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Multiple-Try Metropolis and variations

Metropolis-Hastings Samplers

@ We wish to sample from some distribution for X € S that has
density 7. Obtaining independent draws is too hard.

@ We construct and run a Markov chain with transition
K (Xold, Xnew) that leaves 7 invariant

/ T(K(x, y)dx = 7(y).
S

@ The Metropolis-Hastings sampler is one of the most used
algorithms in MCMC:

o Given x;, the current state of the MC, a " proposed sample” y is
drawn from a proposal density T(y|x:).

o The proposal y is accepted with probability
min{1, w(y) T (xely)/m(x) T (y|x)}-

o If y is accepted, then x;11 = y, otherwise x;11 = x;.
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal density such that
T(x|ly) >0« T(y|x) > 0 and A(x,y) is a symmetric
function.
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Original MTM (Liu, Liang and Wong, JASA 2000)

@ Suppose T is a proposal density such that
T(x|ly) >0« T(y|x) > 0 and A(x,y) is a symmetric
function.

(i) Draw K independent trial proposals y1, ..., yx from T(:|x¢).
Sample one with p; oc w(y;|x:) = 7(yi) T (x¢|yi)A(xe, yi)- J

(i) Generate x7,...,x;_; ~ T(:]y) and put x; = x;. J

8 il xe .

(iii) Accept y with probability min {1, M} (generalized
i=1 WX

MH ratio).

@ Do we better explore the sample space with K proposals 7

@ Yes - provided we take advantage of the flexibility offered by
the MTM.
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Multi-Distributed-Try Metropolis

@ The proposals do not have to be identically distributed.

Generate yj ~ Tj(:|x¢) for 1 < j < k and select one with
probability p; oc w(yj|xt) = 7(y;) T (xt|y;)A(Xe, ;).

D—

If y = yj, is selected than put x7 = x; and sample X} ~ Ti(:|y) for
all j # jo.

@ Today: Discuss some of the (many) options offered by this
general setup.

@ Allows the use of two powerful concepts in modern MCMC:
interacting chains and adaptive chains.

e Casarin, C. and Leisen (Stat. and Comput., online)
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Interacting MTM

@ Interacting MCMC uses a population of chains to gain insight
about the target and improve the mixing properties for the
chain(s) of interest.

@ Not all chains must have the same stationary distribution and
usually they have different convergence properties (e.g.
simulated tempering).

@ We want to use a population of chains to guide the generation
of multiple proposals.

@ Our population of auxiliary chains includes:

@ Chains that mix well within the state space (usually this means
that their stationary distribution is no longer ).

@ Chains that sample from a distribution not very different from
.
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Interacting MTM

@ Interacting MCMC uses a population of chains to gain insight
about the target and improve the mixing properties for the
chain(s) of interest.

@ Not all chains must have the same stationary distribution and
usually they have different convergence properties (e.g.
simulated tempering).

@ We want to use a population of chains to guide the generation
of multiple proposals.

@ Our population of auxiliary chains includes:

@ Chains that mix well within the state space (usually this means
that their stationary distribution is no longer ).

@ Chains that sample from a distribution not very different from
.

@ We need to run many chains!
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Interacting MTM

o Consider a population of N chains, X() = {X,Ei)}neN; chain i
has MTM transition kernel with M proposal densities

{7 hejem

o Let =; = {xt(')},’-\’:1 is the vector of values taken at iteration
n € N by the population of chains.

@ Each proposal distribution used at iteration t + 1 is allowed to
depend on =;.

@ The jth proposal for chain iy is sampled conditional on x(j),
1 <j < M (here we assume M = N).
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IMTM - A graphical illustration
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The transition kernel Ki(x{", x{"),) of the i-th chain of the IMTM
algorithm satisfies the detailed balanced condition.
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The transition kernel Ki(x{", x{"),) of the i-th chain of the IMTM
algorithm satisfies the detailed balanced condition.

The joint transition kernel K(Z;,=;41) is ergodic to @V ;. J
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Practical Issues

@ If all the chains in the population have an MTM kernel
(IMTM):
Pros : At each step we choose among a large number of proposals

placed in different regions of the sample space.
Cons : The computational load increases rapidly.

