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MCMC at the crossroads

▶ Large data and/or intractable likelihoods have brought
Bayesian computation at a crossroads.

▶ Consider observed data y0 ∈ Y, likelihood function L(θ|y0)
(or sampling distribution f (y|θ)), prior p(θ) with θ ∈ Rd .

▶ Focus is on π(θ|y0) ∝ f (y0|θ)p(θ).
▶ The Metropolis-Hastings sampler is one of the most used

algorithms in MCMC.
▶ Given the current state of the chain θ, draw ξ ∼ q(ξ|θ).
▶ Accept ξ with probability min

{
1, π(ξ|y0)q(θ|ξ)

π(θ|y0)q(ξ|θ)

}
.

▶ If ξ is accepted, the next state is ξ, otherwise it is (still) θ.

▶ Note that π(θ|y0) ∝ p(θ)L(θ|y0) needs to be computed at
each iteration. (hence L(θ|y0) must also be computable)
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Massive data set

▶ L(θ|D) is computable, but data is massive.

▶ Possible remedies:
▶ precomputing (Boland et al., EJS, 2018)
▶ sequential processing (Bardenet et el. 2014; Korratikara et al.

2014)
▶ divide and conquer (Neiswanger et al. 2013; Wang and

Dunson 2013; Scott et al. 2016; Entezari et al. 2018; Nemeth
and Sherlock 2018; Changye and Robert 2019)

▶ subsampling (Quiroz et al. 2018; Campbell and Broderick
2019 )
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Divide and conquer

▶ D &C: Divide data into batches, y(1) ∪ . . . y(K), distribute the
sampling from the K sub-posteriors

πj(θ) ∝ [Lk(θ|y(j))]a[pj(θ)]b

among K processing units

▶ Depending on a, b values, design recombination strategies for
the πj -samples to recover the characteristics of the full
posterior distribution.

▶ Challenge: provide theoretical guarantees or assess
approximation errors beyond the Gaussian case.
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Subsampling for MCMC - Quiroz et al. 2018

▶ Pseudo-marginal idea (Andrieu and Roberts 2009): Replace
L(θ|y0) by an unbiased estimator.

▶ Let u = {u1, . . . , um} be iid random variables uniformly
distributed over {1, . . . ,N} and yu = {yu1 , . . . , yum}.

▶ Then lm(θ|yu) = 1
m

∑m
k=1 luk (θ|yuk ), is unbiased for the

average log-likelihood 1
N

∑N
k=1 lk(θ|yk)

▶ Introduce control variates to reduce variance of lm

▶ Adjust the estimator exp[lm(θ|yu)] to be unbiased for L(θ|y0)
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Motivation for ABC

▶ When the likelihood L(θ|y0) is not computable but one can
sample from f (y|θ) for all θ’s....

▶ Approximate Bayesian Computation (ABC)

▶ Bayesian Synthetic Likelihood (BSL)
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Double jeopardy: Large data and Intractable Likelihood

▶ The generation of pseudo-data can be expensive, e.g. climate
change scenarios (Oyebamiji et al. 2015) or hurricane surges
(Plumlee et al. 2021)

▶ Most of methods that address the challenge of large data
cannot be used directly for intractable models.

▶ Today: discuss an approach that can be used with ABC and
BSL.
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A remarkable algorithm- ABC

▶ ABC:
▶ Sample θ ∼ p(θ) and y ∼ f (y|θ);
▶ Compute distance:

δ(y) := ∥S(y),S(y0)∥ =
√

[S(y)− S(y0)]TA [S(y)− S(y0)]

▶ If δ(y) < ϵ retain (θ, y) as a draw from

πϵ(θ, y|y0) ∝ p(θ)f (y|θ)1{δ(y)<ϵ}

▶ The marginal target (in θ) is

πϵ(θ|y0) =

∫
Y
πϵ(θ, y|y0)dy ∝

∝ p(θ)

∫
Y
f (y|θ)1{δ(y)≤ϵ}dy︸ ︷︷ ︸

approximate likelihood

= p(θ) Pr(δ(y) ≤ ϵ|θ, y0)︸ ︷︷ ︸
:=h(θ)
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Vanilla ABC

▶ Sampling candidate θ’s from the prior is inefficient, especially
if the prior is in conflict with the data (Evans and Moshonov,
2006).

▶ Marjoram et al (2003) propose an ABC-MCMC in which
candidate moves are generated using a proposal q(θ|θt) and
they are accepted or rejected based on a MH-type rule.
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Zooming in on the target

▶ We consider building a chain with target πϵ(θ|y0).

