Interacting MTM 000000 IMTM with Annealing and Subsampling 0000

Examples 00000000

Interacting Multiple-Try Metropolis Sampling

Radu Craiu

Department of Statistics University of Toronto web: www.utstat.toronto.edu/craiu/

Joint work with Roberto Casarin (Venice), Antonio di Narzo (Lausanne) and Fabrizio Leisen (Madrid)

JSM - San Diego, 2012

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	000000		000000000
Outline			

1 Multiple-Try Metropolis and variations

• Multi-Distributed-Try Metropolis

Interacting MTM

- Basic principles
- Practical Issues and Refinements

3 IMTM with Annealing and Subsampling

- Annealed IMTM
- Subsampling IMTM

Examples

- Beta Mixture Model
- Stochastic Volatility Model

- We wish to sample from some distribution for X ∈ S that has density π. Obtaining independent draws is too hard.
- We construct and run a Markov chain with transition $K(x_{old}, x_{new})$ that leaves π invariant

$$\int_{\mathcal{S}} \pi(x) \mathcal{K}(x, y) dx = \pi(y).$$

- The Metropolis-Hastings sampler is one of the most used algorithms in MCMC:
- Given x_t , the current state of the MC, a "proposed sample" y is drawn from a proposal density $T(y|x_t)$.
- The proposal y is accepted with probability $\min\{1, \pi(y)T(x_t|y)/\pi(x_t)T(y|x_t)\}.$
- If y is accepted, then $x_{t+1} = y$, otherwise $x_{t+1} = x_t$.

• Suppose T is a proposal density such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

 Suppose T is a proposal density such that T(x|y) > 0 ⇔ T(y|x) > 0 and λ(x, y) is a symmetric function.

(i) Draw K independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

 Suppose T is a proposal density such that T(x|y) > 0 ⇔ T(y|x) > 0 and λ(x, y) is a symmetric function.

(i) Draw K independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate $x_1^*, \ldots, x_{k-1}^* \sim T(\cdot|y)$ and put $x_k^* = x_t$.

 Suppose T is a proposal density such that T(x|y) > 0 ⇔ T(y|x) > 0 and λ(x, y) is a symmetric function.

(i) Draw K independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate
$$x_1^*, \ldots, x_{k-1}^* \sim T(\cdot|y)$$
 and put $x_k^* = x_t$.

(iii) Accept y with probability min $\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_t)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$ (generalized MH ratio).



 Suppose T is a proposal density such that T(x|y) > 0 ⇔ T(y|x) > 0 and λ(x, y) is a symmetric function.

(i) Draw K independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate
$$x_1^*, \ldots, x_{k-1}^* \sim T(\cdot|y)$$
 and put $x_k^* = x_t$.

(iii) Accept y with probability min $\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_t)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$ (generalized MH ratio).

• Do we better explore the sample space with K proposals ?



 Suppose T is a proposal density such that T(x|y) > 0 ⇔ T(y|x) > 0 and λ(x, y) is a symmetric function.

(i) Draw K independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate
$$x_1^*, \ldots, x_{k-1}^* \sim T(\cdot|y)$$
 and put $x_k^* = x_t$.

(iii) Accept y with probability min
$$\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_t)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$$
 (generalized MH ratio).

- Do we better explore the sample space with K proposals ?
- Yes provided we take advantage of the flexibility offered by the MTM.

•	000000	0000	00000000
Multi-Distributed-Try	Vletropolis		

• The proposals do not have to be identically distributed.

• The proposals do not have to be identically distributed.

Generate $y_j \sim T_j(\cdot|x_t)$ for $1 \le j \le k$ and select one with probability $p_j \propto w(y_j|x_t) = \pi(y_j)T(x_t|y_j)\lambda(x_t, y_j)$.

• The proposals do not have to be identically distributed.

Generate $y_j \sim T_j(\cdot|x_t)$ for $1 \le j \le k$ and select one with probability $p_j \propto w(y_j|x_t) = \pi(y_j)T(x_t|y_j)\lambda(x_t, y_j)$.

