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Starting with the seminal paper of Haario, Saksman, and Tamminen (Haario, Saksman, and Tamminen 2001), a substantial amount of
work has been done to validate adaptive Markov chain Monte Carlo algorithms. In this paper we focus on two practical aspects of adaptive
Metropolis samplers. First, we draw attention to the deficient performance of standard adaptation when the target distribution is multimodal.
We propose a parallel chain adaptation strategy that incorporates multiple Markov chains which are run in parallel. Second, we note that the
current adaptive MCMC paradigm implicitly assumes that the adaptation is uniformly efficient on all regions of the state space. However,
in many practical instances, different “optimal” kernels are needed in different regions of the state space. We propose here a regional
adaptation algorithm in which we account for possible errors made in defining the adaptation regions. This corresponds to the more realistic
case in which one does not know exactly the optimal regions for adaptation. The methods focus on the random walk Metropolis sampling
algorithm but their scope is much wider. We provide theoretical justification for the two adaptive approaches using the existent theory build
for adaptive Markov chain Monte Carlo. We illustrate the performance of the methods using simulations and analyze a mixture model for
real data using an algorithm that combines the two approaches.

KEY WORDS: Adaptive Markov chain Monte Carlo; Metropolis sampling; Parallel chains; Random walk Metropolis sampling; Regional
adaptation.

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) techniques have be-
come an important tool in the statistician’s arsenal for solving
complex analyses. One of the most widely used algorithms is
the Metropolis (Metropolis et al. 1953) and its generalization,
the Metropolis–Hastings (MH) (Hastings 1970) sampler. If the
goal is to sample from a distribution π with support S , the MH
sampler is started with a random value X0 ∼ μ and, at each it-
eration t, a proposal Y is drawn from a proposal distribution
Q(y|Xt) with density q(y|Xt) and is retained as the next state
of the chain with probability α(Xt,Y) = min{1,

π(Y)q(Xt|Y)
π(Xt)q(Y|Xt)

}. If
q(y|x) is the density of y = x + ε where ε has a symmetric dis-
tribution, we obtain the random walk Metropolis algorithm.

In order to design an efficient Metropolis algorithm it is nec-
essary to carefully adapt the parameters of the proposal distribu-
tion Q so that the performance of the algorithm is optimal (note
that there are multiple definitions of “optimal” available). On
one hand, one can argue that many modern MCMC algorithms
incorporate a certain notion of local adaptation in their design,
for example, Gilks, Roberts, and Suhu (1998), Liu, Liang, and
Wong (2000), Green and Mira (2001), Eidsvik and Tjelmeland
(2006) and Craiu and Lemieux (2007). In this paper, we refer to
a more global version of adaptation which is based on learning
the geography of π “on the fly” from all the samples available
up to the current time t. Such an approach violates the Markov-
ian property as the subsequent realizations of the chain depend
not only on the current state but also on all past realizations.
This implies that one can validate theoretically this approach
only if one is able to prove from first principles that the adaptive
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algorithm is indeed sampling from π . In Haario, Saksman, and
Tamminen (2001) the authors provide such a theoretical justi-
fication for adapting the covariance matrix � of the Gaussian
proposal density used in a random walk Metropolis. They con-
tinually adapt � using the empirical distribution of the available
samples. Their choice of adaptation is motivated by the opti-
mal results proved by Roberts, Gelman, and Wilks (1997) and
Roberts and Rosenthal (2001). Subsequently, the convergence
results of adaptive algorithms have been made more general in
Andrieu and Robert (2001), Andrieu, Moulines, and Priouret
(2005), Atchade and Rosenthal (2005), Andrieu and Moulines
(2006), and Roberts and Rosenthal (2007). An adaptive algo-
rithm for the independent Metropolis sampler was proposed by
Gasemyr (2003) and Haario, Saksman, and Tamminen (2005)
extended their previous work to Metropolis-within-Gibbs sam-
pling. A class of quasi-perfect adaptive MCMC algorithms is
introduced by Andrieu and Atchade (2006) and a nice tutorial
on adaptive methods is given by Andrieu and Thoms (2008).
Alternative approaches to adaptation within MCMC can be
found in Brockwell and Kadane (2005), Nott and Kohn (2005),
Giordani and Kohn (2006). We quote from Giordani and Kohn
(2006):
Although more theoretical work can be expected, the existing body of results
provides sufficient justification and guidelines to build adaptive MH samplers
for challenging problems. The main theoretical obstacles having been solved,
research is now needed to design efficient and reliable adaptive samplers for
broad classes of problems.

In the present paper we try to close some of the gap between
theory and practice by focusing on the practical aspects of adap-
tive MCMC (AMCMC). More precisely, we discuss complica-
tions arising when using AMCMC, especially adaptive random
walk Metropolis, for sampling from multimodal targets and
also when the optimal proposal distribution is regional, that is,
the optimal proposal should change across regions of the state
space. In the next section we discuss the interchain adaptation.
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In Section 3 we discuss the regional adaptation. The theoreti-
cal challenge is to show that the algorithms proposed here fall
within the scope of general theorems that are used to validate
adaptive MCMC. These results are presented in Section 4 while
simulation examples and a real data analysis are shown in Sec-
tion 5. We close with discussion of further research.

2. INTERCHAIN ADAPTATION (INCA)

To begin, consider a simulation setting where the target dis-
tribution is a mixture of two 10-dimensional Gaussian distribu-
tions. More precisely, the target distribution is

π(x|μ1,μ2,�1,�2) = 0.5n10(x;μ1,�1) + 0.5n10(x;μ2,�2),

with nd(x;μ,�) denoting the density of a d-dimensional
Gaussian random variable with mean μ and covariance matrix
� and where μ1 = (0.03,−0.06,−0.24,−1.39,0.52,0.61,

1.26,−0.71, −1.38,−1.53)T , μ1i − μ2i = 6,∀1 ≤ i ≤ 10,
�1 = I10 and �2 = 4I10. In Figure 1 we present the results
of a simulation in which we applied the adaptive Metropolis
sampler of Haario, Saksman, and Tamminen (2001) with an ini-
tialisation period of 10,000 samples. The chain is started in one
of the target’s modes (the one corresponding to μ1). Although
the final sample size is N = 250,000, we can see that the chain
does not visit the second mode. In this case, the adaptation can-
not improve much on the unadapted version of the Metropolis
sampler as the second mode “is invisible” in the initialization
period and it will likely take a long time for a chain incorrectly
adapted to a unimodal distribution to discover the second high
probability region.

