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General MCMC

[0 We are interested in computing f¢r: R — R

. /Q  f@r(a)d.

[1 7 is generally known only up to a proportionality constantisect
calculation is impossible.

[1 MCMC idea: create a Markov chain whose stationary distraouis
. Sample fromr using the realizations of this Markov chain.

[1 Issues:

e burn-in long enough?

\ e chain is mixing well? /
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The Gibbs Sampler

Supposer is ad-variate distribution with one-dimensional conditionals
m;(wi|z[—;) from which it is possible to sample for dl=1,...,d. The
Gibbs samplegoes through the following steps:

Step O Initialize the chain by sampling/selecting € RY.

Step ¢t For eachl < < d updateX;_; to X; by sampling from

Xt;z’ ~ 7Tz'('|55t;17 Lt:2y 0y Lt5—1 Lt—1554+15 - - l’t—l;d)-
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Alternative implementations

[1 One can (in facshould) update simultaneousblubvector
(i1, ..., x) Of (x1,...,24) If the corresponding conditional
distribution can be sampled directly.

[1 One does not have to go through the componenisiofthe order
x1 — To...— xgq. Any order would do, in facthe order can be
selected at random in each step.
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The Metropolis-Hastings Sampler

Given a targetr and a proposal distributiofi the Metropolis-Hastings
samplens performed in the following manner:

Step O Initialize the chain by sampling/selecting € R<.

Step t:1 Sample groposal y ~ T'(-|z:—1); the proposal distribution may
depend on the current state of the chain,; .

Step t:2 Compute theacceptance ratio ; = min {1, W(Z; (ty_)lT)(qf(tgj;Ly_)l) }

Step t:3 Sample independently; ~ Uniform(0, 1). If U; < r, then
X; = y; otherwiseX; = x;_1.

\_ /
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Sample processing

[J Given the set of realizationg, x1, ..., ZTm, Tmii,-- -, Tmin WE
discard the firstn samples#. is called burn-in time) and we use for
Inference the last samples obtainedn many cases: can be
HUGEL.

[1 The desired integral is approximated by

n

~ 1
I = ” Zf(merj)-
j=1

[1 The efficiency of the estimator depends on the size of
Cov(f(Xpat), f(Xmatrs)). The auto-covariance can be reduced
via: reparametrization of the distribution choice of the proposal

\ distribution7’, antithetic variatesetc. /
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Antithetic principle for classical Monte
Carlo

Find I, I’, estimators of such that Coitl, I') < 0.

For K=2 processes use thatithetic quantile coupling
xW=r-),x® =r-1-0).

Take/ =" XY andl’ =", X2
USG%(IA—I— I") as the estimator faf (Hammersley and Morton, 1955).

Stratification of the input variablesate space into two strata. What
If we want to usemore than two strafa
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Antithetic variates for K MCMC processes

We want to estimaté = E. f(X) using

1 1
Process 1 — f(X,(nZLl) f(XT(nj)Ln)

2 2
Process 2 — f(anil) f(Xéz—)l—n)

K K
Process K — f(X,(njL)l) f(XT(n+)n)

If Vs = COV(f(Xf,(?ﬁ—r)v f(XT(rjzzi—r—i—s))
Be = Cov(F(X S, ), FIXShis)).

Let ] — nLK > f(Xé{ZFT). We denotd;,, ; if the parallel processes are
r,J

\independent’.

~

/
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VE[A) :1+(K )504‘ Zr 1 7“( ?)
V(lina) Yo+23 0 (- 1)

In general;y, > 0 soif 3, < 0 then we obtain variance reduction.
sSampling from the MC path

Burn-in Period
//K /\

Path 1\\ // \\ // \\__/,/’
Correlation induced by transition kerne| Antithetically
coupled
Path 2, T L
e i Correlation induced by transition kernel
. Antithetically
. coupled
Pathk--""""~« (N e
\ o Correlation induced by transition kernel /
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Negative Association

[1 The random variableX, Xs, ..., X are said to b@egatively

associated (NAIf for every pair of disjoint subsetd, A, of
{1,2,.... K}

Cov(f1(Xi,1 € A1), f2(Xj,5 € A2)) <0

wheneverf; and f5 are increasing in each of the arguments
(Joag-Dev and Proschan, 1983).

[1 The union of two independent sets, each of which is NA, is NA.

