population
I1. Suppose that Y] and Y> have the same variance and are negatively correlated. Our
goal is to compare the treatment means. Explain why it would have been better to
have randomly sampled two individuals from IT and applied the treatments to these
individuals separately. (Hint: Consider Var(Y] — Y>) in these two sampling situations.)
10.4.10 List the assumptions that underlie the validity of the one-way ANOVA test
discussed in Section 10.4.1.

10.4.11 List the assumptions that underlie the validity of the paired comparison test
discussed in Section 10.4.2.

10.4.12 List the assumptions that underlie the validity of the two-way ANOVA test
discussed in Section 10.4.3.

10.4.13 List the assumptions that underlie the validity of the test used with the ran-
domized block design, discussed in Section 10.4.4, when n;; = 1 for all i and ;.
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PROBLEMS

10.4.14 Prove that >, Z:”zl (vij — ,b’l»)2 is minimized as a function of the f; by

Bi=yi= (yil —I—-~+y,-n,.) /nifori=1,...,a.
10.4.15 Prove that

a n;

ii(yij—f’y:é”i G =9+ > - 5)

i=1 j=1 i=1 j=1

where y; = (yil +--- 4+ y,-n,.) /n; and y is the grand mean.

10.4.16 Argue that if the relationship between a quantitative response Y and two cat-
egorical predictors 4 and B is given by a linear regression model, then 4 and B both
have an effect on ¥ whenever 4 and B interact. (Hint: What does it mean in terms of
response curves for an interaction to exist, for an effect due to 4 to exist?)

10.4.17 Establish that (10.4.2) is the appropriate expression for the standardized resid-
ual for the linear regression model with one categorical predictor.

10.4.18 Establish that (10.4.6) is the appropriate expression for the standardized resid-
ual for the linear regression model with two categorical predictors.

10.4.19 Establish that s> = 0 for the linear regression model with two categorical
predictors when n;; = 1 for all i and j.

10.4.20 How would you assess whether or not the randomized block design was ap-
propriate after collecting the data?

COMPUTER PROBLEMS|

10.4.21 Use appropriate software to carry out Fisher’s multiple comparison test on the
data in Exercise 10.4.5 so that the family error rate is between 0.04 and 0.05. What
individual error rate is required?

10.4.22 Consider the data in Exercise 10.4.3, but now suppose we also take into ac-
count that the cheeses were made in lots where each lot corresponded to a production
run. Recording the data this way, we obtain the following table.

Lot1 Lot2 Lot 3
Cheese 1 | 39.02,38.79 35.74,35.41 37.02,36.00
Cheese 2 | 38.96,39.01 35.58,35.52 35.70,36.04

Suppose we assume the normal regression model for these data with two categorical
predictors.

(a) Produce a side-by-side boxplot for the data for each treatment.

(b) Produce a table of cell means.

(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi-
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.
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(d) Construct the ANOVA table testing first for no interaction between A4 and B and, if
necessary, an effect due to 4 and an effect due to B.

(e) Based on the results of part (d), construct the appropriate table of means, plot the
corresponding response curve, and make all pairwise comparisons among the means.
(f) Compare your results with those obtained in Exercise 10.4.4 and comment on the
differences.

10.4.23 A two-factor experimental design was carried out, with factors 4 and B both
categorical variables taking three values. Each treatment was applied four times and
the following response values were obtained.

A=1 A=2 A=3
B—1 19.86  20.88 2637 24.38 29.72  29.64
20.15 25.44 24.87 30.93 30.06 35.49
B—> 15.35 15.86 22.82  20.98 27.12  24.27
21.86  26.92 29.38 34.13 34.78 40.72
B—3 4.01 448 10.34  9.38 15.64 14.03
21.66 25.93 30.59 40.04 36.80 42.55

Suppose we assume the normal regression model for these data with two categorical
predictors.

(a) Produce a side-by-side boxplot for the data for each treatment.
(b) Produce a table of cell means.

(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi-
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.

(d) Construct the ANOVA table testing first for no interaction between 4 and B and, if
necessary, an effect due to 4 and an effect due to B.