In the classic MCMC literature difficulties related to sam-
pling from a multimodal distribution are tackled using multiple
parallel chains as in Gelman and Rubin (1992) and tempering
as in Neal (1994) and Geyer and Thompson (1994). Both ideas
influence our approach.

The parallel chains implementation has been proven help-
ful for a more systematic exploration of the sample space as in

Craiu and Meng (2005). In the present setting we use it to de-
tect the different regions of significant mass under the posterior
distribution and our starting example shows that such detection
is extremely important for adaptive MCMC. We thus propose
running in parallel a number, say K, of Markov chains. We can
further robustify the performance of the algorithm if the chains
are started from a distribution μ that is overdispersed with re-
spect to π . It should be noted that finding μ can be quite chal-
lenging. The problem of finding good starting points for paral-
lel chains is also discussed by Applegate, Kannan, and Polson
(1990), Gelman and Rubin (1992), Jennison (1993), and Brooks
and Gelman (1998). We would like to add a word of caution
following Gill (2008) who states that a bad choice for μ can be
deleterious and may dramatically alter the simulation results.

A question of interest in adaptive MCMC is whether one
should wait a short or a long time before starting the adaptation.
In Gasemyr (2003), the burn-in time is random but bounded be-
low, while Giordani and Kohn (2006) propose a different strat-
egy in which adaption starts early and is performed frequently
in what they call intensive adaptation. However, they also warn
that one should make sure that enough distinct samples are ob-
tained in order to avoid singularity problems. In the multimodal
situation considered here we adopt a longer burn-in, partly be-
cause the multimodality of π makes it difficult to have a good
idea about its geography when only a few draws are available.
A longer burn-in increases the stability of the inferences ob-
tained and reduces the risk of missing one important mode.

We thus propose a new strategy, interchain adaptive MCMC
(INCA), as follows. We run K different chains in parallel, each
started independently from the same overdispersed starting dis-
tribution. After the burn-in period the K kernels are simultane-
ously adapted using all the samples provided by the K chains
so far. In the case of a random walk Metropolis with Gaussian
proposals we do this by setting the proposal covariance to the
sample covariance matrix of all the available samples. Denote
γm the adaptation parameter, for example, the variance of the
random walk Metropolis proposal distribution, used at step m
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Figure 1. Boxplots of N = 250,000 samples obtained using a single-chain adaptive Metropolis; each boxplot correspond to one component
of the 10-dimensional random vector. The red lines represent the entries of the target’s mean vector. The chain does not visit the second mode
of the target.
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Figure 2. The evolution of BGR’s R statistic. It takes approximately
18,000 iterations to reach below 1.1.

in each marginal transition kernel. We run the chains indepen-
dently conditional on the {γm}, so the joint transition kernel, T̃γm

is obtained as the product of K identical copies of the marginal
transition kernel Tγm such that

T̃γm(x̃, Ã) = Tγm(x1;A1) ⊗ Tγm(x2;A2) ⊗ · · · ⊗ Tγm(xK;AK),

where Ã = A1 × · · · × AK and x̃ = (x1, . . . , xK).
The motivation for using multiple chains lies in our attempt

to discover as early as possible all the modal regions of π (or
at least all the important ones). After the chains have explored
the regions of interest and the simulation parameters are up-
dated one may wish to return to a single chain. A question of
interest is then how to decide when the exchange of information
between chains has stopped. The criterion we use is the well-
known Brooks–Gelman–Rubin (BGR) diagnostic, R, as devel-
oped in Gelman and Rubin (1992) and Brooks and Gelman
(1998). Given a number, say K, of parallel chains, the potential
scale reduction R is a normalized ratio of the between-chain
and within-chain variances computed from the available sam-
ples (Gelman and Rubin 1992, p. 465). While R was originally
designed as a convergence indicator, here it is used to determine
whether the chains contribute different information about π .

In Figure 2 we show for the mixture of Gaussian distributions
the evolution of the R statistics. One can see that the exchange
of information between chains is gradually decreasing along
with the adaptation. An astute reader may wonder whether the
learning process can be accelerated using tempering strategies
in order to learn the geography of π more quickly.

2.1 Tempered INCA (TINCA)

Tempering in MCMC relies on a series of “canonical” distri-
butions, πT , each of which are obtained by varying a “temper-
ature” parameter T in a set {t1, t2, . . . , tmax} such that πt1 = π

and while πtj is not too different from πtj+1 , there is a substantial
difference between π and πtmax in that the latter has less isolated
modes (or is “flatter”) so that it is considerably easier to sample
using MCMC algorithms. One generic procedure (although not
the only one) defines πT = π1/T for T ≥ 1. In Figure 3 we illus-
trate the effect of tempering on a bivariate mixture of Gaussian
distributions.

One expects that for large values of T (or hot temperatures),
adaptive algorithms designed for πT will be more efficient.
For instance, if INCA is implemented we expect the running
time needed to stabilize R ≈ 1 to be much shorter than at the
“cool” temperature T = 1. One could possibly envision a grad-
ual temperature-driven adaptation following Meng (2007). Start
with T = tmax and at each temperature perform the following
steps:

Step I. For T = tj perform INCA for target density πT until
R is below a prespecified threshold 1 + ξ .

Step II. Keep the simulation parameters obtained and per-
form Step I with the next colder temperature T = tj−1. Stop
after T = 1.

