
Appendix B

Computations

We briefly describe two computer packages that can be used for all the computations

carried out in the text. We recommend that students familiarize themselves with at

least one of these. The description of R is quite complete, at least for the computations

based on material in this text, whereas another reference is required to learn Minitab.

B.1 Using R
R is a free statistical software package that can be downloaded and installed on your

computer (see http://cran.r-project.org/). A free manual is also available at this site.

Once you have R installed on your system, you can invoke it by clicking on the

relevant icon (or, on Unix systems, simply typing “R”). You then see a window, called

the R Console that contains some text and a prompt ‘ > ’ after which you type com-

mands. Commands are separated by new lines or ‘ ; ’. Output from commands is also

displayed in this window, unless it is purposefully directed elsewhere. To quit R, type

q() after the prompt. To learn about anything in R, a convenient resource is to use

Help on the menu bar available at the top of the R window. Alternatively, type ?name

after the prompt (and press enter) to display information about name, e.g., ?q brings

up a page with information about the terminate command q.

Basic Operations and Functions

A basic command evaluates an expression, such as

> 2+3

[1] 5

which adds 2 and 3 and produces the answer 5. Alternatively, we could assign the value

of the expression to a variable such as

> a <- 2

where <- (less than followed by minus) assigns the value 2 to a variable called a.

Alternatively, = can be used for assignment as in a = 2, but we will use <-. We
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can then verify this assignment by simply typing a and hitting return, which causes the

value of a to be printed.

> a

[1] 2

Note that R is case sensitive, so A would be a different variable than a. There are some

restrictions in choosing names for variables and vectors, but you won’t go wrong if you

always start the name with a letter.

We can assign the values in a vector using the concatenate function c() such as

> b <- c(1,1,1,3,4,5)

> b

[1] 1 1 1 3 4 5

which creates a vector called b with six values in it. We can access the ith entry in a

vector b by referring to it as b[i]. For example,

> b[3]

[1] 1

prints the third entry in b, namely, 1. Alternatively, we can use the scan command to

input data. For example,

> b <- scan()

1: 1 1 1 3 4 5

7:

Read 6 items

> b

[1] 1 1 1 3 4 5

accomplishes the same assignment. Note that with the scan command, we simply

type in the data and terminate data input by entering a blank line. We can also use

scan to read data in from a file, and we refer the reader to ?scan for this.

Sometimes we want vectors whose entries are in some pattern. We can often use

the rep function for this. For example, x <- rep(1,20) creates a vector of 20

ones. More complicated patterns can be obtained, and we refer the reader to ?rep for

this.

Basic arithmetic can be carried out on variables and vectors using + (addition), -

(subtraction), * (multiplication), / (division), and ^ (exponentiation). These operations

are carried out componentwise. For example, we could multiply each component of b

by itself via

> b*b

[1] 1 1 1 9 16 25

or multiply each element of b by 2 as in

> 2*b

[1] 2 2 2 6 8 10

which accomplishes this.
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There are various functions available in R, such as abs(x) (calculates the absolute

value of x), log(x) (calculates the natural logarithm of x), exp(x) (calculates e

raised to the power x), sin(x), cos(x), tan(x) (which calculate the trigonomet-

ric functions), sqrt(x) (which calculates the square root of x), ceiling(x), and

floor(x) (calculate the ceiling and floor of x). When such a function is applied to

a vector x, it returns a vector of the same length, with the function applied to each

element of the original vector. There are numerous special functions available in R, but

two important ones are gamma(x), which returns the gamma function applied to x,

and lgamma(x), which returns the natural logarithm of the gamma function.

There are also functions that return a single value when applied to a vector. For

example, min(x) and max(x) return, respectively, the smallest and largest elements

in x; length(x) gives the number of elements in x; and sum(x) gives the sum of

the values in x.

R also operates on logical quantities TRUE (or T for true) and FALSE (or F for

false). Logical values are generated by conditions that are either true or false. For

example,

> a <- c(-3,4,2,-1,-5)

> b <- a>0

> b

[1] FALSE TRUE TRUE FALSE FALSE

compares each element of the vector a with 0, returning TRUE when it is greater than 0

and FALSE otherwise, and these logical values are stored in the vector b. The follow-

ing logical operators can be used: <,<=,>=,>, == (for equality), != (for inequality)

as well as & (for conjunction), | (for disjunction) and ! (for negation). For example, if

we create a logical vector c as follows:

> c <- c(T,T,T,T,T)

> b&c

[1] FALSE TRUE TRUE FALSE FALSE

> b|c
[1] TRUE TRUE TRUE TRUE TRUE

then an element of b&c is TRUE when both corresponding elements of b and c are

TRUE, while an element of b|c is TRUE when at least one of the corresponding ele-

ments of b and c is TRUE.