@ How to choose M (number of proposals) and N (number of
chains)?
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IMTM - Practical Issues

o N is generally large so we set M << .

@ At t-th iterate of the j-th chain, we sample at random from
the set {1,..., N} the indices I, ..., Iyy_1 of the chains to be

used in the transition (always Iy = i), i.e. yj ~ 'I'j(')(‘|x§j)1)
@ We want to favour contributions from those auxiliary chains
that have been "successful” in the previous iteration.

o We suggest using S\J(.i)(xt_l,)/j) = yj)\J(.i)(xt_l,yj), where the
factor v is

N
1 .
Vj:N 1+E 1C(IJ)]’ ./:177M7 (1)
c=1

and 1.(/;) = 1 whenever y; ~ TJ(C)(\xt(Ij)Z) was selected in the
c-th chain update at iteration t — 1.
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Annealed IMTM (AIMTM)

o Consider the sequence of annealed distributions 7 = 7t with
te{&,8,....6n}, where 1 =& > & > .00 > &y, e

@ The Monte Carlo population is made of N — 1 MH chains
having {72, ..., mn} as stationary distributions.

@ The chain ergodic to m has an MTM kernel.
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Subsampling IMTM

Set ; to be the posterior obtained with t% of the data.
Sampling from the prior at t = 0 and from the target at t = 1.
Requires proper priors and exchangeable data.

It is NOT similar to annealing:

o When t = s then m; may not be “close” to 7. Evenis s = t,
Ty F# Ts.

o We may run a few “copies” of the chains corresponding to the
same t.

o Fits into the IMTM setup which can use N >> M.

o With high-volume data it can lead to significant savings.



target density, 100% data points

40% data points, replica B

with Annealing and Subsampling

40% data points, replica A

40% data points, replica C
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Update for the chain of interest

@ Suppose M = N; the chain ergodic to 7 is {xt(l)}t.



IMTM with Annealing and Subsampling
ocoe

Update for the chain of interest
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e For j=1,..., M draw independently y; ~ T ( ]xt )
Q Ifj#1set W( )(yj,xgl)) = 7r(yJ-)Tj(1)( |x ))\( )(y Xt(l)).
0 17 = 1set w1, 1) = () T NP 31, 1)
When j # 1 — Independent Metropolis.



IMTM with Annealing and Subsampling
ocoe

Update for the chain of interest

@ Suppose M = N; the chain ergodic to 7 is {xt1 e
e For j=1,..., M draw independently y; ~ T ( ]xt )
Q Ifj#1set W( )(yj,xgl)) = 7r(yJ-)Tj(1)( |x ))\( )(y Xt(l)).
0 167 = 1set w1, x) = m(m) T NP 0, x).
When j # 1 — Independent Metropolis.
@ Select J € {1,..., M} with probability proportional to
( )(yj,xgl)) 1—1 ,Mandsety =y,.



IMTM with Annealing and Subsampling
ocoe

Update for the chain of interest

@ Suppose M = N; the chain ergodic to 7 is {xt1 e
e For j=1,..., M draw independently y; ~ T ( ]xt )

Q Ifj#1set W( )(yj,xgl)) = 7r(yJ-)Tj(1)( |x ))\( )(y Xt(l)).
0 117 = 1set w (s, x) = w(m) T b 1.6
When j # 1 — Independent Metropolis.
@ Select J € {1,..., M} with probability proportional to
( )(yj,xgl)) 1—1 ,Mandsety =y,.

° LetxJ :xt( ) and forj=1,....M,j+#J,
Q Ifj# ldraw x ~ T; 1)( \xj)) «— independent Metropolis

Q Ifj=1draw x§ ~ T ( ly) < Metropolis-Hastings



IMTM with Annealing and Subsampling
ocoe

Update for the chain of interest

@ Suppose M = N; the chain ergodic to 7 is {xt1 e
e For j=1,..., M draw independently y; ~ T ( ]xt )

Q Ifj#1set W( )(yj,xgl)) = 7r(yJ-)Tj(1)( |x ))\( )(y Xt(l)).
0 117 = 1set w (s, x) = w(m) T b 1.6
When j # 1 — Independent Metropolis.
@ Select J € {1,..., M} with probability proportional to
( )(yj,xgl)) 1—1 ,Mandsety =y,.