The implementation assumes that the kernel learned/adapted
at temperature tj is a reasonable starting choice for the kernel
used at temperature tj−1. In addition to speeding up the adapta-
tion process, this tempered INCA (TINCA) is aimed at solving
the difficult task of producing a reasonable starting proposal
in a high-dimensional problem. We implemented TINCA with
T ∈ {1,2,4,8,16} for the example discussed in this section and
the total number of iterations, including those produced at tem-
peratures T > 1, required to reach R ≤ 1.1 at T = 1 was 10,000,
compared to the 18,000 reported without tempering. Additional
simulations using TINCA are discussed in Section 5.

It should be noted that INCA and/or TINCA can be imple-
mented along many other adaptive MCMC strategies. As men-
tioned by many authors working in the field, the performance of
the algorithm during the initialization (or burn-in) period, when
no adaption is taking place, is crucial. We believe that INCA
is most useful in the initial stage of the simulation since it ac-
celerates the “data gathering” about the geography of π and
improves the overall performance of the adaptive process.

3. REGIONAL ADAPTATION (RAPT)

In the previous section, we considered a simple example in
which the target distribution had its mass equally divided be-
tween the two modes. However, examples abound where the
modes of the distribution have different relative mass and in
these situations a simple remedy such as INCA may be ineffec-
tive. One can easily see that in such cases there is no “universal”
good proposal, that is, the learning must be adapted to different
regions of the state space. Regional adaptation has been sug-
gested in a different form by Andrieu and Robert (2001) and
Roberts and Rosenthal (2009). For our discussion assume that
there is a partition of the space S made of two regions S01, S02
such that adaptation should be carried over independently in the
two regions. In other words, in the case of a Metropolis algo-
rithm, in region S0i we would use proposals from distribution
Qi while only samples from this region will be used to adapt
Qi. Such an algorithm is valid as long as one carefully com-
putes acceptance ratios for proposed moves that switch regions,
as was also noted by Roberts and Rosenthal (2009). In the case
of two regions the acceptance ratio is then

r(x, xnew) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π(xnew)

π(x)
, if x, xnew ∈ S0i

π(xnew)q1(x|xnew)

π(x)q2(xnew|x) , if x ∈ S02, xnew ∈ S01

π(xnew)q2(x|xnew)

π(x)q1(xnew|x) , if x ∈ S01, xnew ∈ S02,
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Figure 3. Tempered distributions with T = 1 (original target), T = 2, T = 4, and T = 8.

where qi is the density of Qi.
While there exist sophisticated methods to detect the modes

of a multimodal distribution (see Neal 2001; Sminchisescu and
Triggs 2001, 2002; Sminchisescu, Welling, and Hinton 2003),
it is not always clear how to use such techniques since defining
a good partition of the sample space may need more than just
the location of the modes. In Craiu and Di Narzo (2009) we
follow the methods of Andrieu and Moulines (2006) and Cappé
and Moulines (2009) to propose a mixture-based approach for
adaptively determining the boundary between high probability
regions. Suppose we approximate the target distribution using
the mixture of Gaussians

Q̃(x) = βn(x;μ1,�1) + (1 − β)n(x;μ2,�2). (1)

Then Craiu and Di Narzo (2009) define the regions Sk as the set
in which the kth component of the mixture density Q̃ dominates
the other one, that is,

Sk =
{

x : arg max
k′ n(x;μk′,�k′) = k

}
. (2)

Regardless of the method used, in most cases we do not have
enough knowledge to choose the partition made exactly of re-
gions S01 and S02. Instead, suppose we define a partition made
of regions S1 and S2. An illustration of this idea is shown in
Figure 4. The solid black line represents the exact boundary
(unknown), between regions S01 and S02. The dashed line de-
limitates the regions S1 and S2 used for the regional adapta-
tion. If we were to apply the simple regional adaptive algorithm
described above, when the chain is in one of the states situ-
ated between the two dashed lines the wrong proposal would
be used. Therefore, in order to account for the error made when
specifying the boundary between regions we propose to sam-
ple our proposals from a mixture that includes both Q1 and Q2.
However, the mixture proportions are different in each region
Si and are adaptively modified. The resulting Regional Adap-
tive (RAPT) algorithm has proposal distribution

Qγ (x,dy) =
2∑

i=1

1Si(x)
[
λ

(i)
1 Q1(x,dy) + λ

(i)
2 Q2(x,dy)

]
, (3)

where λ
(i)
1 + λ

(i)
2 = 1. In this case, we use the index γ on Q to

emphasize the fact that the proposal is adapted with the adap-

tion parameter γ = (λ
(1)
1 , λ

(2)
1 ) ∈ Y = [0,1]2.

The mixture proportions λ
(i)
j ,1 ≤ i, j ≤ 2, are chosen to re-

flect which of the two proposals is more “appropriate” to use in
the given region. Evidently, one has some freedom over what
can be considered a good proposal in this setup. For instance,
one could choose

λ
(i)
j = n(i)

j (t)∑2
h=1 n(i)

h (t)
,

where n(i)
j (t) is the number of accepted moves up to time t com-

puted when the accepted proposals are distributed with Qj and
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λ + λ 

2

1 1
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Figure 4. Illustration of the regional adaptive MCMC sampler. The
solid line represents the exact boundary (unknown), between regions
S01 and S02. The dashed line delimitates the regions S1 and S2 used
for the regional adaptation.
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the current state of the chain lies in Si. However, this choice
would favor small steps of the chain since these have higher
acceptance rates. To counterbalance, we take into account the
average squared jump distance so that

λ
(i)
j =

⎧⎪⎨
⎪⎩

d(i)
j (t)∑2

h=1 d(i)
h (t)

, if
2∑

h=1

d(i)
h (t) > 0

1/2, otherwise,

(4)

where d(i)
j (t) is the average squared jump distance up to time

t computed when the proposals were sampled from Qj and the
current state of the chain lies in Si. More precisely, suppose
{xj}t

j=0 are the samples obtained until time t and Ni(t) is the

number of elements in the set {xi
tg}Ni(t)

g=1 which contains all the
samples generated up to time t that are lying in Si. We also
define the set of time points at which the proposal is generated
from Qj and the current state is in Si, W(i)

j (t) = {0 ≤ s ≤ t : xs ∈
Si and proposal at time s is generated from Qj}. Then

d(i)
j (t) =

∑
s∈W(i)

j (t)
|xs+1 − xs|2

|W(i)
j (t)|

,

where |W(i)
j (t)| denotes the number of elements in the set

W(i)
j (t). If W(i)

j (t) = ∅ then d(i)
j (t) = 0. If we implement RAPT

within INCA/TINCA with K parallel chains then in the calcu-
lation of d(i)

j (t) we need to consider all the samples obtained up
to time t by all the K chains.