Sometimes we may have variables that take character values. While it is always

possible to code these values as numbers, there is no need to do this, as R can also

handle character-valued variables. For example, the commands

> A <- c(’a’,’b’)

> A

[1] "a" "b"

create a character vector A, containing two values a and b, and then we print out this

vector. Note that we included the character values in single quotes when doing the

assignment.
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Sometimes data values are missing and so are listed as NA (not available). Opera-

tions on missing values create missing values. Also, an impossible operation, such as

0/0, produces NaN (not a number).

Various objects can be created during an R session. To see those created so far in

your session, use the command ls(). You can remove any objects in your workspace

using the rm command. For example, rm(x) removes the vector x.

Probability Functions

R has a number of built-in functions for evaluation of the cdf, the inverse cdf, the

density or probability function, and generating random samples for the common dis-

tributions we encounter in probability and statistics. These are distinguished by prefix

and base distribution names. Some of the distribution names are given in the following

table.

Distribution R name and arguments Distribution R name and arguments

beta beta(· ,a,b) hypergeometric hyper(· ,N,M,n)

binomial binom(· ,n,p) negative binomial nbinom(· ,k,p)

chi-squared chisq(· ,df) normal norm(· ,mu,sigma)

exponential exp(· ,lambda) Poisson pois(· ,lambda)

F f(· ,df1,df2) t t(· ,df)

gamma gamma(· ,alpha,lambda) uniform unif(· ,min,max)

geometric geom(· ,p)

As usual, one has to be careful with the gamma distribution. The safest path is

to include another argument with the distribution to indicate whether or not lambda

is a rate parameter (density is (0 (α))−1λαxα−1e−λx ) or a scale parameter (density

is (0 (α))−1λ−αxα−1e−x/λ). So gamma(· ,alpha,rate=lambda) indicates that

lambda is a rate parameter, and gamma(· ,alpha,scale=lambda) indicates that

it is a scale parameter.

The argument given by · is specified according to what purpose the command using

the distribution name has. To obtain the cdf of a distribution, precede the name by p,

and then · is the value at which you want to evaluate the cdf. To obtain the inverse cdf

of a distribution, precede the name by q, and then · is the value at which you want to

evaluate the inverse cdf. To obtain the density or probability function, precede the name

by d, and then · is the value at which you want to evaluate the density or probability

function. To obtain random samples, precede the name by r, and then · is the size of

the random sample you want to generate.

For example,

> x <- rnorm(4,1,2)

> x

[1] -0.2462307 2.7992913 4.7541085 3.3169241

generates a sample of 4 from the N (1, 22) distribution and assigns this to the vector x.

The command



Appendix B.1: Using R 687

> dnorm(3.2,2,.5)

[1] 0.04478906

evaluates the N (2, .25) pdf at 3.2, while

> pnorm(3.2,2,.5)

[1] 0.9918025

evaluates the N (2, 0.25) cdf at 3.2, and

> qnorm(.025,2,.5)

[1] 1.020018

gives the 0.025 quantile of the N (2, 0.25) distribution.

If we have data stored in a vector x, then we can sample values from x, with or

without replacement, using the sample function. For example, sample(x,n,T)

will generate a sample of n from x with replacement, while sample(x,n,F) will

generate a sample of n from x without replacement (note n must be no greater than

length(x) in the latter case).

Sometimes it is convenient to be able to repeat a simulation so the same random

values are generated. For this, you can use the set.seed command. For example,

set.seed(12345) establishes the seed as 12345.

Tabulating Data

The table command is available for tabulating data. For example, table(x) re-

turns a table containing a list of the unique values found in x and their frequency of

occurrence in x. This table can be assigned to a variable via

y <- table(x)

for further analysis (see The Chi-Squared Test section on the next page).

If x and y are vectors of the same length, then table(x,y) produces a cross-

tabulation, i.e., counts the number of times each possible value of (x, y) is obtained,

where x can be any of the values taken in x and y can be any of the values taken in y.

Plotting Data

R has a number of commands available for plotting data. For example, suppose we

have a sample of size n stored in the vector x.

The command hist(x) will provide a frequency histogram of the data where the

cutpoints are chosen automatically by R. We can add optional arguments to hist. The

following are some of the arguments available.

breaks — A vector containing the cutpoints.

freq — A logical variable; when freq=T (the default), a frequency

histogram is obtained, and when freq=F, a density histogram is obtained.

For example, hist(x,breaks=c(-10,-5,-2,0,2,5,10),freq=F) will plot

a density histogram with cutpoints−10,−5,−2, 0, 2, 5, 10, where we have been care-

ful to ensure that min(x) > −10 and max(x) < 10.
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If y is another vector of the same length as x, then we can produce a scatter plot of

y against x via the command plot(x,y). The command plot(x,y,type="l")

provides a scatter plot of y against x, but now the points are joined by lines. The

command plot(x) plots the values in x against their index. The plot(ecdf(x))

command plots the empirical cdf of the data in x.

A boxplot of the data in x is obtained via the boxplot(x) command. Side-by-

side boxplots of the data in x, y, z, etc., can be obtained via boxplot(x,y,z).

