
1 Bayesian Bias Correction Model

Assuming that n iid samples {X1, . . . , Xn}, were collected from a normal population

with mean µ and variance σ2. The model likelihood has the form,

P ( ~X|µ, σ2, Tn > c) =

n
∏

i=1

1√
2πσ2

exp
[

− (Xi−µ)2

2σ2

]

1 − Φ(c − µ
σ/

√
n
)

(1.1)

where ~X = (X1, . . . , Xn) and Φ is the cumulative distribution function (cdf) of the

standard normal distribution.

The prior distribution of the model is defined by the following distributions:

p(µ|ξ) = ξδ{0}(µ) + (1 − ξ)f(µ),

f(µ) = Uniform(0, A),

p(ξ) = Beta(a, b),

p(σ2) = Inv-Gamma(α1, α2),

where A is the upper bound of log OR. We use A = 2 throughout the paper. We

choose the shape parameter, α1, and the scale, α2, for the inverse gamma distribution

such that the prior mean of σ2 is equal to the sample variance, S2, and the prior

variance of σ2 is equal to 200. Since the mean of the Inv-Gamma(α1, α2) is α2

α1−1
for

α1 > 1, and the variance is
α2

2

(α1−1)2(α1−2)
, a simple calculation leads to α1 = S4/200+2,

and α2 = S6/200 + S2.

We reparameterize the model using θ = µ/2 and therefore, the proposed Bayesian

model has the following hierarchical structure

p(θ|ξ) = ξg0(θ) + (1 − ξ)g1(θ), (1.2)

p(ξ) = Beta(a, b)

p(σ2) = Inv-Gamma(S4/200 + 2, S6/200 + S2)

where g0(θ) = δ{0}(θ) and g1(θ) is the density of Uniform(0,1) and S is the sample

standard deviation.
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The joint prior distribution for (θ, ξ) is

p(θ, ξ) = p(θ|ξ)p(ξ) = ξg0(θ)ξ
a−1(1 − ξ)b−1 + (1 − ξ)g1(θ)ξ

a−1(1 − ξ)b−1. (1.3)

Let Z be the latent mixture indicator so that Z = 0 if the significant SNP is a false

positive (θ = 0) and Z = 1 for a true positive (θ > 0). Then conditional on Z, the

sampling distribution is:

p( ~X|θ, σ2, Z, Tn > c) ∝ (1/σ)n

(

exp{−
∑n

i=1
X2

i

2σ2 }

1 − Φ(c)

)1−Z (

exp{−
∑n

i=1
(Xi−2θ)2

2σ2 }

1 − Φ(c − 2θ
σ/

√
n
)

)Z

(1.4)

If Z were observed, the posterior distribution for the vector (θ, ξ, σ2) can be expressed

as:

p(θ, ξ, σ2| ~X, Z, Tn > c) ∝ p( ~X, Z|θ, σ2, Tn > c)p(θ|ξ)p(ξ)p(σ2)

∝ (1/σ)n

(

exp{−
∑n

i=1
X2

i

2σ2}

1 − Φ(c)

)1−Z (

exp{−
∑n

i=1
(Xi−2θ)2

2σ2 }

1 − Φ(c − 2θ
σ/

√
n
)

)Z

× (ξg0(θ) + (1 − ξ)g1(θ)) × ξa−1(1 − ξ)b−1 × p(σ2)

∝ (1/σ)n

(

exp{−
∑n

i=1
X2

i

2σ2}

1 − Φ(c)

)1−Z (

exp{−
∑n

i=1
(Xi−2θ)2

2σ2 }

1 − Φ(c − 2θ
σ/

√
n
)

)Z

× ξ1−Z(1 − ξ)Zξa−1(1 − ξ)b−1

(

1

σ2

)α1+1

exp
{

−
α2

σ2

}

= (1/σ)n

(

exp{−
∑n

i=1
X2

i

2σ2}ξ

1 − Φ(c)

)1−Z

×

(

exp{−
∑n

i=1
(Xi−2θ)2

2σ2 }(1 − ξ)

1 − Φ(c − 2θ
σ/

√
n
)

)Z

× ξa−1(1 − ξ)b−1

(

1

σ2

)α1+1

exp
{

−
α2

σ2

}

.

with α1 = S4/200 + 2, and α2 = S6/200 + S2.
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2 Supplementary Plots

We present simulation results under a number of additional scenarios:

• Figure 1 illustrates the performance of the estimators under the null hypothesis

(µ = 0) .

• Figure 2 shows results when the type one error rate is 10−4.

• The robustness of the model with respect to prior choice is reflected in Figure 3

where summaries for B.L, B.H and B.BMA are presented for different choices

of the parameters a and b.

• Simulation results under an additive genetic model with different values of µ ∈

{0, log(1.02), log(1.1), log(1.5)} and when the significance level is α = 0.05 are

shown in Figure 4.

• Similar scenario to the one described above but with α = 0.001 (Figure 5).

• Comparison of two different burn-in periods shows that discarding the first 5,000

or 15,000 samples produces very similar results (Figures 6 and 7).