Better performance can be achieved using the algorithm (3)
for which both the mixture weights and the proposals, Q1,Q2,
are adapted, which is called Dual RAPT. We suggest here to
adapt the covariance matrix of each proposal distribution in the
same vein as Haario, Saksman, and Tamminen (2001).

When the current state Xt−1 lies in Si, the components of
the mixture (3) are the Gaussian distributions with densities q(t)

i
and with mean at the current point Xt−1 and covariance Ci(t),
where Ci(t) is defined below.

Ci(t) =
⎧⎨
⎩

C0i, t ≤ t0, i = 1,2

sd Cov
(
Xi

t1,Xi
t2 , . . . ,Xi

tNi(t)

)
+ sdεId, t > t0, i = 1,2,

(5)

where sd = (2.4)2/d. This form of adaption follows (sepa-
rately within each region) the Adaptive Metropolis algorithm
of Haario, Saksman, and Tamminen (2001), and is based on
the results of Gelman, Roberts, and Gilks (1996), Roberts, Gel-
man, and Wilks (1997), and Roberts and Rosenthal (2001)
who showed that this choice optimizes the mixing of random
walk Metropolis at least in the case of Gaussian targets and
Gaussian proposals. The implicit premise is that in each region
the Gaussian approximation of the target is reasonable. The ad-
dition of sdεId , where ε > 0 is a small constant, guarantees that
the matrices Ci(t) are all in M(c1, c2) for some fixed constants
0 < c1 ≤ c2 < ∞, where M(c1, c2) is the set of all k × k posi-
tive definite matrices M such that c1Ik ≤ M ≤ c2Ik, that is, such
that both M − c1Ik and c2Ik − M are nonnegative definite.

The adaption parameter is then

γ = (
λ

(1)
1 , λ

(2)
1 ,C1,C2

) ∈ Y
= [0,1] × [0,1] × M(c1, c2) × M(c1, c2).

An observant reader may notice that while the algorithm may
perform well in each region, there is no guarantee that there will
be a good flow between regions. For this reason, in practice we
consider the Mixed RAPT algorithm in which we add a third
adaptive component to the mixture (3). In this variant,

Qγ (x,dy) = (1 − β)

2∑
i=1

1Si(x)
[
λ

(i)
1 Q1(x,dy) + λ

(i)
2 Q2(x,dy)

]

+ βQwhole(x,dy), (6)

where Qwhole is adapted using all the samples in S and β is
constant throughout the simulation. Once more we adapt the
ideas in Haario, Saksman, and Tamminen (2001) and use the
covariance of all the simulations available at time t to adapt the
covariance of the Gaussian proposal density qwhole in (6). We
shall use

C(t) =
⎧⎨
⎩

C0, t ≤ t0
sd Cov(X0,X1, . . . ,Xt)

+ sdεId, t > t0 and Tr(C(t)) ≤ M.

(7)

Given that all the distributions and parameters (except β) in (6)
are evolving, the adaption parameter is

γ = (
λ

(1)
1 , λ

(2)
1 ,C1,C2,C

) ∈ Y
= [0,1] × [0,1] × M(c1, c2) × M(c1, c2) × M(c1, c2).

3.1 INCA/TINCA Versions of RAPT

The descriptions so far of the various RAPT, Dual RAPT,
and Mixed RAPT algorithms have all been for a single chain.
However, it is also possible to combine these algorithms with
the INCA approach of Section 2.

Indeed, for RAPT, all that is required is to compute the quan-
tities d(i)

j (t) in Equation (4) using all of the proposals from all
of the K parallel chains.

For Dual RAPT, it is required in addition that the covariance
matrix adaptions of Equation (5) use the appropriate samples X
from all of the K parallel chains.

And, for Mixed RAPT, it is required in addition that the co-
variance matrix adaptions of Equation (7) also use the appro-
priate samples X from all of the K parallel chains.

Similarly, it is possible to combine all of this with the tem-
pered (TINCA) approach of Section 2.1. Indeed, all that is re-
quired is to run each of the chains on the distribution πTj =
π1/Tj until R < 1+ε, and then to replace j by j−1 and continue,
until such time as we reach Tj = 1 corresponding to πTj = π .

4. THEORETICAL RESULTS

In this section, we prove that each of our previously defined
adaptive algorithms is “ergodic to π ,” that is, that

lim
n→∞ sup

A⊆S
|P(Xn ∈ A) − π(A)| = 0,

assuming the following compactness condition:

(A1) There is a compact subset S ⊆ Rk such that the target
density π is continuous on S , positive on the interior
of S , and zero outside of S .
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We believe that it is possible to remove the assumption that S is
compact, but the resulting arguments are more technical, so we
will pursue them elsewhere (Yang, Craiu, and Rosenthal 2009).
Of course, even compact sets can be arbitrarily large, so in prac-
tice (A1) does not impose any significant limitation.

We shall first prove ergodicity of the RAPT algorithm, where
only the weights λ

(i)
j are adapted, as in (4). In this case, since

the proposal densities qi are arbitrary, we also need to assume
that they are continuous and positive throughout S .

Theorem 4.1. Assuming (A1), and that the proposal densities
qi are continuous and positive throughout S × S , the RAPT
algorithm is ergodic to π .

We shall then prove ergodicity of the Dual RAPT algorithm.
In this case, since the proposal distributions are assumed to be
Gaussian, no further assumptions are necessary.

Theorem 4.2. Assuming (A1), the Dual RAPT algorithm is
ergodic to π .

