QMC for MCMC

Radu Craiu University of Toronto

Conferinta SPSR, Aprilie 2007

Outline

- General MCMC.
- Antithetic coupling and Stratified Sampling.
- Negative Association.
- Latin Hypercube Sampling.
- Implementation for the Gibbs sampler.
- Multiple-Try Metropolis (MTM).
- Randomized QMC for MTM.
- Future directions in MCMC.

General MCMC

We are interested in computing for $f: \mathbb{R}^d \to \mathbb{R}$

$$I = \int_{\Omega \subset R^d} f(x)\pi(x)dx.$$

- π is generally known only up to a proportionality constant so direct calculation is impossible.
- MCMC idea: create a Markov chain whose stationary distribution is π . Sample from π using the realizations of this Markov chain.
- **■** Issues:
 - burn-in long enough?
 - chain is mixing well?

The Gibbs Sampler

Suppose π is a d-variate distribution with one-dimensional conditionals $\pi_i(x_i|x_{[-i]})$ from which it is possible to sample for all $i=1,\ldots,d$. The Gibbs sampler goes through the following steps:

Step 0 Initialize the chain by sampling/selecting $x_0 \in \mathbb{R}^d$.

Step t For each $1 \le i \le d$ update X_{t-1} to X_t by sampling from

$$X_{t;i} \sim \pi_i(\cdot | x_{t;1}, x_{t;2}, \dots, x_{t;i-1}, x_{t-1;i+1}, \dots, x_{t-1;d}).$$

Alternative implementations

- One can (in fact should!) update simultaneously subvector (x_{i1}, \ldots, x_{ik}) of (x_1, \ldots, x_d) if the corresponding conditional distribution can be sampled directly.
- One does not have to go through the components of x in the order $x_1 \to x_2 \ldots \to x_d$. Any order would do, in fact the order can be selected at random in each step.

The Metropolis-Hastings Sampler

Given a target π and a proposal distribution T the Metropolis-Hastings sampler is performed in the following manner:

Step 0 Initialize the chain by sampling/selecting $x_0 \in \mathbb{R}^d$.

Step t:1 Sample a proposal $y \sim T(\cdot|x_{t-1})$; the proposal distribution may depend on the current state of the chain, x_{t-1} .

Step t:2 Compute the acceptance ratio $r_t = \min \left\{ 1, \frac{\pi(y)T(x_{t-1}|y)}{\pi(x_{t-1})T(y|x_{t-1})} \right\}$.

Step t:3 Sample independently $U_t \sim \text{Uniform}(0,1)$. If $U_t \leq r_t$ then $X_t = y$; otherwise $X_t = x_{t-1}$.

Sample processing

- Given the set of realizations $x_0, x_1, \ldots, x_m, x_{m+1}, \ldots, x_{m+n}$ we discard the first m samples (m is called burn-in time) and we use for inference the last n samples obtained. In many cases m can be HUGE!.
- The desired integral is approximated by

$$\hat{I} = \frac{1}{n} \sum_{j=1}^{n} f(x_{m+j}).$$

The efficiency of the estimator depends on the size of $Cov(f(X_{m+t}), f(X_{m+t+s}))$. The auto-covariance can be reduced via: reparametrization of the distribution π , choice of the proposal distribution T, antithetic variates, etc.

Antithetic principle for classical Monte Carlo

- Find \hat{I} , \hat{I}' , estimators of I such that $Corr(\hat{I}, \hat{I}') \leq 0$.
- For K=2 processes use the antithetic quantile coupling $X_i^{(1)} = F^-(U), X_i^{(2)} = F^-(1-U).$
- Take $\hat{I} = \sum_{i=1}^{n} X_i^{(1)}$ and $\hat{I}' = \sum_{i=1}^{n} X_i^{(2)}$.
- Use $\frac{1}{2}(\hat{I} + \hat{I}')$ as the estimator for I (Hammersley and Morton, 1955).
- Stratification of the input variables state space into two strata. What if we want to use more than two strata?

Antithetic variates for k MCMC processes

We want to estimate $I = E_{\pi} f(X)$ using

Process 1
$$\to f(X_{m+1}^{(1)})$$
 ... $f(X_{m+n}^{(1)})$
Process 2 $\to f(X_{m+1}^{(2)})$... $f(X_{m+n}^{(2)})$
...
Process K $\to f(X_{m+1}^{(K)})$... $f(X_{m+n}^{(K)})$
If $\gamma_s = \text{Cov}(f(X_{m+r}^{(j)}), f(X_{m+r+s}^{(j)}))$
 $\beta_s = \text{Cov}(f(X_{m+r}^{(i)}), f(X_{m+r+s}^{(j)}))$.

