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Summary

Monotone patterns of non-response may occur in longitudinal studies. When the measured
variables are dependent, it is beneficial to use their joint statistical model to impute the missing
values. We propose to use vine copulas to factorise the density of the observed variables into a
cascade of bivariate copulas that yield a flexible model of their joint distribution. The structure of
the vine depends on the non-response pattern. We propose a method to select the model, to estimate
the parameters of the bivariate copulas of the selected model and to impute using the constructed
model. The imputed values are drawn from the conditional distribution of the missing values, given
the observed data. We discuss the generalisation of our results to more global non-response patterns.
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1 Introduction

In multivariate data, a monotone non-response pattern means that it is possible to rearrange
the variables so that, for each sample unit, the first ` variables are observed and the remaining
are missing, where ` is unit-specific. In a longitudinal study, units that drop out of the study and
never return lead to a typical example of monotone non-response. It is well documented that
non-responses increase the variance of estimates and may induce estimation bias. Imputation is
a commonly used technique to handle non-response, which consists of filling in the gaps with
hypothetic values called imputed values.

Two main approaches are applied when imputing multivariate data: joint modelling (JM)
and full conditional specification (FCS). A review and comparison of these two approaches
is presented in van Buuren (2007). When using JM, a model for the joint distribution of the
data is postulated and used to generate imputed values. In Schafer (1997), JM is based on a
multivariate normal distribution, and the imputed values are simulated from their conditional
distribution via a Markov chain Monte Carlo algorithm. Honaker et al. (2011) also assume a
multivariate normal distribution and draw imputations with an expectation–maximisation with
bootstrapping (EMB) algorithm, which is implemented in the R package Amelia II. The well-
known families of joint distributions usually require that the marginal distributions belong to
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the same family. To overcome this lack of flexibility, Käärik & Käärik (2009) and Di Lascio
et al. (2015) use multivariate copulas selected among a limited set of parametric families to
model the joint distribution. They draw imputed values from the conditional distribution of the
missing values, conditioned by the observed values. R package CoImp (Di Lascio & Giannerini,
2014) implements the copula-based imputation of Di Lascio et al. (2015). Other authors (Ding
& Song, 2016) propose an EM algorithm in Gaussian copula with missing data.

Joint modelling is sometimes criticised for its lack of flexibility. The available models for the
joint distribution may fail to capture some features of the data and to impute different types of
variables (continuous and categorical). FCS is a more flexible option because the multivariate
distribution is modelled by a sequence of conditional models. A model for the conditional den-
sity of each variable, conditioned by the other available variables, is postulated. Imputed values
are drawn by iterating over the conditional densities. With FCS, the joint model is specified via
conditional models only. This allows us to postulate models for which no known joint distri-
bution exits. FCS approach is known under different names such as the multivariate sequential
regression approach of Raghunathan et al. (2001) implemented in the Imputation and Variance
Estimation software (IVEware), the Multivariate Imputation by Chained Equations (MICE) of
van Buuren & Groothuis-Oudshoorn (2011) implemented in R package mice, and the chained
equation models of Harrell et al. (2016) implemented in R package Hmisc and that of Gelman
& Hill (2011) in R package mi. Even though they are flexible, FCS approaches usually restrict
the choice of families for the marginals, such as normality for continuous variables.

The paper enlarges the copula families considered by Käärik & Käärik (2009) and Di Las-
cio et al. (2015) by using vine copulas. The proposed JM strategy is inspired by the work of
Aas et al. (2009) and can be applied to impute continuous multivariate data that are missing
completely at random (MCAR). It flexibly builds a joint model by a factorisation of the joint
density into a cascade of bivariate copulas. Bedford & Cooke (2002) introduced graphical mod-
els for the dependency between variables called vines. Throughout the paper, we work with
D-vines, a particular class of vines that facilitates pair-copula factorisations of the joint den-
sity. The method consists of four steps: (i) specification of the structure of the vine using the
non-response pattern and the observed dependencies; (ii) identification of the pair-copula fam-
ilies of the vine through a sequential procedure; (iii) pseudo maximum likelihood estimation of
the pair-copulas parameters; and (iv) imputation of missing values using their conditional dis-
tributions, given the observed data. The copula component of the method adds a great deal of
flexibility, as it does not constrain the marginals to belong to preset families, and captures some
complex features of the data, for example, tail dependence, that current JM and FCS propos-
als fail to account for. Similarly to FCS, our method allows to consider models for which no
known joint distribution exists. The simulation studies show that our proposed method performs
significantly better than existing methods in different situations.

In survey sampling, non-response is dealt with either by modelling the response process or
by imputing the missing values. Imputation can be non-parametric, such as NN imputation, or
relies on a model as does fractional imputation. When the aim is to estimate bivariate param-
eters of interest, such as a correlation coefficient, imputing the variables separately may yield
severely biased estimators. An imputation method that preserves the relationship between vari-
ables is a more appropriate solution. See Chauvet & Haziza (2012) for a recent discussion. This
work proposes a semi-parametric imputation method that preserves the relationship between
variables and adopts the second aforementioned approach; it builds an imputation model using
D-vines.

The paper is organised as follows: Section 2 introduces the framework and notations;
Section 3 gives an overview of D-vines; Section 4 presents our estimation method; Sections 5
and 6 introduce our procedure of model selection; Section 7 compares the performance of our
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method with that of some of the existing methods via simulations on real and hypothetical data;
Section 8 discusses the generalisation of our method to other non-response mechanisms and
patterns; and Section 9 closes the paper with concluding remarks. The Appendices are included
in the Supporting Information.

2 Framework and Notations

We consider a finite sample s D ¹1; 2; : : : ; k; : : : ; nº of size n. Let X1; X2; : : : ; Xd be d
variables of interest that may be measured for each unit, and let xki represent the value of the i -
th variable taken by unit k. The purpose of the paper is to address the situation in which some of
the units have missing variable values. We assume a monotone non-response pattern, which is
a specific case of item non-response implying that it is possible to label the variables such that,
for each unit k, if an observation xki is missing, then all the observations ¹xkj W j > iº are
also missing. In what follows, we assume such a labelling of the variables and that any unit will
have at least one variable observed. The sample is partitioned into d subsamples s1; s2; : : : ; sd
where s` is the subsample of those units k with xki observed for i � ` and missing for i > `,
` D 1; 2; : : : ; d . We denote by n` the size of s`. We consider without loss of generality that the
units are rearranged in increasing order of the number of observed variables (Figure 1).

