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Talk’s Outline

Part 1 Inference for the competing risks model with masked

failure causes.

1. Competing risks with masking.

2. Data and model.

3. EM algorithm - convergence, variance estimation.

4. Particular hypothesis of interest: proportionality, sym-

metry, time-varying masking probabilities.

5. Example and Robustness study.

Part II Model selection.

1. AIC, BIC, MDL for the competing risks model.

2. Simulation study.

3. Conclusions and future work.
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Competing risks

• Competing risk framework: items (individuals) may fail

from one of J causes;

• Normally, for each item we observe a failure or censoring

time, and a unique cause of failure if item not censored;

• Under masking, cause of failure not determined uniquely

for some of the items; all we know is that it belongs to one

of the G proper masking groups.

• Some items with a masked failure cause go to a 2nd stage

analysis where unique failure cause is determined.
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Data and Notation

Suppose there are three possible causes of failure (J=3), and

two proper masking groups g4 = {1,2} and g5 = {1,2,3}.
We denote gj = {j} for all j = 1,2,3. Denote M = J+G = 5

Item Time of Cause of Masking Censoring
no. failure/censoring failure group indicator
1 0.0183 1 1 0
2 0.0427 -1 4 0
3 0.0735 -1 5 0
4 0.171 1 4 0
5 0.231 - - 1
6 0.604 3 5 0

• To each item 1 ≤ i ≤ N we can associate the vector

(δi1, δi2, δi3) in which δij = 1 if item i has failed because

of cause j, and δij = 0 otherwise ∀j = 1,2,3.

• To each item i we can associate the vector γi1, γi2, ..., γi5 of

0-1 variables that indicate the group masking the failure.

• A censored item will have all δ’s equal to zero.
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Item Time of Cause of Masking Censoring
no. failure/censoring failure group indicator
1 0.0183 1 1 0
2 0.0427 -1 4 0
3 0.0735 -1 5 0
4 0.171 1 4 0
5 0.231 - - 1
6 0.604 3 5 0

The above translates into:

Item Time δi1 δi2 δi3 γig1 γig2 γig3 γig4 γig5

1 0.0183 1 0 0 1 0 0 0 0
2 0.0427 - - 0 0 0 0 1 0
3 0.0735 - - - 0 0 0 0 1
4 0.171 1 0 0 0 0 0 1 0
5 0.231 0 0 0 0 0 0 - -
6 0.604 0 0 1 0 0 0 0 1

• Complete data (ti, δi1, . . . , δiJ , γi1, . . . , γiM), i = 1, . . . , n.

• Incomplete data: δij’s will be missing for some of the items.

• For right-censored items, we set all the δij’s equal to 0.

For these items, the likelihood does not depend on the γig’s.
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Complete data and Missing mechanism

Observed data: What we actually observe, i.e., stage 1

data for all the items, stage 2 data only for some items.

Complete data: What we would actually observe if every

single item with a masked failure cause in stage 1 went on

to a 2nd stage analysis.

Missing at random P(item i is masked|OBS) does not de-

pend on the missing δij.
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Model for the hazards

• Let T be the r.v. of time to failure and C be the r.v. of

cause of failure.

• Failure can be due to only one cause at a time.

• The cause-specific hazard function for cause j is

λj(t) = lim
h↓0

P[t ≤ T ≤ t + h, C = j|T ≥ t]

h
.

S(t) = P[T > t] = exp



−

∫ t

0

J∑

j=1

λj(u) du



 .

Use

λj(t) =
K∑

k=1

λjk1k(t),

where 0 = a0 < a1 < · · · < aK = ∞ and 1k(t) is the indicator

that t ∈ (ak−1, ak].

• Weak parametrization that is flexible and mathematically

convenient.

• Likelihood-based testing and estimation is possible.
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Masking Parameters

• Define the masking probabilities

Pg|j = P[failure cause masked in g|C = j].

• What we really want

1. The diagnostic probabilities

πj|g(t) = P[C = j|T = t, masked in g].

A simple application of Bayes’ rule yields

πj|g(t) =
λj(t)Pg|j∑
l∈g λl(t)Pg|l

.