A normal probability plot of the values in x can be obtained using the command

qqnorm(x).

A barplot can be obtained using the barplot command. For example,

> h <- c(1,2,3)

> barplot(h)

produces a barplot with 3 bars of heights 1, 2, and 3.

There are many other aspects to plotting in R that allow the user considerable con-

trol over the look of plots. We refer the reader to the manual for more discussion of

these.

Statistical Inference

R has a powerful approach to fitting and making inference about models. Models are

specified by the symbol ~. We do not discuss this fully here but only indicate how to use

this to handle the simple and multiple linear regression models (where the response and

the predictors are all quantitative), the one- and two-factor models (where the response

is quantitative but the predictors are categorical), and the logistic regression model

(where the response is categorical but the predictors are quantitative). Suppose, then,

that we have a vector y containing the response values.

Basic Statistics

The function mean(y) returns the mean of the values in y, var(y) returns the

sample variance of the values in y, and sd(y) gives the sample standard devia-

tion. The command median(y)returns the median of y, while quantile(y,p)

returns the sample quantiles as specified in the vector of probabilities p. For example,

quantile(y,c(.25,.5,.75)) returns the median and the first and third quan-

tiles. The function sort(y) returns a vector with the values in y sorted from smallest

to largest, and rank(y) gives the ranks of the values in y.

The t-Test

For the data in y, we can use the command

> t.test(y,mu=1,alternative="two.sided",conf.level=.95)

to carry out a t-test. This computes the P-value for testing H0 : µ = 1 and forms a

0.95-confidence interval for µ.

The Chi-Squared Test

Suppose y contains a vector of counts for k cells and prob contains hypothesized

probabilities for these cells. Then the command
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> chisq.test(y,p=prob)

carries out the chi-squared test to assess this hypothesis. Note that y could also corre-

spond to a one-dimensional table.

If x and y are two vectors of the same length, then chisq.test(x,y) carries

out a chi-squared test for independence on the table formed by cross-tabulating the

entries in x and y. If we first create this cross-tabulation in the table t using the

table function, then chisq.test(t) carries out this test.

Simple Linear Regression

Suppose we have a single predictor with values in the vector x. The simple linear

regression model E(y | x) = β1 + β2x is then specified in R by y~x. We refer to y~x

as a model formula, and read this as “y is modelled as a linear model involving x.” To

carry out the fitting (which we have done here for a specific set of data), we use the

fitting linear models command lm, as follows. The command

> regexamp <- lm(y~x)

carries out the computations for fitting and inference about this model and assigns the

result to a structure called regexamp. Any other valid name could have been used for

this structure. We can now use various R functions to pick off various items of interest.

For example,

> summary(regexamp)

Call:

lm(formula = y~x)

Residuals:

Min 1Q Median 3Q Max

-4.2211 -2.1163 0.3248 1.7255 4.3323

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5228 1.2176 5.357 4.31e-05 ***

x 1.7531 0.1016 17.248 1.22e-12 ***

--

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘ ’ 1

Residual standard error: 2.621 on 18 degrees of freedom

Multiple R-squared: 0.9429, Adjusted R-squared: 0.9398

F-statistic: 297.5 on 1 and 18 DF, p-value: 1.219e-12

uses the summary function to give us all the information we need. For example, the

fitted line is given by 6.5228 + 1.7531x . The test of H0 : β2 = 0 has a P-value of

1.22 × 10−12, so we have strong evidence against H0. Furthermore, the R2 is given

by 94.29%. Individual items can be accessed via various R functions and we refer the

reader to ?lm for this.
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Multiple Linear Regression

If we have two quantitative predictors in the vectors x1 and x2, then we can proceed

just as with simple linear regression to fit the linear regression model E(y | x1, x2) =
β1 + β2x1 + β2x2. For example, the commands

> regex <- lm(y~x1+x2)

> summary(regex)

fit the above linear model, assign the results of this to the structure regex, and then

the summary function prints out (suppressed here) all the relevant quantities. We read

y~x1+x2 as, “y is modelled as a linear model involving x1 and x2.” In particular,

the F-statistic, and its associated P-value, is obtained for testing H0 : β2 = β3 = 0.
This generalizes immediately to linear regression models with k quantitative pre-

dictors x1, ..., xk . Furthermore, suppose we want to test that the model only involves

x1, ..., xl for l < k. We use lm to fit the model for all k predictors, assign this to

regex, and also use lm to fit the model that only involves l predictors and assign

this to regex1. Then the command anova(regex,regex1) will output the F-

statistics, and its P-value, for testing H0 : βl+1 = · · · = βk = 0.

One- and Two-Factor ANOVA

Suppose now that A denotes a categorical predictor taking two levels a1 and a2. Note

that the values of A may be character in value rather than numeric, e.g., x is a character

vector containing the values a1 and a2, used to denote at which level the correspond-

ing value of y was observed. In either case, we need to make this into a factor A, via

the command

> A <- factor(x)

so that A can be used in the analysis. Then the command

> aov(y~A)

produces the one-way ANOVA table. Of course, aov also handles factors with more

than two levels. To produce the cell means, use the command tapply(y,A,mean).