▶ Consider proposal θ̃ ∼ q(θ|θt)

▶ A Metropolis-Hastings sampler requires calculating

p(θ̃)h(θ̃)q(θt |θ̃)
p(θt)h(θt)q(θ̃|θt)
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A marginal yet important target

▶ Lee et al (2012) propose to use ỹ1, . . . , ỹJ ∼ f (y|θ̃) to
estimate

ĥ(θ̃) = J−1
J∑

j=1

1{δ(ỹj )<ϵ}

▶ Wilkinson (2013) generalizes to smoothing kernels

▶ Bornn et al (2014) make the case of using J = 1.

▶ Idea in this talk: Recycle past proposals to estimate h(θ̃).
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History repeating itself

▶ At time n the proposal is (ζn+1,wn+1) ∼ q(ζ|θ(n))f (w|ζ)

▶ At iteration N, all the proposals ζn, the accepted and rejected
ones, along with corresponding distances δn = δ(wn) are
available for 0 ≤ n ≤ N − 1.

▶ This is the history, denoted ZN−1, of the chain.
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A selective memory helps

▶ Given a new proposal ζ∗ ∼ q(|θ(t)), we generate w∗ ∼ f (·|ζ∗)
and compute δ∗ = δ(S(w∗)). Set ζN = ζ∗, wN = w∗,
ZN = ZN−1 ∪ {(ζN , δN)} and estimate h(ζ∗) using

ĥ(ζ∗) =

∑N
n=1WNn(ζ

∗)1δn<ϵ∑N
n=1WNn(ζ∗)

, (1)

where WNn(ζ
∗) = W (∥ζn − ζ∗∥) are weights and

W : R → [0,∞) is a decreasing function.

▶ An alternative to (1) is to use a subset of size K of ZN
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Good news

▶ If δ∗ > ϵ ⇒ rejection for ABC-MCMC

▶ But if ∃ζ∗ with a corresponding δ < ϵ then h(ζ∗) ̸= 0

▶ Compare

h̃(ζ∗) =
1

K

K∑
j=1

1{δ̃j<ϵ} ⇒ unbiased

ĥ(ζ∗) =

∑N
n=1WNn(ζ

∗)1{δ̃n<ϵ}∑N
n=1WNn(ζ∗)

⇒ consistent

▶ When K is small - reduce variability.

▶ When K is large - reduce costs.
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Complications

▶ If the past samples are used to modify the kernel ⇒ Adaptive
MCMC

▶ In order to avoid AMCMC conditions for validity, we separate
the samples used as proposals from those used to estimate h

▶ At each time t:
▶ We use the Independent Metropolis sampler, i.e.

q(ζ|θ(t)) = q(ζ)
▶ Generate two independent samples

{(ζt+1,wt+1), (ζ̃t+1, w̃t+1)}
iid∼ q(ζ)f (w|ζ)

▶ Set ZN+1 = ZN ∪ {(ζ̃N+1, δ̃N+1)}
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Friendly neighbors

▶ The k-Nearest-Neighbor (kNN) regression approach has a
property of uniform consistency

▶ Set K =
√
N and relabel history so that (ζ̃1, δ̃1) and (ζ̃N , δ̃N)

corresponds to the smallest and largest among all distances
{∥ζ̃j − ζ∗∥ : 1 ≤ j ≤ N}

▶ Weights are defined as:
▶ Wn = 0 for n > K

(U) The uniform kNN with WNn(ζ
∗) = 1 for all n ≤ K ;

(L) The linear kNN with
WNn(ζ

∗) = W (∥ζ̃n − ζ∗∥) = 1− ∥ζ̃n − ζ∗∥/∥ζ̃K − ζ∗∥ for
n ≤ K so that the weight decreases from 1 to 0 as n increases
from 1 to K .
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Indirect inference - A David and Goliath story

▶ Indirect inference (Gourieroux et al. 1993; Smith Jr 1993)

▶ Complex model: f (y|θ) with intractable f

▶ Simpler model g(y|ϕ(θ)) approximates well f (y|θ), with
dim(ϕ) > dim(θ), g is tractable and ϕ : Θ → Φ is unknown

▶ We can estimate ϕ̂(θ) by sampling θ ∼ p(θ),
yj ∼ f (y|θ), 1 ≤ j ≤ K and estimate ϕ from y1, . . . , yK using
g - repeat

▶ Posterior πf (θ|y0) ∝ p(θ)f (y0|θ) is then approximated by

πg (θ|y0) ∝ p(θ)g(y0|ϕ̂(θ))
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Bayesian Synthetic Likelihood (BSL)

▶ Alternative approach to bypass the intractability of the
sampling distribution proposed by Wood (Nature, 2010).