Finally, we shall prove ergodicity of the full Mixed RAPT
algorithm, again with no further assumptions required since the
proposals are Gaussian.

Theorem 4.3. Assuming (A1), the Mixed RAPT algorithm is
ergodic to π .

Note that Theorems 4.1, 4.2, and 4.3 apply both to the single-
chain versions of RAPT/Dual RAPT/Mixed RAPT as described
in Section 3, and to the INCA/TINCA modifications as de-
scribed in Section 3.1.

4.1 Theorem Proofs

For notational simplicity, we prove the theorems for the case
of a single adaptive chain, but the proofs go through virtually
without change for the INCA versions of these algorithms as
described in Section 3.1, and also (by iterating) for the TINCA
versions as described in Sections 2.1 and 3.1.

To facilitate our proofs, we introduce some notation. Let γ be
shorthand for all of the parameters being adapted, for example,

γ = (
λ

(1)
1 , λ

(2)
1 , λ

(1)
2 , λ

(2)
2

)
for the RAPT algorithm, while

γ = (
λ

(1)
1 , λ

(2)
1 , λ

(1)
2 , λ

(2)
2 ,C1,C2

)
for the Dual RAPT algorithm, etc. Let 
n be the actual (ran-
dom) adaptive parameters in use at time n, so that P
n is
the (random) Markov chain kernel used to update the state at
time n. Write Pγ for the Markov chain kernel corresponding to
a particular fixed choice γ , so that

Pγ (x,A) = P(Xn+1 ∈ A|Xn = x,
n = γ ).

A basic assumption of adaptive MCMC is that each individual
kernel Pγ preserves the stationarity of π , that is, that∫

Pγ (x,A)π(dx) = π(A), A ⊆ S (8)

for fixed γ , which is certainly true for the adaptive algorithms
introduced here. However, when the parameters {γn} are mod-
ified during the run, then stationarity of π no longer holds,

and the resulting ergodicity is much more subtle. For a simple
graphical illustration of this, see Rosenthal (2004).

Our proofs shall make use of theorem 5 of Roberts and
Rosenthal (2007), which implies that an adaptive algorithm is
ergodic to π if it satisfies (a) the diminishing adaption property
that

lim
n→∞ sup

x∈S
sup
A⊆S

∣∣P
n+1(x,A) − P
n(x,A)
∣∣ = 0 (9)

in probability, that is, that the amount of adaptive change from
time n to time n + 1 goes to zero as n → ∞, and (b) the simul-
taneous uniform ergodicity property that there is ρ < 1 with

|Pn
γ (x,A) − π(A)| ≤ ρn, n ∈ N, γ ∈ Y , x ∈ S,A ⊆ S.

(10)

So, to prove Theorem 4.1, it suffices to establish (9) and (10),
which we do in the following two lemmas.

Lemma 4.1. Under the conditions of the Theorem 4.1, the
simultaneous uniform ergodicity property (10) holds.

Proof. Since S is compact, by positivity and continuity
we have d ≡ supx∈S π(x) < ∞ and ε ≡ min{infx,y∈S q1(x, y),
infx,y∈S q2(x, y)} > 0. From (3), it follows that

qγ (x, y) ≡
2∑

i=1

1Si(x)
[
λ

(i)
1 q1(x, y) + (

1 − λ
(i)
1

)
q2(x, y)

]

≥ ε, x, y ∈ S.

For x ∈ S and B ⊆ S , denote

Rx,γ (B) =
{

y ∈ B :
π(y)qγ (y, x)

π(x)qγ (x, y)
< 1

}

and Ax,γ (B) = B \ Rx,γ (B). Then we have

Pγ (x,B) ≥
∫

Rx,γ (B)

qγ (x, y)min

{
π(y)qγ (y, x)

π(x)qγ (x, y)
,1

}
μLeb(dy)

+
∫

Ax,γ (B)

qγ (x, y)min

{
π(y)qγ (y, x)

π(x)qγ (x, y)
,1

}
μLeb(dy)

=
∫

Rx,γ (B)

π(y)qγ (y, x)

π(x)
μLeb(dy)

+
∫

Ax,γ (B)

qγ (x, y)μLeb(dy)

≥ ε

d

∫
Rx,γ (B)

π(y)μLeb(dy) + ε

d

∫
Ax,γ (B)

π(y)μLeb(dy)

= ε

d
π(B).

Thus S is small since

Pγ (x,B) ≥ ν(B), x ∈ S, γ ∈ Y ,B ⊆ S,

where ν(B) = ε
d π(B) is a nontrivial measure on S . Con-

dition (10) then follows from theorem 16.0.2 of Meyn and
Tweedie (1993), with ρ = 1 − ν(S) = 1 − ε

d .

Lemma 4.2. Under the conditions of the Theorem 4.1, the
diminishing adaption condition (9) holds.
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Proof. Let fλ(x, y) = λq1(x, y) + (1 − λ)q2(x, y). Since S is
compact, we have that M ≡ max{supx,y∈S q1(x, y),
supx,y∈S q2(x, y)} < ∞. For any x ∈ S1 and A ∈ B(S), we have

Pγk(x,A) =
∫

A∩S1

f
λ

(1)
1 (k)

(x, y) · min

{
1,

π(y)

π(x)

}
dy

+
∫

A∩S2

f
λ

(1)
1 (k)

(x, y)min

{
1,

π(y)f
λ

(2)
1 (k)

(x, y)

π(x)f
λ

(1)
1 (k)

(x, y)

}
dy

+ δx(A)

∫
S1

f
λ

(1)
1 (k)

(x, y) ·
[

1 − min

{
1,

π(y)

π(x)

}]
dy

+ δx(A)

∫
S2

f
λ

(1)
1 (k)

(x, y)

×
[

1 − min

{
1,

π(y)f
λ

(2)
1 (k)

(x, y)

π(x)f
λ

(1)
1 (k)

(x, y)

}]
dy.

