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Abstract

We introduce a p-value function that derives from the continuity

inherent in a wide range of regular statistical models. This provides

confidence bounds and confidence sets, tests, and estimates that

all reflect model continuity. The development starts with the

scalar-variable scalar-parameter exponential model and extends to

the vector-parameter model with scalar interest parameter, then to

general regular models, and then it provides references for testing

vector interest parameters.[**AU: Preceding sentence has been

rephrased slightly—OK?**] The procedure does not use sufficiency

but directly applies to general models, although reproducing sufficiency

based [**AU: OK to rephrase the preceding as “although

it reproduces sufficiency-based”?**] results when sufficiency is

present. The emphasis is on the coherence of the full procedure, and

technical details are not emphasized.
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[**AU: Reminder—AR house style is to typeset vectors and matrices as bold

and nonitalic, whereas variables are typeset as italic (but not bold). Operators, functions,

and abbreviations should be neither bold nor italic. Quantities that fall into two or more

categories are left to your discretion but must be consistent throughout the manuscript.

Please let me know if any changes need to be made.**]

1. INTRODUCTION

p-values have been around for many years with various names and many purposes. [**AU:

Could the preceding sentence be rephrased as “The p-value has...” to avoid

starting the sentence with the lower-case p?**] In essence, a p-value should record

just where a data value is located relative to a parameter value of interest, or where it is

with respect to a hypothesis of interest, and should do this in statistical units. Thus, in

a simple situation such as the one shown in Figure 1, the observed p-value for assessing

θ = θ0 is p0 = p0(θ0) = 0.061 or, equivalently, p0 = 6.1%; this means no more and no less

than that the data value has 6.1% of potential values to the left of it and 93.9% to the right

of it, relative to the distribution with parameter value θ = θ0.

Figure 1

An observed data point y0, with proportions left and right of the data under the model with

θ = θ0. The observed p-value p0 = 6.1% gives just the statistical position of the data value relative

to the null value θ = θ0. [**AU: It is the author’s responsibility to obtain permissions

for figures being adapted or reprinted from previous publications. Please check this

and provide citation information as applicable for each of your figures. Thank you.**]

The p-value concept can be dated from Fisher (1956), or in an implicit sense even

from Bayes (1763). More recently, various risks have been identified with the routine

use of p-values, for example with journal editorial decision making (Sterling 1959), with

how they can be directly misused (Ioannidis 2005), and with how some journals have

decided to discontinue their use (Woolston 2015). And almost concurrently, the American

Statistical Association has provided a policy statement on p-values (Wasserstein & Lazar

2016), seemingly unaware of the early and definitive considerations of Sterling (1959). Yet

the p-value remains unequivocally as the core of modern statistical inference; we discuss

this in some detail.[**AU: OK to change to “I” throughout for consistency with

the “I” in the Reminiscences section?**]

How can Fisher’s introduction of such a profound and then core concept [**AU: OK

to rephrase as “profound and, at the time, fundamental concept”? Or, if you

want to emphasize that the introduction was a long time ago, we could say,

e.g., “How can Fisher’s introduction more than 60 years ago of such a profound

and fundamental concept...”**] have lead to such extensive recent dialog? His early

and foundational research put great emphasis on p-values (Fisher 1925, 1937, 1956), and

yet there were obvious computational barriers for most applications. The use of a threshold

such as the 5% value soon became common in practice. And then there was the Neyman &

Pearson (1933) approach to hypothesis testing, which did make reference to a strict dividing

point between the Accept and the Reject of the hypothesis testing approach; this lead to

almost all mathematical statistics textbooks recommending the α or 5% value for the strict

dividing point, and it became part of the larger culture surrounding statistics. The article

by Sterling (1959), however, came as an early shock to many and yet to some[**AU: OK

to remove?**] with the sudden realization that things had gone badly wrong. The early
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article by Sterling (1959) reminds us now that things have remained in a disturbed state

and that p-values need a major reassessment in the statistics community.

But there are changes coming from science! In the recently asserted discovery of

the Higgs boson, there is reference to 5-σ, which, for a standard normal variable, is the

point exceeded with a probability of approximately 1 in 3.5 million or, equivalently, with

probability 0.0000003. In the actual science context, there are scintillation events occurring

randomly in time, and under special experimental conditions, the arrival rate could be

higher, indicating the presence of a new particle. In its simplest version, this can be modeled

by a Poisson variable with mean rate of events θ0, and under the experimental conditions it

can be modeled by a Poisson variable with mean θ larger than θ0, as attributable to[**AU:

OK to change to “in which case the events would be attributable to”**] the new

particle.