We adopt a superpopulation (or model-assisted) approach in which we assume that the
vectors .xk1; xk2; : : : ; xkd / are independent and identically distributed (i.i.d.) outcomes of a
vector of random variables .X1; X2; : : : ; Xd / with joint density function f . In what follows,
f and F are used to denote joint, conditional and marginal distribution functions. The argu-
ments of these functions indicate the variables we refer to, for example, F.x2jx1/ is used for
FX2jX1.x2jx1/, F.x1; x2/ for FX1;X2.x1; x2/ and so on. We use an index to indicate the vari-
able we refer to whenever it is not obvious, for example, we may use F2 for the distribution
function of X2. Finally, we assume that the missing data are MCAR and that the missing data
process is unrelated to the joint distribution of the variables (see Rubin, 1976 for detailed
definitions).

Figure 1. Monotone non-response pattern. The hatched area represents observed values and the blank area missing values.
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3 D-vine

Following Bedford & Cooke (2002), a d -dimensional D-vine is a sequence of d � 1 linked
trees T1, T2, Td�1 such that

1 Tree T1 is a path-like tree with nodes 1; 2; : : : ; d and d � 1 edges: each node is connected
by at least 1 but no more than two edges,

2 Each edge in tree Tj is a node in tree TjC1,
3 Two nodes in tree TjC1 are connected by an edge if and only if the corresponding edges in

tree Tj share a node in tree Tj .

3.1 Model Construction

Figure 2 shows two four-dimensional D-vines. The sequence of trees of a D-vine is fully
determined by the order of the first tree. We suppose for now that the variables are ordered
by decreasing number of observed values in the first tree (Figure 2, left). We will relax this
assumption in Section 6. The paper assumes that the joint density f .x1; x2; : : : ; xd / may be
written in terms of a d -dimensional D-vine (see Aas et al., 2009, equation (8)) as

f .x1; x2; : : : ; xd / D

dY
kD1

f .xk/

d�1Y
jD1

d�jY
iD1

ci;iCj jiC1;:::;iCj�1

®
F.xi jxiC1; : : : ; xiCj�1/; F .xiCj jxiC1; : : : ; xiCj�1/

¯
;

(1)

where ci;iCj jiC1;:::;iCj�1 is a bivariate copula density belonging to some parametric fam-
ily for the dependency between the transformed variables F.xi jxiC1; : : : ; xiCj�1/ and
F.xiCj jxiC1; : : : ; xiCj�1/. To each edge of the D-vine is attached a bivariate copula density;
such decomposition of the joint distribution in terms of pair copula is called a pair-copula
construction. Equation (1) makes the so called simplifying assumption as ci;iCj jiC1;:::;iCj�1

represents a single bivariate copula density that does not depend on the conditioning variables
.xiC1; : : : ; xiCj�1/. More general models could be constructed by letting ci;iCj jiC1;:::;iCj�1

vary with the conditioning variables. See Joe (2014, p.118) for a detailed discussion on the sim-
plifying assumption. Note that a joint density can always be written in terms of a D-vine; the
only assumption in Eqn (1) is the simplifying assumption.

In (1), the conditional distribution F.xiCj jxiC1; : : : ; xiCj�1/ can be deduced from the
bivariate copulas of the D-vine. Indeed, F.xiCj jxiC1; : : : ; xiCj�1/ can be constructed using
the D-vine for the joint density of the j variables, .XiC1; : : : ; XiCj /. This is a sub-vine of
the general D-vine for the d variables involving j.j � 1/=2 nodes. We illustrate the con-
struction of F.xiCj jxiC1; : : : ; xiCj�1/ when j D 4. The conditional density of XiC4 given
.XiC1; XiC2; XiC3/ is the ratio of two D-vine densities, given by (1). It is equal to

Figure 2. Four-dimensional D-vines.

International Statistical Review (2018), 86, 3, 488–511
© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute.



492 C. HASLER, R. V. CRAIU & L.-P. RIVEST

f .xiC4jxiC1; xiC2; xiC3/

D
f .xiC1; xiC2; xiC3; xiC4/

f .xiC1; xiC2; xiC3/

D f .xiC4/ciC3;iC4¹F.xiC3/; F .xiC4/ºciC2;iC4jiC3¹F.xiC2jxiC3/; F .xiC4jxiC3/º

ciC1;iC4jiC2;iC3¹F.xiC1jxiC2; xiC3/; F .xiC4jxiC2; xiC3/º

D
f .xiC2; xiC3; xiC4/

f .xiC2; xiC3/
ciC1;iC4jiC2;iC3¹F.xiC1jxiC2; xiC3/; F .xiC4jxiC2; xiC3/º

D f .xiC4jxiC2; xiC3/ciC1;iC4jiC2;iC3¹F.xiC1jxiC2; xiC3/; F .xiC4jxiC2; xiC3/º:
(2)

Integrating the two sides of (2) allows to express the conditional distribution ofXiC4 in terms
of CiC1;iC4jiC2;iC3, the copula distribution function, as

F.xiC4jxiC1; xiC2; xiC3/ D
@CiC1;iC4jiC2;iC3 ¹F.xiC1jxiC2; xiC3/; F .xiC4jxiC2; xiC3/º

@F.xiC1jxiC2; xiC3/
:

This holds for arbitrary values of j giving

F.xiCj jxiC1; : : : ; xiCj�1/

D
@CiC1;iCj jiC2;:::;iCj�1

®
F.xiC1jxiC2; : : : ; xiCj�1/; F .xiCj jxiC2; : : : ; xiCj�1/

¯
@F.xiC1jxiC2; : : : ; xiCj�1/

:

(3)

A similar construction for the conditional distribution F.xi jxiC1; : : : ; xiCj�1/ gives

F.xi jxiC1; : : : ; xiCj�1/

D
@Ci;iCj�1jiC1;:::;iCj�2

®
F.xi jxiC1; : : : ; xiCj�2/; F .xiCj�1jxiC1; : : : ; xiCj�2/

¯
@F.xiCj�1jxiC1; : : : ; xiCj�2/

:

(4)

These are special cases of a result first noticed by Joe (1996). Equations (3) and (4) allow the
sequential evaluation of the conditional distributions appearing in (1).