If $y = y_{j_0}$ is selected than put $x_{j_0}^* = x_t$ and sample $x_j^* \sim T_j(\cdot|y)$ for all $j \neq j_0$.

- Today: Discuss some of the (many) options offered by this general setup.
- Allows the use of two powerful concepts in modern MCMC: interacting chains and adaptive chains.
- Casarin, C. and Leisen (Stat. and Comput., online)

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	●00000		00000000
Interacting MTM			

- Interacting MCMC uses a *population of chains* to gain insight about the target and improve the mixing properties for the chain(s) of interest.
- Not all chains must have the same stationary distribution and usually they have different convergence properties (e.g. simulated tempering).
- We want to use a population of chains to guide the generation of multiple proposals.
- Our population of auxiliary chains includes:
 - Chains that mix well within the state space (usually this means that their stationary distribution is no longer π).
 - 2 Chains that sample from a distribution not very different from π .

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
O	●00000		000000000
Interacting MTM			

- Interacting MCMC uses a *population of chains* to gain insight about the target and improve the mixing properties for the chain(s) of interest.
- Not all chains must have the same stationary distribution and usually they have different convergence properties (e.g. simulated tempering).
- We want to use a population of chains to guide the generation of multiple proposals.
- Our population of auxiliary chains includes:
 - Chains that mix well within the state space (usually this means that their stationary distribution is no longer π).
 - 2 Chains that sample from a distribution not very different from π .
- We need to run many chains!

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
O	0●0000		00000000
Interacting MTM			

- Consider a population of N chains, X⁽ⁱ⁾ = {X_t⁽ⁱ⁾}_{n∈ℕ}; chain i has MTM transition kernel with M proposal densities {T_j⁽ⁱ⁾}_{1≤j≤M}.
- Let $\Xi_t = \{x_t^{(i)}\}_{i=1}^N$ is the vector of values taken at iteration $n \in \mathbb{N}$ by the population of chains.
- Each proposal distribution used at iteration t + 1 is allowed to depend on Ξ_t .
- The *j*th proposal for chain i_0 is sampled conditional on $x_t^{(j)}$, $1 \le j \le M$ (here we assume M = N).

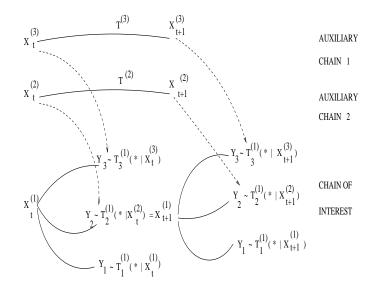
Multiple-Try Metropolis and variations o

Interacting MTM

IMTM with Annealing and Subsampling

Examples 00000000

IMTM - A graphical illustration



Multiple-Try	Metropolis	and	

Interacting MTM 000●00 IMTM with Annealing and Subsampling

IMTM

The transition kernel $K_i(x_t^{(i)}, x_{t+1}^{(i)})$ of the *i*-th chain of the IMTM algorithm satisfies the detailed balanced condition.

Multiple-Try	Metropolis	and	

Interacting MTM 000●00 IMTM with Annealing and Subsampling

IMTM

The transition kernel $K_i(x_t^{(i)}, x_{t+1}^{(i)})$ of the *i*-th chain of the IMTM algorithm satisfies the detailed balanced condition.

The joint transition kernel $K(\Xi_t, \Xi_{t+1})$ is ergodic to $\bigotimes_{i=1}^{N} \pi_i$.

Multiple-Try	Metropolis	and	

Practical Issues

- If all the chains in the population have an MTM kernel (IMTM):
 - **Pros** : At each step we choose among a large number of proposals placed in different regions of the sample space.
 - Cons : The computational load increases rapidly.
- How to choose M (number of proposals) and N (number of chains)?

