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Parameter Expanded Algorithms for Bayesian
Latent Variable Modeling of Genetic

Pleiotropy Data

Lizhen XU, Radu V. CRAIU, Lei SUN, and Andrew D. PATERSON

Motivated by genetic association studies of pleiotropy, we propose a Bayesian la-
tent variable approach to jointly study multiple outcomes. The models studied here
can incorporate both continuous and binary responses, and can account for serial and
cluster correlations. We consider Bayesian estimation for the model parameters, and
we develop a novel MCMC algorithm that builds upon hierarchical centering and pa-
rameter expansion techniques to efficiently sample from the posterior distribution. We
evaluate the proposed method via extensive simulations and demonstrate its utility with
an application to an association study of various complication outcomes related to Type
1 diabetes. This article has supplementary material online.

Key Words: Bayesian inference; Latent variable; Marginal data augmentation; Markov
chain Monte Carlo; Pleiotropy.

1. INTRODUCTION AND MOTIVATION

When the response variable of interest cannot be measured directly we often measure
instead a set of surrogate outcomes. The effect of covariates on each observed outcome
(also known as manifest variables) can be modeled directly, say via linear or generalized
linear models, but the overall effect on the unobserved outcome of interest is difficult to
assess. One solution is to use a latent variable (LV) formulation in which the outcome of
interest is considered as an unobserved response and can be directly linked to the manifest
variables and to the covariates (Bartholomew, Knott, and Moustaki 2011).

Initial applications of LV models focused on reducing the number of manifest variables
to a smaller number of latent outcomes. Sammel and Ryan (1996) and Sammel and Ryan
(1997) extended the LV methodology to allow covariates to have effects on both the
manifest and latent variables. Roy and Lin (2000) discussed a LV approach for longitudinal

Lizhen Xu, Department of Statistical Sciences, University of Toronto (E-mail: lizhen@utstat.toronto.edu). Radu
V. Craiu, Department of Statistical Sciences, University of Toronto (E-mail: craiu@utstat.toronto.edu). Lei Sun,
Department of Statistical Sciences and Division of Biostatistics, Dalla Lana School of Public Health, University
of Toronto (E-mail: sun@utstat.toronto.edu). Andrew D. Paterson, Program in Genetics and Genomic Biology,
Hospital for Sick Children, and Dalla Lana School of Public Health, University of Toronto, Toronto (E-mail:
andrew.paterson@utoronto.ca).

C© 2016 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 25, Number 2, Pages 405–425
DOI: 10.1080/10618600.2014.988337
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/jcgs.

405

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 1
2:

34
 1

0 
M

ay
 2

01
6 

http://www.tandfonline.com/r/JCGS
http://www.amstat.org
http://www.galaxy.gmu.edu/stats/IFNA7.html
http://www.amstat.org/publications/jcgs
http://dx.doi.org/10.1198/jcgs.10.1080/10618600.2014.988337
http://www.tandfonline.com/jcgs


406 L. XU ET AL.

data with continuous outcomes. Applications of LV modeling appear frequently in a wide
spectrum of scientific studies in medicine (Sammel and Ryan 1997), epidemiology (Sanchez
et al. 2005), psychology (Engle et al. 1999), and economics (Kuttner 1994), among many
others.

Our own interest in latent variable models was motivated by genetics association studies
in which a single genetic factor influences multiple continuous or binary phenotypes which
are, potentially, different manifestations of the same complex disease. This phenomenon,
called pleiotropy, occurs for instance in genetic studies of Type 1 diabetes (henceforth,
T1D) where the primary and often conceptual phenotype (e.g., disease severity) may not be
directly measured and cannot be characterized by one single phenotype. Instead, subjects
may exhibit different levels of renal, retinal, and cardiovascular deterioration. The joint
analysis of these surrogate outcomes will increase the statistical efficiency and enhance
discovery of genetic risk factors.

An added characteristic of many emerging large-scale genetic studies is the collection
of repeated measures over time for clustered units. In genetics the clusters are generally
defined by the pedigree/familial structure and are thus assumed known. The longitudinal
family studies combine the features of longitudinal studies in independent individuals and
studies using single-time-point phenotype measures in families, providing more informa-
tion about the genetic and environmental factors associated with the traits of interest than
cross-sectional studies (Burton et al. 2005). However, joint modeling of multiple phe-
notypes using longitudinal family data involves nontrivial statistical and computational
challenges because of the complex correlations that exist between different phenotypes
(the phenotypical correlation), between repeated measures from the same phenotype (the
serial correlation) and between individuals within the same family/cluster (the familial
correlation).

We consider Bayesian methods that rely on LV models to jointly study multiple correlated
outcomes in the presence of serial and cluster correlations. One of the article’s contributions
is to generalize the work of Roy and Lin (2000) to longitudinal family data that exhibit serial
and cluster dependence structures. We discuss the effects of ignoring cluster dependence on
the inference for the parameters of interest. We also consider mixed responses that include
both binary and continuous phenotypes occurring in unbalanced sampling designs in which
the number of observations and the lengths of time intervals between observations vary
across subjects.

The Bayesian model we use raises important computational challenges because the
posterior distribution is not analytically tractable and, moreover, the standard Markov
chain Monte Carlo (MCMC) algorithm used to sample the posterior is inefficient. Another
main contribution of the article consists of developing alternative algorithmic designs that
improve the sampling efficiency. The MCMC sampler proposed here relies on hierarchical
centering and parameter expansion techniques (Gelfand 1995; Liu and Wu 1999; Meng and
van Dyk 1999; Hobert and Marchev 2008; Gelman et al. 2008) to improve computational
performance.

The rest of the article is organized as follows. Section 2 details the LV model in a
general setting. Section 3 presents a Bayesian estimation for the model parameters and a
novel MCMC algorithm designed to sample the posterior distribution efficiently. Section
4 shows results from extensive simulation studies, and Section 5 applies the proposed
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 407

method to a genetic association study of T1D complications. Section 6 concludes with
recommendations and further discussions.

2. STATISTICAL MODEL

We consider here a population of clustered subjects which are measured repeatedly in
time. The hierarchical structure of a random sample involves C known clusters,Nc subjects
within the cth cluster andKci repeated measurements for the ith subject from the cth cluster.
Let Ycik = (ycik1, . . . , ycikJ )T be the J × 1 vector of outcomes (or manifest variables)
measured at the kth time point on the ith subject from the cth cluster, for c = 1, 2, . . . , C,
i = 1, 2, . . . , Nc, k = 1, 2, . . . , Kci . Among the J outcomes, Yc

cik = (yccik1, . . . , y
c
cikJ1

)T are
continuous and Yb

cik = (ybcikJ1+1, . . . , y
b
cikJ )T are binary.