3.2 Simulation from a D-vine

We assume that only the first ` variables .x1; : : : ; x`/ are observed for a unit. To impute the
missing values, we would like to simulate from the conditional distribution of .X`C1; : : : ; Xd /
given that X1 D x1; : : : ; X` D x`. We first consider the problem of simulating X`C1.

This is performed using (3), with i D 0 and j D `C 1. In that equation, F.x1jx2; : : : ; x`/
is known as it depends on variables that have been observed. It can can be evaluated using
(4), with i D 1 and j D `. A random variable v`C1 distributed as F.X`C1jx2; : : : ; x`/ is first
obtained. If W is uniformly distributed on .0; 1/, then v`C1 is obtained by solving

W D
@C1;`C1j2;:::;` ¹F.x1jx2; : : : ; x`/; v`C1º

@F.x1jx2; : : : ; x`/
:

If ` D 1, one simply takes x�2 D F �1
2 .v`C1/, and the algorithm stops. If ` > 1, one obtains

a random variable v`C1;1 distributed as F.X`C1jx3; : : : ; x`/ by solving
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v`C1 D
@C2;`C1j2;:::;`

®
F.x2jx3; : : : ; x`/; v`C1;1

¯
@F.x2jx3; : : : ; x`/

:

If ` D 2, one simply takes x�3 D F �1
3 .v`C1;1/, and the algorithm stops. Note that this step

requires the evaluation of the numerical value of F.x2jx3; : : : ; x`/. It can can be evaluated using
(4), with i D 2 and j D `�1. For an arbitrary value of `, this algorithm has to be iterated `�1
times to obtain x�

`C1, a simulated value for variable X`C1. To simulate X`C2, one repeats the
algorithm starting at the values X1 D x1; : : : ; X` D x`; X`C1 D x�

`C1. These calculations are
relatively technical, and they can be organised efficiently; see algorithm 2 of Aas et al. (2009).
We used their algorithm to simulate from our vine model.

3.3 Example: Four-dimensional Case

We first show how (3) and (4) allow the sequential evaluation of the conditional distributions
appearing in (1) when d D 4. In this case, the density becomes

f .x1; x2; x3; x4/ D f .x1/f .x2/f .x3/f .x4/

c12 ¹F.x1/; F .x2/º c23 ¹F.x2/; F .x3/º c34 ¹F.x3/; F .x4/º

c13j2 ¹F.x1jx2/; F .x3jx2/º c24j3 ¹F.x2jx3/; F .x4jx3/º

c14j23 ¹F.x1jx2; x3/; F .x4jx2; x3/º :

The first two conditional distributions F.x1jx2/ and F.x3jx2/ are obtained using (4) and (3),
with i D 1 and j D 2. We obtain

F.x1jx2/ D
@C12 ¹F.x1/; F .x2/º

@F.x2/
;

F .x3jx2/ D
@C23 ¹F.x2/; F .x3/º

@F.x2/
:

The next two conditional distributions F.x2jx3/ and F.x4jx3/ are obtained using (4) and (3),
with i D 2 and j D 2. We obtain

F.x2jx3/ D
@C23 ¹F.x2/; F .x3/º

@F.x3/
;

F .x4jx3/ D
@C34 ¹F.x3/; F .x4/º

@F.x3/
:

The last two conditional distributions F.x1jx2; x3/ and F.x4jx2; x3/ are obtained using (4)
and (3), with i D 1 and j D 3, and the numerical values of the conditional distributions
obtained previously. We obtain

F.x1jx2; x3/ D
@C13j2 ¹F.x1jx2/; F .x3jx2/º

@F.x3jx2/
;

F .x4jx2; x3/ D
@C24j3 ¹F.x2jx3/; F .x4jx3/º

@F.x2jx3/
:

Now, we show how to simulate from the conditional distribution of the missing values given
the observed values. With monotone non-response, there are three conditional distributions that
we want to simulate from: .X2; X3; X4/ given X1 D x1, .X3; X4/ given X1 D x1 and X2 D x2
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and X4 given X1 D x1; X2 D x2 and X3 D x3. We first consider the problem of simulating X2

given X1 D x1, X3 given X2 D x2 and X1 D x1 and X4 given X3 D x3; X2 D x2 and X1 D x1.
To simulate X2 given X1 D x1, we consider (3) with i D 0 and j D 2:

F.x2jx1/ D
@C12 ¹F.x1/; F .x2/º

@F.x1/
:

In that equation, F.x1/ is known as it depends on a variable that has been observed. A random
variable v2 distributed as F.X2jx1/ is first obtained. If W is uniformly distributed on .0; 1/,
then v2 is obtained by solving

W D
@C12 ¹F.x1/; v2º

@F.x1/
:

The simulated value of X2 given X1 D x1 is x�2 D F
�1
2 .v2/. To simulate X3 given X2 D x2

and X1 D x1, we consider (3), with i D 0 and j D 3. We obtain

F.x3jx1; x2/ D
@C13j2 ¹F.x1jx2/; F .x3jx2/º

@F.x1jx2/
:

In that equation, F.x1jx2/ is known, as it depends on variables that have been observed. It
can be evaluated as shown previously. A random variable v3 distributed as F.X3jx2/ is first
obtained. If W is uniformly distributed on .0; 1/, then v3 is obtained by solving

W D
@C13j2 ¹F.x1jx2/; v3º

@F.x1jx2/
:

Then, one obtains a random variable v3;1 distributed as F.X3/ by solving

v3 D
@C23 ¹F.x2/; v3;1º

@F.x2/
:

The simulated value ofX3 givenX2 D x2 andX1 D x1 is x�3 D F
�1
3 .v3;1/. To simulate from

X4 given X3 D x3; X2 D x2 and X1 D x1, one applies a similar construction. Three steps will
be required.

We show now how we can simulate from .X2; X3; X4/ given X1 D x1 in three steps: first,
one simulates x�2 from X2 given X1 D x1; second, one simulates x�3 from X3 given X1 D x1

and X2 D x�2 ; and lastly, one simulates x�4 from X4 given X1 D x1; X2 D x�2 and X3 D x�3 .
Applying the same construction, we simulate from .X3; X4/ given X1 D x1 and X2 D x2 in
two steps and from X4 given X3 D x3; X2 D x2 and X1 D x1 in one step.