Suppose there is a second factor B taking 5 levels b1, . . . , b5. If this is the factor B

in R, then the command

> aov(y~A+B+A:B)

produces the two-way ANOVA for testing for interactions between factors A and B. To

produce the cell means, use the command tapply(y,list(A,B),mean). The

command aov(y~A+B) produces the ANOVA table, assuming that there are no inter-

actions.

Logistic Regression

Suppose we have binary data stored in the vector y, and x contains the corresponding

values of a quantitative predictor. Then we can use the generalized linear model com-

mand glm to fit the logistic regression model P(Y = 1 | x) = exp{β1 + β2x}/(1 +
exp{β1 + β2x}). The commands
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> logreg <- glm(y~x,family=binomial)

> summary(logreg)

fit the logistic regression model, assign the results to logreg, and then the summary

command outputs this material. This gives us the estimates of the β i , their standard

errors, and P-values for testing that the β i = 0.

Control Statements and R Programs

A basic control statement is of the form if (expr1) expr2 else expr3, where

expr1 takes a logical value, expr2 is executed if expr1 is T, and expr3 is executed

if expr1 is F. For example, if x is a variable taking value −2, then

> if (x<0) {y <- -1} else {y <- 1}

results in y being assigned the value −1. Note that the else part of the statement can

be dropped.

The command for (name in expr) expr2 executes expr2 for each value

of name in expr1. For example,

> for (i in 1:10) print(i)

prints the value of the variable i as i is sequentially assigned values in {1, 2, . . . ., 10}.
Note that m:n is a shorthand for the sequence (m,m + 1, . . . , n) in R. As another

example,

> for (i in 1:20) y[i] <- 2^i

creates a vector y with 20 entries, where the i th element of y equals 2i .
The break terminates a loop, perhaps based on some condition holding, while

next halts the processing of the current iteration and advances the looping index.

Both break and next apply only to the innermost of nested loops.

Commands in R can be grouped by placing them within braces {expr1; expr2;

...}. The commands within the braces are executed as a unit. For example,

> for (i in 1:20) {print(i); y[i] <- 2^i}; print(y[i])}

causes i to be printed, y[i] to be assigned, and y[i] to be printed, all within a for

loop.

Often when a computation is complicated, such as one that involves looping, it

is better to put all the R commands in a single file and then execute the file in batch

mode. For example, suppose you have a file prog.R containing R code. Then the

command source("pathname/prog.R") causes all the commands in the file to

be executed.

It is often convenient to put comments in R programs to explain what the lines of

code are doing. A comment line is preceded by # and of course it is not executed.

User-Defined Functions

R also allows user-defined functions. The syntax of a function definition is as follows.
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function name <- function(arguments) {

function body;

return(return value);

}

For example, the following function computes the sample coefficient of variation of the

data x.

coef_var <- function(x) {

result <- sd(x)/mean(x);

return(result);

}

Then if we want to subsequently compute the coefficient of variation of data y, we

simply type coef_var(y).

Arrays and Lists

A vector of length m can also be thought of as a one-dimensional array of length m.

R can handle multidimensional arrays, e.g., m × n,m × n × p arrays, etc. If a is a

three-dimensional array, then a[i,j,k] refers to the entry in the (i, j, k)-th position

of the array. There are various operations that can be carried out on arrays and we refer

the reader to the manual for these. Later in this manual, we will discuss the special

case of two-dimensional arrays, which are also known as matrices. For now, we just

think of arrays as objects in which we store data.

A very general data structure in R is given by a list. A list is similar to an array,

with several important differences.

1. Any entry in an array is referred to by its index. But any entry in a list may

be referred to by a character name. For example, the fitted regression coeffi-

cients are referred to by regex$coefficients after fitting the linear model

regex <- lm(y ∼ x1 + x2). The dollar mark ($) is the entry reference

operator, that is, varname$entname indicates the “entname” entry in the list

“varname.”

2. While an array stores only the same type of data, a list can store any R objects.

For example, the coefficients entry in a linear regression object is a nu-

meric vector, and the model entry is a list.

3. The reference operators are different: arr[i] refers to the i th entry in the array

arr, and lst[[i]] refers to the i th entry in the list lst. Note that i can be

the entry name, i.e., lst$entname and lst[[’entname’]] refer to the

same data.

Examples

We now consider some examples relevant to particular sections or examples in the main

text. To run any of these codes, you first have to define the functions. To do this, load
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the code using the source command. Arguments to the functions then need to be

specified. Note that lines in the listings may be broken unnaturally and continue on the

following line.