Let Ucik be the LV that represents the underlying overall response which aggre-
gates the partial information brought by each of the J manifest variables and Uci =
(Uci1, . . . , UciKci )

T be the vector of the longitudinal LV at times tci = (tci1, . . . , tciKci )
T .

In the first part of the LV model, a continuous response yc is linked to the latent trait U
via a linear mixed model

yccikj = β0j + WT
cikβj + λjUcik + bcij + ecikj , (2.1)

where ecikj
iid∼ N (0, σ 2

j ),Wcik is ap1-dimensional vector of covariates that have direct effects
on the response (also called direct fixed-effect covariates) and λj is the factor loading that
represents the effect of the LV on the jth response. When all λj ’s are equal to 1, model
Equation (2.1) is reduced to a mixed effect model. The random component bcij captures the

cluster-specific within-subject serial correlations. We assume bcij
iid∼ N (0, τ 2

j ), and ecikj and
bcij are mutually independent for c = 1, . . . , C, i = 1, . . . , Nc, k = 1, . . . , Kci and j =
1, . . . , J .

If a response is binary, a generalized linear mixed model is assumed,

μcikj = β0j + WT
cikβj + λjUcik + bcij , (2.2)

with a probit link,

E
[
ybcikj |μcikj

] = Pr(ybcikj = 1|μcikj ) = �(μcikj ). (2.3)

The second part of the LV model specifies the effect of Xcik , a set of variables that are of
primary interest, on the latent variable U via a linear mixed model. Elements in X are also
called indirect fixed-effect covariates because their effects on the response Y are carried out
via the effect of the latent variable U on Y in (2.2) or (2.3).

To reflect the correlation implied by the relatedness of subjects within families, we
follow the specification of the linear mixed model for family data proposed by Jamsen et al.
(2010):

Uci = Xciα + ZT(g)ci ⊗ 1Kci gc + ZTci ⊗ 1Kci ac + εci , (2.4)

where ⊗ denotes Kronecker product, εci = (εci1, . . . , εciKci )
T is the vector of error terms

and Xci = (XTci1, . . . , X
T
ciKci

)T is a Kci × p2 design matrix for the fixed effects α. The
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408 L. XU ET AL.

random effect vectors ac = (ac1, . . . , acNc )
T , gc = (gc1, . . . , gcNc )

T account for genetic
and environmental factors, respectively, and are independent of the error terms. Their dis-
tributions are modeled as gc ∼ NNc (0, σ

2
g INc ) and ac ∼ NNc (0, σ

2
a INc ). The indicator ZT(g)c is

a Nc ×Nc matrix that identifies which related individuals share a common environment,
while ZTc is the Cholesky decomposition of the kinship coefficient matrix of the cth family,
Kc, that is, ZTc Zc = Kc. We use Z(g)ci and Zci to denote the ith column of Z(g)c and Zc,
respectively. For simplicity, we assume that gci = gc for all i and c, and Z(g)c = 1Nc , that
is, all the related individuals within a family share a common environmental random effect.
Thus, we specify the latent variable model as

Uci = Xciα + gc1Kci + ZTci ⊗ 1Kci ac + εci . (2.5)

When analyzing pleiotropic effects, the covariate of primary interest is the genotype at a ge-
netic marker. In such a setting, pleiotropy is detected if both theα-component corresponding
to the effect of genetic marker on the LV and multiple λ’s are significant.

To handle the unequally spaced measurements, we assume that the within subject serial
correlation of the latent variable U is due to autoregression (Diggle, Liang, and Zeger 1994)
and εci(t) is a continuous-time Gaussian process with

E(εci(t)) = 0, var(εci(t)) = σ 2
ε , cov(εci(tr ), εci(tk)) = σ 2

ε ρ
|tr−tk |, (2.6)

where 0 < ρ < 1 is the correlation coefficent between the within subject error terms that
are one time unit apart. That is, we assume that εci ∼ NKci (0, σ

2
ε Hci), where Hci is a

Kci ×Kci matrix with the (r, k)th entry equal to ρ|tr−tk |. Note that if h ∈ R\{0} is an
arbitrary nonzero constant, then one can rewrite Equation (2.1) as

yccikj = β0j + WT
cikβj + λjh

−1hUcik + bcij + ecikj , (2.7)

implying that without any restriction on λ or the variance of εcik , an infinite num-
ber of equivalent models can be created. A similar phenomenon appears in the bi-
nary response case. To avoid unidentifiability, we assume that (i) σε = 1; (ii) λj ≥ 0;
(iii) the set of direct covariates used in (2.2) or (2.3), and the set of indirect covari-
ates used in (2.5) are disjoint, and (iv) the Equation (2.5) does not contain a fixed
intercept.

Splitting the available covariates into two disjoint sets that correspond to direct and
indirect effects is a delicate step in establishing the LV model. As far as we know, there
are no general diagnostic tools available to guide us in this respect. Sammel and Ryan
(1996) suggested to include the covariates of primary interest in the indirect effect set and
the covariates that are of secondary importance in the direct effect set. In our applications,
we want to include as many covariates as possible in the indirect effect set so that we can
investigate their association with the LV. A larger indirect set of covariates also implies
a more parsimonious model (Khatab and Fahrmeir 2009) which, in the Bayesian context
considered here, leads to a reduction of the computational effort required to sample from
the posterior distribution. This matter is complicated by the lack of symmetry observed
when moving covariates from the indirect to the direct set and vice versa. Specifically,
suppose that we define U ∗

cik = Ucik − Xcikα and then we use U ∗
cik as the LV in (2.1) and

(2.2). One can see that switching X from the indirect to the direct set leads to an equivalent
model. However, switching covariates from direct to indirect effect set does not lead to
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 409

an equivalent model and may produce different conclusions. Simulations performed in
Xu (2012) show that model misspecification achieved by transferring a direct effect to the
indirect effect set produces a significant increase in the deviance information criterion (DIC,
Spiegelhalter et al. 2002) value. Due to these findings, our strategy for the separation of
covariates into direct or indirect set is based on scientific reasoning, inferential focus as well
as the comparison of DIC differences between the model that includes all the covariates in
the direct effect set and the model that moves the investigated covariate into the indirect
effect set. Large increases in the DIC value will suggest that it may be more suitable to
include the covariate in the direct effect set. An illustration of this principle is presented in
Section 5.