° LetxJ:xt()and forj=1,....M,j+#J,

Q Ifj# ldraw x ~ T; 1)( \xj)) — independent Metropolis
Q Ifj=1draw x§ ~ T ( ly) < Metropolis-Hastings
(i )(

e Compute w; (X *,y) using the same rule as above.
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Update for the chain of interest

@ Suppose M = N; the chain ergodic to 7 is {xt1 e
e For j=1,..., M draw independently y; ~ T ( ]xt )

Q Ifj#1set W( )(yj,xgl)) = 7r(yJ-)Tj(1)( |x ))\( )(y Xt(l)).
0 117 = 1set w (s, x) = w(m) T b 1.6
When j # 1 — Independent Metropolis.
@ Select J € {1,..., M} with probability proportional to
( )(yj,xgl)) 1—1 ,Mandsety =y,.

° LetxJ:xt()and forj=1,....M,j+#J,

Q Ifj# ldraw x ~ T; 1)( \xj)) — independent Metropolis
Q Ifj=1draw x§ ~ T ( ly) < Metropolis-Hastings
e Compute WJ-( )(

o Set xt(jr)l = y with probability p;, where p; is the generalized

X; *,y) using the same rule as above.

MH ratio and x§+)1 = xﬁ) with probability 1 — p;.
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Examples: Beta Mixture Model

Let y1,...y, be ni.i.d. samples with density

k
> Thf (vlinmy ") (2)
h=1
We use: n =100, k = 4, (u1, po, p3, 1a) T = (=3,0,3,6) 7,
7h =025, =055 1< k <4

e IMTM-TA: An IMTM algorithm with N = 100 chains and
using /\J(.')(x,y) =2{ ?}(')(x]y) + 'I'j(')(y\x)}*1 weights. The
j-th proposal uses TJ-(')(y]x) = N(x,071) where
0;j=0.01+059%j/Mforall1<;<M=10,1<i<N.

o IMTM-IS: An IMTM algorithm identical to IMTM-TA but

; () _ 7 () 1
using X (x, ) = (T (xy) Ty 1)} weights.
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Competing algorithms

These chains were run 10 times longer.

MH A population of N parallel RWMH samplers in which the j-th
Gaussian proposal distribution has covariance UJ?I where
0j =0.0140.59 /N for all 1 < j < N (the acceptance rates
are between 10-60%).

MH1 A population N parallel RWMH algorithms whose proposal
distribution is a mixture of 4 normal densities. The standard
deviations of the proposals are divided equally between 0.01
and 0.3.

MH2 A population of Monte Carlo algorithms in which each of the
N transition kernels is a mixture of four RWMH kernels with
same standard deviations as those defined for MH2.

MH.c.o The MH algorithm described above with cross-over moves.
MH1.c.o The MH1 algorithm described above with cross-over moves.

MH2.c.o The MH2 algorithm described above with cross-over moves.
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ACF Comparison

IMTM-TA
IMTM-IS
—&— MH2
—=— MH1
—— MH
MH2 c.o.
MH1 c.o.
MH c.o.
T T T T T
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Error estimates
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N=100 N=20

1 2 3 Z MSE 1 2 3 z MSE

MH | 0.81 0.42 2.08 106 1883 | 0.39 0.69 0.67 228 26.76
(422)  (437)  (439) (4.10) (535)  (5.16)  (6.02)  (3.15)

MH1 | 0.72 0.21 0.62 0.01 5.42 0.10 0.17 0.66 0.78 7.35
(212)  (2.09) (2.14)  (2.19) (2.47)  (1.89)  (249)  (2.91)

MH2 | 0.99 1.89 1.47 1.01 3.30 0.11 2.80 0.42 0.37 5.09
(157)  (1.73)  (1.87)  (1.89) (1.99)  (1.71)  (1.98)  (1.85)

MHco. | 1.87 1.09 101 166 7.89 174 111 .01 175  11.02
(252)  (2.79) (2.88)  (2.92) (314) (3.12) (358)  (3.33)

MHLco. | 0.65 0.21 1.59 1.46 2.77 0.51 0.22 1.83 1.12 3.51
(1.86)  (1.35)  (1.24)  (1.35) (1.48)  (1.91)  (1.27)  (1.91)