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	○○○○○●		00000000
IMTM - Practical Issue	S		

- N is generally large so we set $M \ll N$.
- At *t*-th iterate of the *i*-th chain, we sample at random from the set {1,..., N} the indices I₁,..., I_{M-1} of the chains to be used in the transition (always I_M = *i*), i.e. y_j ∼ T_j⁽ⁱ⁾(·|x_{t-1}^(l))
- We want to favour contributions from those auxiliary chains that have been "successful" in the previous iteration.
- We suggest using $\tilde{\lambda}_{j}^{(i)}(x_{t-1}, y_{j}) = \nu_{j}\lambda_{j}^{(i)}(x_{t-1}, y_{j})$, where the factor ν_{j} is

$$\nu_j = \frac{1}{N} \left[1 + \sum_{c=1}^N \mathbf{1}_c(I_j) \right], \quad j = 1, \dots, M,$$
 (1)

and $\mathbf{1}_{c}(I_{j}) = 1$ whenever $y_{j} \sim T_{j}^{(c)}(\cdot|x_{t-2}^{(I_{j})})$ was selected in the *c*-th chain update at iteration t - 1.

Multiple-Try Metropolis and variations o

Interacting MTM

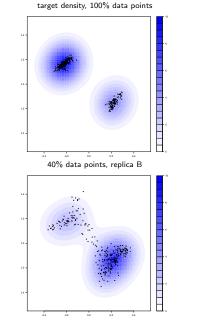
IMTM with Annealing and Subsampling ••••• Examples 00000000

Annealed IMTM (AIMTM)

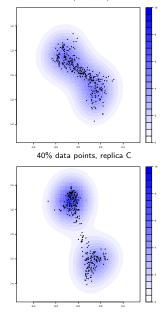
- Consider the sequence of annealed distributions $\pi_t = \pi^t$ with $t \in \{\xi_1, \xi_2, \ldots, \xi_N\}$, where $1 = \xi_1 > \xi_2 > \ldots > \xi_N$, e.g. $\xi_t = 1/t$.
- The Monte Carlo population is made of N − 1 MH chains having {π₂,..., π_N} as stationary distributions.
- The chain ergodic to π has an MTM kernel.

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	000000		00000000
Subsampling IMTM			

- Set π_t to be the posterior obtained with t% of the data.
- Sampling from the prior at t = 0 and from the target at t = 1.
- Requires proper priors and exchangeable data.
- It is NOT similar to annealing:
 - When $t \approx s$ then π_t may not be "close" to π_s . Even is s = t, $\pi_t \neq \pi_s$.
 - We may run a few "copies" of the chains corresponding to the same *t*.
 - Fits into the IMTM setup which can use N >> M.
 - With high-volume data it can lead to significant savings.



40% data points, replica A



Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	000000	○○○●	00000000
Update for the chain o	f interest		

• Suppose M = N; the chain ergodic to π is $\{x_t^{(1)}\}_t$.

Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
		0000	

Update for the chain of interest

- Suppose M = N; the chain ergodic to π is $\{x_t^{(1)}\}_t$.
- For j = 1, ..., M draw independently $y_j \sim T_j^{(1)}(\cdot | x_t^{(j)})$.

1 If
$$j \neq 1$$
 set $w_j^{(1)}(y_j, x_t^{(1)}) = \pi(y_j) T_j^{(1)}(x_t^{(1)}|x_t^{(j)}) \lambda_j^{(1)}(y_j, x_t^{(1)})$
2 If $j = 1$ set $w_1^{(1)}(y_1, x_t^{(1)}) = \pi(y_1) T_1^{(1)}(x_t^{(1)}|y_1) \lambda_1^{(1)}(y_1, x_t^{(1)})$.

When $j \neq 1 \rightarrow$ Independent Metropolis.

Multiple-Try Metropolis and variations Interacting MTM **IMTM with Annealing and Subsampling** Examples

Update for the chain of interest

- Suppose M = N; the chain ergodic to π is $\{x_t^{(1)}\}_t$.
- For j = 1, ..., M draw independently $y_j \sim T_i^{(1)}(\cdot | x_t^{(j)})$.