2.1 EFFECTS OF IGNORING CLUSTER CORRELATION

A variable measured on units that belong to the same cluster is expected to yield
dependent values. In practice, to reduce the analytic complexity and computational burden,
one may choose to assume independence and apply existing methods (e.g., Roy and Lin
2000). However, ignoring the cluster dependence structure may result in biased inference
for the model parameters. To crystallize the discussion, we assume a simplified case where
the responses are all continuous and there are no repeated measures. The LV model becomes

ycij = β0j + WT
ciβj + λjUci + ecij , and Uci = XT

ciα + gc + ZTciac + εci,

where c = 1, . . . , C, i = 1, . . . , Nc and j = 1, . . . , J with independent error terms ecij ∼
N (0, σ 2

j ) and εci ∼ N (0, 1), λj > 0, gc ∼ N (0, σ 2
g ) and ac ∼ N (0, σ 2

a INc ).
The variance of the jth response for individual i in family c can be decomposed in terms

of the model parameters as

var(ycij ) = σ 2
j + λ2

j

[
σ 2
g + (Kc)iiσ

2
a + 1

]
, (2.8)

where (Kc)ii is the (i, i)th entry of the kinship coefficient for family c, which is equal to
0.5 for all i and c.

Suppose that we ignore the cluster correlation in the data and propose the model

yhj = β0j +WT
h βj + λ̃j Ũh + ehj , and Ũh = XTh α̃ + εh,

where h = 1, . . . , N and N is the total sample size. In this case, the variance of the jth
response for individual h is decomposed as

var(yhj ) = σ 2
j + λ̃2

j . (2.9)

Comparing (2.8) and (2.9), it is easy to see that λ̃j > λj (since they are constrained to

be nonnegative) and |̃α| = λj

λ̃j
|α| < |α| because σ 2

g + 0.5σ 2
a + 1 > 1. Therefore, ignoring

cluster correlation can lead to significant underestimation of the absolute value of α, the
effect of a covariate on the LV, and overestimation of the value of λ, the effect of the
LV on the response in the first part of the LV model. This is consistent with what’s
reported in the statistical genetics literature in other settings of association studies (e.g.,
Thornton and McPeek 2010). With longitudinal data we observe similar pattern of bias
for the estimations of α and λ, and the simulations in Section 4 show that the bias can be
substantial.
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410 L. XU ET AL.

3. BAYESIAN MODEL AND COMPUTATION

The data in our model contain the observed continuous and binary outcomes Y,
the direct fixed-effect covariates W, the indirect fixed-effect covariates X, and the
kinship coefficient related matrix Z. The vector of parameters of interest is 
 =
(β0,β,α,λ, τ

2, σ 2, σ 2
a , σ

2
g , ρ)T where β0 = (β01, . . . , β0J )T , β = (β ′

1, . . . ,β
T
J )T with

βj = (βj1, . . . , βjp1 )T , α = (α1, . . . , αp2 )T , λ = (λ1, . . . , λJ )T , τ 2 = (τ 2
1 , . . . , τ

2
J )T and

σ 2 = (σ 2
1 , . . . , σ

2
J1

)T . The intractability of the posterior requires the use of MCMC al-
gorithms for statistical inference. Unfortunately, the commonly used priors in probit and
linear mixed effects models and a standard sampling scheme lead to a torpidly mixing
chain. In the next section, we discuss algorithmic modifications and related prior specifica-
tions. The MCMC algorithm follows the data augmentation (DA) principle of Tanner and
Wong (1987) and sample alternatively from the posterior distribution given the complete
data and from the conditional distribution of the auxiliary data (LV, random effects) given
the observed data and the parameter values. We discuss separately the implementation for
continuous and binary responses since the modifications to the vanilla DA are different in
the two cases.

3.1 PARAMETER EXPANDED DATA AUGMENTATION FOR CONTINUOUS RESPONSES

When conditional conjugate priors are defined for the model parameters, one can use
a standard Gibbs (SG) sampler, in which most of the parameters are drawn from their
posterior conditional distribution given random effects and all other parameters. For the
serial dependence parameter ρ, there is no conjugate prior and the posterior conditional
distribution cannot be sampled directly so the chain’s updates for ρ are done using a
Metropolis-Hastings transition kernel.

Due to high dependence between the components of the Markov chain corresponding to
the parameter vector � and the missing and latent data vector M, we observe a very slow
mixing of the chain. Some degree of improvement can be obtained by using hierarchical
centering (HC) (Gelfand 1995). The HC technique moves the parameters up the hierarchy
via model reformulation. Specifically, in Equation (2.1) we shift β0j up the model hierarchy
to be the mean of the random effect b and U so that the new random effect and the
new latent variable are b∗

cij = μbj + bcij and U ∗
cik = μ∗ + Ucik , respectively, and β0j =

μbj + λj ∗ μ∗.
Another general strategy devised to overcome the slow convergence problem of Gibbs

algorithms is parameter expansion (PX) (Meng and van Dyk 1999; Liu and Wu 1999). The
idea behind PX is to introduce auxiliary parameters and/or latent variables in the model and
average over all their possible values to produce inference for the original model of interest.
As demonstrated by Meng and van Dyk (1999) and Liu and Wu (1999), this apparently
circuitous strategy can be highly beneficial, because the larger parameter space allows the
Markov chain to move more freely and breaks the dependence between its components.
The successful implementation of parameter expansion depends highly on the particular
scheme being used.

3.1.1 The PX-HC Algorithm for Continuous Outcomes. We introduce auxiliary pa-
rameters ξ = {ξj : 1 ≤ j ≤ J }, μ∗ ∈ R and ψ ∈ R and define the following parameter-
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 411

expanded with hierarchical centering (PX-HC) model:

yccikj = WT
cikβj + λ∗

jU
∗
cik + ξjb

∗
cij + ecikj , (3.1)

with
U∗
ci = μ∗1Kci + Xciα

∗ + g∗
c1Kci + ZTci ⊗ 1Kci a

∗
c + ε∗

ci , (3.2)

where b∗
cij ∼ N (μ∗

bj , τ
∗2
j ), g∗

c ∼ N (0, σ ∗2
g ), a∗

c ∼ NNc (0, σ
∗2
a INc ) and ε∗

ci ∼ NKci (0, ψ
2Hci).

The parameters in the original and the expanded model are connected through the following
linear transformations that depend on the auxiliary parameters:

α = α∗/ψ, Ucik = (
U ∗
cik − μ∗) /ψ, σ 2

a = σ ∗2
a /ψ

2, σ 2
g = σ ∗2

g /ψ
2,

λj = λ∗
jψ, βj0 = μ∗

bj ξj + λ∗
jμ

∗, τ 2
j = ξ 2

j τ
∗2
j , for all 1 ≤ j ≤ J.