2. The cumulative incidence functions

Fj(t) = P(T ≤ t, C = j) =

∫ t

0
λj(u)S(u)du.

8



Likelihood complete data

Let θ be vector containing the λjk’s and Pg|j’s. Goal: Infer-

ence about θ.

Let Gj = {g : j ∈ g} and G∗j = Gj/{j}.

Log-likelihood under complete data:

lC(θ)=
n∑

i=1

J∑

j=1

{[
δij ln

K∑

k=1

λjk1k(ti)−
K∑

k=1

λjk

∫ ti

0
1k(u) du

]}

+
n∑

i=1

J∑

j=1

δij


(1−

∑

g∈G∗
j

γig) ln(1−
∑

g∈G∗
j

Pg|j) +
∑

g∈G∗
j

γig lnPg|j


 .

• ML estimators

λ̂jk =

∑n
i=1 δij 1k(ti)

ek

and

P̂
(l)
g|j =

∑n
i=1 δij γig∑n

i=1 δij
,

where ek =
∑n

i=1

∫ ti

0 1k(u) du.
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Likelihood missing data

• J = 3, g = {1,2,3}. item i is masked in g then

(δi1, δi2, δi3) ∼ Multin(1, π1|g, π2|g, π3|g).

Let M denote set of i’s for which we have missing data.

Define for an item i ∈ M, gi the masking group for i. The

log-likelihood of missing data given observed data is

lM|OBS(θ) =

∑

i∈M





∑

j∈g∗i

δij lnπj|gi
(ti) + (1−

∑

j∈g∗i

δij) ln(1−
∑

j∈g∗i

πj|gi
(ti))





where g∗i denotes all the causes but one in masking group

gi (e.g. if gi = {1,2,3}, then g∗i could be any of {1,2}, {1,3}
or {2,3}).
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Observed data likelihood

lOBS(θ) = E[lC(θ)|OBS]− E[lM(θ)|OBS]

=
n∑

i=1

J∑

j=1

{[
E[δij|OBS] ln

K∑

k=1

λjk1k(ti)−
K∑

k=1

λjk

∫ ti

0
1k(u) du

]

+ E[δij|OBS]


(1−

∑

g∈G∗
j

γig) ln(1−
∑

g∈G∗
j

Pg|j) +
∑

g∈G∗
j

γig lnPg|j








−
∑

i∈M

∑

j∈gi

E[δij|OBS] lnπj|gi
(ti),
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EM Algorithm

To obtain θ̂ maximizing lOBS(θ), we use the EM algorithm:

Initial step: Set

λ̂(0)
jk =

∑n
i=1 1[δij observed and equal to 1]

ek

,

and P̂
(0)
g|j = 1/#Gj.

• E-step: Compute E
θ̂

(n−1)[δij|OBS] using

Eθ
′[δij|OBS] =

λ′j(ti)P
′
gi|j∑

l∈gi
λ′l(ti)P

′
gi|l

= π′j|gi
(ti)

if cause of item i is masked in gi and no second stage. Oth-

erwise δij ∈ {0,1}.

• M-step: Set

λ̂(l)
jk =

∑n
i=1 E

θ̂
(l−1)[δij|OBS] 1k(ti)

ek

and

P̂
(l)
g|j =

∑n
i=1 E

θ̂
(l−1)[δij|OBS] γig∑n

i=1 E
θ̂

(l−1)[δij|OBS]
.
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Convergence and asymptotic variance

Assumption : The division of the time line into K intervals

(a0, a1], . . ., (aK−1, aK) is such that, in each interval and for

each cause j ∈ {1, . . . , J} we have at least one failure which

is masked in a group that contains j.

⇒ The algorithm will converge to a stationary point (Wu,

Ann. Stat. 1983, Theorem 2).

⇒ The algorithm will converge even if no items are sent to

the second stage as long as the hazards are not proportional.

We use SEM (Meng and Rubin, JASA 1991) to calculate

the asymptotic variance of the estimators found.
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Hypotheses of interest

• Assuming proportional hazards and with second stage

data Flehinger et al. (Biomtrka, 1998) developed nonpara-

metric methods for estimation.