\_ /
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NA and MCMC

[1 A generic MCMC algorithm can be written in the general form

Xt — w(Xt—la Wt)7

wherey is adeterministic maand all randomness is absorbed in the
random seedl’ (). We can think ofi¥” as being avector of
Uniform(0, 1) random variabledn the case of Gibbs samplers,s
monotone in at least some of thé’s.

[0 SupposdV, = (U, V;) andy is monotone in botl/; andV;. We
canantithetically couples parallel MCMC processdsy generating
at thet-th iteration K -dimensional random vecto(éf,fl), o U,fK))
and(Vt(l), e Vt(K)) which are NA and update each chain using

\ XY = (XY, U, V) foranyl <i < K. y

—-11 -
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lterative Latin Hypercube Sampling

[1 Latin Hypercube Sampling is a traditional method to stydtiie
Input variables used in Monte Carlo experiments. The iterat
variant of the classical construction is as follows:

Step 0 Draw U(9) = (Ul(o), . U(O)) lid Uniform(0, 1)
Step t Leto™® be arandom permutation 6, 1, ..., K — 1} then
takeUM) = L (c® + UG-, ¢t =1,...,T.

Marginally, UZ.(T) ~ Uniform(0,1) ,VT,q .

[] []

T T T—o00
Corm(U{", UMy = —L- (1 — =&7) — .

o v ul", . U are NAVT > 0.
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Example K=3

[] Ufo), Uéo), U?fo) ~ Uniform(0, 1).

~13-—
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Slice Sampling: 7(z) = C - f(x)

V ~ Uniform (0, (X))

X.new~ Uniform ({ Y: f(Y)> V })

V=U*(X)

(Y £(Y)U) )

16—
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Simple lllustration I

x

We want E.[ X | wherer(x) oc e™¢ .

Slice sampling using the change of variable: — log(u/z?).
Step Liv ~ p(v|x) ox €™ Iiy>erydv

Step 2z ~ p(x|v) < Ifz<iogiv)yde.

b o o oo o

TogetherX,; = (X, &1, &) = & log(eXt —log(1 — &), where
&1 andé, are i.i.d. Uniform0, 1).

\_ /
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Variance—Reduction
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Quasi-Monte Carlo (QMC) I

[ QMC is ade-randomized MC.

[1 QMC methods focus on thanit hypercubdor uniform and stratified
sampling.

[1 Features of interestqui-distribution, high-uniformitytechnically
known adow discrepancy

[ The sequences do not have to be random, in fact they can be
completely deterministic.

[1 More oftenrandomized versions of QMC (denoted RQMC)
algorithms are used.

[1 Adding noise to a deterministic method allows #wimation of the

\ Monte Carlo error. (i.eVar(I)). /

~19—
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QMC and RQMC I

[1 If we construct the LHS using at= 1

U.(l) _ U(Z) + 0.5

VI<i<K

then the (iterative) hypercube sampling is deterministic.

[1 The random variableB’l(O), e Uﬁ?) ~ Uniform(0, 1) used in our
construction results in allowing each component/éf) to be
anywherenside the interval$: /K, (i +1)/K) for0 < < K — 1.

\_ /
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ROMC for MH I

[1 The antithetic coupling described befdeds in the case of M-H
algorithms.

[1 Due to accept-reject behavior, the NA between processemtan
preserved.

[1 A different use oRQMC methods is allowed via the Multiple-Try
Metropolis

\_ /
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[0 Supposédis such that/'(z|y) > 0 < T'(y|z) > 0.
0 Draw K trial proposalsy;, . . ., Yx from T(y|z). Compute

0 Drawz?,...,z%_; ~ T(-ly) and letz = z(*).

O Acceptz(*t1) = y with generalized acceptance probability

~

Multiple-Try Metropolis

w(y;, 2 =7 (y,)T(zD)y; )\ xP),y;) for eachj. (we need only
Mz, y) = My, x))

SelectY among thei{ proposals with probability

w(y;, #®)/ ity wlys, 2 M), j=1,... K.

I

re = min< 1, ” .
g { w(zy,y)+ ... +w(xl,y)

/
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Multiple-Correlated-Try Metropolis

Suppose we samplg trial proposalsyy, ..., Yk from

~

T(y1,-..,yx|c®) where
Ty, e D)y, .. dygx = T(yi]z™).

The algorithm proceeds as in the independent case with one
exception.