The parameterization of the PX-HC model is mathematically redundant and renders some
of the parameters of the extended model unidentifiable. However, this strategy has been
shown to improve the computational efficiency of the MCMC algorithms designed to
sample from the posterior distribution of the original model (Gelman et al. 2008; Ghosh and
Dunson 2009). A significant improvement in computational efficiency is achieved when
the estimates of the original parameters are obtained indirectly by the above parameter
transformation, as compared to direct estimation.

To maintain the ability to sample from the conditional posterior distribution in the
expanded model, conjugate priors must be used also for the auxiliary parameters. These
conjugate priors along with the transformations above, lead to specific priors for the param-
eters defined in the original model. The absolute value of a t-distributed random variable
will have a folded-t distribution (Gelman 2006). The priors of the parameters τ and λ be-
long to this class since var(b∗

cij ) = τ ∗2
j in our PX-HC model and var(bcij ) = τ 2

j in the
original model which implies τj = |ξj |τ ∗

j . When the conditional conjugate normal and
inverse-Gamma prior are applied to ξj and τ ∗2

j , respectively, the resulting prior for τj is
the folded-t distribution. Similarly, since λj = λ∗

jψ , a half normal prior assigned to λ∗
j and

inverse-Gamma prior to ψ2 will result in a folded-t prior for λj . Other authors have dis-
cussed the suitability of folded-t priors in mixed effects and factor analysis models. For
instance, Gelman (2006) noted the added flexibility and improved behavior when random
effects are small, and Ghosh and Dunson (2009) suggested the use of folded-t priors for the
factor loadings in a factor analysis setting.

We consider independent and conjugate priors for the PX-HC model parameters �∗ =
(μb∗, μ∗,α∗,β, σ 2, σ ∗2

g , σ
∗2
a , ψ, τ

∗2,λ∗, ξ , ρ)′ as follows:

1. μb
∗ iid∼ NJ (0, 1000IJ ), μ∗ ∼ N (0, 1000), α∗ iid∼ Np2 (0, 1000 ∗ Ip2 ).

2. βj
iid∼ Np1 (0, 1000 ∗ Ip1 ), ξ

iid∼ NJ (0, 1000 ∗ IJ ), ρ ∼ Uniform(0, 1).

3. σ 2
j

iid∼ IG(0.1, 0.1), for 1 ≤ j ≤ J , σ ∗2
a ∼ IG(0.1, 0.1), σ ∗2

g ∼ IG(0.1, 0.1).

4. ψ2 ∼ IG( v1
2 ,

v1
2 ), τ ∗2

j

iid∼ IG( v2
2 ,

v2
2 ), where v1 and v2 are the hyperparameters rep-

resenting the degrees of freedom (df) of the induced folded-t priors for λj and τj ,
respectively, for all 1 ≤ j ≤ J . Throughout we set v1 = v2 = 1.
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412 L. XU ET AL.

5. IfTN+(μ, σ 2) denotes the normal distribution with meanμ and varianceσ 2 restricted
to (0,∞), then

λ∗
j ∼ TN+(0, 1),

for each j = 1, . . . , J . As λj = ψλ∗
j there is no loss of generality in assuming a

priori that var(λ∗
j ) = 1 because then var(λj ) = ψ2.

With these assigned priors, all parameters with the exception of ρ have conditional posterior
distributions that can be sampled directly. For ρ we use the reparametrization η = log( ρ

1−ρ ).
The η component of the Markov chain is updated using a random walk Metropolis-Hastings
kernel with proposalN (ηold, v

2), where v2 is tuned so that an acceptance rate between 20%–
40% is obtained. The supra-index denotes the iteration of the chain, for example, β

(m)
j are

the states at iteration m of those components of the chain that correspond to βj . The key
steps in updating the algorithm’s Markov chain at iteration m− 1 are:

Step A: Draw �∗(m) from f (�∗|M∗(m−1), yc).

Step B: Draw all latent variables M∗(m) from f (M∗|�∗(m), yc), which involves sampling
M∗ = (U ∗, b∗, g∗, a∗)T .

After all samples are collected, we transform �∗(m) back into �(m), the vector of parameters
defined by the original model. The sampling steps involved in Step A and Step B are included
in the Appendix, part of the online supplementary material.

3.2 PARAMETER EXPANDED DA FOR MIXED RESPONSES

Suppose that the response vector includes both continuous and binary random variables.
Without loss of generality, we assume that the first J1 outcomes are continuous and the
remaining ones are binary. To address concerns involving the MCMC mixing similar to
those in the continuous response case, we define the model

yccikj = WT
cikβj + λ∗

jU
∗
cik + ξjb

∗
cij + ecikj , 1 ≤ j ≤ J1, (3.3)

p
(
ybcikj = 1

) = �
(
WT
cikβj + λ∗

jU
∗
cik + ξjb

∗
cij

)
, J1 + 1 ≤ j ≤ J, (3.4)

U∗
ci = μ∗1Kci + Xciα

∗ + g∗
c1Kci + ZTci ⊗ 1Kci a

∗
c + ε∗

ci , (3.5)

where b∗
cij ∼ N (μ∗

bj , τ
∗2
j ), g∗

c ∼ N (0, σ ∗2
g ), a∗

c ∼ NNc (0, σ
∗2
a INc ), ε∗

ci ∼ NKci (0, ψ
2Hci).

The prior distributions are the same as in the continuous case for all parameters in (3.3)
and (3.5). In addition, for each j = J1 + 1, . . . , J we set

βj
iid∼ Np1 (0, 1000 ∗ Ip1 ), λ∗

j

iid∼ N (0, 1)1{λ∗
j>0}, ξ ∗

j

iid∼ N (0, 1000).

The form of the probit regression (3.4) leads to conditional posterior distributions that are not
available in closed form and thus hinders a direct implementation of the Gibbs sampler. A
solution is the DA scheme proposed by Albert and Chib (1993) in which the augmented data
yb∗cikj ∼ N (μcikj , 1) is the Gaussian missing variable whose sign is reported by ybcikj , that is,
ybcikj = 1{yb∗cikj>0}. The conditional posteriors corresponding to this expanded model (with the
exception of ρ) can be directly sampled from. However, in the model defined by Equation
(3.3)−Equation (3.5) we have noticed that yb∗cikj and some of the model parameters are highly
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 413

dependent a posteriori causing a torpid mixing of the chain. Conditional on the auxiliary
variables yb∗cikj , the posterior conditional distributions are similar to those encountered
in the previous section and thus may yield similar bottlenecks. In addition, since the
responses yb∗cikj are not observed, we need an additional level of parameter expansion. We
introduce another working parameter γ = (γJ1+1, . . . , γJ )T ∈ RJ−J1 , a one-to-one mapping
ỹb∗cikj = γjy

b∗
cikj and set β̃j = γjβj , λ̃∗

j = γjλ
∗
j and ξ̃j = γj ξj . A priori, γJ1+1, . . . , γJ are

iid with prior distribution IG(0.1,0.1). In our simulations, the choice of the hyperparameter
values for the working parameter priors does not influence the performance of the parameter-
expanded samplers.