EXAMPLE B.1.1 Bootstrapping in Example 6.4.2

The following R code generates bootstrap samples and calculates the median of each

of these samples. To run this code, type y <- bootstrap_median(m,x), where

m is the number of bootstrap samples, x contains the original sample, and the medians

of the resamples are stored in y. The statistic to be bootstrapped can be changed by

substituting for median in the code.

# Example B.1.1

# function name: bootstrap_median

# parameters:

# m resample size

# x original data

# return value:

# a vector of resampled medians

# description: resamples and stores its median

bootstrap_median <- function(m,x) {

n <- length(x);

result <- rep(0,m);

for(i in 1:m) result[i] <- median(sample(x,n,T));

return(result);

}

EXAMPLE B.1.2 Sampling from the Posterior in Example 7.3.1

The following R code generates a sample of from the joint posterior in Example 7.3.1.

To run a simulation, type

post <- post_normal(m,x,alpha0,beta0,mu0,tau0square)

where m is the Monte Carlo sample size and the remaining arguments are the hyperpa-

rameters of the prior. The result is a list called (in this case) post, where post$mu

and post$sigmasq contain the generated values of µ and σ 2, respectively. For

example,

> x <- c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,

1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899, 4.9233,

8.3223, 7.9486);

> post <- post_normal(10**4,x,2,1,4,2)

> z <- sqrt(post$sigmasq)/post$mu

runs a simulation as in Example 7.3.1, with N = 104.

# Example B.1.2

# function name: post_normal

# parameters:

# m sample size
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# x data

# alpha0 shape parameter for 1/sigma^2

# beta0 rate parameter for 1/sigma^2

# mu0 location parameter for mu

# tau0square variance ratio parameter for mu

# returned values:

# mu sampled mu

# sigmasq sampled sigmasquare

# description: samples from the posterior distribution

# in Example 7.3.1

#

post_normal<-function(m,x,alpha0,beta0,mu0,tau0square){

# set the length of the data

n <- length(x);

# the shape and rate parameters of the posterior dist.

# alpha_x = first parameter of the gamma dist.

# = (alpha0 + n/2)

alpha_x <- alpha0 + n/2

# beta_x = the rate parameter of the gamma dist.

beta_x <- beta0 + (n-1)/2 * var(x) + n*(mean(x)-mu0)**2/

2/(1+n*tau0square);

# mu_x = the mean parameter of the normal dist.

mu_x <- (mu0/tau0square+n*mean(x))/(n+1/tau0square);

# tausq_x = the variance ratio parameter of the normal

# distribution

tausq_x <- 1/(n+1/tau0square);

# initialize the result

result <- list();

result$sigmasq <- 1/rgamma(m,alpha_x,rate=beta_x);

result$mu <- rnorm(m,mu_x,sqrt(tausq_x *

result$sigmasq));

return(result);

}

EXAMPLE B.1.3 Calculating the Estimates and Standard Errors in Example 7.3.1

Once we have a sample of values from the posterior distribution of ψ stored in psi,

we can calculate the interval given by the mean value of psi plus or minus 3 standard

deviations as a measure of the accuracy of the estimation.

# Example B.1.3

# set the data

x <- c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,

1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899,

4.9233, 8.3223, 7.9486);

post <- post_normal(10**4,x,2,1,4,2);

# compute the coefficient of variation
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psi <- sqrt(post$sigmasq)/post$mu;

psi_hat <- mean(psi <= .5);

psi_se <- sqrt(psi_hat * (1-psi_hat))/sqrt(length(psi));

# the interval

cq <- 3

cat("The three times s.e. interval is ",

"[",psi_hat-cq*psi_se, ", ", psi_hat+cq*psi_se,"]\n");

EXAMPLE B.1.4 Using the Gibbs Sampler in Example 7.3.2

To run this function, type

post<-gibbs_normal(m,x,alpha0,beta0,lambda,mu0,

tau0sq,burnin=0)

as this creates a list called post, where post$mu and post$sigmasq contain the

generated values of µ and σ 2, respectively. Note that the burnin argument is set to

a nonnegative integer and indicates that we wish to discard the first burnin values of

µ and σ 2 and retain the last m. The default value is burnin=0.

# Example B.1.4

# function name: gibbs_normal

# parameters

# m the size of posterior sample

# x data

# alpha0 shape parameter for 1/sigma^2

# beta0 rate parameter for 1/sigma^2

# lambda degree of freedom of Student’s t-dist.

# mu0 location parameter for mu

# tau0sq scale parameter for mu

# burnin size of burn in. the default value is 0.

#

# returnrd values

# mu sampled mu’s

# sigmasq sampled sigma^2’s

# description: samples from the posterior in Ex. 7.3.2

#

gibbs_normal <- function(m,x,alpha0,beta0,lambda,mu0,

tau0sq,burnin=0) {

# initialize the result

result <- list();

result$sigmasq <- result$mu <- rep(0,m);

# set the initial parameter

mu <- mean(x);

sigmasq <- var(x);

n <- length(x);