If 5-σ were also part of this simplified scenario, the p-value relative to no experimental

effect would be p0 = 0.9999997, or the complement of the 0.0000003 just mentioned. This

would say[**AU: OK to change to “mean”?**] that, under the assumption of no

experimental effect, the data value was large, far to the right in the null distribution,

as indicated by the value near 1 recorded as 0.9999997, and yet would fall short of 1

by the 1 in 3.5 million[**AU: OK to rephrase as “it would fall short of 1 by

the aforementioned 1-in-3.5-million probability”?**]. By referring to statistical

position, we are recording both far left versus far right and the statistical amount by which

it[**AU: OK to change to “the observed quantity” or “the data”?**] deviates from

being totally extreme. This direct pragmatic recording of data position avoids specialized

references to one-sided intervals, two-sided intervals, or other sometimes misleading names,

and can be viewed as the primal version of p-value; various specialized versions are then

immediately available if needed or wanted.

But this recording of data position as just described is totally different from a common

practice of making a decision at some 5% level, or even making a decision at the 1-in-

3.5-million level. Our approach here is to describe pragmatically what has happened and

thus record just where the data value is with respect to the parameter value of interest,

avoiding decision statements or procedural rules and leaving evaluation to the judgment of

the appropriate community of researchers. Some early comments of Rozeboom (1960) speak

quite succinctly to this as “the fallacy of the null-hypothesis significance test” [**AU: If

this is a direct quote, please provide a page number; otherwise, the quotation

marks will be removed.**] or NHST[**AU: Does “NHST” refer just to the null-

hypothesis significance test, or to Rozeboom’s fallacy?**] and then mention an

epigram from philosophy that the accept-reject[**AU: AR house style discourages

quotation marks used in an introductory or ironic sense, so they have been

removed from the preceding term and elsewhere in the text.**] paradigm is the

“glory of science and the scandal of philosophy,”[**AU: Please provide some citation

information for this quote.**] meaning that it is the glory of statistics and the scandal

of logic and reason.

In Section 2, we examine the use of p-values for the scalar case just described and show

how the usual concepts of statistical inference are available unequivocally from the p-value

concept. Then, in Section 3, we consider scalar parameters in a widely general context

having regularity and familiar continuity. We see that the regularity conditions fully reduce

the problem to the scalar variable scalar parameter case[**AU: As intended, or change

to “scalar variable/scalar parameter”?**]. As a consequence, the usual concepts
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for statistical inference are available, immediately and unequivocally; thus, we have tests,

confidence bounds, and estimation. Vector parameters of interest are discussed in Section

4.
Figure 2

The observed data point y0 and the corresponding p-value function p0(θ) for the example

underlying Figure 1. [**AU: It is the author’s responsibility to obtain permissions for

figures being adapted or reprinted from previous publications. Please check this and

provide citation information as applicable for each of your figures. Thank you.**]

2. INFERENCE FROM A p-VALUE FUNCTION

2.1. The p-Value Function

Consider a scalar variable y and scalar parameter θ with an available statistical model

having distribution function F (y; θ). The p-value function from data y0 is

p(θ; y0) = F (y0; θ), (1)

and as a function of θ, it records the statistical position of the data y0 in the distribution

with parameter value θ.[**AU: Preceding sentence has been rephrased slightly—

OK?**] As such, it is the observed value of the distribution function F and can be written

as p(θ; y0) = F 0(θ), just the %-age[**AU: OK to change to “percentage”?**] position

of the data with respect to a parameter value θ. For the example indicated by Figure 1

and with, say, a Normal [**AU: Is it common in the field to capitalize types of

distributions (e.g., Normal, Uniform), or could these be made lower case per

house style?**] error distribution, we have

p(θ; y0) = Φ{(y0 − θ)/σ0)} (2)

where Φ(z) is the standard Normal distribution function (see Figure 2).

2.2. Confidence Lower Bound Function

Consider the p-value function (Equation 1) rewritten as β = F (y0; θ) and solve for θ as a

function of β, obtaining

θ̂β = θ̂(β; y0). (3)

We call this the confidence bound function and plot it in Figure 3 for the simple example;

this has the identical functional form to that in Figure 2 but the axes are relabeled.

Figure 3

The confidence level β and the corresponding confidence bound θ̂(β) for the example

corresponding to Figure 1. [**AU: It is the author’s responsibility to obtain permissions

for figures being adapted or reprinted from previous publications. Please check this

and provide citation information as applicable for each of your figures. Thank you.**]

From standard distribution theory we know that p(y; θ) = F (y; θ) has the Uniform(0, 1)

distribution when y has the distribution labeled θ. Accordingly,

β = Pr{p(y; θ) in (0, β); θ} = Pr{θ̂β < θ < ∞; θ}, (4)
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based on the 1 ↔ 1 mapping that pairs (0, β) with (θ̂β ,∞); it thus says that[**AU: OK

to change to just “thus” or “therefore”?**] the interval (θ̂β ,∞) encloses the true θ

with probability β and is thus a β confidence interval.