4 Estimation

This section addresses the D-vine parameters estimation for a given D-vine structure and
given pair-copula families. We apply a margin-free method and maximise an observed-data
pseudo log-likelihood function. We explain how this function can be maximised using a method
to evaluate the pseudo log-likelihood function in the complete-data case. Section 4.1 presents
first our proposed estimation method for four variables, and in Section 4.2, we extend the ideas
to the general case of d variables.
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4.1 Observed-data Pseudo-likelihood for Four Variables

With complete response, the contribution of a unit to the likelihood function is
f .x1; x2; x3; x4/. As assumed earlier, the missing data are MCAR. In this case, ignoring the
process that causes missing data yields proper inference (see Rubin, 1976). When we ignore the
process that causes missing data, we use the observed-data likelihood where the contribution to
the likelihood of a unit is

f .xobs/ D

Z
f .xobs; xmis/dxmis; (5)

where xobs and xmis are the observed and missing variables of this unit, respectively. In the case
of monotone non-response, the contribution to the likelihood of a unit in s3 is

f .x1; x2; x3/ D

Z
f .x1; x2; x3; x4/dx4:

By integrating the four-dimensional D-vine density in (1), we obtain

f .x1; x2; x3/ D f .x1/f .x2/f .x3/c12 ¹F.x1/; F .x2/º c23 ¹F.x2/; F .x3/º c13j2 ¹F.x1jx2/; F .x3jx2/º :

That is, the contribution to the likelihood of a unit in s3 is f .x1; x2; x3/, which is a three-
dimensional D-vine density. This three-dimensional D-vine is a sub-vine of the initial four-
dimensional D-vine considered. We apply recursively the same construction and obtain the
contribution to the likelihood of a unit in s2:

f .x1; x2/ D

Z
f .x1; x2; x3/dx3 D f .x1/f .x2/c12 ¹F.x1/; F .x2/º ;

which is the density of a two-dimensional sub-D-vine of the initial four-dimensional D-vine
considered. Hence, we can associate a sub-D-vine to each subsample s`. Figure 3 shows the
three sub-D-vines and the associated subsamples.

We use the margin-free semi-parametric estimation method of Genest et al. (1995) to esti-
mate the copula parameters of the D-vine. The idea is to estimate the margins using empirical
distribution functions and the copula parameters via a parametric family. We consider the con-
tributions of the units in the different subsamples developed previously, and we select the copula
parameters that maximise the following observed-data pseudo log-likelihood function:

log QL.�jx1; x2; x3; x4/ D
X
k2s2

log ck12 C
X
k2s3

�
log ck12 C log ck23 C log ck13j2

�

C
X
k2s4

�
log ck12 C log ck23 C log ck34 C log ck13j2 C log ck24j3 C log ck14j23

�
;

(6)
where ck

i;iCj jiC1;:::;iCj�1 is a shortcut for

ci;iCj jiC1;:::;iCj�1

�
F.yk;i jyk;iC1; : : : ; yk;iCj�1/; F .yk;iCj jyk;iC1; : : : ; yk;iCj�1/

�
:

Here, yk;i D bF i .xk;i / and bF i is ni
niC1 times the empirical marginal distribution of the

i -th variable, and ni is the number of observed values of this variable. Note that when the
missing data are MCAR, bF i is a consistent estimator of the marginal distribution of the
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Figure 3. Monotone non-response pattern for four variables and four-dimensional D-vine with sub-D-vine associated with
s2 (solid), s3 (dashed) and s4 (dotted).

i -th variable. In addition F.yk;i jyk;iC1; : : : ; yk;iCj�1/ and F.yk;iCj jyk;iC1; : : : ; yk;iCj�1/ are
evaluated recursively, using (3) and (4), as functions of yk;i and of the bivariate copulas for
the sub-D-vine for variables .i; : : : ; i C j /. The observed-data pseudo log-likelihood function
in (6) can be rewritten:

log QL.�jx1; x2; x3; x4/

D logL2.�11jx1; x2/C logL3.�11;�12;�21jx1; x2; x3/C logL4.�jx1; x2; x3; x4/;
(7)

where

logL2.�11jx1; x2/ D
X
k2s2

log ck12;

logL3.�11;�12;�21jx1; x2; x3/ D
X
k2s3

�
log ck12 C log ck23 C log ck13j2

�
;

logL4.�jx1; x2; x3; x4/ D
X
k2s4

�
log ck12 C log ck23 C log ck34 C log ck13j2 C log ck24j3

C log ck14j23

�
;

where �j i is the parameter of the copula density ci;iCj jiC1;:::;iCj�1 and � D
.�11;�12;�13;�21;�22;�31/ is the parameter vector of the four-dimensional D-vine. The
function logL2.�11jx1; x2/ is the complete-data pseudo log-likelihood function of the
two-dimensional sub-D-vine on x1 and x2 given the observations in s2. Similarly,
logL3.�11;�12;�21jx1; x2; x3/ is the complete-data pseudo log-likelihood function of the
three-dimensional sub-D-vine on x1, x2 and x3 given the observations in s3, and
logL4.�jx1; x2; x3; x4/ is the complete-data pseudo log-likelihood function of the four-
dimensional D-vine on x1, x2, x3 and x4 given the observations in s4. These three functions are
complete-data pseudo log-likelihood functions restricted to subsamples of the initial sample.

Aas et al. (2009) propose an algorithm (algorithm 4, p. 188) to evaluate the complete-data
pseudo log-likelihood function of a D-vine when there are no missing data. We apply their
algorithm to evaluate L2, L3 and L4 in (7). We obtain an estimate of the vector parameter
� by numerical maximisation of the observed-data pseudo log-likelihood function log QL. A
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procedure to set the starting value of the parameters for the numerical maximisation is
highlighted in Section 5.

We should emphasise that the observed-data pseudo log-likelihood function underlying the
approach described previously is the full observed data one, and therefore, we do not expect
any loss in information or statistical efficiency. The vine-induced factorisation of the pseudo
log-likelihood makes the EM algorithm, commonly used in missing data problem, irrelevant for
pair-copula models.

