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Metropolis-Hastings Samplers

We wish to sample from some distribution for X ∈ S that has
density π. Obtaining independent draws is too hard.

We construct and run a Markov chain with transition
K (xold , xnew ) that leaves π invariant∫

S
π(x)K (x , y)dx = π(y).

The Metropolis-Hastings sampler is one of the most used
algorithms in MCMC:

Given xt , the current state of the MC, a ”proposed sample” y is
drawn from a proposal density T (y |xt).

The proposal y is accepted with probability
min{1, π(y)T (xt |y)/π(xt)T (y |xt)}.

If y is accepted, then xt+1 = y , otherwise xt+1 = xt .
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Original MTM (Liu, Liang and Wong, JASA 2000)

Suppose T is a proposal density such that
T (x |y) > 0⇔ T (y |x) > 0 and λ(x , y) is a symmetric
function.

(i) Draw K independent trial proposals y1, . . . , yK from T (·|xt).
Sample one with pi ∝ w(yi |xt) = π(yi )T (xt |yi )λ(xt , yi ).

(ii) Generate x∗1 , . . . , x
∗
k−1 ∼ T (·|y) and put x∗k = xt .

(iii) Accept y with probability min

{
1,

PK
i=1 w(yi |xt)PK
i=1 w(x∗i |y)

}
(generalized

MH ratio).

Do we better explore the sample space with K proposals ?

Yes - provided we take advantage of the flexibility offered by
the MTM.
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Multi-Distributed-Try Metropolis

The proposals do not have to be identically distributed.

Generate yj ∼ Tj(·|xt) for 1 ≤ j ≤ k and select one with
probability pj ∝ w(yj |xt) = π(yj)T (xt |yj)λ(xt , yj).

If y = yj0 is selected than put x∗j0 = xt and sample x∗j ∼ Tj(·|y) for
all j 6= j0.

Today: Discuss some of the (many) options offered by this
general setup.

Allows the use of two powerful concepts in modern MCMC:
interacting chains and adaptive chains.

Casarin, C. and Leisen (Stat. and Comput., online)
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Interacting MTM

Interacting MCMC uses a population of chains to gain insight
about the target and improve the mixing properties for the
chain(s) of interest.

Not all chains must have the same stationary distribution and
usually they have different convergence properties (e.g.
simulated tempering).

We want to use a population of chains to guide the generation
of multiple proposals.

Our population of auxiliary chains includes:

1 Chains that mix well within the state space (usually this means
that their stationary distribution is no longer π).

2 Chains that sample from a distribution not very different from
π.

We need to run many chains!
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Interacting MTM

Consider a population of N chains, X (i) = {X (i)
t }n∈N; chain i

has MTM transition kernel with M proposal densities

{T (i)
j }1≤j≤M .

Let Ξt = {x (i)
t }Ni=1 is the vector of values taken at iteration

n ∈ N by the population of chains.

Each proposal distribution used at iteration t + 1 is allowed to
depend on Ξt .

The jth proposal for chain i0 is sampled conditional on x
(j)
t ,

1 ≤ j ≤ M (here we assume M = N).
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IMTM - A graphical illustration
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IMTM

The transition kernel Ki (x
(i)
t , x

(i)
t+1) of the i-th chain of the IMTM

algorithm satisfies the detailed balanced condition.

The joint transition kernel K (Ξt ,Ξt+1) is ergodic to ⊗N
i=1πi .
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Practical Issues

If all the chains in the population have an MTM kernel
(IMTM):

Pros : At each step we choose among a large number of proposals
placed in different regions of the sample space.

Cons : The computational load increases rapidly.

How to choose M (number of proposals) and N (number of
chains)?
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IMTM - Practical Issues

N is generally large so we set M << N.

At t-th iterate of the i-th chain, we sample at random from
the set {1, . . . ,N} the indices I1, . . . , IM−1 of the chains to be

used in the transition (always lM = i), i.e. yj ∼ T
(i)
j (·|x (Ij )

t−1)

We want to favour contributions from those auxiliary chains
that have been ”successful” in the previous iteration.

We suggest using λ̃
(i)
j (xt−1, yj) = νjλ

(i)
j (xt−1, yj), where the

factor νj is

νj =
1

N

[
1 +

N∑
c=1

1c(Ij)

]
, j = 1, . . . ,M, (1)

and 1c(Ij) = 1 whenever yj ∼ T
(c)
j (·|x (Ij )

t−2) was selected in the
c-th chain update at iteration t − 1.
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Annealed IMTM (AIMTM)

Consider the sequence of annealed distributions πt = πt with
t ∈ {ξ1, ξ2, . . . , ξN}, where 1 = ξ1 > ξ2 > . . . > ξN , e.g.
ξt = 1/t.