The preceding can be used to form confidence intervals with different error values at

the two ends. For example, an 85% confidence interval is given by ( θ̂95%, θ̂10%) with a

5% error allowance for the lower bound and a 10% allowance for the upper bound. Such

asymmetrical confidence intervals can be of use in special contexts.

Sometimes it is convenient to think of all confidence bounds at once. For this[**AU:

OK to be more explicit, e.g., “For this case,”?**] view p(θ; y0) as a right tail

distribution or survivor function for θ. As such, the corresponding quantile points are

the lower confidence points just described. Thus, we can view p(θ; y0) as a confidence

distribution function. As such [**AU: Could this be changed to something more

specific, e.g., “In this form”?**], it arose (Fisher 1930) as a fiducial distribution, later

to be renamed “confidence” by Neyman (1937) on the basis of a technicality in its use.

2.3. Median Estimate

Estimation is often based on unbiasedness, a consequence of nice properties[**AU: Is

this a term of art in this field?**] of the expectation operator. But recent theory

can go deeper and now makes available actual distributions for departure of data from

interest value. Accordingly, we define the median estimate as the statistical mid-value of

the possibilities, and the median estimate is given as θ̂50% (see Figure 4);[**AU: The

quantity labeled in Figure 4 is θ̂med – as intended?**] half the time it is larger and

half the time it is smaller than the true value.
Figure 4

The median estimate θ̂med for the example mentioned with Figure 1. [**AU: It is the author’s

responsibility to obtain permissions for figures being adapted or reprinted from

previous publications. Please check this and provide citation information as

applicable for each of your figures. Thank you.**]

3. THE LIKELIHOOD FUNCTION

3.1. Likelihood and Log-Likelihood

The p-value and confidence bound methods just described provide a framework for fully

presenting model-data information. We have recorded[**AU: OK to change to more

specific “presented”?**] the methods for the scalar-variable and scalar-parameter case,

but the pattern can be extended widely and embedded in quite general models. In this

section we discuss the likelihood function; this function directly provides key information

concerning the parameter but also provides the primary tool for going from the scalar case

to the more general cases.

Consider a statistical model f(y; θ) with data y0. The likelihood function L(θ; y0) is the

observed value of the density model but is left indeterminate to a multiplicative positive

constant:

L0(θ) = L(θ; y0) = cf(y0; θ), (5)

where c is an arbitrary positive constant whose presence forces the likelihood to not contain

irrelevant information. Also, the likelihood function typically has a very wide range of
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values, and accordingly is widely used in logarithmic form as log-likelihood:

`0(θ) = `(θ; y0) = a + log f(y0; θ), (6)

where a is an arbitrary positive constant. With independent data, likelihood functions are

combined by multiplication and log-likelihood functions by addition.

Figure 5

The observed log-likelihood for θ for the example mentioned with Figure 1. The maximum value

occurs at θ̂0, and the second derivative ̂θθ = −`θθ(θ̂0) is the negative second derivative at the

maximum and is called the observed information; the subscripts designate differentiation. The rise

in log-likelihood from θ to θ̂0 is `(θ̂0) − `(θ) and is designated r2/2. [**AU: It is the author’s

responsibility to obtain permissions for figures being adapted or reprinted from

previous publications. Please check this and provide citation information as

applicable for each of your figures. Thank you.**]

3.2. Simple Departure Measures

Consider a statistical model and data with a log-likelihood function as in Figure 5. The

log-likelihood function gives key information as to where the data point is with respect to a

parameter value θ. Such log-likelihoods in nice contexts have a unique maximum at a point

designated θ̂ and, at least locally, are convex downward. The curvature at the maximum,

as described by the negative second derivative at θ̂, is called the observed information and

is given by

̂θθ = −{∂/∂θ}{∂/∂θ}`(θ)|θ̂0 . (7)

If it is small in value it says[**AU: Here and later in the sentence, OK to replace

with “it means”, or else just a comma?**] the likelihood is flat and uninformative

concerning the true value of the parameter, and if it large it is saying the likelihood is tight

around the maximum and quite informative concerning the true value; in this sense it is

measuring the amount of information provided by the observed log-likelihood.

If we are interested in assessing where the observed log-likelihood is with respect to

some possible true value θ, we could examine the departure θ̂ − θ, but this needs to be

calibrated by the scaling of the log-likelihood, thus giving

q = ̂
1/2
θθ (θ̂ − θ). (8)

This version uses the curvature at the maximum to scale θ̂−θ and thus makes it independent

of the units of measurement for the parameter; it is called the standardized Wald departure

(Wald 1949), although other standardizations can be used. Calculations from the central

limit theorem and related limit results show that q has a limiting standard Normal

distribution when θ is the parameter value for the distribution that produced the observed

likelihood function.