▶ The simpler model (g): the conditional distribution for a
user-defined statistic S(y) given θ is Gaussian with parameters
ϕ(θ) = (µθ,Σθ)

▶ The Synthetic Likelihood (SL) procedure assigns to each θ the
likelihood SL(θ) = N (s0;µθ,Σθ), where s0 = S(y0).

▶ The BSL posterior is πBSL(θ|s0) ∝ p(θ)N (s0;µθ,Σθ).

▶ Acceptance ratios for a MH sampler are estimated from m
statistics (s1, · · · , sm) sampled from their conditional
distribution given θ.
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Bayesian Synthetic Likelihood (BSL)

▶ Generate yi ∼ f (y|θ) and set si = S(yi ), i = 1, · · · ,m
▶ Estimate

µ̂θ =

∑m
i=1 si
m

,

Σ̂θ =

∑m
i=1(si − µ̂θ)(si − µ̂θ)

T

m − 1
,

▶ An MCMC sampler designed for πBSL(θ|s0) ∝ p(θ)SL(θ|s0)
requires

min

{
1,

p(θ)SL(θ|s0)q(θt)
p(θt)SL(θt |s0)q(θ)

}

Radu Craiu Approximate Computation for Approximate Bayesian Models 18



Introduction & Motivation Approximate Bayesian Computation (ABC) Theory Numerical Experiments

A different POV: Precomputation

▶ Given a proposal q, precompute

Z = {(ξh, sh = (s
(1)
h , . . . , s

(m)
h )T ) : 1 ≤ h ≤ H} where ξh q,

w
(1)
h , . . . ,w

(m)
h

iid∼ f (w|ξh) and set s
(j)
h = S(w

(j)
h ) for all

1 ≤ j ≤ m.

▶ Given a proposal θ∗ at t-th iteration

µ̃(θ∗) =

∑K
h=1[Wh(θ

∗) 1
m

∑m
j=1 s

(j)
h ]∑K

h=1Wh(θ∗)
,

Σ̃(θ∗) =

∑K
h=1[Wh(θ

∗) 1
m

∑m
j=1(s

(j)
h − µ̂θ∗)(s

(j)
h − µ̂θ∗)T ]∑K

h=1Wh(θ∗)
.

(2)

▶ We use m = 1.
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A bit of theory

(B1) Θ is a compact set.

(B2) q(θ) > 0 is a continuous density (proposal).

(B3) p(θ) > 0 is a continuous density (prior).

(B4) h(θ) continuous function of θ.

(B5) In kNN estimation assume that K (N) =
√
N with uniform or

linear weights.
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Some comfort

▶ Let P(·, ·) denote the transition kernel of our AABC sampler,
if h(θ) were computed exactly.

▶ The stationary distribution of a chain with kernel P(·, ·) is µ

▶ The approximate kernel at time t is denoted P̂t

▶ The distribution of θt is denoted µt := νP̂1 . . . ...P̂t
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Some comfort

Vanishing TV Theorem

Suppose that (A1)- (A3) are satisfied . Let π denote the invariant
measure of P and ν be any probability measure on (Θ,F0), then∥∥∥∥∥µ−

∑M−1
t=0 νP̂1 · · · P̂t

M

∥∥∥∥∥
TV

≤ O(M−1) + O(M−1ϵ) + O(ϵ),
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More Comfort

Vanishing MSE Theorem

Let π denote the invariant measure of P, f (θ) be a bounded
function and θ(0) ∼ ν, where ν is a probability distribution. Then

E

(µf − 1

M

M−1∑
t=0

f (θ(t))

)2
 ≤ |f |2[O(M−1)+O(ϵ2)+O(M−1ϵ)]

where µf = Eµf .
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Numerical Experiments: Ricker’s Model

▶ A particular instance of hidden Markov model:

x−49 = 1; zi
iid∼ N (0, exp(θ2)

2); i = {−48, · · · , n},
xi = exp(exp(θ1))xi−1 exp(−xi−1 + zi ); i = {−48, · · · , n},
yi = Pois(exp(θ3)xi ); i = {−48, · · · , n},

where Pois(λ) is Poisson distribution

▶ Only y = (y1, · · · , yn) sequence is observed, because the first
50 values are ignored.
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Numerical Experiments: Ricker’s Model