The Monte Carlo population is made of N − 1 MH chains
having {π2, . . . , πN} as stationary distributions.

The chain ergodic to π has an MTM kernel.
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Subsampling IMTM

Set πt to be the posterior obtained with t% of the data.

Sampling from the prior at t = 0 and from the target at t = 1.

Requires proper priors and exchangeable data.

It is NOT similar to annealing:

When t ≈ s then πt may not be “close” to πs . Even is s = t,
πt 6= πs .
We may run a few “copies” of the chains corresponding to the
same t.
Fits into the IMTM setup which can use N >> M.
With high-volume data it can lead to significant savings.
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Update for the chain of interest

Suppose M = N; the chain ergodic to π is {x (1)
t }t .

For j = 1, . . . ,M draw independently yj ∼ T
(1)
j (·|x (j)

t ).

1 If j 6= 1 set w
(1)
j (yj , x

(1)
t ) = π(yj)T

(1)
j (x

(1)
t |x

(j)
t )λ

(1)
j (yj , x

(1)
t ).

2 If j = 1 set w
(1)
1 (y1, x

(1)
t ) = π(y1)T

(1)
1 (x

(1)
t |y1)λ

(1)
1 (y1, x

(1)
t ).

When j 6= 1 → Independent Metropolis.

Select J ∈ {1, . . . ,M} with probability proportional to

w
(1)
j (yj , x

(1)
t ), j = 1, . . . ,M and set y = yJ .

Let x∗J = x
(1)
t and for j = 1, . . . ,M, j 6= J,

1 If j 6= 1 draw x∗j ∼ T
(1)
j (·|x (j)

t ) ← independent Metropolis

2 If j = 1 draw x∗1 ∼ T
(i)
1 (·|y) ← Metropolis-Hastings

Compute w
(i)
j (x∗j , y) using the same rule as above.

Set x
(i)
t+1 = y with probability ρi , where ρi is the generalized

MH ratio and x
(i)
t+1 = x

(i)
t with probability 1− ρi .
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Examples: Beta Mixture Model

Let y1, . . . yn be n i.i.d. samples with density

k∑
h=1

τhf (y |µh, η
−1
h ) (2)

We use: n = 100, k = 4, (µ1, µ2, µ3, µ4)T = (−3, 0, 3, 6)T ,

τh = 0.25, η
−1/2
h = 0.55, 1 ≤ k ≤ 4.

IMTM-TA: An IMTM algorithm with N = 100 chains and

using λ
(i)
j (x , y) = 2{T (i)

j (x |y) + T
(i)
j (y |x)}−1 weights. The

j-th proposal uses T
(i)
j (y |x) = N(x , σ2

j I) where
σj = 0.01 + 0.59 ∗ j/M for all 1 ≤ j ≤ M = 10, 1 ≤ i ≤ N.

IMTM-IS: An IMTM algorithm identical to IMTM-TA but

using λ
(i)
j (x , y) = {T (i)

j (x |y)T
(i)
j (y |x)}−1 weights.
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Competing algorithms

These chains were run 10 times longer.

MH A population of N parallel RWMH samplers in which the j-th
Gaussian proposal distribution has covariance σ2

j I where
σj = 0.01 + 0.59 ∗ j/N for all 1 ≤ j ≤ N (the acceptance rates
are between 10-60%).

MH1 A population N parallel RWMH algorithms whose proposal
distribution is a mixture of 4 normal densities. The standard
deviations of the proposals are divided equally between 0.01
and 0.3.

MH2 A population of Monte Carlo algorithms in which each of the
N transition kernels is a mixture of four RWMH kernels with
same standard deviations as those defined for MH2.

MH.c.o The MH algorithm described above with cross-over moves.

MH1.c.o The MH1 algorithm described above with cross-over moves.

MH2.c.o The MH2 algorithm described above with cross-over moves.
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ACF Comparison
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Error estimates

N=100 N=20
1 2 3 4 MSE 1 2 3 4 MSE

MH 0.81 0.42 2.08 1.06 18.83 0.39 0.69 0.67 2.28 26.76
(4.22) (4.37) (4.39) (4.10) (5.35) (5.16) (6.02) (3.15)

MH1 0.72 0.21 0.62 0.91 5.42 0.10 0.17 0.66 0.78 7.35
(2.12) (2.09) (2.14) (2.19) (2.47) (1.89) (2.49) (2.91)

MH2 0.99 1.89 1.47 1.01 3.30 0.11 2.80 0.42 0.37 5.09
(1.57) (1.73) (1.87) (1.89) (1.99) (1.71) (1.98) (1.85)