(e) Based on the results of part (d), construct the appropriate table of means, plot the
corresponding response curves, and make all pairwise comparisons among the means.

10.4.24 A chemical paste is made in batches and put into casks. Ten delivery batches
were randomly selected for testing; then three casks were randomly selected from each
delivery and the paste strength was measured twice, based on samples drawn from each
sampled cask. The response was expressed as a percentage of fill strength. The col-
lected data are given in the following table. Suppose we assume the normal regression
model for these data with two categorical predictors.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Cask 1 | 62.8,62.6 60.0,61.4 58.7,57.5 57.1,56.4 55.1,55.1
Cask2 | 60.1,62.3 57.5,56.9 63.9,63.1 569,58.6 54.7,54.2
Cask3 | 62.7,63.1 61.1,58.9 65.4,63.7 64.7,64.5 58.5,57.5
Batch 6 Batch 7 Batch 8 Batch 9 Batch 10
Cask 1 | 63.4,64.9 62.5,62.6 59.2,59.4 548,548 58.3,59.3
Cask2 | 59.3,58.1 61.0,58.7 65.2,66.0 64.0,64.0 59.2,59.2
Cask 3 | 60.5,60.0 56.9,57.7 64.8,64.1 57.7,56.8 58.9,56.8
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(a) Produce a side-by-side boxplot for the data for each treatment.

(b) Produce a table of cell means.

(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi-
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.

(d) Construct the ANOVA table testing first for no interaction between Batch and Cask
and, if necessary, no effect due to Batch and no effect due to Cask.

(e) Based on the results of part (d), construct the appropriate table of means and plot
the corresponding response curves.

10.4.25 The following data arose from a randomized block design, where factor B is
the blocking variable and corresponds to plots of land on which cotton is planted. Each
plot was divided into five subplots, and different concentrations of fertilizer were ap-
plied to each, with the response being a strength measurement of the cotton harvested.
There were three blocks and five different concentrations of fertilizer. Note that there is
only one observation for each block and concentration combination. Further discussion
of these data can be found in Experimental Design, 2nd ed., by W. G. Cochran and
G. M. Cox (John Wiley & Sons, New York, 1957, pp. 107-108). Suppose we assume
the normal regression model with two categorical predictors.

B=1 B=2 B=3
A=36 |7.62 8.00 7.93
A=54 | 8.14 8.15 7.87
A=72 | 7.0 7.73 7.74
A=108 | 7.17 7.57 7.80
A =144 | 7.46 7.68 7.21

(a) Construct the ANOVA table for testing for no effect due to fertilizer and which also
removes the variation due to the blocking variable.

(b) Beyond the usual assumptions that we are concerned about, what additional as-
sumption is necessary for this analysis?

(c) Actually, the factor 4 is a quantitative variable. If we were to take this into ac-
count by fitting a model that had the same slope for each block but possibly different
intercepts, then what benefit would be gained?

(d) Carry out the analysis suggested in part (c) and assess whether or not this model
makes sense for these data.

10.5 | Categorical Response and Quantitative
Predictors

We now consider the situation in which the response is categorical but at least some
of the predictors are quantitative. The essential difficulty in this context lies with the
quantitative predictors, so we will focus on the situation in which all the predictors
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are quantitative. When there are also some categorical predictors, these can be han-
dled in the same way, as we can replace each categorical predictor by a set of dummy
quantitative variables, as discussed in Section 10.4.5.

For reasons of simplicity, we will restrict our attention to the situation in which
the response variable Y is binary valued, and we will take these values to be 0 and 1.
Suppose, then, that there are £ quantitative predictors X1, . .., Xi. Because ¥ € {0, 1},
we have

EXY | Xi=x,...,. Xk =x3)=PY =1|X1=x,..., Xy =x) €0, 1].

Therefore, we cannot write £(Y | x1,...,xx) = Bix1 + -+ - + fyxx without placing
some unnatural restrictions on the j; to ensure that f{x; + - - - + Syxr € [0, 1].
Perhaps the simplest way around this is to use a 1-1 function / : [0, 1] — R! and
write
I(P(Y =1]|X1=x1,..., Xk =x¢)) = frx1 + - + Brxn,

so that
PY =1|Xi=x1,..., X =x3) =" (Byx1 + - + Brxz).