MH2 co. | 111 1.69 127 1.26 2.17 0.59 1.68 0.97 1.14 2.26
(1.33)  (1.34) (1.76)  (1.29) (1.43)  (1.16)  (1.36)  (1.58)

IMTM-IS | 1.40 152 137 142 1.05 1.36 139 T.61 169 1.42
(1.01)  (0.98)  (1.22)  (0.87) (098)  (1.20)  (1.12)  (1.42)

IMTM-IS-a | 1.37 1.44 1.58 1.54 0.49 131 171 1.35 172 118
(0.83)  (0.56)  (0.71)  (0.64) (081)  (0.97)  (1.23)  (1.24)

IMTM-TA | 131 1.46 153 1.61 0.52 1.29 121 1.70 1.32 0.89
(0.38)  (1.06)  (0.48)  (0.73) (1.34)  (1.05) (0.31)  (0.59)

IMTM-TA-a | 1.56 1.39 1.60 1.37 0.47 1.63 1.75 1.61 1.44 0.85
(048)  (0.91)  (0.76)  (0.42) (0.76)  (0.86)  (1.02)  (0.97)
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ACF for AIMTM
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Subsampling IMTM

Data Generating Process:

.yfNTIN(M17771)+T2N(M27772)7 | = 177N:1000
p=1{-0202 n={0202} 7=7{0505}

Priors:

o p(u,log(n)) 1
e log(m/(1—m)) ~N(0,1.2)

MCMC settings:
@ 40k samples, N = 10 parallel chains, M = 10
e temperatures € [0.4,1] equally spaced.
@ sampling proportion for subsampling: 40%
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ACF Comparison

AcF

o 500 1000 1500 2000

lag

Relative Reduction in running time: 11% for sample size n = 1000
and 28% when n = 10K.
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Ex: Stochastic Volatility Model

yt’ht ~ N(O,ehf)
ht‘ht_]_,e ~ N(Oé+¢ht_]_,0'2)
hol® ~ N (0,0%/(1—¢%))

o 7(8) o 1/(0B)L(_1.1)(¢) where 32 = exp(a)
@ ¢ and the latent variables have non-standard full conditionals

m(9lo%,h,y) o< (1~ ¢*)M2 exp —ﬁ§h2—£ihh I (¢)
PR 20_2 — t 0_ p— t—1 (71’+1)

#(hilr, 6,0, h y)mexp( (he = — b1 )—

(hey1 —a— ¢ht)2] - % (ht +Yt2 eXP{_ht})) .
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Stochastic Volatility Model

o (o, ¢,02) = (0,0.99,0.01) corresponds to daily frequency
data.

o (a, ¢,0%) = (0,0.9,0.1) corresponds to weekly frequency
data.
@ {h:}1<e<200 are latent variables.

e Compare MH samplers (N = 20, 50K iterations) and IMTM
(N =20, M =5, 10K iterations)
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Stochastic Volatility Model

© |
Daily data °©
!
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© |
Weekly data °©
!
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Stochastic Volatility Model - Cumulated RMSE

S,
Daily data -
° 0 50 100 150 200
Weekly data




Stochastic Volatility Model

Examples

] | Daily Data Weekly Data
0 | Value MSE Value MSE
IMTM-IS MH IMTM-IS MH
« 0 0.03018 0.07392 0 0.00202 0.00597
(0.00583) | (0.00201) (0.00179) | (0.00139)
10} 0.99 0.19853 0.29871 0.9 0.01512 0.08183
(0.02038) | (0.04423) (0.03920) | (0.04011)
o2 ] 0.01 0.00204 0.01373 0.1 0.00892 0.07405
(0.00241) | (0.00191) (0.00201) | (0.00293)

O
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Conclusions

@ MTM with different proposals is a flexible instrument.

@ It integrates well auxiliary information brought by a
population of chains.

@ Emphasizes the importance of building a reasonable set of
chains: tempering and subsampling.

@ Central is also the tuning of the M proposal distributions <
Adaptive MCMC methods.

@ Allows mixing of different kernels (RWM, IM, etc).

The paper related to the talk can be downloaded at
www.utstat.toronto.edu/craiu/Papers/index.html
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