Statistical Methods for False Discovery Control Separating the Wheat from the Chaff:

Radu Craiu
University of Toronto

joint work with

Shelley Bull, Andrew Paterson and Lei Sun University of Toronto

London, May 30, 2006

Contents

- Multiple Comparisons.
- False Discovery Rate (FDR) and Non-Discovery Rate (NDR).
- Stratified False Discovery Control.→ "ROC" based comparisons.

Multiple Comparisons

Summary of events for multiple hypothesis testing:

m	R	m-R	Total
m_1	S (= True Positives)	T (= FN/type II errors)	Truth: H_1
m_0	V (= FP/type I errors)	U (= True Negatives)	Truth: H_0
counts	significant	non-significant	
Total	Declared	Declared	

- Observed: m, R.
- Unobserved: m_0 , m_1 , U, V, T and S.

Measures of Type I Error Rate

- Family-Wise Error Rate: FWER = $Pr(V \ge 1)$.
- Stringent criterion: e.g. $\alpha \approx 10^{-5}$ required for genome-wide linkage analyses of complex diseases using an Affected Sib-Pair (ASP) design.
- Diminished power: often few or no discoveries.
- False Discovery Rate: FDR = E[V/R] (Benjamini and Hochberg, 1995).
- Control FDR $\leq \alpha \Longrightarrow$ corresponding FWER $\geq \alpha$.
- Alternative definitions:

FDR =
$$E[V/R|R > 0] Pr(R > 0) (BH, 1995),$$

pFDR = $E[V/R|R > 0] (Storey, 2002).$

In practice: $Pr(\mathbf{R} > 0) \approx 1$ (Storey and Tibshirani, 2003).

Two Frameworks for FDR control

- Fixed FDR framework: pre-specify FDR at level γ , then find a rejection procedure that rejects as many tests as possible while control FDR at γ .
- The FDR-adjusted p-value method (Yekutieli, Benjamini, 1999) and the q-value approach (Storey, 2002).
- Control FDR at γ level \iff Reject all tests with q-values $\leq \gamma$.

$$p_{(1)} \leq \ldots \leq p_{(m)},$$

$$\hat{q}_{(m)} = \hat{\pi}_0 \, p_{(m)}, \, \hat{q}_{(i)} = \min \left\{ rac{\hat{\pi}_0 \, m \, p_{(i)}}{i}, \hat{q}_{(i+1)}
ight\}.$$

Fixed rejection region framework: reject all tests with (unadjusted) p-values $\leq \alpha$ level (pre-specified), then estimate FDR among all positives.

$$\widehat{\text{FDR}}(\alpha) = \min \left\{ \frac{m \, \hat{\pi}_0 \, \alpha}{\mathbf{R} = \{ \# \, p_i \leq \alpha \}}, 1 \right\}.$$

An estimator for $\pi_0 = m_0/m$:

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda\}}{(1-\lambda) m}, \text{ with } \lambda = 1/2.$$

Motivating Example I

1000	80	920	20	980	Total
100	72	28	19	81	Truth: H_1
900	∞	892	1	899	Truth: H_0
	significant	non-significant	significant	non-significant	
Total	Declared	Declared	Declared	Declared	
	R at 10%	Control FDR at 10%	R at 5%	Control FDR at 5%	

- Control FDR at 5%: miss 81 true signals and identify 19 true signals.
- Control FDR at 10%: miss 28 true signals and identify 72 true signals.

Which FDR level? Measures of type II error rate and power?

Non-Discovery Rate (NDR)

- Definition: NDR = $E[T]/m_1 = 1 E[S]/m_1$.
- **Estimation:** $\widehat{NDR} = 1 \{ \mathbf{R} (1 FDR) \} / \{ m (1 \hat{\pi}_0) \}.$
- Accurate estimation of π_0 .
- Interpretation: Fixed region framework with threshold α , NDR = $\beta(\alpha)$; 1 - NDR = Power(α).
- **Utility:** trade-off between FDR and 1 NDR.

Application - Microarray

Storey and Tibshirani (2003): $m = 3, 170, \hat{\pi}_0 = 0.67.$

Stratified False Discovery Control

- Inherent stratification in many genetics studies:
- high priority markers selected from candidate genes or linkage regions vs. secondary markers included to cover the genome,
- SNPs vs. microsatellites,
- each marker tested for association with each of K phenotypes of interest,
- tests conducted assuming K different genetic models,
- :
- Available auxiliary information/variable: stratum indicator.
- Effective way to incorporate the auxiliary information?
- Any gain by adjusting for multiple comparisons within stratum?