Let $\hat{I} = \frac{1}{nK} \sum_{r,j} f(X_{m+r}^{(j)})$. We denote \hat{I}_{ind} if the parallel processes are independent.

$$\frac{V(\hat{I})}{V(\hat{I}_{ind})} = 1 + (K - 1) \frac{\beta_0 + 2\sum_{r=1}^{n-1} \beta_r (1 - \frac{r}{n})}{\gamma_0 + 2\sum_{r=1}^{n-1} \gamma_r (1 - \frac{r}{n})}$$

In general, $\gamma_r \geq 0$ so if $\beta_s \leq 0$ then we obtain variance reduction.

Sampling from the MC path Burn-in Period Correlation induced by transition kernel Antithetically coupled Path 2 Correlation induced by transition kernel Antithetically coupled Path k Correlation induced by transition kernel

Negative Association

The random variables $X_1, X_2, ..., X_K$ are said to be negatively associated (NA) if for every pair of disjoint subsets A_1, A_2 of $\{1, 2, ..., K\}$

$$Cov(f_1(X_i, i \in A_1), f_2(X_j, j \in A_2)) \le 0$$

whenever f_1 and f_2 are increasing in each of the arguments (Joag-Dev and Proschan, 1983).

The union of two independent sets, each of which is NA, is NA.

NA and MCMC

A generic MCMC algorithm can be written in the general form

$$X_t = \psi(X_{t-1}, W_t),$$

where ψ is a deterministic map and all randomness is absorbed in the random seed $W^{(t)}$. We can think of W as being a vector of Uniform(0,1) random variables. In the case of Gibbs samplers, ψ is monotone in at least some of the W's.

Suppose $W_t = (U_t, V_t)$ and ψ is monotone in both U_t and V_t . We can antithetically couple K parallel MCMC processes by generating at the t-th iteration K-dimensional random vectors $(U_t^{(1)}, \ldots, U_t^{(K)})$ and $(V_t^{(1)}, \ldots, V_t^{(K)})$ which are NA and update each chain using $X_t^{(i)} = \psi(X_{t-1}^{(i)}, U_t^{(i)}, V_t^{(i)})$ for any $1 \le i \le K$.

Iterative Latin Hypercube Sampling

Latin Hypercube Sampling is a traditional method to stratify the input variables used in Monte Carlo experiments. The iterative variant of the classical construction is as follows:

Step 0 Draw
$$U^{(0)} = (U_1^{(0)}, ..., U_K^{(0)})$$
 iid Uniform $(0, 1)$.

Step t Let $\sigma^{(t)}$ be a random permutation of $\{0,1,...,K-1\}$ then take $U^{(t)}=\frac{1}{K}(\sigma^{(t)}+U^{(t-1)}),\,t=1,...,T.$

- Marginally, $U_i^{(T)} \sim \text{Uniform}(0,1)$, $\forall T, i$.
- Corr $(U_1^{(T)}, U_2^{(T)}) = -\frac{1}{K-1} \left(1 \frac{1}{K^{2T}}\right) \stackrel{T \to \infty}{\longrightarrow} -\frac{1}{K-1}.$
- $U_1^{(T)}, U_2^{(T)},, U_K^{(T)}$ are NA, $\forall T > 0$.

Example K=3

 $U_1^{(0)}, U_2^{(0)}, U_3^{(0)} \sim \text{Uniform}(0, 1).$

$$U_1^{(T)} = \frac{1}{K} + \frac{2}{K^2} + \frac{0}{K^3} + \dots + \frac{1}{K^T} + \frac{U_1^{(0)}}{K^T}.$$

$$U_2^{(T)} = \frac{0}{K} + \frac{1}{K^2} + \frac{2}{K^3} + \dots + \frac{2}{K^T} + \frac{U_2^{(0)}}{K^T}.$$

$$U_3^{(T)} = \frac{2}{K} + \frac{0}{K^2} + \frac{1}{K^3} + \dots + \frac{0}{K^T} + \frac{U_3^{(0)}}{K^T}.$$

Slice Sampling: $\pi(x) = C \cdot f(x)$

Simple Illustration

- We want $E_{\pi}[X]$ where $\pi(x) \propto e^{-e^x}$.
- Slice sampling using the change of variable $v = -\log(u/x^2)$.
- Step 1: $v \sim p(v|x) \propto e^{-v} I_{\{v \geq e^x\}} dv$
- Step 2: $x \sim p(x|v) \propto I_{\{x < log(v)\}} dx$.
- Together $X_{t+1} = \psi(X_t, \xi_1, \xi_2) = \xi_1 \log(e^{X_t} \log(1 \xi_2))$, where ξ_1 and ξ_2 are i.i.d. Uniform(0, 1).