Another way of assessing where the observed log-likelihood is with respect to a possible

true value θ is to use the rise in log-likelihood from the value at θ to that at θ̂, given as
̂̀− ` = `(θ̂)− `(θ) = r2/2, which is called the log-likelihood ratio. The next step is to solve

for the r value implicit in the preceding expression but attach the sign of the departure

θ̂−θ; this gives what is called the signed likelihood root:[**AU: Per house style, “SLR”

acronym has been removed because it was not used again. **]

r = sign(θ̂ − θ)[2{`(θ̂) − `(θ)}]1/2. (9)
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Central limit–type calculations also show that r has the standard Normal distribution

when θ is the true value for the distribution that produced the observed log-likelihood.

Often a standard Normal distribution for r gives a better approximation than that for q.

We will return to this.[**AU: Please specify which section.**]

4. DISTRIBUTIONS USING STATISTICAL QUANTITIES

4.1. Laplace Integration

Distributions in statistics are often generated by many small contributions that force the

logarithm of a nonnegative function g(y) to grow in an additive manner at rate O(n). This

has profound effects that are manifest, for example, in the central limit theorem and in

an integration method of Pierre-Simon Laplace (1774), and then reintroduced to statistics

by (Mosteller & Wallace 1964); see also[**AU: OK to replace with “, with further

work by” and remove parentheses around the following references?**] (Tierney

& Kadane 1986, Tierney et al. 1989).[**AU: Preceding sentence has been rephrased

slightly—OK?**] The method can provide an accurate value for the full integral
∫

g(y)dy

on R1 or more generally on Rp—of course, suitable smoothness and asymptotic properties

are needed. As part of this, the norming constant becomes available, which converts g(y)

to a density. The idea is remarkably simple: Treat the function g(y) as if it were Normal in

shape. The fitted Normal uses the location ŷ that maximizes the function log g(y) and uses

the scaling provided by the curvature ̂yy(ŷ) = −(∂/∂y)(∂/∂y) log g(y)|ŷ at the maximizing

value. [**AU: Preceding sentences have been rephrased slightly—OK?**]

The logarithm of the function g(y) can be expanded in a series about the maximizing

value ŷ in units provided by ̂yy, thus using z = |̂yy|1/2(y − ŷ);

log g(y) = log g(ŷ) − z2/2 + a3z
3/6n1/2 + a4z

4/24n + O(n−3/2), (10)

where the terms of log g(y) are O(n). This expansion makes the modified terms in z drop

off in powers of n−1/2, and where here only terms to order O(n−1) are retained. [**AU:

Preceding sentences have been edited slightly—OK?**]The function g(y) can then

be rewritten as

g(y) = g(ŷ)(2π)1/2 ∙ φ(z) exp{a3z
3/6n1/2 + a4z

4/24n} ∙ {1 + O(n−3/2)} (11)

= g(ŷ)(2π)1/2 ∙ φ(z){1 + a3z
3/6n1/2 + a4z

4/24n + a2
3z

6/72n}{1 + O(n−3/2)},

where φ(z) is the standard Normal density and higher order terms in the exponent have

been brought down keeping only those to order O(n−1).

Now consider integration with respect to y. Using dy = |̂yy|−1/2dz and Ez4 = 3, Ez6 =

5 ∙ 3 for the standard Normal, we obtain

∫
g(y)dy = g(ŷ)(2π)1/2|̂yy|

−1/2{1 + (3a4 + 5a2
3)/24n}{1 + O(n−3/2)},

= exp{k/n}g(ŷ)(2π)1/2|̂yy|
−1/2 ∙ {1 + O(n−3/2)}, (12)

where k/n = (3a4 + 5a2
3)/24n is a constant that has been moved to the exponent and |̂yy|

has been written in determinantal form anticipating the vector case. For that vector case,

the calculations are analogous, giving the integral exp{k/n}g(ŷ)(2π)p/2|̂yy|−1/2 where p is

the dimension of the variable y; the constant k is more complicated but typically is not
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needed in most applications. The Normal integration would be over a large bounded region

with the tails then bounded by an appropriate integrable function. The accuracy can be

very good provided there are no surprises such as a log-density that is not convex downward,

although the method is remarkably forgiving.