Motivating Example II

- In a GWA study, assume a map with 105K SNPs, and
- 5K SNPs were selected from favored regions (stratum 1), among which 100 are truly associated,
- 100K SNPs were chosen to cover the genome (stratum 2), among which 50 are truly associated.
- Fixed rejection: $\alpha = 0.001$, and $1 \beta(\alpha) = 70\%$:

	100,000	٠,٠٠٠	100,000
$m_1 = \#$ associated SNPs	150	100	50
E[V] = E[# false positives]	105	5	100
E[S] = E[# true positives]	105	70	35
$E[\mathbf{R}] = E[\# positives]$	210	75	135
FDR = E[V/R]	50%	7%	74%

Fixed FDR: $\gamma = 10\%$, and power follows a normal model,

$$1 - \beta(\alpha; \mu) = \Phi(\Phi^{-1}(\alpha) + \sqrt{n\mu/\sigma})$$
 with $n = 100, \mu = 1.8, \sigma = 5$:

16	83	66	$E[\mathbf{R}] = E[\# positives]$
14.4	74	60	E[S] = E[# true positives]
1.6	8	6	E[V] = E[# false positives]
29%	74%	40%	1-eta(lpha)
0.000016	0.0016	0.00006	α used
50	100	150	$m_1 = \#$ associated SNPs
100,000	5,000	105,000	m = # SNPs
Stratum 2	Stratum 1	Aggregated	

$$\mathrm{E}[\mathbf{S}] = \mathbf{60} < \mathbf{74} + \mathbf{14.4} = \sum_k \mathrm{E}[\mathbf{S}^{(k)}]$$

Aggregation vs. Stratification

Fixed rejection region: α fixed ($\mathbf{R} = \{ \# \text{ p-value } \leq \alpha \}$).

$$FDR = \sum_{k} w^{(k)} FDR^{(k)}.$$

$$w^{(k)} = E[R^{(k)}] / \sum_{j} E[R^{(j)}],$$

If
$$\pi_0^{(k)} = \pi_0$$
, $1 - \overline{\beta(\alpha)}^{(k)} = 1 - \overline{\beta(\alpha)}$: $FDR^{(k)} = FDR$.

$$\text{If } \pi_0^{(k)} < \pi_0, \, 1 - \overline{\beta(\alpha)}^{(k)} > 1 - \overline{\beta(\alpha)} : \quad \text{FDR}^{(k)} < \, \text{FDR}.$$

• If
$$\pi_0^{(k)} > \pi_0$$
, $1 - \overline{\beta(\alpha)}^{(k)} < 1 - \overline{\beta(\alpha)}$: FDR^(k) > FDR.

Fixed FDR: γ fixed (E[V/R] = γ).

$$\mathsf{E}[\mathbf{R}] \leq \sum_k \mathsf{E}[\mathbf{R}^{(k)}].$$

ROC curves

The traditional ROC curve is used for diagnostic accuracy

- X is the diagnostic tool measurement for controls (true null) and Y is the diagnostic tool measurement for cases (false null).
- Specificity: probability that a control is classified as normal. Sensitivity: probability that a case is classified as diseased.
- ROC plots Sensitivity vs 1 Specificity.

Sensitivity

P(Y>X)

1 - Specificity

ROC-like comparison for FDC methods

defined on the whole (unstratified) set of p-values. Stratified FDR and "classical" FDR can be compared as FDC procedures

- **1-NDR** = Sensitivity; FDR = 1 Specificity.
- Simulation study of two strata each with different m, π_0 and signals of different strength.
- Aggregated NDR can be obtained in two ways:
- 1) Work with all the p-values (ignore stratification).
- 2) Combine the strata-specific NDR's into a unified measure:

$$NDR_s = \frac{m_1^{(1)}NDR^{(1)} + m_1^{(2)}NDR^{(2)}}{m_1^{(1)} + m_1^{(2)}}$$

References

- Craiu RV, Sun L (2005). Choosing the lesser evil: trade-off between Department of Statistics, University of Toronto. false discovery rate and non-discovery rate. Technical Report #0504,
- Sun L, Bull SB, Craiu VR, Paterson AD (2006). Stratified false appear. to genome-wide association studies. Genetic Epidemiology, to discovery control for large scale hypothesis testing with application