Simulation Results

Quasi-Monte Carlo (QMC)

- QMC is a de-randomized MC.
- QMC methods focus on the unit hypercube for uniform and stratified sampling.
- Features of interest: equi-distribution, high-uniformity, technically known as low discrepancy.
- The sequences do not have to be random, in fact they can be completely deterministic.
- More often randomized versions of QMC (denoted RQMC) algorithms are used.
- Adding noise to a deterministic method allows the estimation of the Monte Carlo error. (i.e. $Var(\hat{I})$).

QMC and RQMC

If we construct the LHS using at t=1

$$U_i^{(1)} = \frac{\sigma(i) + 0.5}{K}, \ \forall 1 \le i \le K$$

then the (iterative) hypercube sampling is deterministic.

The random variables $U_1^{(0)}, \ldots, U_K^{(0)} \sim \text{Uniform}(0, 1)$ used in our construction results in allowing each component of $U^{(1)}$ to be anywhere inside the intervals (i/K, (i+1)/K) for $0 \le i \le K-1$.

RQMC for MH

- The antithetic coupling described before fails in the case of M-H algorithms.
- Due to accept-reject behavior, the NA between processes cannot be preserved.
- A different use of RQMC methods is allowed via the Multiple-Try Metropolis

Multiple-Try Metropolis

- Suppose T is such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$.
- Draw K trial proposals Y_1, \ldots, Y_K from $T(y|x^{(t)})$. Compute $w(y_j, x^{(t)}) = \pi(y_j) T(x^{(t)}|y_j) \lambda(x^{(t)}, y_j)$ for each j. (we need only $\lambda(x,y) = \lambda(y,x)$)
- Select Y among the K proposals with probability $w(y_j, x^{(t)}) / \sum_{i=1}^K w(y_i, x^{(t)}), j = 1, \dots, K.$
- Draw $x_1^*, ..., x_{K-1}^* \sim T(\cdot|y)$ and let $x_K^* = x^{(t)}$.
- Accept $x^{(t+1)} = y$ with generalized acceptance probability

$$r_g = \min \left\{ 1, \frac{w(y_1, x^{(t)}) + \ldots + w(y_K, x^{(t)})}{w(x_1^*, y) + \ldots + w(x_K^*, y)} \right\}.$$

Multiple-Correlated-Try Metropolis

- Suppose we sample K trial proposals Y_1, \ldots, Y_K from $\tilde{T}(y_1, \ldots, y_K | x^{(t)})$ where $\int \tilde{T}(y_1, \ldots, y_K | x^{(t)}) dy_2 \ldots dy_K = T(y_1 | x^{(t)}).$
- The algorithm proceeds as in the independent case with one exception.
- Draw $(X_1^*, \dots, X_{K-1}^*)$ variates from the conditional transition kernel $\tilde{T}(x_1, \dots, x_{K-1}|y, x_K = x^{(t)})$ and let $X_K^* = x^{(t)}$
- We have quite a bit of freedom in choosing \tilde{T} as long as we can perform the blue step.

Random Walk Multiple Try Metropolis

- For multivariate targets a common choice is the Random Walk Metropolis.
- $Y_1,\ldots,Y_k \sim N_d(x_t;\Sigma).$
- Idea: Stratifying the sample of proposals produces a more structured search of the space "around X_t ".

Korobov rule

Choose an integer $a \in \{1, \dots, K-1\}$ and let

$$P_K = \left\{ \frac{i-1}{K} (1, a, \dots, a^{r-1}) \mod 1, i = 1, \dots, K \right\}.$$

This type of point set can be randomized by generating a random vector \mathbf{v} uniformly in $[0,1)^r$, and adding it to each point of P_K (modulo 1). That is, let $\tilde{P}_K = \{\tilde{\mathbf{u}}_i, i = 1, \dots, K\}$, where

$$\tilde{\mathbf{u}}_i = (\mathbf{u}_i + \mathbf{v}) \bmod 1.$$

Figure 1: Two-dimensional Korobov rule with K=1024 and a=139.