MH c.o. 1.87 1.09 1.91 1.66 7.89 1.74 1.11 1.01 1.75 11.02
(2.52) (2.79) (2.88) (2.92) (3.14) (3.12) (3.58) (3.33)

MH1 c.o. 0.65 0.21 1.59 1.46 2.77 0.51 0.22 1.83 1.12 3.51
(1.86) (1.35) (1.24) (1.35) (1.48) (1.91) (1.27) (1.91)

MH2 c.o. 1.11 1.69 1.27 1.26 2.17 0.59 1.68 0.97 1.14 2.26
(1.33) (1.34) (1.76) (1.29) (1.43) (1.16) (1.36) (1.58)

IMTM-IS 1.40 1.52 1.37 1.42 1.05 1.36 1.39 1.61 1.69 1.42
(1.01) (0.98) (1.22) (0.87) (0.98) (1.20) (1.12) (1.42)

IMTM-IS-a 1.37 1.44 1.58 1.54 0.49 1.31 1.71 1.35 1.72 1.18
(0.83) (0.56) (0.71) (0.64) (0.81) (0.97) (1.23) (1.24)

IMTM-TA 1.31 1.46 1.53 1.61 0.52 1.29 1.21 1.70 1.32 0.89
(0.38) (1.06) (0.48) (0.73) (1.34) (1.05) (0.31) (0.59)

IMTM-TA-a 1.56 1.39 1.60 1.37 0.47 1.63 1.75 1.61 1.44 0.85
(0.48) (0.91) (0.76) (0.42) (0.76) (0.86) (1.02) (0.97)
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ACF for AIMTM
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Subsampling IMTM

Data Generating Process:

yi ∼ τ1N (µ1, η1) + τ2N (µ2, η2), i = 1, . . . ,N = 1000

µ = {−0.2, 0.2} η = {0.2, 0.2} τ = {0.5, 0.5}

Priors:

p(µ, log(η)) ∝ 1

log(τ1/(1− τ1)) ∼ N (0, 1.2)

MCMC settings:

40k samples, N = 10 parallel chains, M = 10

temperatures ∈ [0.4, 1] equally spaced.

sampling proportion for subsampling: 40%



Multiple-Try Metropolis and variations Interacting MTM IMTM with Annealing and Subsampling Examples

ACF Comparison
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Relative Reduction in running time: 11% for sample size n = 1000
and 28% when n = 10K .
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Ex: Stochastic Volatility Model

yt |ht ∼ N
(

0, eht

)
ht |ht−1,θ ∼ N

(
α + φht−1, σ

2
)

h0|θ ∼ N
(
0, σ2/(1− φ2)

)
π(θ) ∝ 1/(σβ)I(−1,1)(φ) where β2 = exp(α)

φ and the latent variables have non-standard full conditionals

π(φ|σ2,h, y) ∝ (1− φ2)1/2 exp

(
− φ2

2σ2

T−1∑
t=2

h2
t −

φ

σ2

T∑
t=2

htht−1

)
I(−1,+1)(φ)

π(ht |α, φ, σ2,h, y) ∝ exp

(
− 1

2σ2

[
(ht − α− φht−1)2−

(ht+1 − α− φht)2
]
− 1

2

(
ht + y2

t exp{−ht}
))

.
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Stochastic Volatility Model

(α,φ,σ2) = (0, 0.99, 0.01) corresponds to daily frequency
data.

(α,φ,σ2) = (0, 0.9, 0.1) corresponds to weekly frequency
data.

{ht}1≤t≤200 are latent variables.

Compare MH samplers (N = 20, 50K iterations) and IMTM
(N = 20, M = 5, 10K iterations)
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Stochastic Volatility Model

Daily data

Weekly data
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Stochastic Volatility Model - Cumulated RMSE

Daily data

Weekly data
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Stochastic Volatility Model

Daily Data Weekly Data

θ Value MSE θ Value MSE
IMTM-IS MH IMTM-IS MH

α 0 0.03018 0.07392 α 0 0.00202 0.00597
(0.00583) (0.00201) (0.00179) (0.00139)

φ 0.99 0.19853 0.29871 φ 0.9 0.01512 0.08183
(0.02038) (0.04423) (0.03920) (0.04011)

σ2 0.01 0.00204 0.01373 σ2 0.1 0.00892 0.07405
(0.00241) (0.00191) (0.00201) (0.00293)
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Conclusions

MTM with different proposals is a flexible instrument.

It integrates well auxiliary information brought by a
population of chains.

Emphasizes the importance of building a reasonable set of
chains: tempering and subsampling.

Central is also the tuning of the M proposal distributions ⇔
Adaptive MCMC methods.

Allows mixing of different kernels (RWM, IM, etc).

The paper related to the talk can be downloaded at
www.utstat.toronto.edu/craiu/Papers/index.html
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