# set parameters
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alpha_x <- n/2 + alpha0 + 1/2;

# loop

for(i in (1-burnin):m) {

# update v_i’s

v <- rgamma(n,(lambda+1)/2,rate=((x-mu)**2/

sigmasq/lambda+1)/2);

# update sigma-square

beta_x <-(sum(v*(x-mu)**2)/lambda+(mu-mu0)**2/

tau0sq)/2+beta0;

sigmasq<- 1/rgamma(1,alpha_x,rate=beta_x);

# update mu

r <- 1/(sum(v)/lambda+1/tau0sq);

mu <- rnorm(1,r*(sum(v*x)/lambda+mu0/tau0sq),

sqrt(r*sigmasq));

# burnin check

if(i < 1) next;

result$mu[i] <- mu;

result$sigmasq[i] <- sigmasq;

}

result$psi <- sqrt(result$sigmasq)/result$mu;

return(result);

}

EXAMPLE B.1.5 Batching in Example 7.3.2

The following R code divides a series of data into batches and calculates the batch

means. To run the code, type y<-batching(k,x) to place the consecutive batch

means of size k, of the data in the vector x, in the vector y.

# Example B.1.5

# function name: batching

# parameters:

# k size of each batch

# x data

# return value:

# an array of the averages of each batch

# description: this function separates the data x into

# floor(length(x)/k) batches and returns the array of

# the averages of each batch

batching <- function(k,x) {

m <- floor(length(x)/k);

result <- rep(0,m);

for(i in 1:m) result[i] <- mean(x[(i-1)*k+(1:k)]);

return(result);

}
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EXAMPLE B.1.6 Simulating a Sample from the Distribution of the Discrepancy Sta-

tistic in Example 9.1.2

The following R code generates a sample from the discrepancy statistic specified in

Example 9.1.2. To generate the sample, type y<-discrepancy(m,n) to place a

sample of size m in y, where n is the size of the original data set. This code can be

easily modified to generate samples from other discrepancy statistics.

# Example B.1.6

# function name: discrepancy

# parameters:

# m resample size

# n size of data

# return value:

# an array of m discrepancies

# description: this function generates m discrepancies

# when the data size is n

discrepancy <- function(m,n) {

result <- rep(0,m);

for(i in 1:m) {

x <- rnorm(n);

xbar <- mean(x);

r <- (x-xbar)/sqrt((sum((x-xbar)**2)));

result[i] <- -sum(log(r**2));

}

return(result/n);

}

EXAMPLE B.1.7 Generating from a Dirichlet Distribution in Example 10.2.3

The following R code generates a sample from a Dirichlet(α1, α2, α3, α4) distribution.

To generate from this distribution, first assign values to the vector alpha and then

type ddirichlet(n,alpha), where n is the sample size.

# Example B.1.7

# function name: ddirichlet

# parameters:

# n sample size

# alpha vector(alpha1,...,alphak)

# return value:

# a (n x k) matrix. rows are i.i.d. samples

# description: this function generates n random samples

# from Dirichlet(alpha1,...,alphak) distribution

ddirichlet <- function(n,alpha) {

k <- length(alpha);

result <- matrix(0,n,k);

for(i in 1:k) result[,i] <- rgamma(n,alpha[i]);

for(i in 1:n) result[i,] <- result[i,] /

sum(result[i,]);
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return(result);

}

Matrices

A matrix can be thought of as a collection of data values with two subscripts or as a

rectangular array of data. So if a is a matrix, then a[i,j] is the (i, j)-th element in

a. Note that a[i,] refers to the i th row of a and a[,j] refers to the j th column of

a. If a matrix has m rows and n columns, then it is an m × n matrix, and m and n are

referred to as the dimensions of the matrix.

Perhaps the simplest way to create matrices is with cbind and rbind commands.

For example,

> x<-c(1,2,3)

> y<-c(4,5,6)

> a<-cbind(x,y)

> a

x y

[1,] 1 4

[2,] 2 5

[3,] 3 6

creates the vectors x and y, and the cbind command takes x as the first column

and y as the second column of the newly created 3 × 2 matrix a. Note that in the

printout of a, the columns are still labelled x and y, although we can still refer to

these as a[,1] and a[,2]. We can remove these column names via the command

colnames(a)<-NULL. Similarly, the rbind command will treat vector arguments

as the rows of a matrix. To determine the number of rows and columns of a matrix a,

we can use the nrow(a) and ncol(a) commands. We can also create a diagonal

matrix using the diag command. If x is an n-dimensional vector, then diag(x) is

an n × n matrix with the entries in x along the diagonal and 0’s elsewhere. If a is an

m × n matrix, then diag(a) is the vector with entries taken from the main diagonal

of a. To create an n × n identity matrix, use diag(n).