4.2. The p∗-Formula

Consider a statistical model f(y; θ) with data of dimension n and parameter θ of dimension

p. We investigate the density g(θ̂; θ) for the maximum likelihood value θ̂ and assume that

the initial model has asymptotic properties in terms of increasing n. The distribution g(θ̂; θ)

will arise as a conditional distribution given an approximate ancillary, locally conditional

on certain properties that describe the form or shape of the conditional density. Where

this conditioning comes from is described later[**AU: Specify which section?**] but

it is widely available, is free of the parameter to second-order accuracy, and leads to third-

order inference accuracy. Because of the freedom of this conditioning from the parameter

θ,[**AU: OK to rephrase the preceding as “Because this conditioning is free

from the parameter θ”?**] we have the fundamental result that likelihood from the

initial variable y agrees with likelihood from the conditioned variable θ̂ = θ̂(y). If we

restrict our attention to this conditional or marginal distribution, we will see that its density

expression is directly available from Laplace integration.

To determine the form of g(θ̂; θ), we first attach the correct and available likelihood to

each data point, obtaining

g(θ̂; θ)dθ̂ =
exp{k/n}
(2π)p/2

exp{−r2/2}a(θ̂)dθ̂, (13)

where r2/2 = `(θ̂; θ̂) − `(θ; θ̂) is the log-likelihood ratio at θ̂ and accomplishes the

ascribing of likelihood.[**AU: OK to change to “ascribes likelihood.”?**] Consider

a data point θ̂ = θ0 and let θ̂0 be the corresponding maximum likelihood value. An

expansion about the data point, performed by Cakmak et al. (1998) for the scalar case

and Cakmak et al. (1994) for the vector case, shows that the model can be reexpressed

using a reparameterization that makes it a location model to second order and a location

model to the third order[**AU: OK to change to “a location model to second

and third order”?**] save[**AU: OK to use more specific word, perhaps

“excepting”?**] certain O(n−1/2) coefficients for terms quadratic-in-data and quadratic-

in-parameter.[**AU: Would it be acceptable to edit this to “terms that are

quadratic in data and parameter”?**] It follows that the data point θ̂ = θ0 is also

the maximum density point under θ̂0. And it then follows from Laplace integration that

a(θ̂) = |θ̂θ̂|
1/2. And then from the location model property, we have that |θ̂θ̂|

1/2 = |θθ|1/2,

or is proportional to it, with factor 1+ δ/n if quad-quad terms are present. We thus obtain

the p∗ formula

g(θ̂; θ)dθ̂ =
exp{k/n}
(2π)p/2

exp{`(θ; θ̂) − `(θ̂; θ̂)}|θθ(θ̂)|1/2dθ̂ (14)

of Barndorff-Nielsen (1991), which is third-order accurate for the distribution of the

maximum likelihood value; the formula is expressed fully in terms of statistical quantities,

namely the log-likelihood ratio r2/2 and the information ̂ = θθ(θ̂).[**AU: Preceding

sentence has been edited slightly—OK?**] We will see next[**AU: OK to change
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to “show in the next section”?**] that this directly produces much of statistical

distribution theory.

4.3. The Saddlepoint Approximation

Exponential models provide a wide spectrum of possible models for statistics. An

exponential model has the form f(y; θ) = exp{ϕ′(θ)u(y) + k(θ)}h(y);,[**AU: Semicolon

plus comma as intended?**] and can be a continuous or discrete model. In full

generality, h(y) can be a density function, and the exponential factor then provides a tilt

of h(y) based on the variable u(y), with canonical parameter ϕ(θ) and then a normalizing

constant k(θ). Many common distributions can be seen to have this exponential form. We

see that the parameter ϕ determines the form of the distribution, so we would normally

have ϕ and θ in one-one correspondence. In a related way, the variable u(y) is the variable

directly affected by change in the parameter ϕ; we hardly need sufficiency for this reduction.

If we now apply Barndorff-Nielsen’s p∗-approximation we obtain Equation 14, but now

with r2(u; ϕ)/2 and ϕϕ(ϕ̂) obtained relative to the exponential model. For this,[**AU:

Replace with something more specific, e.g., “this situation”?**] we then have the

score equation

∂`(ϕ; u)

∂ϕ
= `ϕ(ϕ; u) = 0. (15)

For fixed u, if we solve for ϕ, we obtain the maximum likelihood value ϕ̂(u) as a function

of the variable u; for fixed ϕ, if we solve for u, we obtain the mean value τ(ϕ) = E{u; ϕ}
of the score variable. This is an intriguing result with the maximum likelihood map as the

inverse of the mean value map!