1 If
$$j \neq 1$$
 set $w_j^{(1)}(y_j, x_t^{(1)}) = \pi(y_j) T_j^{(1)}(x_t^{(1)}|x_t^{(j)}) \lambda_j^{(1)}(y_j, x_t^{(1)})$
2 If $j = 1$ set $w_1^{(1)}(y_1, x_t^{(1)}) = \pi(y_1) T_1^{(1)}(x_t^{(1)}|y_1) \lambda_1^{(1)}(y_1, x_t^{(1)})$.

When $j \neq 1 \rightarrow$ Independent Metropolis.

• Select $J \in \{1, ..., M\}$ with probability proportional to $w_j^{(1)}(y_j, x_t^{(1)}), j = 1, ..., M$ and set $y = y_J$.

 Multiple-Try Metropolis and variations
 Interacting MTM occoord
 IMTM with Annealing and Subsampling occoord
 Examples occoord

 Update for the chain of interest
 Control of interest
 Control of interest

- Suppose M = N; the chain ergodic to π is $\{x_t^{(1)}\}_t$.
- For j = 1, ..., M draw independently $y_j \sim T_j^{(1)}(\cdot | x_t^{(j)})$.

1 If
$$j \neq 1$$
 set $w_j^{(1)}(y_j, x_t^{(1)}) = \pi(y_j) T_j^{(1)}(x_t^{(1)}|x_t^{(j)}) \lambda_j^{(1)}(y_j, x_t^{(1)})$
2 If $j = 1$ set $w_1^{(1)}(y_1, x_t^{(1)}) = \pi(y_1) T_1^{(1)}(x_t^{(1)}|y_1) \lambda_1^{(1)}(y_1, x_t^{(1)})$.

When $j \neq 1 \rightarrow$ Independent Metropolis.

Select J ∈ {1,..., M} with probability proportional to w_j⁽¹⁾(y_j, x_t⁽¹⁾), j = 1,..., M and set y = y_J.
Let x_j^{*} = x_t⁽¹⁾ and for j = 1,..., M, j ≠ J,
If j ≠ 1 draw x_j^{*} ~ T_j⁽¹⁾(·|x_t^(j)) ← independent Metropolis
If i = 1 draw x₁^{*} ~ T₁⁽ⁱ⁾(·|y) ← Metropolis-Hastings

Select J ∈ {1,..., M} with probability proportional to w_j⁽¹⁾(y_j, x_t⁽¹⁾), j = 1,..., M and set y = y_J.
Let x_j^{*} = x_t⁽¹⁾ and for j = 1,..., M, j ≠ J,
If j ≠ 1 draw x_j^{*} ~ T_j⁽¹⁾(·|x_t^(j)) ← independent Metropolis
If j = 1 draw x₁^{*} ~ T₁⁽ⁱ⁾(·|y) ← Metropolis-Hastings
Compute w_j⁽ⁱ⁾(x_j^{*}, y) using the same rule as above.

Multiple-Try Metropolis and variations Interacting MTM IMTM with Annealing and Subsampling Examples 0000 Update for the chain of interest • Suppose M = N; the chain ergodic to π is $\{x_t^{(1)}\}_t$. • For j = 1, ..., M draw independently $y_j \sim T_i^{(1)}(\cdot | x_t^{(j)})$. • If $j \neq 1$ set $w_i^{(1)}(y_i, x_t^{(1)}) = \pi(y_i) T_i^{(1)}(x_t^{(1)}|x_t^{(j)}) \lambda_i^{(1)}(y_i, x_t^{(1)})$. 2 If i = 1 set $w_1^{(1)}(v_1, x_2^{(1)}) = \pi(v_1) T_1^{(1)}(x_2^{(1)}|v_1) \lambda_1^{(1)}(v_1, x_2^{(1)})$. When $i \neq 1 \rightarrow$ Independent Metropolis. • Select $J \in \{1, \ldots, M\}$ with probability proportional to $w_i^{(1)}(y_i, x_t^{(1)}), j = 1, \dots, M$ and set $y = y_j$. • Let $x_{i}^{*} = x_{t}^{(1)}$ and for $j = 1, ..., M, j \neq J$, If $j \neq 1$ draw $x_i^* \sim T_i^{(1)}(\cdot | x_t^{(j)}) \leftarrow$ independent Metropolis 2 If i = 1 draw $x_1^* \sim T_1^{(i)}(\cdot|y) \leftarrow$ Metropolis-Hastings • Compute $w_i^{(i)}(x_i^*, y)$ using the same rule as above. • Set $x_{t\perp 1}^{(i)} = y$ with probability ρ_i , where ρ_i is the generalized