There are a number of operations that can be carried out on matrices. If matrices

a and b are m × n, then a+b is the m × n matrix formed by adding the matrices

componentwise. The transpose of a is the n × m matrix t(a), with i th row equal

to the i th column of a. If c is a number, then c*a is the m × n matrix formed by

multiplying each element of a by c. If a is m × n and b is n × p, then a%*%b is the

m × p matrix product (Appendix A.4) of a and b. A numeric vector is treated as a

column vector in matrix multiplication. Note that a*b is also defined when a and b

are of the same dimension, but this is the componentwise product of the two matrices,

which is quite different from the matrix product.

If a is an m × m matrix, then the inverse of a is obtained as solve(a). The

solve command will return an error if the matrix does not have an inverse. If a is a

square matrix, then det(a) computes the determinant of a.

We now consider an important application.
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EXAMPLE B.1.8 Fitting Regression Models

Suppose the n-dimensional vector y corresponds to the response vector and the n × k

matrix V corresponds to the design matrix when we are fitting a linear regression model

given by E(y | V ) = Vβ. The least-squares estimate of β is given by b as computed in

b<-solve(t(V)%*%V)%*%t(V)%*%y

with the vector of predicted values p and residuals r given by

> p<-V%*%b

> r<-y-p

with squared lengths

> slp<-t(p)%*%p

> slr<-t(r)%*%r

where slp is the squared length of p and slr is the squared length of r. Note that

the matrix solve(t(V)%*%V) is used for forming confidence intervals and tests for

the individual β i . Virtually all the computations involved in fitting and inference for

the linear regression matrix can be carried out using matrix computations in R like the

ones we have illustrated.

Packages

There are many packages that have been written to extend the capability of basic R. It is

very likely that if you have a data analysis need that cannot be met with R, then you can

find a freely available package to add. We refer the reader to ?install.packages

and ?library for more on this.

B.2 Using Minitab
All the computations found in this text were carried out using Minitab. This statistical

software package is very easy to learn and use. Other packages such as SAS or R (see

Section B.1) could also be used for this purpose.

Most of the computations were performed using Minitab like a calculator, i.e., data

were entered and then a number of Minitab commands were accessed to obtain the

quantities desired. No programming is required for these computations.

There were a few computations, however, that did involve a bit of programming.

Typically, this was a computation in which numerous operations had to be performed

many times, and so looping was desirable. In each such case, we have recorded here the

Minitab code that we used for these computations. As the following examples show,

these programs were never very involved.

Students can use these programs as templates for writing their own Minitab pro-

grams. Actually, the language is so simple that we feel that anyone using another

language for programming can read these programs and use them as templates in the

same way. Simply think of the symbols c1, c2, etc. as arrays where we address the

i th element in the array c1 by c1(i). Furthermore, there are constants k1, k2, etc.
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A Minitab program is called a macro and must start with the statement gmacro

and end with the statement endmacro. The first statement after gmacro gives a name

to the program. Comments in a program, put there for explanatory purposes, start with

note.

If the file containing the program is called prog.txt and this is stored in the root

directory of a disk drive called c, then the Minitab command

MTB> %c:/prog.txt

will run the program. Any output will either be printed in the Session window (if you

have used a print command) or stored in the Minitab worksheet.

More details on Minitab can be found by using Help in the program. We provide

some examples of Minitab macros used in the text.

EXAMPLE B.2.1 Bootstrapping in Example 6.4.2

The following Minitab code generates 1000 bootstrap samples from the data in c1,

calculates the median of each of these samples, and then calculates the sample variance

of these medians.

gmacro

bootstrapping

base 34256734

note - original sample is stored in c1

note - bootstrap sample is placed in c2 with each one

note overwritten

note - medians of bootstrap samples are stored in c3

note - k1 = size of data set (and bootstrap samples)

let k1=15

do k2=1:1000

sample 15 c1 c2;

replace.

let c3(k2)=median(c2)

enddo

note - k3 equals (6.4.5)

let k3=(stdev(c3))**2

print k3

endmacro

EXAMPLE B.2.2 Sampling from the Posterior in Example 7.3.1

The following Minitab code generates a sample of 104 from the joint posterior in Ex-

ample 7.3.1. Note that in Minitab software, the Gamma(α, β) density takes the form

(β−α/0 (α))xα−1e−x/β . So to generate from a Gamma(α, β) distribution, as defined

in this book, we must put the second shape parameter equal to 1/β in Minitab.

gmacro

normalpost

note - the base command sets the seed for the random

note numbers
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base 34256734

note - the parameters of the posterior

note - k1 = first parameter of the gamma distribution

note = (alpha_0 + n/2)

let k1=9.5

note - k2 = 1/beta

let k2=1/77.578

note - k3 = posterior mean of mu

let k3=5.161

note - k4 = (n + 1/(tau_0 squared) )^(-1)

let k4=1/15.5

note - main loop

note - c3 contains generated value of sigma**2

note - c4 contains generated value of mu

note - c5 contains generated value of coefficient of

variation

do k5=1:10000

random 1 c1;

gamma k1 k2.

let c3(k5)=1/c1(1)

let k6=sqrt(k4/c1(1))

random 1 c2;

normal k3 k6.

let c4(k5)=c2(1)

let c5(k5)=sqrt(c3(k5))/c4(k5)

enddo

endmacro

EXAMPLE B.2.3 Calculating the Estimates and Standard Errors in Example 7.3.1

We have a sample of 104 values from the posterior distribution of ψ stored in C5.