Draw (X7, ..., X} _,) variates from the conditional transition
kernelT' (21, ..., xx_1|y, 2x = ) and letX s = z(®)

We have quite a bit of freedom in choosifigas long as we can
performthe blue step

— 23—
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Random Walk Multiple Try Metropolis

For multivariate targets a common choice is Bwhdom Walk
Metropolis

Y17 .- '7Yk ~ Nd(xhz)

|dea: Stratifying the sample of proposals produces a more stredtu
search of the space "around”.

/
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Korobov rule I

[0 Choose aninteger € {1,..., K — 1} and let

1
PK:{ZK (1,a,...,a""1) mod 1,@:1,...,1{}.

[1 This type of point set can be randomized by generating a rando
vectorv uniformly in [0, 1)", and adding it to each point dfx
(modulo 1). That s, lePx = {t;,i = 1,..., K}, where

ﬁz‘ = (ui -+ V) mod 1.

\_ /
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Figure 1:Two-dimensional Korobov rule with K = 1024 and a = 139.

\_ /

— 26—




SPSR - QMC for MCMC

Example: Lupus Data

Table 1: The number of latent membranous lupus nephritis cases, the nu-
merator, and the total number of cases, the denominator, for each combi-
nation of the values of the two covariates.

~

IgA
1gG3-1gG4 0 0.5 1 1.5 2

-3.0 0/1
-2.5 0/3
-2.0 0/7 0/1
-1.5 0/ 6 0/1
-1.0 0/6 0/1 0/1 0/1
-0.5 0/ 4 1/1

0 0/3 0/1 1/1

0.5 34 1/1 1/1 1/1
1.0 1/1 1/1 1/1 4/ 4
15 1/1 2/2

27—
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The Model I

[] lOg’Lt P(E ) 60 + 51X12 + 52X22 WhereXT (1 le, XQZ)
IS the vector of covariates for theh individual.

[0 The prior for3 = (3y, 31, 82)! is trivariate normal with zero mean
and variance digg00%, 1002, 100?).

[1 The posterior density is then proportional to

e=0-56;/100% 28 [ exp(X[ ) r’[ 1
)

Z,Y) X
(Bla,y) 3'1;[0 100/ 27 1+ exp(X! 3 1 + exp(X! )

\_ /
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Simulation Results I

. MSE, ;i
[0 We report for3; andpss = 1 . the ratiosR = =22 and
P 51 D25 {B1>25} MSE, 4
TWSEth
IVlSEind
[ If we denote byb;; the 5" sample point drawn in th&" replicate
from the posterior distribution of; then, using.. = 25 bi and

MN
b;. = Zf,'\,b” foralli =1,..., M the MSE is defined as

R =

MSE = (b.. — E[5;|datd)? + Z((]\Z__lb)) .

[1 Similar calculations can be done foys.

\_ /
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Table 2:Values of R for (31/po5 inthelogit example.

~

Antithetic QMC
K\o 2 3 4 2 3 4
3 0.92/0.92 0.90/0.86 0.99/0.95 - - -
4 0.94/0.87 0.88/0.88 0.91/0.89 - - -
5 0.98/0.96 0.81/0.81 0.89/0.8p - - -
6 0.91/0.86 0.86/0.78 0.95/0.9p - - -
8 0.81/0.70 0.75/0.69 0.83/0.800.69/0.72 0.61/0.60 0.59/0.
16 | 0.87/0.81 0.97/0.94 0.91/0.880.81/0.81 0.82/0.84 0.76/0.jE

/
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Monte Carlo: What Else is Hot? I

[1 Adaptive MCMC: how can we change the transition kernel for an
MCMC algorithm “on the go”.Problems: the adaptation has to take
Into accounta number of the samples already produsedhe
process loses its Markovian property.

state equation; ~ q;(-|x_1,0)

observation equationy; ~ f;(-|z¢, @)

wherey; are observations arriving sequentialty,are the “state
variables”. Of interest is the “current” posterior distriton of x;

7Tt(517t) O</Qt(wt\lUt—l)ft(yt|$t)ﬂt—1($t—1)d$t—1-

\_ /
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Places to go and see more I

1. Web page of Christiane Lemieux (Waterloo):
http://www.math.uwaterloo.caglemieux/

2. Web page of Jun Liu (Harvard):
http://www.people.fas.harvard.edynliu/

3. Web page of Art Owen (Stanford):
http://www-stat.stanford.eduowen/

4. | will post this talk on my website:
http://fisher.utstat.toronto.edu/craiu/
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