The resulting doubly parameter-expanded with hierarchical centering (PX2−HC) al-
gorithm corresponds to Scheme 3 of van Dyk and Meng (2001). As suggested by a referee,
Scheme 2 of van Dyk and Meng (2001) can be implemented by averaging out some of the
added parameters in the model, but in our simulations this modification did not bring a
noticeable improvement in efficiency.

Note that when adding the second layer of parameter expansion we do not alter the prior
distributions for (β, λ∗, ξ ) so that they remain conjugate. Therefore, the conditional priors
given γ 2

j for the transformed parameters β̃j , λ̃∗
j and ξ̃j areNp1 (0, γ 2

j �β),N (0, γ 2
j )1{̃λ∗

j>0},
and N (0, 1000γ 2

j ), respectively. Below we summarize the mth iteration in the Gibbs sam-
pling algorithm, and we provide a complete description in the online Appendix.

Step C: For all parameters and latent variables that are conditionally independent of the
binary outcomes (specifically, {(λ∗

j ,βj , ξj , b
∗
cij , σ

2
j ) : 1 ≤ j ≤ J1}, ψ , α∗, a∗, g∗, μ∗,

μb
∗, σ ∗2

a , σ ∗2
g , τ ∗2, ρ) we use the same updating distributions as for the continuous

response model.

Step D: For j = J1 + 1, . . . , J , draw

y
b∗(m)
cikj ∼

{
TN +(μ∗(m)

cikj , 1), if ybcikj = 1
TN −(μ∗(m)

cikj , 1), if ybcikj = 0
,

where μ
∗(m)
citj = WT

cikβ
(m−1)
j + λ

∗(m−1)
j U

∗(m−1)
cik + ξ

(m−1)
j b

∗(m−1)
cij . Transform yb∗cikj to

ỹb∗cikj via ỹb∗cikj = γjy
b∗
cikj .

The order of updating (β(m)
j , λ

∗(m)
j , ξ

(m)
j , γ

2(m)
j ) involves sampling first γ 2(m)

j and then

(β̃(m)
j , λ̃

∗(m)
j , ξ̃

(m)
j ) from their conditional densities.

We set β(m)
j = β̃

(m)
j /γ

(m)
j , λ∗(m)

j = λ̃
∗(m)
j /γ

(m)
j , and ξ (m)

j = ξ̃
(m)
j /γ

(m)
j and then we continue

updating all the other parameters and latent variables as detailed in the online Appendix.

After all samples are collected we transform the vectors of parameters for the PX2-HC
model back to the vector of parameters used in the original model.

4. SIMULATION STUDIES

In our simulations we set out to explore the performance of our methods in the general
settings in which we have clustered data measured longitudinally at unequally spaced
time points. We consider 100 families (clusters) with similar pedigree structure as the
one specified in Jiang and McPeek (2014), but having the number of children in the
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414 L. XU ET AL.

Figure 1. An example of pedigree structure used in simulations.

third generation varying from one to five with probability {20%, 40%, 30%, 7%, 3%},
respectively. An example of the pedigree structure is shown in Figure 1. For each individual,
we assume that the probability of being observed longitudinally {1, 2, 3, 4} times is {10%,
30%, 30%, 30%}. The time of first measure is set as {0, 1, 1.5, 2} with probability {50%,
20%, 20%, 10%}, respectively. The length of time between two consecutive measures is {1,
2, 3, 3.5} with probability {50%, 20%, 20%, 10%}, respectively, resulting in an unbalanced
design. The serial dependence is modeled via Equation (2.6). The code is included in the
online supplementary material.

We have run the three algorithms considered—SG, PX-HC, and PX2-HC—on two
simulation models. In both studies, we assume that there is only one direct effect covariate
following aN (0, 1) distribution. We also assume that there are two indirect effect covariates
in the model, with the first one following a N (0, 1) distribution and the second one being
the genotype of the SNP under study. The individual genotypes are generated using an
additive genetic model with the minor allele frequency (MAF) set to 0.3. The genotypes of
the founders from the 100 families follow Hardy Weinberg equilibrium (HWE) and alleles
pass to next generation according to Mendel’s law of segregation. The parameter values for
each model were chosen as follows:

M1: We consider J = 3 continuous response variables and set β0 = (5, 5, 5), β11 = β12 =
β13 = 1, α1 = −1, α2 = 1, λ = (5, 5, 5), τ 2 = (0.3, 0.3, 0.3), σ 2

1 = σ 2
2 = σ 2

3 = 1,
σ 2
a = 0.3, σ 2

g = 0.3, and ρ = 0.3.

M2: We consider J = 4 and we simulate y1, y2 as continuous and y3, y4 as binary re-
sponses. We set β0 = (1, 1, 1, 1), β1j = 1 for all j = 1, . . . , 4, α1 = −1, α2 = 1,
λ = (2, 3, 1, 1), τ 2 = (0.6, 0.6, 0.6, 0.6), σ 2

1 = σ 2
2 = 1, σ 2

a = 1, σ 2
g = 1, ρ = 0.3.
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 415

Figure 2. Comparison of trace plots for simulations under model M2 using SG and PX2-HC scheme. The blue
line marks the true value of the parameter, and the red line represents the posterior mean. Left side from top to
bottom: trace plots for α1, λ1, and σ 2

a using SG. Right side from top to bottom: trace plots for α1, λ1, and σ 2
a using

PX2−HC.

4.1 GRAPHICAL EVIDENCE OF IMPROVEMENT

The improved mixing of the Markov chains corresponding to the modified algorithms can
be noticed graphically from trace plots, autocorrelation plots and convergence diagnostic
plots. In Figure 2 we compare the trace plots for α1, λ1, and σ 2

a using draws from the
posterior under M2 obtained via the SG and PX2-HC algorithms. Additional trace plots
for models M1 are included in the online Appendix. We have consistently observed that
PX2-HC is more efficient than SG. The improvements brought by PX2-HC are more
significant for those components of the SG chain that exhibit sluggish mixing and do not
slow down the components that are mixing well. The change brought by PX2-HC is clearly
represented visually by the autocorrelation functions (ACF) which present the strength of
dependence between successive Monte Carlo draws. This dependence plays an important
role when assessing the Monte Carlo error of the samplers (Geyer 1992; Flegal, Haran,
and Jones 2008). Figure 3 shows the reduction in autocorrelation for two factor loadings
(λ1 corresponds to a continuous response and λ3 to a binary one). Each plot contains 100
ACF curves obtained from 100 independent replicates of simulated data under scenario
M2. The green curves represent the performance of PX2-HC with average ACF plotted in
blue, while the SG counterpart curves are plotted in purple with their average represented
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416 L. XU ET AL.