MH ratio and $x_{t+1}^{(i)} = x_t^{(i)}$ with probability $1 - \rho_i$.

Let y_1, \ldots, y_n be *n* i.i.d. samples with density

$$\sum_{h=1}^{k} \tau_h f(y|\mu_h, \eta_h^{-1})$$
 (2)

We use:
$$n = 100, k = 4, (\mu_1, \mu_2, \mu_3, \mu_4)^T = (-3, 0, 3, 6)^T, \tau_h = 0.25, \eta_h^{-1/2} = 0.55, 1 \le k \le 4.$$

- IMTM-TA: An IMTM algorithm with N = 100 chains and using $\lambda_j^{(i)}(x, y) = 2\{T_j^{(i)}(x|y) + T_j^{(i)}(y|x)\}^{-1}$ weights. The *j*-th proposal uses $T_j^{(i)}(y|x) = N(x, \sigma_j^2 \mathbf{I})$ where $\sigma_j = 0.01 + 0.59 * j/M$ for all $1 \le j \le M = 10$, $1 \le i \le N$.
- IMTM-IS: An IMTM algorithm identical to IMTM-TA but using $\lambda_j^{(i)}(x,y) = \{T_j^{(i)}(x|y)T_j^{(i)}(y|x)\}^{-1}$ weights.

These chains were run 10 times longer.

- MH A population of N parallel RWMH samplers in which the *j*-th Gaussian proposal distribution has covariance $\sigma_j^2 \mathbf{I}$ where $\sigma_j = 0.01 + 0.59 * j/N$ for all $1 \le j \le N$ (the acceptance rates are between 10-60%).
- MH1 A population N parallel RWMH algorithms whose proposal distribution is a mixture of 4 normal densities. The standard deviations of the proposals are divided equally between 0.01 and 0.3.
- MH2 A population of Monte Carlo algorithms in which each of the *N* transition kernels is a mixture of four RWMH kernels with same standard deviations as those defined for MH2.

MH.c.o The MH algorithm described above with cross-over moves. MH1.c.o The MH1 algorithm described above with cross-over moves.

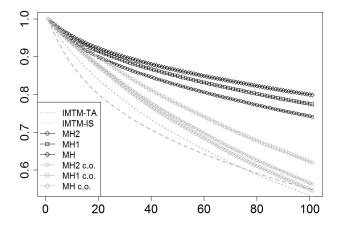
MH2.c.o The MH2 algorithm described above with cross-over moves.