4.2 Observed-data Pseudo-likelihood for d Variables

In the d -dimensional case, the sample is partitioned into d subsamples s`, ` D 1; : : : ; d ,
where s` contains those units having the first ` variables observed and the last d � ` vari-
ables missing. Repeating the same construction as for four variables, we obtain the following
observed-data pseudo log-likelihood function:

log QL.�jx1; x2; : : : ; xd / D

dX
`D2

logL`.�11; : : : ;�`�1;1jx1; x2; : : : ; x`/

D

dX
`D2

X
k2s`

`�1X
jD1

`�jX
iD1

log cki;iCj jiC1;:::;iCj�1;

(8)

where

logL`.�11; : : : ;�`�1;1jx1; x2; : : : ; x`/ D
X
k2s`

`�1X
jD1

`�jX
iD1

log cki;iCj jiC1;:::;iCj�1:

The contribution of subsample s` to the likelihood is logL`, which is the complete-data
pseudo log-likelihood function of a `-dimensional D-vine for x1; x2; : : : ; x` given the observa-
tions in s`. We obtain an estimate of the vector parameter � by numerical maximisation of the
pseudo log-likelihood function adapted for monotone non-response log QL in (8). The algorithm
of Aas et al. (2009) is applied to evaluate logL`, ` D 2; : : : ; d .

5 Selection of the Bivariate Copula Families

This section addresses the selection of the bivariate copula families given a D-vine tree
structure. We apply a sequential procedure that fully uses the observed data. To select the
bivariate copula families of a given D-vine, we propose a simple modification for monotone
non-response of the sequential procedure introduced in Section 6 of Aas et al. (2009). In
Section 4, we have considered that the inputs of a pair-copula density ci;iCj jiC1;:::;iCj�1 are
F.yk;i jyk;iC1; : : : ; yk;iCj�1/ and F.yk;iCj jyk;iC1; : : : ; yk;iCj�1/. In what follows, we will
refer to these inputs to as pseudo-observations. The general idea of our method is the following:

1B. Use a measure of quality such as Akaike Information Criterion to separately select a
copula family for each pair copula ci;iC1 of the tree 1; use the largest possible set of
pseudo-observations, that is, use yk;i , yk;iC1 for k 2 siC1 [ : : : [ sd .

1C. Estimate the copula parameter of each pair copula ci;iC1 separately by maximisation of
the pseudo log-likelihood associated

P
log cki;iC1; use the largest possible set of pseudo-

observations as in the previous step.
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2A. Construct the pseudo-observations F.yk;i jyk;iC1/, F.yk;iC2jyk;iC1/ associated with the
tree 2 using (3) and (4), the pseudo-observations of the previous tree and the pair-copula
families and parameters selected for the the previous tree.

2B. Use a measure of quality such as Akaike Information Criterion to separately select a
copula family for each pair copula ci;iC2jiC1 of tree 2; use the largest possible set of
pseudo-observations, that is use F.yk;i jyk;iC1/, F.yk;iC2jyk;iC1/ for k 2 siC2[ : : :[sd .

2C. Estimate the copula parameter of each pair copula ci;iC2jiC1 separately by maximisation
of the pseudo log-likelihood associated

P
log ck

i;iC2jiC1; use the largest possible set of
pseudo-observations as in the previous step.

3. Iterate for trees 3 to ` � 1.

The purpose of this sequential procedure is to select the bivariate copula families, but its
outputs also include estimated values of the parameters. These values may be used as start-
ing values of the parameters in the numerical maximisation of the observed-data pseudo
log-likelihood of Section 4.

6 Tree Structure Selection

This section addresses the selection of a D-vine tree structure. Until now, we have supposed
that the variables were ordered by increasing number of observed values in the first tree (see
Figure 2, left, for the four-dimensional case). We show in this section that our estimation method
can be applied for other D-vine tree structures and present a procedure to select such a structure
for four and d variables in Sections 6.1 and 6.2, respectively.

6.1 Selection of a Tree Structure for Four Variables

An important condition associated with the estimation method presented in Section 4 is that
the subsamples can be associated with sub-D-vines of the initial D-vine considered. Figure 4
shows two examples of D-vine tree structures having this particularity.

Figure 4. Two four-dimensional D-vine tree structures for which our estimation method can be applied. Sub-D-vines
associated with s2 (solid), s3 (dashed) and s4 (dotted) are shown.
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In the case of four variables, there are four such D-vine tree structures determined by the
following orders of the variables in the first tree.

Note that two symmetric trees define the same decomposition, which is the reason why we
listed here four rather than eight tree structures. The idea is to select the tree structure that
maximises the dependency accounted for in the first tree. The dependency is quantified via
the empirical Kendall’s tau. Let �ij be the empirical Kendall’s � of xi and xj , i < j . When
estimating the Kendall’s � of data with non-response, we may want to use as many observations
as possible for efficiency purposes. In this case, we use those units that allow to compute the
pairwise Kendall’s tau. Because of the non-response pattern, the different Kendall’s �s may be
estimated using samples of different sizes. For instance, with monotone non-response, �12 is
estimated via a sample of size n2 C n3 C n4 and �14 via a sample of size n4. As a result, �12

has less variability than �14, and we are more confident about a strong dependency between
x1 and x2 when �12 is high than we are about a strong dependency between x1 and x4 when
�14 is high. Therefore, extra care has to be taken when comparing the different Kendall’s � ’s.
We describe below the proposed procedure to select a D-vine tree structure that maximises the
dependency accounted for in the first tree. Our proposed procedure bypasses the problem of
different variability in the �s by comparing pairs of �s that are estimated based on samples of
same size.

1 Start with variable x1 and x2 adjacent, that is, T1 D .1; 2/.
2 Compute �13 and �23 using s3[ s4. If �13 > �23, set x3 to the left of x1, that is, T1 D .3; 1; 2/.

Otherwise, set x3 to the right of x2, that is, T1 D .1; 2; 3/.
3 If T1 D .3; 1; 2/, compute �34 and �24 using s4.

If �34 > �24, set x4 to the left of x3, that is, T1 D .4; 3; 1; 2/.
Otherwise, set x4 to the right of x2, that is, T1 D .3; 1; 2; 4/.

Else if T1 D .1; 2; 3/, compute �14 and �34 using s4.

If �14 > �34, set x4 to the left of x1, that is, T1 D .4; 1; 2; 3/.
Otherwise, set x4 to the right of x3, that is, T1 D .1; 2; 3; 4/.

Algorithm 1 Selection of a D-vine tree structure. Selects the order of the variables in the first
tree T1 of the D-vine decomposition. The Algorithm returns a vector v.d; j /, j D 1; : : : ; d
which gives the order of the variables in the first tree.