Figure 3. Comparison of ACF plots for the four loading factors λj , j = 1, . . . , 4 for model M2. Red line shows
the average ACF curve for SG computed from 100 replicated curves which are shown in purple. The blue line
shows the average ACF curve for PX2 − HC computed from 100 replicated curves which are shown in green.

by the red curve. The improved mixing influences also the convergence diagnostic plots.
We have followed the general principles of Gelman and Rubin (1992) and ran in parallel 5
chains that were started at random points drawn from a highly spread out distribution. The
diagnostic plots for models M1 and M2, included in the Appendix, show the evolution of
R2 for factor loadings λ1 and λ3 based on draws obtained with the SG and PX-HC under
scenario M1 and by SG and PX2-HC under M2 (results for λ2 and λ4 are characteristically
similar). It can be noticed that the modified algorithms have the R2 approaching 1 earlier
in the simulation process.

4.2 EFFICIENCY COMPARISON

In Tables 1–2 we report the gain in efficiency for α, λ, and the random effect variances
σ 2
a and σ 2

g , when using PX-HC or PX2-HC versus SG, in terms of root mean squared
error (RMSE) and effective sample size (ESS). For comparing algorithms A1 and A2 we
compute, for each parameter in the table,

�RMSE(A1, A2) = 100 ×
(

RMSEA1 − RMSEA2

RMSEA1

)
(4.1)
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PARAMETER EXPANDED ALGORITHMS FOR BAYESIAN LATENT VARIABLE MODELING 417

Table 1. Simulation results under model M1: parameter estimation comparison using SG and PX-HC

SG PX-HC

Parameters Value Est. RMSE Est RMSE �RMSE �ESS

α α1 −1.0 −1.003 0.024 −1.000 0.023 <5 1501
α2 1.0 1.006 0.044 1.003 0.043 <5 392

λ λ1 5.0 4.991 0.086 5.007 0.079 8 1942
λ2 5.0 4.994 0.084 5.009 0.077 6 1968
λ3 5.0 4.991 0.086 5.007 0.080 7 1950

σ 2
a 0.3 0.316 0.077 0.302 0.074 <5 20
σ 2
g 0.3 0.341 0.097 0.296 0.052 46 267

NOTE: The last two columns show �RMSE(SG, PX − HC) and �ESS(SG, PX − HC), respectively. For the other
parameters not included both improvement measures are in the range (0, 5%).

and

�ESS(A1, A2) = 100 ×
(

ESSA2 − ESSA1

ESSA1

)
. (4.2)

For the parameters that do not appear in the table, the SG sampler performs well and no
improvement has been noticed. The calculations are based on 100 independent replications
of the analysis under each simulation scenario. The tables show small reductions in RMSE
but great improvements in ESS. For some of the parameters the effective sample size is
increased more than 10-fold. The size of ESS is important when an MCMC algorithm is
run until the desired Monte Carlo standard deviation is achieved for each component of the
chain. In other words, our improvements in ESS show that to achieve the same degree of
precision, the SG sampler must be run 10 to 20 times longer. In a genetics study in which
one has to repeat the analysis for a large number of candidate SNPs the improvement makes
a big practical difference.

The increase in efficiency is dramatic for the loading factors which are of direct interest
in genetic studies such as the ones described in Section 1, because precise estimates of
λj are required to detect pleiotropy. From Table 2 we find that the improvement for λ3 and

Table 2. Simulation results under model M2: parameter estimation comparison using SG and PX2-HC

SG PX2-HC

Parameters Value Est. RMSE Est RMSE �RMSE �ESS

α α1 −1.0 −1.003 0.024 −1.002 0.024 <5 923
α2 1.0 1.000 0.050 1.000 0.050 <5 83

λ λ1 2.0 2.001 0.039 2.001 0.036 8 1124
λ2 3.0 3.001 0.060 3.002 0.057 5 1145
λ3 1.0 1.010 0.054 1.001 0.051 5 361
λ4 1.0 1.017 0.062 1.009 0.057 8 381

σ 2
a 1.0 1.021 0.140 1.019 0.136 <5 166
σ 2
g 1.0 1.024 0.188 1.022 0.190 <5 34

NOTE: The last two columns show�RMSE(SG, PX2 − HC) and�ESS(SG, PX2 − HC), respectively. For the other
parameters not included both improvement measures are in the range (0, 5%).
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418 L. XU ET AL.

λ4, which are the factor loadings of the binary outcomes, is not as impressive as the factor
loadings corresponding to the continuous outcomes. This observation is consistent with the
findings of Ghosh and Dunson (2009).

The improvement in computational performance translates into more precise inference.
For instance, we have investigated its impact on the coverage of the 95% highest posterior
density intervals (HpdI) for the λ’s in continuous and mixed models (i.e., M1 and M2) and
find that the parameter expanded samples yield HpdI’s with coverage rates closer to the
nominal values than those constructed from SG samples. For example, under scenario M1,
the empirical coverages of the 95% HpdI’s for λ1, λ2, and λ3 are, respectively, {88%, 89%,
86%} for SG, while for the PX-HC algorithm the coverages jump to {93%, 94%, 93%}.
Illustrative plots of HpdI coverages for SG and PX algorithms under scenarios M1 and M2
are provided in the online Appendix.

Most of the SNPs considered in a genome-wide association study (GWAS) will not be
associated with the LV, which means that frequency properties of Bayesian measures of
significance are important in practice. We investigate the Type I error of the proposed model
when using 95% highest posterior density interval (HpdI) to assess the importance of the
genetic effect α2. An effect is deemed significant if the 95% HpdI does not include zero.
We have generated 100 independent replications based on scenario M2 except that α2 is set
to be zero and the value of MAF varies from 0.2 to 0.4. The empirical type I errors obtained
are {0.046, 0.045, 0.051} for MAF={0.2, 0.3, 0.4}, respectively. In Figure 4, we report
the 95% HpdI’s from 100 replicated data under H0 : α2 = 0 and the empirical coverage of
α2 = 0 is 96%.