Denote the first term Ik(x,A), the second term IIk(x,A), the
third term IIIk(x,A), and the fourth term IVk(x,A). Then we
have∣∣Pγk+1(x,A) − Pγk(x,A)

∣∣ ≤ ∣∣Iγk+1(x,A) − Iγk(x,A)
∣∣

+ ∣∣IIγk+1(x,A) − IIγk(x,A)
∣∣

+ ∣∣IIIγk+1(x,A) − IIIγk(x,A)
∣∣

+ ∣∣IVγk+1(x,A) − IVγk(x,A)
∣∣.

Let

α
k(i)

1
(x, y)

= min

{
1,

π(y)[λ(i)
1 (k)q1(y, x) + (1 − λ

(i)
1 (k))q2(y, x)]

π(x)[λ(1)
1 (k)q1(x, y) + (1 − λ

(1)
1 (k))q2(x, y)]

}
.

Then∣∣IIγk+1(x,A) − IIγk(x,A)
∣∣

≤
∫

A∩S2

∣∣f
λ

(1)
1 (k+1)

(x, y)α
(k+1)

(2)
1

(x, y)

− f
λ

(1)
1 (k)

(x, y)α
k(2)

1
(x, y)

∣∣dy

≤
∫

A∩S2

∣∣f
λ

(1)
1 (k+1)

(x, y)α
(k+1)

(2)
1

(x, y)

− f
λ

(1)
1 (k+1)

(x, y)α
k(2)

1
(x, y)

+ f
λ

(1)
1 (k+1)

(x, y)α
k(2)

1
(x, y)

− f
λ

(1)
1 (k)

(x, y)α
k(2)

1
(x, y)

∣∣dy

≤
∫

A∩S2

f
λ

(1)
1 (k+1)

(x, y)
∣∣α

(k+1)
(1)
1

(x, y) − α
k(1)

1
(x, y)

∣∣dy

+
∫

A∩S2

α
k(1)

1
(x, y))

∣∣f
λ

(1)
1 (k+1)

(x, y) − f
λ

(1)
1 (k)

(x, y)
∣∣dy

≤ M
∫

A∩S2

∣∣α
(k+1)

(1)
1

(x, y) − α
k(1)

1
(x, y)

∣∣dy

+
∫

A∩S2

∣∣f
λ

(1)
1 (k+1)

(x, y) − f
λ

(1)
1 (k)

(x, y)
∣∣dy.

Now,

M
∫

A∩S2

∣∣α
(k+1)

(1)
1

(x, y) − α
k(1)

1
(x, y)

∣∣dy

= M
∫

A∩S2

π(y)

π(x)

∣∣∣∣
f
λ

(2)
k+1

(x, y)

f
λ

(1)
k+1

(x, y)
−

f
λ

(2)
k

(x, y)

f
λ

(1)
k

(x, y)

∣∣∣∣dy

≤ Md

π(x)

∫
A∩S2

∣∣∣∣
f
λ

(2)
k+1

(x, y)

f
λ

(1)
k+1

(x, y)
−

f
λ

(2)
k

(x, y)

f
λ

(1)
k

(x, y)

∣∣∣∣dy,

and |f
λ

(1)
1 (k+1)

(x, y) − f
λ

(1)
1 (k)

(x, y)| ≤ 2M|λ(1)
1 (k + 1) − λ

(1)
1 (k)|.

We shall prove that limk→∞ |λ(i)
1 (k + 1) − λ

(i)
1 (k)| = 0; it will

then follow that limk→∞ |f
λ

(2)
k+1

− f
λ

(1)
k+1

| = 0, and hence (again

by compactness) that |IIγk+1(x,A) − IIγk(x,A)| → 0.

To that end, recall that λ
(i)
j (k) = d(i)

j (k)

d(i)
1 (k)+d(i)

2 (k)
, i = 1,2; j =

1,2. Therefore,∣∣λ(1)
1 (k + 1) − λ

(1)
1 (k)

∣∣

=
∣∣∣∣ d(1)

1 (k + 1)

d(1)
1 (k + 1) + d(1)

2 (k + 1)
− d(1)

1 (k)

d(1)
1 (k) + d(1)

2 (k)

∣∣∣∣

=
∣∣∣∣ d(1)

1 (k + 1)d(1)
2 (k) − d(1)

1 (k)d(1)
2 (k + 1)

[d(1)
1 (k + 1) + d(1)

2 (k + 1)][d(1)
1 (k) + d(1)

2 (k)]

∣∣∣∣
≤

∣∣∣((k + 1)−1{[kd(1)
1 (k) + (xk+1 − xk)

2]d(1)
2 (k)

− d(1)
1 (k)

[
kd(1)

2 (k) + (xk+1 − xk)
2]})

/([
d(1)

1 (k + 1) + d(1)
2 (k + 1)

][
d(1)

1 (k) + d(1)
2 (k)

])∣∣∣
≤

∣∣∣((k + 1)−1{[kd(1)
1 (k) + (xk+1 − xk)

2]d(1)
2 (k)

+ d(1)
1 (k)

[
kd(1)

2 (k) + (xk+1 − xk)
2]})

/([
d(1)

1 (k + 1) + d(1)
2 (k + 1)

][
d(1)

1 (k) + d(1)
2 (k)

])∣∣∣
≤ L

(k + 1)(d(1)
1 (k + 1) + d(1)

2 (k + 1))

= L∑k+1
i=1 (xi − xi−1)2

,

where L is a constant that does not depend on k. Now,
since S is compact, there are δ, ε > 0 such that P[(xi −
xi−1)

2 > ε|γi−1] ≥ δ for all xi−1 and γi−1. It follows that
limk→∞

∑k+1
i=1 (xi − xi−1)

2 = ∞ with probability 1, hence that

|λ(1)
1 (k + 1) − λ

(1)
1 (k)| → 0, and hence that |IIγk+1(x,A) −

IIγk(x,A)| → 0. Similarly we can prove that |Iγk+1(x,A) −
Iγk(x,A)| → 0, |IIIγk+1(x,A) − IIIγk(x,A)| → 0, and |IVγk+1(x,
A)− IVγk(x,A)| → 0. Therefore, diminishing adaptation holds.