We refer to [ as a link function. There are many possible choices for /. For example, it
is immediate that we can take / to be any inverse cdf for a continuous distribution.

If we take / = ®~!, i.e., the inverse cdf of the N(0, 1) distribution, then this is
called the probit link. A more commonly used link, due to some inherent mathematical
simplicities, is the logistic link given by

I(p) =In (L) (10.5.1)
I-p
The right-hand side of (10.5.1) is referred to as the logit or log odds. The logistic link
is the inverse cdf of the logistic distribution (see Exercise 10.5.1). We will restrict our
discussion to the logistic link hereafter.
The logistic link implies that (see Exercise 10.5.2)

exp{fix1 + -+ Brxi}
1+ exp{fixi + -+ Brxi}’

P(Y =1\ X1 =x1,..., X = xk) = (10.5.2)

which is a relatively simple relationship. We see immediately, however, that

Var(Y | X1 =x1,..., Xk = x¢)
=P =1|1X1=x1,..., Xp)=x; (A =P =1|X1 =x1,..., Xy =x¢)),

so the variance of the conditional distribution of ¥, given the predictors, depends on the
values of the predictors. Therefore, these models are not, strictly speaking, regression
models as we have defined them. Still when we use the link function given by (10.5.1),
we refer to this as the logistic regression model.

Now suppose we observe n independent observations (x;i, ..., Xk, y;) fori =
1,...,n. We then have that, given (x;{, ..., x;t), the response y; is an observation
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from the Bernoulli(P(Y = 1|X; = x1,..., X = xi)) distribution. Then (10.5.2)
implies that the conditional likelihood, given the values of the predictors, is

H( exp{fix1 + - + Bxe) )yf ( I )1—”
L\ 4expl{fixn + - + Brxx) 14+ exp{fx1 + - + frxi} '

Inference about the f5; then proceeds via the likelihood methods discussed in Chap-
ter 6. In fact, we need to use software to obtain the MLE’s, and, because the exact
sampling distributions of these quantities are not available, the large sample methods
discussed in Section 6.5 are used for approximate confidence intervals and P-values.
Note that assessing the null hypothesis Hp : §; = 0 is equivalent to assessing the null
hypothesis that the predictor X; does not have a relationship with the response.

We illustrate the use of logistic regression via an example.

EXAMPLE 10.5.1
The following table of data represent the

(number of failures, number of successes)

for ingots prepared for rolling under different settings of the predictor variables, U =
soaking time and V' = heating time, as reported in Analysis of Binary Data, by D. R.
Cox (Methuen, London, 1970). A failure indicates that an ingot is not ready for rolling
after the treatment. There were observations at 19 different settings of these variables.

V=7 V=14 V=27 V=5l
U=10] (0,100 (0,31) (1,55 (3, 10)
U=171(0,17) (0,43) (4,40) (0, 1)
U=2210,7 (2,31) (0,21) (0,1
U=281(0,12) (0,31) (1,21) (0,0)
U=401(0,9 (0,19 (1,15 (0, 1)

Including an intercept in the model and linear terms for U and V' leads to three
predictor variables X7 = 1, X = U, X3 = V, and the model takes the form

exp{f1 + frx2 + f3x3}
1+ exp{,b’l +,BQX2 + ,B3x3} .

Fitting the model via the method of maximum likelihood leads to the estimates given
in the following table. Here, z is the value of estimate divided by its standard error.
Because this is approximately distributed N (0, 1) when the corresponding f; equals
0, the P-value for assessing the null hypothesis that §; = 0 is P(|Z| > |z|) with
Z ~ N(0,1).