Figure 4. The 95% highest posterior density interval (HpdI) for α2, the effect size of the genotype of a SNP with
MAF = 0.3, under the null hypothesis. The HpdIs are ordered by their lower bounds. The solid vertical line is the
true value, which is 0, of α2. The dashed vertical line is the mean estimation. The empirical coverage of α = 0 is
96%.
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Table 3. Simulation results under model M2: parameter estimation comparison for λ and α between considering
and ignoring the cluster correlation existing in the data

Considering cluster Ignoring cluster

Parameters True bias sd RMSE bias sd RMSE

α α1 −1.0 0.006 0.023 0.024 0.369 0.026 0.370
α2 1.0 −0.004 0.046 0.046 −0.370 0.066 0.376

λ λ1 2.0 0.009 0.036 0.037 1.176 0.113 1.181
λ2 3.0 0.016 0.054 0.056 1.754 0.165 1.761
λ3 1.0 0.017 0.056 0.058 0.608 0.099 0.616
λ4 1.0 0.008 0.058 0.058 0.595 0.103 0.604

If an exceedingly large number of SNPs are investigated, one may need to use a simpler
screening method to reduce the number of candidates to less than 1000. The C program used
to sample from the posterior (included in the online supplemental material) requires about
2.5 min to produce 25,000 samples with 100 pedigrees included in the study. Therefore
1000 SNPs could be analyzed sequentially in two days. However, in this case a more
stringent control of Type I error must be used to declare significance. Although an extended
simulation study about appropriate false discovery control goes beyond the scope of this
article, efficient sampling algorithms such as the one proposed here are critical to the
inferential process.

4.3 EFFECT OF IGNORING FAMILY STRUCTURE

In Simulation M2, we also compare the parameter estimates obtained from the model
taking into account the familial dependence with the values assuming independence. The
results presented in Table 3, are in agreement with the derivations in Section 2.1 and show
that naively ignoring the family structure present in the data will cause overestimation of the
factor loadings and underestimation of the absolute values of the fixed effects of important
covariates on the LV.

5. REAL DATA EXAMPLE: GENETIC STUDY OF TYPE 1
DIABETES (T1D) COMPLICATIONS

Here we demonstrate the practical utility of the proposed LV method by investigating
the blood pressure data from a GAWS of various T1D complications (Paterson et al.
2010). The study sample consists of n = 1302 individuals with T1D from the Diabetes
Control and Complications Trial (DCCT). Various phenotypes thought be to related to T1D
complication severity, including glycosylated hemoglobin (HbA1c) and diastolic (DBP)
and systolic blood pressure (SBP), were collected from each subject over the course of the
DCCT. Additional covariates such as sex and body mass index (BMI) were also collected,
and individuals were from two different cohorts and subjected to two treatment types
(conventional vs. intensive). Over 800K SNPs were genotyped by the Illumina 1M bead
chip assay for these individuals. The data can be obtained via the database of Genotypes
and Phenotypes (dbGap) Authorized Access website at https://dbgap.ncbi.nlm.nih.gov.
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Because T1D is a complex disease with various complication measures (the observed
phenotypes), it is of great interest to quantify the conceptual latent complication status, as
well as to understand the influencing factors (both genetic markers and clinical covariates).
It is also valuable to determine if the various observed phenotypes are truly associated
with the latent variable. However, previous analyses have been limited to the standard
single phenotype approach in which each phenotype is analyzed separately. For example,
Ye et al. (2010) performed GWAS, separately, for DBP and SBP, two normally distributed
outcomes, and they identified rs7842868 on chromosome 8 as a SNP significantly associ-
ated with DBP. Our goal here is to formally perform a multi-phenotype analysis, jointly
analyzing the measured manifest variables using the proposed Bayesian LV methodology.
This approach allows us to determine if rs7842868 is associated with the latent conceptual
T1D complication variable and to test if DBP and SBP are truly related to the LV. Of
practical interest is whether there are other phenotypes such as hyperglycaemia (HPG) that
could be included as manifest variables associated with the latent T1D severity variable.
Therefore, we investigate three phenotypes, among which two are continuous (DBP and
SBP) and one is binary (HPG = 1 for very high levels of glycaemia, that is, Hb1Ac> 8,
and = 0 otherwise). Besides clinical considerations, this choice also allows us to evaluate
the proposed method for general traits as described in Section 3.1.

All patients have consecutive quarterly visit measurements. The number of quarterly
visits per patient ranges from between 2 and 10 with a median of 7 visits. Among the
1302 patients, 71 of them have less than five visits with one patient has only two visits,
and the number of patients who have five to ten visits are {234, 337, 280, 141, 16, 223},
respectively. In this dataset, there is only one person in each family, therefore there is no
familial correlation, but the proposed methodology can be used by assuming the cluster
size is equal to 1. Since we are dealing with independent individuals, we do not include
random effects ac and gc so the LV model becomes

Ui = Xiα + εi , ∀1 ≤ i ≤ n. (5.1)

We first consider rs7842868, a SNP found by Ye et al. (2010) to be associated with DBP.
The set of available covariates includes BMI, sex, cohort, treatment and the genotype of
the SNP. We generated ten bootstrap samples using each patient as a sampling unit, and
compared the DIC differences between the model that includes all the covariates in the
direct effect set and the model that moves the investigated covariate to the indirect effect
set. Results show that BMI has a mean increase of DIC value 302.3, while other covariates
have mean decreased DIC values: {−0.73, −93.5, −62.3, −34.4} for sex, cohort, treatment,
and genotype of SNP rs7842868, respectively. Combining the suggestions from clinicians
along with the DIC statistics, we assumed that the direct effect covariates W include BMI,
while the indirect covariates include sex, cohort, treatment, in addition to the genotype of
SNP rs7842868.

Along with the HpdI, we also calculate log Bayes factor (logBF) to test whether the
factor loading λ or the indirect effect α is significant. The logBF is calculated using path
sampling (PS) implemented with the parametric arithmetic mean path scheme (Lee and
Song 2002). The parametric path is constructed using a scalar s ∈ [0, 1] to link two models
M0 and M1. For instance, to test the significance of λj ′, M0 and M1 correspond to the
models having the factor loading vectors equal to (λ1, . . . , λj ′−1, 0, λj ′+1, . . . , λJ )

′
and
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(λ1, . . . λj ′−1, λj ′ , λj ′+1 . . . , λJ )
′
, respectively. The latent variable part of the model is

the same as defined in Equation (5.1) for both M0 and M1. The two models are
linked up by models Ms , 0 ≤ s ≤ 1, where the factor loading vector in Ms is equal to
(λ1, . . . , λj ′−1, sλj ′ , λj ′+1, . . . , λJ )

′
. Gelman and Meng (1998) proved that

log BF10 = log
P (Y |M1)

P (Y |M0)
=

∫ 1

0
E�,
[U(Y,�,
, s)]ds, (5.2)

where � is the vector of latent variables (including random effects), E�,
 denotes the
expectation with respect to the distribution P (�,
|Y, s), and

U(Y,�,
, s) = d

ds
logP (Y,�|
, s).