Proof of Theorem 4.1. In light of Lemmas 4.1 and 4.2, the re-
sult follows immediately from theorem 5 of Roberts and Rosen-
thal (2007).

Proof of Theorem 4.2. Recall that M(c1, c2) is the set of all
the k × k positive definite matrices M such that c1Ik ≤ M ≤
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c2Ik. It follows from the proof of theorem 1 in Haario, Saksman,
and Tamminen (2001) that there are c1, c2 > 0 such that all the
covariances C = C(t)

i are in M(c1, c2).
Since S is compact, infx,y∈S,M∈M(c1,c2) qM(x, y) > 0 (where

qM denotes the density function of Gaussian distribution with
covariance matrix M). Hence, we have infx,y∈S,γ∈Y qγ (x, y) >

0. Then following a similar proof to that of Lemma 4.1, one can
show that the simultaneous uniform ergodicity condition (10)
holds. Similarly to the proof of Lemma 4.2, we can prove that
the diminishing adaptation condition (9) holds for Dual RAPT.
The result then follows as in the proof of Theorem 4.1.

Proof of Theorem 4.3. It follows as in the previous proof
that infx,y∈S,γ∈Y qγ (x, y) > 0. Then, similar to Lemma 4.1,
it follows that the simultaneous uniform ergodicity condi-
tion (10) holds. Diminishing adaptation (9) follows similarly
to Lemma 4.2. The result then follows as in the proof of Theo-
rem 4.1.

5. EXAMPLES

5.1 Simulated Examples

We study the performance of the methods proposed using a
bimodal target distribution which is a mixture of two Gaussians.
By varying the means and variances of the mixture components
we try to cover a wider variety of situations. Let us consider the
target distribution

π(x) = 0.5 × N(μ1,�1) + 0.5 × N(μ2,�2),

where μi are 10-dimensional vectors and �i = (σi − ρi)I10 +
ρi110, i = 1,2, where 1d is the d × d matrix of 1’s. The consid-
ered scenarios are:

Scenario A: ρ1 = 0.2, ρ2 = 0.3, σ1
σ2

= 1
3 , μ1j = 3,μ2j = −3,

1 ≤ j ≤ 10.
Scenario B: ρ1 = 0.2, ρ2 = 0.3, σ1

σ2
= 1

3 , μ1j = 0.5,

μ2j = −0.5, 1 ≤ j ≤ 10.
Scenario C: ρ1 = −0.1, ρ2 = 0.1, σ1

σ2
= 1

3 , μ1j = 3,

μ2j = −3, 1 ≤ j ≤ 10.
Scenario D: ρ1 = 0.1, ρ2 = −0.1, σ1

σ2
= 1

3 , μ1j = 3,

μ2j = −3, 1 ≤ j ≤ 10.
Scenario E: ρ1 = −0.1, ρ2 = 0.1, σ1

σ2
= 1

3 , μ1j = 1,

μ2j = −1, 1 ≤ j ≤ 10.
Scenario F: ρ1 = 0.1, ρ2 = −0.1, σ1

σ2
= 1

3 , μ1j = 1.5,

μ2j = −1.5, 1 ≤ j ≤ 10.

It should be noted that scenarios C and D and E and F are dif-
ferent due to the different standard deviations. In our study we
chose to implement the HST algorithm (Haario, Saksman, and
Tamminen 2001), the Dual RAPT and the Mixed RAPT either
for only one chain or, within the paradigm of INCA or TINCA,
for five chains in parallel.

The starting value for the ith chain is xi,0 = (3 − i,3 −
i, . . . ,3 − i)T for 1 ≤ i ≤ 5 and in the case we implement any
of the above algorithms using a single chain, the starting value
is x0 = (0, . . . ,0). The initial values for the covariance matri-
ces are �1 = �2 = I10 and �whole = 25I10. The HST algorithm
has initial value � = I10. The ε used in (5) and (7) is set to
0.01. The initialization period contains a total of 10,000 sam-
ples which means that in the case of five parallel chains each

has an initialization period of 2000 simulations. Throughout the
simulation, in the case of Mixed RAPT, we set β = 0.2. Under
all scenarios the partition is defined using S1 = ∑10

i=1 xi ≤ 0 and
S2 = ∑10

i=1 xi > 0. This choice produces a partition that is, in all
examples, relatively far from the optimal one.

In order to assess the performance of the algorithm we show
the histograms of the first two and last two coordinates, that
is, x1, x2, x9, x10. In a unimodal setting one could compare the
covariance of the proposal with the optimal covariance. Unfor-
tunately, when the target is a mixture of unimodal distributions
the optimal proposal is not known. One can still compare the
number of intermode transitions (switches) which is roughly
the same as the number of times the chain has crossed from S1

to S2 and vice versa.
Under scenario A, after 100,000 iterations the mixture para-

meters of the proposal (6) are λ
(1)
1 = 0.681 and λ

(2)
1 = 0.353.

The histograms show that a single mixed RAPT chain does a
much better job at finding both modes; see Figure 5, compared
to a single chain constructed using the simpler dual RAPT algo-
rithm, Figure 6, or the HST algorithm, Figure 7. These results
reinforce the intuitive idea that when the modes are far apart
neither the HST nor the dual RAPT are efficiently exploring
the space. We had similar findings in all scenarios in which the
distance between the modes was large, that is, scenarios A, C,
and D.

It is important for the initial variances of Qwhole to be large
enough so that during the initialization period, both modes are
visited. For instance, under scenario D running a single mixed
RAPT algorithm with starting value x0 = (0, . . . ,0)T , β = 0.3
and �whole = diag(10, . . . ,10) the algorithm does not detect
both modes even after an initialization period of 10,000 sam-
ples. If we use the initial �whole = diag(25, . . . ,25) then the
performance of mixed RAPT is quite good. In real applications,
one does not always have this information and in that case we
recommend using INCA or TINCA to reduce the risk of miss-
ing regions with high probability under π .

For the same scenario D, we ran five parallel chains, each of
them for 20,000 iterations. To test the robustness of INCA we
used �whole = I10. The histograms of the samples correspond-
ing to the first two coordinates and the last two coordinates are
as shown in Figure 8.