Set v.2; 1/ D 1, v.2; 2/ D 2
for i  3; : : : ; d do

Compute �v.i�1;1/;i and �v.i�1;i�1/;i using
Sd
kDi sk;

if �v.i�1;1/;i > �v.i�1;i�1/;i then
v.i; 1/ D i ;
for j  2; : : : ; i do

v.i; j / D v.i � 1; j � 1/;
end for

else
v.i; i/ D i ;
for j  1; : : : ; i � 1 do

v.i; j / D v.i � 1; j /;
end for

end if
end for
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6.2 Selection of a D-vine Tree Structure for d Variables

We generalise the procedure applied for four variables. The estimation method of Section 4
exploits the maximal amount of data possible if variables x1 to x` define a `-dimensional sub-
D-vine, for ` D 2; : : : ; d . There are 2d�2 such d -dimensional D-vine tree structures (remember
that two symmetric tree structures determine the same decomposition). Algorithm 1 presents
the proposed procedure to select one of those.

The algorithm compares pairs of �s estimated via the same sample size to select a D-vine
tree structure that maximises the dependency accounted for in the first tree. This algorithm
constructs the first tree of the D-vine sequentially. It does not require to list all possible D-vine
tree structures. This may be computationally interesting in high dimensions because the number
of possible D-vine tree structures grows exponentially with the dimension.

7 Simulation Studies

7.1 Real Data

We consider the Labour Force Survey Five-Quarter Longitudinal Dataset January 2014–
March 2015 (Office for National Statistics. Social Survey Division and Northern Ireland
Statistics and Research Agency. Central Survey Unit, 2015). The data are distributed by the
UK Data Archive at the University of Essex. We consider the total actual hours in main and
second job (hereafter total actual hours) for five consecutive quarters as variables of interest.
We denote these variables by x`, ` D 1; : : : ; 5, where the index refers to the quarter. Only sur-
veyed individuals with available and non-null total actual hours for the five consecutive quarters
are considered. This results in a sample of n D 1 738 individuals aged between 16 and 69. In
this sample, the total actual hours ranges from 1 to 97. The value 97 indicates a total actual
hours greater than or equal to 97. Figure 5 shows the resulting data. This plot suggests a slight
asymmetry and tail dependence.

Tree structure and pair-copulas families When applied to the complete data (1,738 obser-
vations), Algorithm 1 selects the D-vine tree structure that agrees with time order. That is, the
variables are ordered by time in the first tree of the D-vine. We also conduct 1,000 simulations
to study the impact of non-response on the selected tree structure. For each simulation run, we
randomly generate a monotone non-response pattern as follows: we randomly partition the units
into five subsamples s1; s2; : : : ; s5 of approximately equal size; for a unit k 2 s`, ` D 1; 2; : : : ; 5,
we discard the values xki for i > `. Note that the missing data are MCAR. For each incom-
plete data generated, we apply Algorithm 1 and select a D-vine tree structure. Table 1 shows
the selected tree structures with the frequency of occurrence across 1,000 simulations.

Only 5 out of the 16 possible tree structures are observed. The tree with the variables ordered
by time is selected for almost 75% of the simulation runs. The other four selected tree structures
are very close to the first one. First, the orders are very similar. For instance, the order of the first
two tree structures is the same except for the fifth variable. Second, the strength of dependency
accounted for in the first tree is very similar across the five selected tree structures. Indeed,
the average Kendall’s � of the pairs in the first tree for these five tree structures computed on
the complete data ranges from 0.578 (fifth tree structure) to 0.593 (first tree structure). As a
result, there would be almost no difference in terms of accuracy and stability of the parameters
estimators between these five tree structures. We consider the D-vine with the variables ordered
by time in the first tree in what follows.

We apply the procedure of Section 5 to the complete data to select the pair-copula families
of the D-vine. We obtain survival Gumbel family for pairs 1, 2, 4 and 10, Gumbel family for
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Figure 5. Total actual hours of 1 738 individuals for five consecutive quarters.

Table 1. Frequency of the orders
selected with Algorithm 1 for the
total actual hours of 1 738 indi-
viduals for five consecutive quar-
ters over 1 000 simulations.

Order Frequency

1 - 2 - 3 - 4 - 5 0.73
5 - 1 - 2 - 3 - 4 0.20
5 - 4 - 1 - 2 - 3 0.03
5 - 4 - 3 - 1 - 2 0.03
4 - 1 - 2 - 3 - 5 <0.01
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pairs 3, 5, 6, 7 and 9 and Frank family for pair 8. This confirms the presence of asymmetry and
tail dependence that we have graphically observed.

Imputation We conduct 200 simulations to compare the performance of our method to other
methods. For each simulation run, we randomly generate a monotone non-response pattern as
described previously. For each simulation run, we impute the missing data using six imputation
methods:

1. MEan IMPutation (MEIMP) The missing values of each variable are replaced with the
mean of this variable.

2. AMElia (AME)(Honaker et al., 2011) The algorithm runs an EM algorithm on each of mul-
tiple bootstrapped samples selected from the incomplete data. Then, it draws a set of imputed
values from the parameters estimated from each bootstrap sample (multiple imputation). We
select five bootstrap samples. Amelia assumes a multivariate normal distribution. We apply
function boxcox of R package Mass (Venables & Ripley, 2002) to check whether a Box–Cox
power transformation should be used to achieve normality. The selected parameters of the
Box–Cox transformation being close to 1, we use the original untransformed data.

3. Multivariate Imputation by Chained Equations (MICE)(van Buuren & Groothuis-Oud-
shoorn, 2011) MICE imputes the data by chained equations. It assumes an imputation model
separately for each column in the data. For continuous variable, it applies predictive mean
matching cyclicly. The idea of predictive matching is the following: (i) it fits a linear model
with the variable being imputed as dependent variable and some fully observed covariates;
(ii) it predicts the missing values of the variable being imputed using the fitted model; and
(iii) it imputes a missing value with the observed value of the variable being imputed that is
the closest to the fitted value. MICE starts with an initial imputation of each variable. Then,
it cyclicly imputes each variable with predictive mean matching with the other variables
(observed and imputed values) as covariates until a convergence criterion is reached. Finally,
the algorithm generates multiple imputations for incomplete multivariate data by Gibbs sam-
pling. We consider five multiple imputations. With continuous variables, MICE assumes
normality of the variables. We use here the original untransformed data (same reason as for
AME).