PY=1|X2=x2,X3=x3)=

Coefficient | Estimate  Std. Error z P-value
B 5.55900 1.12000 4.96  0.000
B —0.05680 0.33120 —-0.17 0.864
B3 —0.08203 0.02373 —=3.46  0.001

Of course, we have to feel confident that the model is appropriate before we can
proceed to make formal inferences about the §;. In this case, we note that the number
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of successes s(x3, x3) in the cell of the table, corresponding to the setting (X>, X3) =
(x2, x3), is an observation from a

Binomial(m (x;, x3), P(Y = 1| X3 = x3, X3 = x3))

distribution, where m (x;, x3) is the sum of the number of successes and failures in that
cell. So, for example, if X, = U = 1.0and X3 = V = 7, then m(1.0,7) = 10 and
s (1.0, 7) = 10. Denoting the estimate of P(Y = 1| X» = x2, X3 = x3) by p(x2, x3),
obtained by plugging in the MLE, we have that (see Problem 10.5.8)

X2 Z (s (x2, x3) — m(x2, x3) p(x2, x3))? (10.5.3)

(2.73) m(x2, x3) p(x2, x3)

is asymptotically distributed as a y*(19 — 3) = y2(16) distribution when the model is
correct. We determine the degrees of freedom by counting the number of cells where
there were observations (19 in this case, as no observations were obtained when U =
2.8, V' = 51) and subtracting the number of parameters estimated. For these data,
X? = 13.543 and the P-value is P(x2(16) > 13.543) = 0.633. Therefore, we have no
evidence that the model is incorrect and can proceed to make inferences about the f;
based on the logistic regression model.

From the preceding table, we see that the null hypothesis Hy : S, = 0 is not
rejected. Accordingly, we drop X» and fit the smaller model given by

exp{f| + B3x3}
1+ exp{f; + f3x3}

PY =1]X3=x3) =

This leads to the estimates ,[3’ | = 5.4152 and /3’3 = —0.08070. Note that these are only
marginally different from the previous estimates. In Figure 10.5.1, we present a graph
of the fitted function over the range where we have observed X3. 1
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Figure 10.5.1: The fitted probability of obtaining an ingot ready to be rolled as a function of
heating time in Example 10.5.1.
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Summary of Section 10.5

e We have examined the situation in which we have a single binary-valued re-
sponse variable and a number of quantitative predictors.

e One method of expressing a relationship between the response and predictors is
via the use of a link function.

e If we use the logistic link function, then we can carry out a logistic regression
analysis using likelihood methods of inference.

EXERCISES |

10.5.1 Prove that the function f : R! — R!, defined by f(x) = e™*(1 + e™¥)~2 for
x € R', is a density function with distribution function given by F(x) = (1 4+ ¢™¥)~!
and inverse cdf given by F~'(p) = Inp — In(1 — p) for p € [0, 1]. This is called the
logistic distribution.

10.5.2 Establish (10.5.2).

10.5.3 Suppose that a logistic regression model for a binary-valued response Y is given
by

exp{f; + fax}
1 +exp{f + fox}
Prove that the log odds at X = x is given by £, + f,x.
10.5.4 Suppose that instead of the inverse logistic cdf as the link function, we use
the inverse cdf of a Laplace distribution (see Problem 2.4.22). Determine the form of
P(Y = 1|X1 =X1,..., Xf ZXk).
10.5.5 Suppose that instead of the inverse logistic cdf as the link function, we use
the inverse cdf of a Cauchy distribution (see Problem 2.4.21). Determine the form of
P(Y = 1|X1 =X1y..- ,Xk ZXk).

P(Y=1|x)=

COMPUTER EXERCISES |

10.5.6 Use software to replicate the results of Example 10.5.1.

10.5.7 Suppose that the following data were obtained for the quantitative predictor X
and the binary-valued response variable Y.

X[ =5 —4 -3 —2 -1
Y [0,0 0,0 0,0 0,0 1,0

0 1
0 1

2
0 0,1 1,1 1,1 1,1

,0

(a) Using these data, fit the logistic regression model given by

exp{B| + Box + B3x?}
1+ exp{f| + fox + f3x2}

P(Y=1|x)=

(b) Does the model fit the data?
(c) Test the null hypothesis Hy : f3 = 0.
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(d) If you decide there is no quadratic effect, refit the model and test for any linear
effect.

(e) Plot P(Y = 1] x) as a function of x.