Now if we differentiate the score equation (Equation 15) with respect to u and include

ϕ = ϕ̂, we obtain

`ϕϕ(ϕ̂; u) ∙
∂ϕ̂

∂u
+ I = 0,

where I is the identity matrix; this can be rewritten as

∂u

∂ϕ̂
= ϕϕ(ϕ̂; u),

allowing a rewrite of Equation 14 as the saddlepoint formula,

g(u; ϕ)du =
exp{k/n}
(2π)p/2

exp{−r2(u; ϕ)/2}|ϕϕ(ϕ̂)|−1/2du. (16)

This was developed by Daniels (1954) and Barndorff-Nielsen & Cox (1979), initially by

integration in the complex transform space. Again, at each data point, the formula uses

only the simple statistical quantities: the log-likelihood rise r2/2 and the information

curvature ̂ = θθ(θ̂). Of course, we also have available the switch of variables given by

|ϕϕ(ϕ̂)|−1/2du = |ϕϕ(ϕ̂)|+1/2dϕ̂. [**AU: Preceding sentence has been rephrased

slightly—OK?**]

4.4. Saddlepoint with Nuisance Parameter

Consider an exponential model with p-dimensional canonical parameter ϕ and a

d-dimensional parameter of interest ψ(ϕ); for convenience we suppose there is a

www.annualreviews.org • The Insight to Modern Statistical Inference 9



complementing nuisance parameter λ available so that θ = (ψ, λ) is in one-one

correspondence with the canonical parameter ϕ. This model could be as simple as the

Normal (μ; σ2) with interest parameter μ. The exponential distribution can then be written

in the saddlepoint form (Equation 16). [**AU: Parts of the preceding paragraph have

been rephrased slightly—OK?**]

For testing a value ψ = ψ0, for the interest parameter, we have the existence of[**AU:

A common statement in the field, or replace with just “have”?**] a second-order

ancillary (Fraser & Reid 1995, 2001) under ψ = ψ0. To examine this ancillary, we use

the observed nuisance parameter surface, which is the plane L0 = {u : λ̃(u) = λ̃0} where

the nuisance parameter constrained maximum likelihood estimate λ̃ = λ̂ψ0 is equal to its

observed value λ̃0 under ψ = ψ0 or ϕ = ϕ̃. The ancillary contours are cross sectional to

this plane L0 and have a unique distribution as projected to this plane L0.

The conditional density given the ancillary, S, depends only on λ to the order of the

ancillary, and its value at the maximum likelihood point λ̃0 is available from the p∗ formula

in Section 4.2:

h(λ̃0; λ|S)dλ̃ = exp{k/n}(2π)−(p−d)/2|(λλ)(ϕ̃)|1/2d(λ̃)

= exp{k/n}(2π)−(p−d)/2|(λλ)(ϕ̃)|−1/2ds, (17)

where s is the canonical variable in correspondence with the parameter ψ. Then, dividing

Equation 16 (with ϕ = ϕ̃) by Equation 17, we obtain the ancillary density (Equation 18)

recorded on the plane L0 and with the same dimension as ψ:

g(s)ds = exp{k/n}(2π)−d/2 exp{`(ϕ̃; ϕ̂) − `(ϕ̂; ϕ̂)}|ϕϕ(ϕ̂)|−1/2|(λλ)(ϕ̃)|1/2ds. (18)

This ancillary density is uniquely determined by steps that retain continuity of the model

in the derivation of the marginal distribution. It thus provides the unique null density for

assessing a value ψ = ψ0, and anyone suggesting a different null distribution would need to

justify inserting discontinuity where none was present (see Fraser et al. 2010).

5. CALCULATING P-VALUES

5.1. Scalar Parameter Model

Consider an exponential model with a scalar parameter, and an observed value y0 for the

original variable or u0 = u(y0) for the canonical variable. The saddlepoint formula gives

the highly accurate density approximation (Equation 16), which uses just[**AU: OK

to replace with “only”?**] likelihood and observed information at each value of the

canonical variable u. This then directly leads to the scalar-case inference discussed in Section

2. For assessing the parameter ϕ we then need only the p-value function p(ϕ; u0) = F (u0; ϕ),

which is available immediately by numerical integration of Equation 16,

p(ϕ) =

∫ y

−∞
h(y)du (19)

=

∫ y

−∞

exp{k/n}
(2π)1/2

exp{`(ϕ; ϕ̂) − `(ϕ̂; ϕ̂)}|ϕϕ(ϕ̂)|−1/2du,

and even the constant exp{k/n} cancels in the ratio of full to partial integrals.