• Under proportional hazards Goetghebeur and Ryan (Biomtrka,

1995) use estimating equations for consistent estimation.

• Under no second stage data the parameters are uniden-

tifiable if hazards are proportional, basically due to an

overparametrization.

• Our model will detect unidentifiability because the EM will

be extremely unstable.

• We can bypass unidentifiability by assuming different end

points (across causes) for the intervals [ak−1, ak].

• Previous analyses have used the symmetry assumption

Pg|j = Pg to avoid this problem (Dinse, JASA 1986).

• However, no testing for proportional hazards and symmetry

are proposed. Until now!
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Likelihood Ratio Tests

Let θ̂, θ̂PH and θ̂SY M denote the MLEs under the general

model, the proportional hazards assumption (PH) and the

symmetry assumption (SYM), respectively.

We can perform likelihood ratio tests of the PH and SYM

hypotheses:

For H0 : λjk = φjλ1k, we compute

r = 2[lOBS(θ̂)− lOBS(θ̂PH)]

and reject H0 at level α if r ≥ χ2
α;(J−1)(K−1).

For H0 : Pg|j = Pg, we compute

r = 2[lOBS(θ̂)− lOBS(θ̂SY M)]

and reject H0 at level α if r ≥ χ2

α;
∑G

k=1
#gk−G

. where G is the

number of proper masking groups and # denotes cardinality.
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Reliability of hard drives

Flehinger et al. (Lifetime Data Anal., 2002) present a

dataset related to the reliability of hard drives. They follow

1000 items for four years; during that period they observe

172 failures, 66 of which are masked.

Possible failure causes: 1, 2 and 3.

Observed proper masking groups: {1,3} and {1,2,3}.

Flehinger et al. construct the observed likelihood directly

assuming Weibull cause-specific hazards.

Using our method, we can assess the fit of the Weibull dis-

tribution, and test the symmetry and proportional hazards

assumptions.

16



Estimates of the Pg|j’s:

Our estimates

j = 1 j = 2 j = 3

g = {1} 0.282 0 0
g = {2} 0 0.543 0
g = {3} 0 0 0.116

g = {1,3} 0.410 (0.079) 0 0.445 (0.056)
g = {1,2,3} 0.308 (0.077) 0.457 (0.119) 0.439 (0.057)

Flehinger et al. - Weibull

g = {1} 0.278 0 0
g = {2} 0 0.531 0
g = {3} 0 0 0.118

g = {1,3} 0.412 0 0.446
g = {1,2,3} 0.310 0.469 0.436

P-value, likelihood ratio test for PH: 0.000004

P-value, likelihood ratio test for SYM: 0.0254
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Incidence functions for the three causes
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Robustness Study

Simulate from:

• models with 3 proper groups g4 = {1,2}, g5 = {1,3}, g6 =

{1,2,3}.

• piecewise constant M1 −M4 models (all with 3 intervals);

• Weibull W1 −W4 models.

• 30% of masked items go to second stage.

• Model PC2 is constructed with 2 intervals defined by the

median of failure times.

• Model PC4 has 4 intervals constructed with the 25th, 50th

and 75th percentiles of the failure times.

• Model WEI3 uses 3 intervals constructed with the 33rd

and 67th percentiles of the failure times

• Model WEI4 has 4 intervals defined by the 25th, 50th and

75th percentiles of the failure times.
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Robustness - Estimation of P{1,2,3}|1

Model Monte Carlo average (SESEM) True value (SEMC)

PC2 PC4
M1 0· 200 (0· 031) 0· 200 (0· 031) 0· 200 (0· 030)
M2 0· 195 (0· 031) 0· 195 (0· 033) 0· 200 (0· 028)
M3 0· 196 (0· 034) 0· 199 (0· 031) 0· 200 (0· 031)
M4 0· 201 (0· 035) 0· 201 (0· 035) 0· 200 (0· 032)

WEI3 WEI4
W1 0· 195 (0· 042) 0· 195 (0· 040) 0· 200 (0· 046)
W2 0· 196 (0· 048) 0· 196 (0· 044) 0· 200 (0· 050)
W3 0· 200 (0· 033) 0· 201 (0· 033) 0· 200 (0· 038)
W4 0· 196 (0· 031) 0· 196 (0· 031) 0· 200 (0· 031)
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Robustness - Testing

We look at the robustness of the LRT tests to misspecifi-

cation of the hazard rates model.