PROBLEMS

10.5.8 Prove that (10.5.3) is the correct form for the chi-squared goodness-of-fit test
statistic.

10.6 | Further Proofs (Advanced)
Proof of Theorem 10.3.1

We want to prove that, when E(Y | X = x) = 1+ f,x and we observe the independent
values (x1, y1), - . ., (Xn, yn) for (X, Y), then the least-squares estimates of | and [55
are given by by = y — byx and

by — i =) =)
2?21(?61‘ —2)2 ’

whenever > 1_, (x; — x)? # 0.

We need an algebraic result that will simplify our calculations.

Lemma 10.6.1 If (x1, y1),..., (xn, y») are such that >7_; (x; —%)? # 0 and
q,r € R, then 37, (v; — b1 — box;) (¢ +7x;) = 0.

PROOF | We have

n
> (i = b1 — baxi) = nj — nby — nby¥ = n( —  + by¥ — br) =0,
i=1

which establishes that >"_, (yv; — b1 — bax;)q = 0 for any g. Now using this, and the
formulas in Theorem 10.3.1, we obtain

> i = b1 = byxi)x;

i=1

= Z()’i — by — box;)(xi — X)
i=1

=D i —F—b =) =) =D (i =P — %) = D (i =P —%) =0.
i=1 i=1 i=1

This establishes the lemma. 1
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Returning to the proof of Theorem 10.3.1, we have
i:cw =1 = Bxi)’ = i:(yl- — by = byxi = (B1 = b1) = (B> = b2)xi)’
= Zn;()/i — b1 —byx;)* =2 i(}’i — b1 = baxi){(fy — b1) + (B2 — b2)xi}
i= i=
+ f«ﬂl —b1) + (B2 = b)xi)’
ni:1 n
=D i = b1 =baxi) + D ((By = b1) + (Br — boxi))’,
i=l1 i=l1
as the middle term is 0 by Lemma 10.6.1. Therefore,
i()’i —B1 = Baxi)* = i(yz' — b1 — byx;)?
and > (i —p1— B le-)2 takes its minimum value if and only if

Z(('Bl —b)+ (B — bz)x,-)2 =0.
i=1

This occurs if and only if (8 — b1) + (8, — b2)x; = 0 for every i. Because the x; are
not all the same value, this is true if and only if #; = b; and S, = b, which completes
the proof. I

Proof of Theorem 10.3.2

We want to prove that, if E(Y | X = x) = | + Box and we observe the independent
ValueS (xlayl)a ] (xrh J’n)for (X> Y)a then
@) EB1| X1 =x1,...,Xn =xn) = b1,

(i) E(B2 | X1 =x1,..., X0 =x,) = f>.

From Theorem 10.3.1 and E(Y | X| = x1,..., X, = x,) = f; + f,X, we have
that

i1 (i = X)(By + Boxi = 1 — frX)

EB2| X1 = Xx1,...,Xp=Xp) = S (x —X)2
_ g X %)
= B, ST =R B

Also, from Theorem 10.3.1 and what we have just proved,

E(BI|X1:xl,...,Xn:xn):IBI_FIBz)E_IBZ)E:IBI'
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Proof of Theorem 10.3.3

We want to prove that, if E(Y | X = x) = B, + Bax, Var(Y | X = x) = o for every
x, and we observe the independent values (x1, y1), ..., (Xn, yn) for (X, Y), then
(i) Var(By | X1 = x1, ..., Xp = xq) = 02(1/n + 3%/ 3_; (i = )2,
(ii) Var(By | X1 = X1, .., Xn = X0) = 02/ D0 (x; — %),
(i) Cov(By, By | X1 = x1, ..., Xp = X») = =025/ D 0_ (x; — %)%
We first prove (ii). Observe that b; is a linear combination of the y; — y values,

so we can evaluate the conditional variance once we have obtained the conditional
variances and covariances of the ¥; — Y values. We have that