The saddlepoint formula also allows for analytic integration. For this, we make a change

of variable in the integral (Equation 19), going from the given u to the signed likelihood

10 Fraser



root r. We start with r2/2 = {`(ϕ̂; ϕ̂) − `(ϕ; ϕ̂)} and take differentials:

rdr = d{`(ϕ̂; ϕ̂) − `(ϕ; ϕ̂)} = (ϕ̂ − ϕ)du, (20)

[**AU: Just checking that the first “d” after the equals sign in the bottom

equation is, in fact, a differential d—if not, I will restore italic formatting.**]

where the differential of the first argument of `(ϕ̂; ϕ̂) is zero using Equation 15. We then

substitute in Equation 18, obtaining

p(ϕ) =

∫ y

−∞

1

(2π)1/2
exp{`(ϕ; ϕ̂) − `(ϕ̂; ϕ̂)}

r

q
dr, (21)

where q = 
1/2
ϕϕ (ϕ̂)(ϕ̂ − ϕ) is the standardized Wald maximum likelihood departure. Then,

checking that r/q is 1 + O(n−1/2) and taking it to the exponent, we obtain

p(ϕ) =

∫ r

0

exp{k/n}
(2π)1/2

exp{−r2/2 + log(r/q)}. (22)

And then, completing the square, determining that the extra term in the expanded

binomial is constant O(n−1), using r∗ = r + r−1 log(q/r), and verifying that dr∗ and dr are

proportional to third order gives

p(ϕ) =

∫ r

0

1

(2π)1/2
exp{−[r + r−1 log(q/r)]2/2}dr (23)

= φ(r∗){1 + O(n−3/2} (24)

[**AU: Just checking—single open parenthesis in Equation 24 as intended?**]

This shows that r∗ is a Normal z version of the p-value for assessing ϕ; it is the

Barndorff-Nielsen (1991) version of the third-order distribution function for the scalar

parameter exponential model. An earlier Lugannani & Rice (1980) version gives comparable

accuracy.[**AU: Preceding sentences edited slightly—OK?**]

5.2. Scalar Interest in the Vector Context

Now consider an exponential model with p-dimensional canonical parameter ϕ and a scalar

parameter ψ = ψ(ϕ) of interest; the case with a vector interest parameter is discussed by

Davison et al. (2013) and Fraser et al. (2016). As the null density for testing ψ = ψ0, we have

the saddlepoint-based ancillary density (Equation 18) on the line L0 = {u : λ̃(u) = λ̃0},
where the nuisance parameter constrained maximum likelihood estimate λ̃ = λ̂ψ0 is equal

to its observed value λ̃0 under ψ = ψ0 or ϕ = ϕ̃.

The p-value function p(ψ0; s) = F (s; ψ0) is then available immediately by numerical

integration as with Equation 16, but here on the line L0,

p(ψ0) =

∫ s

−∞
g(s)ds (25)

=

∫ s

−∞
exp{k/n}(2π)−1/2 exp{`(ϕ̃; ϕ̂) − `(ϕ̂; ϕ̂)}|ϕϕ(ϕ̂)|−1/2|(λλ)(ϕ̃)|1/2ds,

where ϕ̂ and ϕ̃ are the full and constrained maximum likelihood values for a point s on

L0, and (λλ)(ϕ̃) is the related nuisance information appropriately scaled to the underlying
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exponential parameterization. If ψ is a parameter with rotation properties, then the line

L0 can rotate with change in the tested value ψ0.

Again as in the scalar case (Equation 24), the saddlepoint formula admits an analytic

third-order integration of the expression in Equation 25. For this we follow the pattern

provided by Equations 21 and 22 and rewrite r∗ = r + r−1 log(Q/r) with

Q = sign(ψ̂ − ψ0)|χ̂ − χ|
|ϕϕ(ϕ̂)|1/2

|(λλ)(ϕ̃)|1/2
. (26)

This new version of r∗ gives third-order inference for ψ = ψ0. But it does need a rotated

linear parameter χ that is tangent to ψ at ϕ̃ and can be presented as

χ(ϕ) = ψ(ϕ̃) + ψϕ(ϕ̃)(ϕ − ϕ̃)/|ψϕ(ϕ̃|,

where ψϕ = (∂/∂ϕ)ψ(ϕ) is the gradient of ψ. For a range of examples, the reader is directed

to Fraser et al. (2009).

6. p-VALUES: USE AND ABUSE

We view a p-value as recording the statistical position of data with respect to a parameter

value; as such, it is just a respected statistical tool. However, the way this tool gets

used in the broader scientific and social context has led to its present prominence and

notoriety. The adverse uses include mechanical decision making, editorial decision making,

p-hacking, and much more—activities that are not or should not be part of its domain

of recognition. This review is focused on contexts where a statistical model is given and

data are available. A large and important area of application addresses general hypotheses

and theories that are to be tested. This typically involves finding appropriate variables

that could be sensitive to possible departures from the true model form and then working

with the corresponding model and data. This area of seeking[**AU: OK to change to

“Seeking”?**] the appropriate variables to measure departures from the theory or model

is of fundamental importance, and we do not directly address it here; it covers[**AU:

Change to something more specific, e.g., “topics in this area include”?**] both

the scientist in context and the statistical imperatives.[**AU: Parts of the preceding

paragraph have been reworded slightly—OK?**]

7. INVITED REMINISCENCES

The Editors have requested a page or so of reminiscences, perhaps to give some context

to the views presented above. I come from Stratford, a small town in Southern Ontario,

and a family that was almost all medical for multiple generations; obviously I was headed

for medicine. But mathematics courses were always fun and easy and appealing, and the

marks[**AU: OK to change to American “grades”, or do you prefer to keep

as is?**] were OK, too. Split courses meant you could do the math for both halves and

not be too bored, and that even in the later years of high school. And then university

opportunities for studying mathematics, for the short term at least, were highly attractive.

The curriculum at the time allowed study in mathematics almost exclusively, with just a

smattering of physics and chemistry, to get through the first two years; for obvious reasons,

I included premeds in my last year, but opportunities to go to Princeton Mathematics
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proved too attractive. They were targeted on algebra and analysis. [**AU: Parts of the

preceding paragraph have been reworded slightly—OK?**]

Princeton was intellectual, liberating, and supportive. And a course away from

the algebra and analysis was challenging, looking at all approaches, conforming and

nonconforming.[**AU: Would it be acceptable to reword the preceding sentence

as “Apart from the algebra and analysis, a challenging course looked at

all approaches, conforming and nonconforming.”? Also, specify what the

approaches were to?**] It was led by John Tukey, and the other senior statistician was

Sam Wilks—both were brilliant and well able to handle their places with the mathematicians

in the Department and in the nearby Institute of Advanced Studies. There were subtle forces

to join the statistics group, not all that strange as I had had probability at Toronto and

had worked there for actuaries evaluating pension plans (the big data of the time.) John

Nash was around with a game theory group, but I never saw him; we had been on the same

Putnam exam the year I went to Princeton. [**AU: Parts of the preceding paragraph

have been reworded slightly—OK?**]

After two years and a routine thesis on asymptotics of discrete distributions, I returned

to Canada and the University of Toronto Department of Mathematics. But there was a

strange shock: I had to formally immigrate to Canada, as I had left the country as a British

subject, Canada had changed, and I hadn’t been there to acquire the new citizenship. So

I am a formal legal immigrant, like many of my colleagues. And a further surprise awaited

my return from Princeton: Fisher was visiting Toronto that year, in another department,

Genetics, but he came to Math on Saturdays to give his developing views on inference,

[**AU: OK to insert, e.g., “which was”?**] an intellectual and inscrutable delight.

We really did not interact much then, but subsequently, I successfully pursued a search for

a domain where fiducial would have partial to full validity. He was to return to Toronto in

Math in 1964 but died that spring in Australia.

Princeton provided interest[**AU: OK to change to either “fostered interest”

or “provided opportunities”?**] in many different directions of that time: game

theory, nonparametrics, fiducial, multivariate analysis (a strong interest of Wilks), and

much more. I worked in nonparametrics and multivariate for awhile, and then residual

curiosity concerning fiducial theory drew me back to the apparent internal challenges of

that approach; I had been an RA[**AU: OK to change to “a research assistant”?**]

under Tukey, who gave an IMS[**AU: Please spell out this acronym.**] talk on the

topic one summer.[**AU: Parts of the preceding paragraph have been reworded

slightly—OK?**]

Many of Fisher’s examples of fiducial had transformation group properties for the

relationship between parameter and error. This seemed a fruitful direction and was

developed in two monographs. There were no real problems with that direction, as the

probabilities were directed at the error; if there was an observational question it could be

resolved by checking what the error probabilities said in the group context. After working

in an area, one acquires some identity with that area; thus, I became associated with

nonparametrics and then with fiducial. The latter still has a strong stigma and senior

people are currently working on that stigma: BFF for Bayes Frequentist and Fiducial,

also known as Best Friends Forever.[**AU: Please clarify what BFF is—a group of

researchers?**]

The stigma on fiducial is all rather strange, particularly as it represents an all too

common reaction in the field of statistics. If something is different and not part of a statistics
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person’s regular agenda, it is viewed as misguided and even wrong. Certainly this applies to

fiducial, but it also applies to the original Bayes, to Fisher’s concepts, to the introduction of

Neyman-Pearson, then to decision theory, and more recently to other directions. These tend

to be personal attacks rather than analyses of a developing discipline; an example is the

discussion to[**AU: OK to change to “following”?**] the claim that valid Bayes might

be just confidence in disguise (Fraser 2011). Even the current reexamination of p-values

can be subject to the same criticisms.
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