Example: Lupus Data

Table 1: The number of latent membranous lupus nephritis cases, the numerator, and the total number of cases, the denominator, for each combination of the values of the two covariates.

	IgA						
IgG3-IgG4	0	0.5	1	1.5	2		
-3.0	0/ 1	-	-	-	-		
-2.5	0/3	-	-	-	-		
-2.0	0/7	-	-	-	0/1		
-1.5	0/6	0/1	-	-	-		
-1.0	0/6	0/1	0/1	-	0/1		
-0.5	0/4	-	-	1/1	-		
0	0/3	-	0/1	1/1	-		
0.5	3/4	-	1/1	1/1	1/1		
1.0	1/1	-	1/1	1/1	4/4		
1.5	1/1	-	-	2/2	-		

The Model

- $logit\ P(Y_i = 1) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$ where $X_i^T = (1, X_{i1}, X_{2i})$ is the vector of covariates for the *i*-th individual.
- The prior for $\beta = (\beta_0, \beta_1, \beta_2)^T$ is trivariate normal with zero mean and variance diag $(100^2, 100^2, 100^2)$.
- The posterior density is then proportional to

$$\pi(\beta|x,y) \propto \prod_{j=0}^{2} \frac{e^{-0.5\beta_{j}/100^{2}}}{100\sqrt{2\pi}} \prod_{i=1}^{55} \left[\frac{\exp(X_{i}^{T}\beta)}{1 + \exp(X_{i}^{T}\beta)} \right]^{y_{i}} \left[\frac{1}{1 + \exp(X_{i}^{T}\beta)} \right]$$

Simulation Results

- We report for β_1 and $p_{25} = 1_{\{\beta_1 > 25\}}$, the ratios $R = \frac{\text{MSE}_{\text{anti}}}{\text{MSE}_{\text{ind}}}$ and $R = \frac{\text{MSE}_{\text{qmc}}}{\text{MSE}_{\text{ind}}}$
- If we denote by b_{ij} the j^{th} sample point drawn in the i^{th} replicate from the posterior distribution of β_1 then, using $\bar{b}_{..} = \frac{\sum_{ij} b_{ij}}{MN}$ and $\bar{b}_{i.} = \frac{\sum_{j} b_{ij}}{N}$ for all i = 1, ..., M the MSE is defined as

$$MSE = (\bar{b}_{..} - E[\beta_1 | data])^2 + \frac{\sum_i (b_{i.} - b_{..})^2}{(M - 1)}.$$

Similar calculations can be done for p_{25} .

Table 2: Values of R for β_1/p_{25} in the logit example.

	Antithetic			QMC		
$K \backslash \sigma$	2	3	4	2	3	4
3	0.92/0.92	0.90/0.86	0.99/0.95	-	-	-
4	0.94/0.87	0.88/0.88	0.91/0.89	-	-	-
5	0.98/0.96	0.81/0.81	0.89/0.86	-	-	-
6	0.91/0.86	0.86/0.78	0.95/0.92	-	-	-
8	0.81/0.70	0.75/0.69	0.83/0.80	0.69/0.72	0.61/0.60	0.59/0.56
16	0.87/0.81	0.97/0.94	0.91/0.88	0.81/0.81	0.82/0.84	0.76/0.75

Monte Carlo: What Else is Hot?

- Adaptive MCMC: how can we change the transition kernel for an MCMC algorithm "on the go". Problems: the adaptation has to take into account a number of the samples already produced so the process loses its Markovian property.
- Sequential Monte Carlo.

state equation:
$$x_t \sim q_t(\cdot|x_{t-1},\theta)$$

observation equation:
$$y_t \sim f_t(\cdot|x_t,\phi)$$

where y_t are observations arriving sequentially, x_t are the "state variables". Of interest is the "current" posterior distribution of x_t

$$\pi_t(x_t) \propto \int q_t(x_t|x_{t-1}) f_t(y_t|x_t) \pi_{t-1}(x_{t-1}) dx_{t-1}.$$

Places to go and see more

- 1. Web page of Christiane Lemieux (Waterloo): http://www.math.uwaterloo.ca/~clemieux/
- 2. Web page of Jun Liu (Harvard): http://www.people.fas.harvard.edu/~junliu/
- 3. Web page of Art Owen (Stanford): http://www-stat.stanford.edu/~owen/
- 4. I will post this talk on my website: http://fisher.utstat.toronto.edu/craiu/