Model APH ASY M

M1\W1 True False
PC2 6\2 100\100
PC4 7\7 100\100

M2\W2 True True
PC2 8\3 6\9
PC4 7\5 6\10

M3\W3 False True
PC2 100\100 3\8
PC4 100\100 2\8

M4\W4 False False
PC2 100\100 100\100
PC4 100\100 100\100
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Misspecified Hazard Rates

• True model M0 with two competing risks each having

constant cause-specific hazards, λ1 and λ2 on the interval

[0, tmax].

• Working model has cut points 0 = a0 < a1 < a2 = tmax

• For each cause j = 1,2 the cause-specific hazard is

λj(t) = λj11(0,a1](t) + λj21(a1,tmax](t). (1)

Denote njk the number of items that failed due to cause j

in the interval (ak−1, ak] for each k = 1,2.

Under the true model, M0, λ̂1 = n11+n12

e1+e2
and under model M1,

λ̂11 = n11

e1
.

• λ̂11 and λ̂1 asymptotically unbiased for λ1.

• The variance of λ̂11 is larger than the variance of λ̂1 for N

large.
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Model Selection without Masking

• There are K − 1 points to be determined; define AK =

{a1, . . . , aK−1}. a0 = 0 and aK =last observed time.

• Akaike Information Criterion (AIC): best fitting model is

defined as the minimizer of an estimator of the Kullback–

Leibler (KL) distance measure between a fitted model and

the “true” model

AIC(AK) = −2lOBS(θ) + 2JK.

• Bayesian Information Criterion (BIC): approximately equiv-

alent to choosing the model with the largest posterior prob-

ability with respect to an uniform prior.

BIC(AK) = −2lOBS(θ) + JK logN.

• Minimum description length criterion: best fitting model

as the one that produces the shortest code length of the

data.
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Minimum Description Length (MDL) Principle

• The MDL principle (Rissanen 1989) is to split the code

length for a set of data into two components: (i) a fitted

model plus (ii) the data “conditioned on” the fitted model;

i.e., the part in the data that is not explained by the fitted

model

CL(“data”) = CL(AK, θ̂) + CL(“data”|AK, θ̂)

= CL(AK) + CL(θ̂) + CL(“data”|AK, θ̂).

where θ̂ = (λ̂11, . . . , λ̂JK)

MDL(AK) =
K∑

k=1

lognk+
J

2

K∑

k=1

log(nk+nk+1 . . .+nK)−lOBS(θ),

(2)

where nk is the number of failures observed inside the interval

(ak−1, ak].

• Unlike AIC or BIC, in MDL the penalty for each interval is

not the same.

• The penalty for the kth interval is a function of its “width”

nk.

• The “late” intervals (i.e., large k) are penalized more than

those “early” intervals (i.e., small k).
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Simulation Results

• Three sample sizes N = (100,200,800)

• Three values for the probability p that a masked item is

sent to second stage analysis, p ∈ {0.3,0.6,1.0}

• Paired Wilcoxon tests were also applied to test if the dif-

ference between the median MSE values of any two methods

is significant or not at 1.25% significance level.

• All models have three causes of failure and three masking

groups g4 = {1,2}, g5 = {1,3} and g6 = {1,2,3}.

1. M1: model with PC hazards with three intervals

2. M2: model with PC hazards with seven intervals

3. W: Weibull distributed hazards

29



Model M1 - MSE
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Model M1 - λ̂
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Model M2 - MSE
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Model W - λ̂
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Future work

• Design: how to choose which masked items should be sent

to a second stage analysis.

• Model selection: how to adapt for masked data.

• Data without second stage.

• Extend to hazard functions that are piecewise linear, splines,

etc.
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