Define summary statistics S(y) as the 14-dimensional vector whose
components are:

(C1) #{i : yi = 0},
(C2) Average of y, ȳ ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients β0, β1, β2, β3 of cubic regression
(yi − yi−1) = β0 + β1yi + β2y

2
i + β3y

3
i + ϵi , i = 2, . . . , n,

(C12-C14) Coefficients β0, β1, β2 of quadratic regression
y0.3i = β0 + β1y

0.3
i−1 + β2y

0.6
i−1 + ϵi , i = 2, . . . , n.
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Numerical Experiments: Ricker’s Model - ABC/RWM

Figure: Ricker’s model: ABC-RW Sampler. Each row corresponds to
parameters θ1 (top row), θ2 (middle row) and θ3 (bottom row) and
shows in order from left to right: Trace-plot, Histogram and
Auto-correlation function. Red lines represent true parameter values.
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Numerical Experiments: Ricker’s Model - ABC

Figure: Ricker’s model: AABC-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Diff with exact Diff with true parameter Efficiency

Sampler DIM DIC TV
√
Bias2

√
VAR

√
MSE ESS ESS/CPU

ABC-RW 0.135 0.0201 0.389 0.059 0.180 0.189 87 0.199
AABC-U 0.147 0.0279 0.402 0.076 0.190 0.204 3563 4.390
AABC-L 0.141 0.0258 0.392 0.070 0.189 0.201 4206 5.193
BSL-RW 0.129 0.0080 0.382 0.038 0.206 0.209 131 0.030
ABSL-U 0.103 0.0054 0.377 0.023 0.170 0.171 284 0.180
ABSL-L 0.106 0.0051 0.382 0.012 0.173 0.173 207 0.135

Table: Summaries based on 40K samples
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Example: Stochastic Volatility

▶ Stochastic volatility model with stable errors:

vi
iid∼ N (0, 1); wi

iid∼ Stab(θ4,−1); i = {1, · · · , 500}
x1 ∼ N (0, 1/(1− θ21));

xi = θ1xi−1 + vi ; i = {2, · · · , 500},

Observed data: yi =
√
exp[θ2 + exp(θ3)xi ]wi ; i = {1, · · · , 500}.

▶ Here Stab(θ4,−1) is a stable distribution with parameters
θ4 ∈ [0, 2] and skew parameter −1.

▶ True parameter values: θ1 = 0.95, θ2 = −2, θ3 = −1, and
θ4 = 1.8.
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Example: Stochastic Volatility

For summary statistics we use a 7-dimensional vector whose
components are:

(C1) #{i : y2i > quantile(y20, 0.99)},
(C2) Average of y2,

(C3) Standard deviation of y2,

(C4) Sum of the first 5 auto-correlations of y2,

(C5) Sum of the first 5 auto-correlations of
{1{y2

i <quantile(y2,0.1)}
}ni=1,

(C6) Sum of the first 5 auto-correlations of
{1{y2

i <quantile(y2,0.5)}
}ni=1,

(C7) Sum of the first 5 auto-correlations of
{1{y2

i <quantile(y2,0.9)}
}ni=1.

Radu Craiu Approximate Computation for Approximate Bayesian Models 30



Introduction & Motivation Approximate Bayesian Computation (ABC) Theory Numerical Experiments

Example: Stochastic Volatility cont..
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Example: Stochastic Volatility cont..

Diff with SMC Diff with true parameter Efficiency

Sampler DIM DIC TV
√
Bias2

√
VAR

√
MSE ESS ESS/CPU

ABC-RW 0.078 0.0126 0.205 0.248 0.198 0.317 24 0.069
AABC-U 0.069 0.0124 0.170 0.250 0.183 0.310 1303 1.617
AABC-L 0.069 0.0132 0.161 0.246 0.181 0.305 1256 1.546
BSL-RW 0.044 0.0116 0.122 0.225 0.181 0.289 123 0.037
ABSL-U 0.063 0.0133 0.228 0.225 0.181 0.289 832 0.735
ABSL-L 0.061 0.0140 0.230 0.236 0.183 0.299 757 0.671

Table: Summaries based on 40K samples
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Concluding remarks

▶ Our methods show good results even if q(ξ|θ) = N (θ,Σ) but
theory is not fully developed.

▶ Ideally we want to combine with adaptive MCMC.

▶ The computational burden can prohibit the full reach for these
approximate methods so more solutions are needed.

All papers available at:
http://www.utstat.toronto.edu/craiu/Papers/index.html
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