To evaluate the integral in Equation (5.1), we follow the procedure in Gelman and Meng
(1998) and use 30 grid points ranging evenly from 0 to 1 so that s(0) = 0 < s(1) < s(2) <

· · · < s(G) < s(G+1) = 1 and then estimate logBF10 by

̂logBF10 = 1

2

G∑
g=0

(s(g+1) − s(g))
(
U(g+1) + U(g)

)
, (5.3)

where U(g) is the average of the values U(Y,�,
, s(g)) over all the MCMC samples
from p(�,
|Y, s(g)). To estimate logBF10, we first run the PX2 −HC Gibbs sampling
algorithm for each of the grid points and then calculate the values of the parameters under
the original inference model and use them to compute U (a method which is called path
sampling with parameter expansion (PS-PX) by Ghosh and Dunson 2009). Folded-t priors
are used for λs, induced through parameter expansion. Similar path sampling scheme is
used to test the significance of the indirect effect α.

Table 4 shows that SNP rs7842868 is significantly associated with the latent variable
with estimated logBF over 10 and the 95% HpdI does not cover 0. The factor loadings
are equal to 7.519 for SBP and 5.709 for DBP with both estimated logBF bigger than 50,
suggesting that SBP and DBP are significantly associated with the latent variable. The factor
loading for HPG is only 0.019 and the estimated logBF is equal to −5.509. The evidence
from both parts of the LV model show that rs7842868 has potential pleiotropic effect on
the two blood pressures. Sex and cohort are also found to be significantly associated with
the latent variable, but treatment is not. We then investigate rs1358030, a SNP found by
Paterson et al. (2010) to be associated with HbA1c. Based on results in Table 4, there is no
evidence that rs1358030 is significantly associated with the latent variable.

To further evaluate the proposed method, we simulate genotypes for two NULL SNPs
that are not associated with the phenotypes of interest. One SNP has MAF equal to 0.25,
the MAF of rs7842868, and the other one has MAF equal to 0.35, the MAF of rs1358030.
As expected, no significant associations are detected.

We also fit the data using the Bayesian version of the model proposed by Roy and Lin
(2000), extended so that it incorporates both continuous and binary outcomes. To satisfy
the balanced design and equal-spaced time assumption of their model, only those outcomes
from the first five consecutive quarterly visits are used, due to the high missing rate after
the fifth visit. For those patients who do not have all first five visits, we assume that the
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Table 4. Application results

Analysis of SNP rs7842868

Parameter Estimate 95% HpdI ̂logBF
rs7842868 α1 −0.220 (−0.285, −0.154) 10.868
sex α2 −0.657 (−0.738, −0.572) 71.831
cohort α3 0.225 ( 0.148, 0.305) 6.840
treatment α4 −0.046 (−0.125, 0.037) −3.836

Analysis of SNP rs1358030

Parameter Estimate 95% HpdI ̂logBF
rs1358030 α1 0.027 (−0.047, 0.106) −4.639
sex α2 −0.812 (−0.922, −0.698) 39.965
cohort α3 0.280 (0.168, 0.389) 8.140
treatment α4 −0.001 (−0.118, 0.106) −3.269

NOTE: SNP rs7842868 was previously identified to be associated with diastolic blood pressure (DBP) and SNP
rs1358030 was previously identified to be associated with HbA1c. Phenotypes of interest are DBP and systolic
blood pressure (SBP), two continuous outcomes, and hyperglycemia (HPG, defined as HbA1c greater or equal
to 8), a binary outcome. All phenotypes are thought to be related to Type 1 diabetes complication severity. The
coefficient αs evaluate the association between the latent variable and the genetic marker and the other covariates
of interest. See Section 6 and Table 1 for more details.

values are missing at random (MAR) and replace them with the means of all the other
available measurements. The percentage of missing values in the first five weeks that need
to be imputed is about 1.5%. The results are shown in the online Appendix. Comparing the
results obtained, we notice that both models are consistent in detecting the significance of
the association between the observed outcomes and the latent variables and between the
covariates and the latent disease trait. However, the HpdIs of the estimated effects obtained
from the proposed method are narrower than those of Roy and Lin’s (2000) method. This
can avoid some ambiguities in interpreting the results. For instance, in the analysis of SNP
rs7842868 both models suggest that the treatment has no effect on the LV, but the HpdI
intervals produced by our and Roy and Lin’s (2000) methods are (−0.125, 0.037) and
(−0.004, 0.263), respectively.

6. DISCUSSION

We considered modifications of the standard Gibbs samplers in latent variable models
with mixed outcomes. The motivation is provided by genetic studies of pleiotropy, but the
scope of these models is much wider. The modifications we propose are aligned with re-
cent efforts, theoretical and computational, on improving the efficiency of Gibbs samplers
through parameter expansion techniques (Hobert and Marchev 2008; Gelman et al. 2008).
The modifications proposed here result in dramatic increases in effective sample sizes that
can be 20 times higher than those produced by the standard algorithms for some of the mod-
els considered. Not all parameters benefit equally from the augmentation strategy proposed
here, but for the genetic pleiotropy analyses that motivated this study the improvements
brought by the new algorithm in estimating the regression coefficients of genotype (α) and
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the factor loadings (λ) are of great importance. While we have not registered losses in
Monte Carlo efficiency or effective sample size, we would like to continue searching for
other auxiliary variable constructs that will impact all the parameters in the model. These
efforts will be reported in future communications.

We have not expanded on issues related to model selection and variable selection. In
Section 5 we have relied on Bayes factors to base our inclusion/exclusion of a variable
in/from the model. Alternative approaches, explored by Xu (2012), include spike-and-slab
priors for the parameters in focus (e.g., λ’s and α’s). The parameter expansion approach can
be directly implemented in such setups with the folded-t prior distributions being replaced
by mixtures of folded-t and point mass distributions.

The computational load of the proposed algorithms is still too high to perform a genome-
wide search for pleiotropic genetic variants. The recent advances in parallel computing can
partially alleviate this constraint. Alternatively, a two-stage approach can be used in which
a simple and less stringent selection procedure is first used to select a moderate number
of candidate variants for further investigation using the proposed method. The uncertainty
inherited from the first-stage selection, however, must be accounted for in the models used
in the second stage.

SUPPLEMENTARY MATERIALS

Supplementary materials for this article are available on the publisher’s website.
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