Multiple-Try Metropolis and variations $\ensuremath{\circ}$

Interacting MTM 000000 IMTM with Annealing and Subsampling

Examples 00●00000

ACF Comparison



Multiple-Try	Metropolis	and	

Interacting MTM 000000 IMTM with Annealing and Subsampling

Error estimates

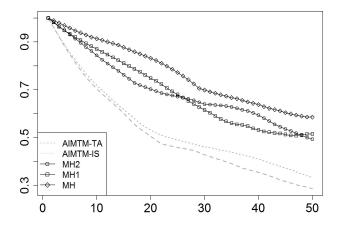
			N=100					N=20		
	1	2	3	4	MSE	1	2	3	4	MSE
MH	0.81	0.42	2.08	1.06	18.83	0.39	0.69	0.67	2.28	26.76
	(4.22)	(4.37)	(4.39)	(4.10)		(5.35)	(5.16)	(6.02)	(3.15)	
MH1	0.72	0.21	0.62	0.91	5.42	0.10	0.17	0.66	0.78	7.35
	(2.12)	(2.09)	(2.14)	(2.19)		(2.47)	(1.89)	(2.49)	(2.91)	
MH2	0.99	1.89	1.47	1.01	3.30	0.11	2.80	0.42	0.37	5.09
	(1.57)	(1.73)	(1.87)	(1.89)		(1.99)	(1.71)	(1.98)	(1.85)	
MH c.o.	1.87	1.09	1.91	1.66	7.89	1.74	1.11	1.01	1.75	11.02
	(2.52)	(2.79)	(2.88)	(2.92)		(3.14)	(3.12)	(3.58)	(3.33)	
MH1 c.o.	0.65	0.21	1.59	1.46	2.77	0.51	0.22	1.83	1.12	3.51
	(1.86)	(1.35)	(1.24)	(1.35)		(1.48)	(1.91)	(1.27)	(1.91)	
MH2 c.o.	1.11	1.69	1.27	1.26	2.17	0.59	1.68	0.97	1.14	2.26
	(1.33)	(1.34)	(1.76)	(1.29)		(1.43)	(1.16)	(1.36)	(1.58)	
IMTM-IS	1.40	1.52	1.37	1.42	1.05	1.36	1.39	1.61	1.69	1.42
	(1.01)	(0.98)	(1.22)	(0.87)		(0.98)	(1.20)	(1.12)	(1.42)	
IMTM-IS-a	1.37	1.44	1.58	1.54	0.49	1.31	1.71	1.35	1.72	1.18
	(0.83)	(0.56)	(0.71)	(0.64)		(0.81)	(0.97)	(1.23)	(1.24)	
IMTM-TA	1.31	1.46	1.53	1.61	0.52	1.29	1.21	1.70	1.32	0.89
	(0.38)	(1.06)	(0.48)	(0.73)		(1.34)	(1.05)	(0.31)	(0.59)	
IMTM-TA-a	1.56	1.39	1.60	1.37	0.47	1.63	1.75	1.61	1.44	0.85
	(0.48)	(0.91)	(0.76)	(0.42)		(0.76)	(0.86)	(1.02)	(0.97)	

Multiple-Try Metropolis and variations $\ensuremath{\circ}$

Interacting MTM 000000 IMTM with Annealing and Subsampling

Examples 0000●000

ACF for AIMTM



Multiple-Try Metropolis and variations	Interacting MTM	IMTM with Annealing and Subsampling	Examples
0	000000		000000000
Subsampling IMTM			

Data Generating Process:

$$y_i \sim \tau_1 \mathcal{N}(\mu_1, \eta_1) + \tau_2 \mathcal{N}(\mu_2, \eta_2), \qquad i = 1, \dots, N = 1000$$

 $\mu = \{-0.2, 0.2\} \quad \eta = \{0.2, 0.2\} \quad \tau = \{0.5, 0.5\}$

Priors:

- $p(\mu, \log(\eta)) \propto 1$
- $\log(au_1/(1- au_1)) \sim \mathcal{N}(0,1.2)$

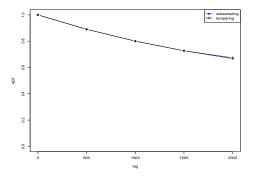
MCMC settings:

- 40k samples, N = 10 parallel chains, M = 10
- temperatures \in [0.4, 1] equally spaced.
- sampling proportion for subsampling: 40%

Multiple-Try	Metropolis	and	

Interacting MTM 000000 IMTM with Annealing and Subsampling

ACF Comparison



Relative Reduction in running time: 11% for sample size n = 1000 and 28% when n = 10K.