4. Copula IMPutation (COIMP)(Di Lascio and Giannerini, 2014; Di Lascio et al., 2015)
COIMP is a copula-based method to impute multivariate missing data. Four steps of the
method are as follows: (i) non-parametric estimation of the margins through local polyno-
mial likelihood and parametric estimation of the copula model through maximum likelihood
on the available data; (ii) derivation of the joint distribution; (iii) derivation of the conditional
distribution of the missing values, conditioned on the observed values; and (iv) imputation by
generating from the conditional distribution of the previous step with the Hit or Miss Monte
Carlo method. The copula models allowed are normal, Frank, Clayton and Gumbel. Note
that this method is the slowest among the five considered. For Labour Force Survey data, the
normal copula model is selected (for both the complete data and data with non-response) and
kept constant throughout the simulations. We carry out five repeated imputations (multiple
imputation).

5. Nearest Neighbor imputation (NN) We use function impute.NN_HD of R package Hot-
DeckImputation (Joenssen, 2015). Function impute.NN_HD finds the nearest neighbor in
the complete cases for each case with missing values using the observed values of this case.
The Manhattan distance is considered. The variables are scaled with respect to their range
prior to computing the distance.

6. Pair-copula Imputation (PCI) We consider the D-vine with the variables ordered by time
in the first tree and the pair-copulas families selected from the complete data (see previous
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paragraph). We keep them constant throughout the simulations so that we can study the effect
of imputing solely on the estimates. For each simulation run, we estimate the pair-copula
parameters using the procedure described in Section 4, and we sample imputed values from
the conditional distribution of the missing values, conditioned on the observed values using
the procedure described in Section 3.2. We carry out five repeated imputations (multiple
imputation). We transform the variables back to the original scale using the inverse of the
functions bF i described in Section 4.1.

For each imputation method and each simulation run, we estimate three vectors of parameters
of interest: (i) the mean of each variable, (ii) the Pearson’s correlation of each pair of variables
and (iii) the 99th percentile of each variable. Appendix S1 explains how to compute point and
variance estimates with multiple imputation. Consider Q.i/ the point estimate obtained at the
i -th simulation run for a given imputation method and a generic vector of parameters of interest
Q. We assess the performance of the imputation methods via three criteria:

1. The Monte Carlo relative bias (in absolute value) defined as

RB D
jBj

Q
;

where B D Q
.I /
�Q is the Monte Carlo bias andQ

.I /
D
PI
iD1Q

.i/=I is the average point
estimate over the I D 200 simulations.

2. The Monte Carlo relative root variance (or relative standard deviation) defined as

RRV D
V1=2

Q
;

where

V D
1

I � 1

IX
iD1

�
Q.i/ �Q

.I /
�2
:

3. The Monte Carlo relative root mean square error defined as

RRMSE D

�
B2 C VAR

�1=2

Q
:

Figure 6 shows the results.
The top plots show three comparison criteria for the mean of the variables ordered by decreas-

ing number of observed values, the middle plots three comparison criteria for the Pearson’s
correlation coefficient of the pairs of the variables ordered by decreasing number of pairwise
observed values and the bottom plots three comparison criteria for the 99th percentile of the
variables ordered by decreasing number of observed values. Appendix S2 contains three tables
showing these results. We observe that PCI is associated with smallest variance in all considered
cases considered except one. A possible explanation is that our estimation method (Section 4)
uses all the information in the data. We discuss the bias associated with the six imputation meth-
ods independently for each parameter of interest. For the mean, all five methods are associated
with an RB less than 3%. MEIMP, AMEL, MICE and NN yield the smallest RB. The reason is
that the mean is a measure of central tendency, which is unrelated to the dependence and tails
structure. Therefore, an imputation method that imputes each variable separately (MEIMP),

International Statistical Review (2018), 86, 3, 488–511
© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute.



504 C. HASLER, R. V. CRAIU & L.-P. RIVEST

Figure 6. Three comparison criteria (from left to right: RB, RRV and RRMSE) for three parameters of interest (from top to
bottom: mean, Pearson’s correlation coefficient and 99th percentile) with six imputation methods for Labour Force Survey
data. The x-axis shows the index of the variables or pair of variables for Pearson’s correlation coefficient. RB, relative bias;
RRV, relative root variance; RRMSE, relative root mean square error.

independently to the dependence structure (MEIMP) and the tails features (MEIMP, AMEL,
MICE and NN) provides satisfactory results. COIMP shows the poorest performance; it is also
the slowest. For the Pearson’s correlation coefficient, AMEL, MICE, NN and PCI yield the
smallest RB. This was expected because these four imputation methods account for the depen-
dence structure of the data. For this parameter of interest, MEIMP and COIMP yield an RB
that can be as high as nearly 60% and 80%, respectively. For MEIMP, the reason is that it does
not account for the dependence structure as the variables are imputed separately. The bad per-
formance of COIMP, however, is surprising because this method accounts for the dependence
structure via a copula model. A possible explanation is that the family of copulas used by this
method is not wide enough to capture the dependence structure of the data. For the 99th per-
centile, PCI globally provides the best results. The reason is that this method accounts for the
tails features.

7.2 Simulated Data 1

We simulated a sample of size n D 500 from a four-dimensional D-vine with Gumbel pair
copulas with parameter equal to 2. Figure 7 shows the simulated data.
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Figure 7. Five hundred observations from a four-dimensional D-vine with Gumbel pair copulas with parameter equal to 2.

The model for the joint distribution is correctly specified by PCI and incorrectly specified
by AME. As a multivariate Gumbel copula cannot be reconstructed using bivariate Gumbel
copulas, the model is also misspecified for COIMP. We conduct 200 simulations to compare the
performance of our imputation method to other imputation methods as described in Section 7.1.
We apply function boxcox of R package Mass (Venables & Ripley, 2002) to check whether a
Box–Cox power transformation should be used to achieve normality. The selected parameters
of the Box–Cox transformation being close to 1, we apply AME and MICE to the original
untransformed data. We use Gumbel copula for the multivariate copula of COIMP and the pair
copulas of PCI. For PCI, we select the D-vine tree structure where the variables are in decreasing
order of observed values in the first tree. Figure 8 shows the results of the simulations. Appendix
S2 also contains three tables showing these results.