• The robustness of the prior to the choice of the upper bound A for µ and prior

variance for σ2 is illustrated in Figures 8 and 9.
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Figure 1: Performance of the nine estimators under the normal model
with a type I error rate of 0.05 when the true value of µ is log(1)=0.
Each circle represents an estimate,the horizontal bar is the averaged estimate over
200 simulated datasets.The Bias, sample Standard Deviation(SD) and Root Mean
Squared Error (RMSE) are also provided for each estimator. One can see that B.L
performs best in this case.
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Figure 2: Performance of the nine estimators under the normal model
with a type I error rate of 10−4. The population mean µ = log(1.1) = 0.0953
and power ranging from 5%,20%,50% to 99%. Details of the simulating parameters
are given in row 2 of table 1. Each circle represents an estimate, the horizontal bar
is the averaged estimate over 200 simulated datasets, and the long horizontal line
represents the true value of µ. The Bias, sample Standard Deviation(SD) and Root
Mean Squared Error (RMSE) are also provided for each estimator.
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Figure 3: Performance of the Bayesian estimators B.L and B.H and the
B.BMA averaging over B.L and B.H. for different values settings of a
and b in the prior distribution Beta(a,b) for the hyperparameter ξ under
the normal model. All estimators with (a, b) ∈ {(4, 0.5), (8, 0.5), (16, 0.5)} are of
the B.L type because the density of Beta(a,b) in this case preserves the ”inverse”
L-shape. Similarly, when (a, b) ∈ {(0.5, 4), (0.5, 8), (0.5, 16)} we obtain B.H-type
densities that preserve the L-shape. Left: power=10%, type I error α = 0.05. Right:
power=5%, type I error α = 10−6. Each circle represents an estimate, the horizontal
bar is the averaged estimate over 200 simulated datasets, and the long horizontal line
represents the true value of µ. The Bias, sample Standard Deviation(SD) and Root
Mean Squared Error (RMSE) are also provided for each estimator.
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Figure 4: Performance of the nine estimators under an additive genetic
model with a type I error rate of α = 0.05. The sample size is 1,000 (500
cases and 500 controls), the minor allele frequency of the causal SNP is 0.25. The
true effects of the SNP on the log OR scale are µ = β = log(1) = 0 corresponding
to the null case, log(1.02) corresponding to power ≈ 10%, log(1.1) corresponding to
power ≈ 30% to log(1.5) corresponding power > 95%. Each circle represents an
estimate, the horizontal bar is the averaged estimate over 200 simulated datasets, and
the long horizontal line represents the true value of µ. The Bias, sample Standard
Deviation(SD) and Root Mean Squared Error (RMSE) are also provided for each
estimator.
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Figure 5: Performance of the nine estimators under an additive genetic
model with a type I error rate of α = 0.001. The sample size is 1,000 (500 cases
and 500 controls), the minor allele frequency of the causal SNP is 0.25.The true effect
of the SNP on the log OR scale ranging from µ = β = log(1.05),log(1.1),log(1.2) to
log(1.6) corresponding to power < 1%, ≈ 5%, ≈ 20%, > 95%. Each circle represents
an estimate, the horizontal bar is the averaged estimate over 200 simulated datasets,
and the long horizontal line represents the true value of µ. The Bias, sample Standard
Deviation(SD) and Root Mean Squared Error (RMSE) are also provided for each
estimator.
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Figure 6: Scatter plot of the estimates of µ for the estimator B.Unif un-
der two computation schemes for the MCMC in which the first one is
having 15,000 posterior samples after discarding the first 5000 burn-in
samples and the second one is having 15,000 posterior samples after dis-
carding the first 15,000 burn-in samples under the normal model for 200
replications. The true value of µ is equal to log(1.1)=0.0953. This plot shows that
estimation results are approximately the same for these two schemes. The plots (which
are not shown here due to space limitation) for other Bayesian estimators with dif-
ferent value of a and b suggest the same conclusion. Top left:α = 0.05,power=10%,
Top right: α = 0.05,power=20%, bottom left: α = 10−6,power=5%, bottom right:
α = 10−6,power=20%.
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Figure 7: Scatter plot of the estimates of µ for the estimator B.Unif un-
der two computation schemes for the MCMC in which the first one is
having 15,000 posterior samples after discarding the first 5000 burn-in
samples and the second one is having 25,000 posterior samples after
discarding the first 5,000 burn-in samples under the normal model for
200 replications. The true value of µ is equal to log(1.1)=0.0953. This plot shows
that estimation results are approximately the same for these two schemes. The plots
(which are not shown here due to space limitation) for other Bayesian estimators
with different value of a and b suggest the same conclusion. Top left: type I error
rate of α = 0.05,power=10%, Top right: type I error rate of α = 0.05,power=20%,
bottom left: type I error rate of α = 10−6,power=5%, bottom right: type I error rate
of α = 10−6,power=20%.
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Figure 8: Scatter plot of the estimates of µ for the estimator B.Unif when
the upper bound for the support of µ A=2 vs. A=6 under the normal
model for 200 replications The true value of µ is equal to log(1.1)=0.0953. This
plot shows that estimation results are approximately the same for these two schemes.
The plots (which are not shown here due to space limitation) for other Bayesian
estimators with different value of a and b suggest the same conclusion. Left: type I
error rate of α = 10−6,power=5%, Right: type I error rate of α = 10−6,power=20%.
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Figure 9: Scatter plot of the estimates of µ for the estimator B.Unif when
the prior variance of σ2 is 10 vs. 200 (Left) or 200 vs. 1000(Right)
under the normal model for 200 replications when the type I error rate
is 0.05 and power=0.1. The true value of µ is equal to log(1.1)=0.0953. This
plot shows that estimation results are pretty robust to different settings of the values of
prior variance for σ2. The plots (which are not shown here due to space limitation) for
other Bayesian estimators with different value of a and b suggest the same conclusion.
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