_ 1 1
Y,-—Y:(l——)Y,-——E Y;,
n n <=
J#i

so the conditional variance of ¥; — Y is given by

1\? -1 1
02(1——) +02n 3 :02(1——).
n n n

When i # j, we can write

] 1 1 1
Y,--Y:(l—;)Y,-—;Yj——ZYk,

=y

and the conditional covariance between ¥; — ¥ and ¥; — Y is then given by

1\ 1 -2 2
—202(1——)——{-02” 3 --Z
n n n n

(note that you can assume that the means of the expectations of the Y’s are 0 for this
calculation). Therefore, the conditional variance of B; is given by

Var(By | X1, ..., Xn)
— 52 (1 _ l) Do (x —x)? _ 0_2 Zi;éj(xi —X)(x; —Xx)
nJ) (3 (i —i)z)z me(i G = i)z)2

o2

DT

because
n 2 n
D =D —%) = (Z(xl- - X)) - > (i — %)
i=1 i=1

i#]
n
= - Z(x,- - 5)2.
i=1
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For (iii), we have that
Cov(B1, By | X1 =x1, ..., X, =xp)
=Cov(Y — BoX, By | X1 =x1, ..., Xy = Xp)
=Cov(Y,Br| X1 =x1,...,Xp =x,) —x Var(Bo | X1 = x1, ..., Xp = x,)
and
Cov(¥, By | X1 = X1, ..., Xn = Xn)
Z[:](‘xl _)E)COV((}]I - )7)7)7|X1 :xla"'an :xn)

z;zzl(xi —i)z
_ 201 _ ZiZI(xi _)E) _
— (1 1/n)—z;,=1(m — =0

Therefore, Cov(By, By | X1 = x1,..., Xy =x,) = —02%/ D0 (x; — %)°.
Finally, for (i), we have,
Var(By | X1 =x1,..., X, =x,) =Var(Y — Box | X1 =x1, ..., Xy = X,)
=Var(Y | X1 =x1, ..., Xy =x,) + %> Var(Ba | X1 = x1, ..., Xp = Xn)
—2COV(}_’,Bz|X1 =X1,..., Xy =Xp)

where Var(Y | X1 = x1,..., X, = x,) = o2/n. Substituting the results for (ii) and
(ii1) completes the proof of the theorem. I

Proof of Corollary 10.3.1

We need to show that

1 (x —x)?
Var(B1 + Box | X1 =x1,...,Xn =x ):02 (—+—_ .
" " no > —x)?
For this, we have that
Var(B) + Bax | X1 = x1, ..., Xn = xp)
= Var(Bi | X1 = x1, ..., Xy =xp) + x> Var(Bs | X1 = x1, ..., Xpn = X,)
+2x Cov(By, Bo | X1 =x1, ..., Xy = xp)

Y A R A YT A (x — %)
(o) = G e o) !

Proof of Theorem 10.3.4

We want to show that, if E(Y | X = x) = | + pox, Var(Y | X = x) = ¢ for every
x, and we observe the independent values (x1, 1), ..., (Xn, yn) for (X, Y), then

E(S?|Xi=x1,..., Xy =x,) =02
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We have that
E((n=2)S* | X1 =x1,..., Xy = x,)
n
= E(Z(Y,- = B = B’ | X1 =x1,..., Xy =xn)
i=1

E((Y; =Y = Bo(xi =) | X1 = x1, ..., Xon = X)

n
i=1
n

Var(Y; — Y — By(x; — %) | X1 =x1,..., Xy =X,)

i=1
because
EY;i =Y —By(xi = %) | X1 =x1,..., Xn = xp)
= p1+ Baxi — B1 — Box — Po(xi —x) = 0.
Now,
Var(Y; = ¥ = By(x; = %) | X1 = x1,..., Xy = xp)
=Var(Y,- _?|X1 les---9Xn =-xil)
—2(x; = X¥)Cov((Y; = Y), B2 | X1 =x1,..., Xy = Xp)
+ (x; — X)* Var(B2 | X1 = x1, ..., Xy = xn)
and, using the results established about the covariances of the ¥; — Y in the proof of
Theorem 10.3.3, we have that
Var(Y; — Y | X1 =x1,..., Xp =x) =0>(1 = 1/n)
and
COV(le' - ?>B2|X1 :xla"'aXn an)

1 " B _ i}
ZW (xj—x)COV(Y,-—Y,Yj—Y|X1=x1,...,Xn=x,,)
=1\ j=I

o2 1 _ 1 - 0% (x; — %)
=—((1—;) (xl-—x)——Z(xj—X))=m’

S (i —X)? n <
because quéi (x; —X) = —(x; — x). Therefore,

Var(Y; — Y — Ba(x; = %) | X1 = X1, ..., Xy = X»)
— 52 (1 _ l) _5 o (x; = %)° o(x; — X)?

n D = %)? * > (i —X)?