These results are similar to those of Section 7.1. PCI overall performs the best with the
smallest RRMSE. It provides the smallest RRV but is not necessarily the best in terms of RB.
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Figure 8. Three comparison criteria (from left to right: RB, RRV and RRMSE) for three parameters of interest (from top
to bottom: mean, Pearson’s correlation coefficient and 99th percentile) with six imputation methods for simulated data 1.
The x-axis shows the index of the variables or pair of variables for Pearson’s correlation coefficient. RB, relative bias; RRV,
relative root variance; RRMSE, relative root mean square error.

7.3 Simulated Data 2 (misspecified models)

We generate n D 1 000 independent and identically distributed observations
.xk1; xk2; xk3; xk4/; k D 1; : : : ; 1 000 of a vector of four random variables as follows:

xk1 D 3C uk C "k1;

xk2 D uk C "k2;

xk3 D log.uk C 1/C "k3;

xk4 D 1C exp1=2 uk C "k4;

where uk is generated from a uniform distribution on interval Œ1; 2� and "k1, "k2, "k3 and "k4

from normal distributions with mean 0 and standard deviation u1=10
k

, 1/10, 1/10 and .uk�1/1=4,
respectively. Variable u is a latent variable that creates dependency between the variables of
interest. Figure 9 shows the simulated data.

The joint distribution is incorrectly specified by all three JM methods (AME, COIMP and
PCI). We conduct 200 simulations to compare the performance of our imputation method to
other imputation methods as described in Section 7.1. We apply function boxcox of R package
mass (Venables & Ripley, 2002) to check whether a Box–Cox power transformation should be
used to achieve normality. The selected parameters of the Box–Cox transformation being close
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Figure 9. One thousand independent and identically distributed observations.

to 1, we apply AME and MICE to the original untransformed data. For COIMP, we use the
complete data to select the copula families. We obtain the normal copula and consider this one
across the 200 simulations. For PCI, we transform the variables as described in Section 7.1 to
obtain uniform margins. We use the complete data to select the pair-copula families and the
D-vine tree structure. We obtain the D-vine tree structure where the variables are in decreasing
order of observed values in the first tree. We obtain Frank copula for pairs 1, 2, 3 and 5 and
independence copula for pairs 4 and 6. We consider this D-vine tree structure and these pair-
copula families across the 200 simulations. Figure 10 shows the results of the simulations.
Appendix S2 also contains three tables showing these results.

Pair-copula imputation overall performs the best with the smallest RRMSE for all three
parameters of interest. For two parameters of interest (mean and 99th percentile), PCI, NN and
MICE perform equally and better than the other methods in terms of RB, and PCI performs the
best in terms of RRV. For the Pearson’s correlation coefficient, AMEL, MICE and NN yield the
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Figure 10. Three comparison criteria (from left to right: RB, RRV and RRMSE) for three parameters of interest (from top
to bottom: mean, Pearson’s correlation coefficient and 99th percentile) with six imputation methods for simulated data 2.
The x-axis shows the index of the variables or pair of variables for Pearson’s correlation coefficient. RB, relative bias; RRV,
relative root variance; RRMSE, relative root mean square error.

smallest RB. JM methods are usually criticised for their lack of flexibility. The results of this
setting show that PCI, as a JM method, is very flexible; it still performs very well under model
misspecification.

8 Discussion

8.1 Generalisation to Data Missing at Random

We suppose in the paper that the missing data are MCAR. Unfortunately, the proposed D-
vine imputation method does not work when the missing data are missing at random (MAR).
In this case, (5) does not represent the likelihood contribution of a unit with non-response, and
in (6), bF i is not a consistent estimator of the marginal distribution function of Xi . Adapting
the D-vine model to MAR data is not straightforward. The estimator for Fi could possibly be
corrected using a model for the response mechanism, as considered in Cassel et al. (1983), and
parameter estimation could be performed through a conditional likelihood. Additional research
is needed to investigate the feasibility of these changes.

8.2 Generalisation to More Global Non-response Patterns

This section briefly discusses the generalisation of our method to more global non-response
patterns. We have seen that the estimation method presented in Section 4 can be applied if
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and only if any group of variables that are jointly observed in the sample defines a sub-D-
vine of the original D-vine. More generally, our method can be applied if we observe only non
discontinuous sequences of variables, that is, if it is possible to rearrange the variables such
that, for each unit k, there exist two scalars `� and `C such that 1 � `� < `C � d and xki is
observed for `� � i � `C and missing for i < `� or i > `C. In this case, the sample can be
partitioned into d.d � 1/=2 subsamples:

s`�;`C D
®
kjxki is observed if and only if `� � i � `C

¯
;

where `� D 1; : : : ; d � 1, `C D `� C 1; : : : ; d . Figure 11 shows the non-response patterns
for which our estimation method can be applied and the sub-D-vines associated in the four-
dimensional case.

In dimension d , there are therefore d.d � 1/=2 non-response patterns that our method can
handle. Note that our estimation method presented in Section 4 and imputation methods in
Section 3.2 might need to be adapted to suit the non-response patterns presented in this section.

So far, we have considered that all variables are observed for some units (subsample s14 in
the four-dimensional case). Consider now that we jointly observe at most p < d variables in
the sample. A typical example is a longitudinal study with a cyclical selection: once a unit is
sampled, it is retained for exactly p consecutive waves. In this case, the sample provides no

Figure 11. Non-response patterns for which our estimation method can be applied (left) and sub-D-vines associated (right)
in the four-dimensional case.

Figure 12. Non-response pattern when units are retained for three consecutive waves in the four-dimensional case, truncated
tree at level 2 and D-vines associated with the subsamples.
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information about the pair copulas in the trees p to d � 1. A solution to apply our method is
to set all pair copulas in trees p and higher to independence copulas. This implies a truncated
tree at level p � 1 (Brechmann et al., 2012). Figure 12 shows an example where the units
are retained for three consecutive waves (p D 3) in the four-dimensional case. In this case,
the sample provides no information about the pair copula C14j23 of Tree T3 because we never
observe jointly all four variables. This pair is set to independence copula, which results in a
truncated tree at level 2. Each subsample is associated with a D-vine, and our method can be
applied.

9 Conclusion

The paper proposes an imputation method for continuous variables based on vine copulas
that yields a flexible joint model using a cascade of bivariate copulas. Our method can capture
some complex features of the data such as tail dependence that other methods fail to capture,
and it does not restrict the marginals to belong to preset families. We suppose MCAR data
and a monotone non-response pattern, and, in this case, our proposed method outperforms all
competing alternatives. It would be interesting to generalise our method to MAR data and
non-monotone non-response patterns.
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