The following computations use this sample to calculate an estimate of the posterior

probability that ψ ≤ 0.5 (k1), as well as to calculate the standard error of this estimate

(k2), the estimate minus three times its standard error (k3), and the estimate plus three

times its standard error (k4).

let c6=c5 le .5

let k1=mean(c6)

let k2=sqrt(k1*(1-k1))/sqrt(10000)

let k3=k1-3*k2

let k4=k1+3*k2

print k1 k2 k3 k4
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EXAMPLE B.2.4 Using the Gibbs Sampler in Example 7.3.2

The following Minitab code generates a chain of length 104 values using the Gibbs

sampler described in Example 7.3.2.

gmacro

gibbs

base 34256734

note - data sample is stored in c1

note - starting value for mu.

let k1=mean(c1)

note - starting value for sigma**2

let k2=stdev(c1)

let k2=k2**2

note - lambda

let k3=3

note - sample size

let k4=15

note - n/2 + alpha_0 + 1/2

let k5=k4/2 +2+.5

note - mu_0

let k6=4

note - tau_0**2

let k7=2

note - beta_0

let k8=1

let k9=(k3/2+.5)

note - main loop

do k100=1:10000

note - generate the nu_i in c10

do k111=1:15

let k10=.5*(((c1(k111)-k1)**2)/(k2*k3) +1)

let k10=1/k10

random 1 c2;

gamma k9 k10.

let c10(k111)=c2(1)

enddo

note - generate sigma**2 in c20

let c11=c10*((c1-k1)**2)

let k11=.5*sum(c11)/k3+.5*((k1-k6)**2)/k7 +k8

let k11=1/k11

random 1 c2;

gamma k5 k11.

let c20(k100)=1/c2(1)

let k2=1/c2(1)

note - generate mu in c21

let k13=1/(sum(c10)/k3 +1/k7)
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let c11=c1*c10/k3

let k14=sum(c11)+k6/k7

let k14=k13*k14

let k13=sqrt(k13*k2)

random 1 c2;

normal k14 k13.

let c21(k100)=c2(1)

let k1=c2(1)

enddo

endmacro

EXAMPLE B.2.5 Batching in Example 7.3.2

The following Minitab code divides the generated sample, obtained via the Gibbs sam-

pling code for Example 7.3.2, into batches, and calculates the batch means.

gmacro

batching

note - k2= batch size

let k2=40

note - k4 holds the batch sums

note - c1 contains the data to be batched (10000 data values)

note - c2 will contain the batch means (250 batch means)

do k10=1:10000/40

let k4=0

do k20=0:39

let k3=c1(k10+k20)

let k4=k4+k3

enddo

let k11=floor(k10/k2) +1

let c2(k11)=k4/k2

enddo

endmacro

EXAMPLE B.2.6 Simulating a Sample from the Distribution of the Discrepancy Sta-

tistic in Example 9.1.2

The following code generates a sample from the discrepancy statistic specified in Ex-

ample 9.1.2.

gmacro

goodnessoffit

base 34256734

note - generated sample is stored in c1

note - residuals are placed in c2

note - value of D(r) are placed in c3

note - k1 = size of data set

let k1=5
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do k2=1:10000

random k1 c1

let k3=mean(c1)

let k4=sqrt(k1-1)*stdev(c1)

let c2=((c1-k3)/k4)**2

let c2=loge(c2)

let k5=-sum(c2)/k1

let c3(k2)=k5

enddo

endmacro

EXAMPLE B.2.7 Generating from a Dirichlet Distribution in Example 10.2.3

The following code generates a sample from a Dirichlet(α1, α2, α3, α4) distribution,

where α1 = 2, α2 = 3, α3 = 1, α4 = 1.5.

gmacro

dirichlet

note - the base command sets the seed for the random

note number generator (so you can repeat a simulation).

base 34256734

note - here we provide the algorithm for generating from

note a Dirichlet(k1,k2,k3,k4) distribution.

note - assign the values of the parameters.

let k1=2

let k2=3

let k3=1

let k4=1.5

let k5=K2+k3+k4

let k6=k3+k4

note - generate the sample with i-th sample in i-th row

note of c2, c3, c4, c5, ....

do k10=1:5

random 1 c1;

beta k1 k5.

let c2(k10)=c1(1)

random 1 c1;

beta k2 k6.

let c3(k10)=(1-c2(k10))*c1(1)

random 1 c1;

beta k3 k4.

let c4(k10)=(1-c2(k10)-c3(k10))*c1(1)

let c5(k10)= 1-c2(k10)-c3(k10)-c4(k10)

enddo

endmacro