_ 2 _l_ (xi_i)z
- (1 n Zf':l(x,-—i)z)
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and
2 n 1 '_—2
E(S?| X, =x1,...,X,,=xn)=U—Z(1___(x’—x)) — o2,
i=1
as was stated. i

Proof of Lemma 10.3.1
We need to show that, if (x1,y1), ..., (Xn, yn) are such that > !_, (x; — %)% #£0, then

D=9 =5 =57+ > (i — b1 — b))’
i=1 i=1 i=1
We have that

n n
D= = Dy -ni?
i=l1 i=1

n
= D i —bi —bxi + b + bax))> — nj’

i=1
n n

= D i —bi —bx)* + D (b1 +box;)* — nj?
i=1 i=1

because Zle (vi —=b1—box;) (b1 +b3x;) = 0 by Lemma 10.6.1. Then, using Theorem
10.3.1, we have

D (b1 +baxi) —ni =D G +balx — ) —np? =b > (v — %),
i=1 i=1 i=1
and this completes the proof. I

Proof of Theorem 10.3.6

We want to show that, if Y, given X = x, is distributed N(B, + f,x,0c?) and we
observe the independent values (x1, y1), ..., (Xn, yn) for (X, Y), then the conditional
distributions of B1, By, and s2, given X1 = x1, ..., X, = x,, are as follows.

(i) By ~ N(B1,02(1/n+ 3%/ 30_ (x; — X)?))

(ii) By ~ N(By, 02/ >0 (x; — %)%)

(iii) ,
~ 2(L, _ =9 ))
B+ Byx ~N (,[)’1 + Byx, 0 (n + ST — 37

(iv) (n —2) S?/o? ~ y?(n — 2) independent of (B, B>)

We first prove (i). Because Bj can be written as a linear combination of the Y,
Theorem 4.6.1 implies that the distribution of B; must be normal. The result then
follows from Theorems 10.3.2 and 10.3.3. A similar proof establishes (ii) and (iii).
The proof of (iv) is similar to the proof of Theorem 4.6.6, and we leave this to a further
course in statistics. i
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Proof of Corollary 10.3.2

We want to show 12
(@) (B = B1)/S (1/n+ 32/ Zi_ (v =) 7"~ 1(n =2)
. n _\on1/2
(i) (B2 = B2) (X=y i = 92) 2 /S ~ t(n = 2)
(iii)
B] +Bzx _ﬂl —,b’2x
_ n 172
S ((/n+ =97/ X0y (6 = 52)”
(iv) If F is defined as in (10.3.8), then Hy : B, = 0 is true if and only if F ~
F(l,n-2).
We first prove (i). Because B and S? are independent

By - p,
o (1/n+52) 30 (i —5)2)"?

~tn—2)

~ N(0, 1)

independent of (n — 2)S?/6% ~ x*(n — 2). Therefore, applying Definition 4.6.2, we
have

B — B
o (I/n+32/ 30 (i —52) ' (1 —2) 82/ (n —2)62)"?
B —
= L= Fi o5~ =2).

S S(In+F2 Y (g — B)?)

For (ii), the proof proceeds just as in the proof of (i).
For (iii), the proof proceeds just as in the proof of (i) and also using Corollary
10.3.1.

We now prove (iv). Taking the square of the ratio in (ii) and applying Theorem
4.6.11 implies

BBt BBy =8
2 (Z?:l xi — 5)2)_1 S2

~F(1,n—=2).

Now observe that F defined by (10.3.8) equals G when £, = 0. The converse that
F ~ F(1,n — 2) only if f, = 0 is somewhat harder to prove and we leave this to a
further course. I