Multiple-Try Metropolis and variations Interacting MTM IMTM with Annealing and Subsampling Examples

Ex: Stochastic Volatility Model

$$\begin{array}{rcl} y_t | h_t & \sim & \mathcal{N}\left(0, e^{h_t}\right) \\ h_t | h_{t-1}, \theta & \sim & \mathcal{N}\left(\alpha + \phi h_{t-1}, \sigma^2\right) \\ h_0 | \theta & \sim & \mathcal{N}\left(0, \sigma^2/(1 - \phi^2)\right) \end{array}$$

•
$$\pi(\theta) \propto 1/(\sigma\beta)\mathbb{I}_{(-1,1)}(\phi)$$
 where $\beta^2 = \exp(lpha)$

 ${\ensuremath{\, \bullet }}\xspace \phi$ and the latent variables have non-standard full conditionals

$$\pi(\phi|\sigma^{2}, \mathbf{h}, \mathbf{y}) \propto (1 - \phi^{2})^{1/2} \exp\left(-\frac{\phi^{2}}{2\sigma^{2}} \sum_{t=2}^{T-1} h_{t}^{2} - \frac{\phi}{\sigma^{2}} \sum_{t=2}^{T} h_{t} h_{t-1}\right) \mathbb{I}_{(-1,+1)}(\phi)$$

$$\pi(h_{t}|\alpha, \phi, \sigma^{2}, \mathbf{h}, \mathbf{y}) \propto \exp\left(-\frac{1}{2\sigma^{2}} \left[(h_{t} - \alpha - \phi h_{t-1})^{2} - (h_{t+1} - \alpha - \phi h_{t})^{2}\right] - \frac{1}{2} \left(h_{t} + y_{t}^{2} \exp\{-h_{t}\}\right)\right).$$

Multiple-Try Metropolis and variations o

Interacting MTM 000000 IMTM with Annealing and Subsampling

Stochastic Volatility Model

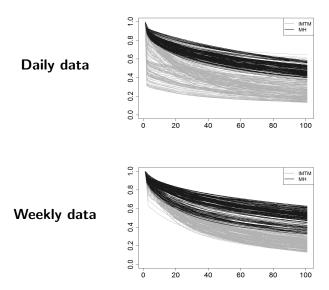
- $(\alpha, \phi, \sigma^2) = (0, 0.99, 0.01)$ corresponds to daily frequency data.
- $(\alpha, \phi, \sigma^2) = (0, 0.9, 0.1)$ corresponds to weekly frequency data.
- $\{h_t\}_{1 \le t \le 200}$ are latent variables.
- Compare MH samplers (N = 20, 50K iterations) and IMTM (N = 20, M = 5, 10K iterations)

Multiple-Try Metropolis and variations $_{\rm O}$

Interacting MTM 000000 IMTM with Annealing and Subsampling

Examples

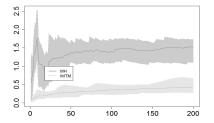
Stochastic Volatility Model

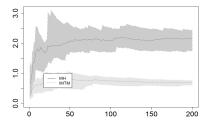


Interacting MTM 000000 IMTM with Annealing and Subsampling

Examples

Stochastic Volatility Model - Cumulated RMSE





Interacting MTM 000000 IMTM with Annealing and Subsampling

Examples

Stochastic Volatility Model

	Daily Data				Weekly Data			
θ	Value	MSE			Value	MSE		
		IMTM-IS	MH			IMTM-IS	MH	
α	0	0.03018	0.07392	α	0	0.00202	0.00597	
		(0.00583)	(0.00201)			(0.00179)	(0.00139)	
ϕ	0.99	0.19853	0.29871	ϕ	0.9	0.01512	0.08183	
		(0.02038)	(0.04423)			(0.03920)	(0.04011)	
σ^2	0.01	0.00204	0.01373	σ^2	0.1	0.00892	0.07405	
		(0.00241)	(0.00191)			(0.00201)	(0.00293)	

- MTM with different proposals is a flexible instrument.
- It integrates well auxiliary information brought by a population of chains.
- Emphasizes the importance of building a reasonable set of chains: tempering and subsampling.
- Central is also the tuning of the *M* proposal distributions ⇔ Adaptive MCMC methods.
- Allows mixing of different kernels (RWM, IM, etc).

The paper related to the talk can be downloaded at www.utstat.toronto.edu/craiu/Papers/index.html