The results confirm that, although the initial variances are
small, the process is mixing well after the initialization pe-
riod. We also used TINCA with four temperature levels T =
{1,2,4,8} and once again the algorithm yields the correct sam-
ples as can be seen from Figure 9. In the case in which the
modes are close, as specified in scenario B the performance of
the HST algorithm is similar to that of mixed RAPT. Our simu-
lations also show that the number of mode switches are compa-
rable for both algorithms. Not surprisingly, the pattern changes
when the distance between the modes is increased, as illustrated
by Figure 10.

5.2 Real Data Example: Genetic Instability
of Esophageal Cancers

Cancer cells undergo a number of genetic changes during
neoplastic progression, including loss of entire chromosome
sections. We call the loss of a chromosome section containing
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Figure 5. Scenario A: Histograms of 100,000 samples obtained for X1,X2,X9,X10 with mixed RAPT.

one allele by abnormal cells by the term “Loss of Heterozy-
gosity” (LOH). When an individual patient has two different
alleles, LOH can be detected using laboratory assays. Chro-
mosome regions with high rates of LOH are hypothesized to
contain genes which regulate cell behavior so that loss of these
regions disables important cellular controls.

To locate “Tumor Suppressor Genes” (TSGs), the Seattle
Barrett’s Esophagus research project (Barrett at al. 1996) has
collected LOH rates from esophageal cancers for 40 regions,
each on a distinct chromosome arm. A hierarchical mixture
model has been constructed by Warnes (2001) in order to de-
termine the probability of LOH for both the “background” and
TSG groups. The labeling of the two groups is unknown so

we model the LOH frequency using a mixture model, as de-
scribed by Desai (2000). We obtain the hierarchical Binomial–
BetaBinomial mixture model

Xi ∼ η Binomial(Ni,π1) + (1 − η)Beta-Binomial(Ni,π2, γ ),

with priors

η ∼ Unif[0,1],
π1 ∼ Unif[0,1],
π2 ∼ Unif[0,1],
γ ∼ Unif[−30,30],
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Figure 6. Scenario A: Histograms of 100,000 samples obtained for X1,X2,X9,X10 using the dual RAPT algorithm.
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Figure 7. Scenario A: Histograms of 100,000 samples obtained for X1,X2,X9,X10 with the HST algorithm.

where η is the probability of a location being a member
of the binomial group, π1 is the probability of LOH in the
binomial group, π2 is the probability of LOH in the beta-
binomial group, and γ controls the variability of the beta-
binomial group. Here we parameterize the beta-binomial so
that γ is a variance parameter defined on the range −∞ ≤
γ ≤ ∞. As γ → −∞ the beta-binomial becomes a binomial
and as γ → ∞ the beta-binomial becomes a uniform distribu-
tion on [0,1]. This results in the unnormalized posterior den-
sity

π(η,π1,π2, γ |x) ∝
N∏

i=1

f (xi,ni|η,π1,π2,ω2)

on the prior range, where

f (x,n|η,π1,π2,ω2)

= η

(
n
x

)
πx

1(1 − π1)
n−x + (1 − η)

(
n
x

)

( 1

ω2
)


( π2
ω2

)
( 1−π2
ω2

)

× 
(x + π2
ω2

)


(n − x + 1−π2
ω2

)
(n + 1
ω2

)

and ω2 = eγ

2(1+eγ )
. In order to use the random walk Metropolis

we have used the logistic transformation on all the parameters
with range [0,1]. However, all our conclusions are presented
on the original scale for an easier interpretation.
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Figure 8. Scenario D: Histogram of 100,000 samples obtained for X1,X2,X9,X10 using five parallel mixed RAPT chains.
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Figure 9. Scenario D: Histogram of 100,000 samples obtained for X1,X2,X9,X10 using TINCA with temperatures T = {1,2,4,8} for five
mixed RAPT chains.

Using the optimization procedures used by Warnes (2001)
we determine that the two modes of π are reasonably well sep-
arated by the partition made of S1 = {(η,π1,π2, γ ) ∈ [0,1] ×
[0,1] × [0,1] × [−30,30]|π2 ≥ π1} and S2 = {(η,π1,π2, γ ) ∈
[0,1] × [0,1] × [0,1] × [−30,30]|π2 ≤ π1}.

5.2.1 Simulation Results. We have run five parallel mixed
RAPT algorithms to simulate from π using the partition S1 ∪S2.
The initialization period contained 5000 iterations for each
chain. The covariance matrices were initialized as �1 = �2 =
0.1I4 and �whole = 20I4. After 50,000 iterations from each
chain, we obtain λ

(1)
1 = 0.923 and λ

(2)
1 = 0.412. The estimates

for the parameters of interest are shown in Table 1.
Figure 11 gives a two-dimensional scatterplot of the (π1,π2)

samples. This is similar to the findings of Warnes (2001) (Fig-
ure 8). To illustrate the exchange of information between the
parallel the chains, we use the BGR diagnostic statistic, R.
When the BGR R statistics is close to to 1, we can assume all
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Figure 10. Scenario E: Number of switches for the HST algorithm
(dotted line) and for the mixed RAPT (solid line).

chains have the same information regarding π . For this exam-
ple, after 20,000 iterations the BGR’s R statistics stabilizes be-
low 1.1 as one can see in Figure 12.

To compare the performance of the mixed RAPT with
and without INCA we monitor the number of switches be-
tween S1 and S2. We run a single Mixed RAPT algorithm
for 300,000 iterations, and independently five parallel Mixed
RAPT algorithms for 60,000 iterations each. In Figure 13
we plot the total number of switches for the five parallel
processes up to time t and the switch time for the single run
up to time 5t for a fair comparison. One can see that the
Mixed RAPT performs better together with INCA than by it-
self.

6. CONCLUSIONS AND FURTHER WORK

This work is concerned with the practical aspects of adap-
tive MCMC, particularly related to sampling from multimodal
distributions. The aim for most of our theoretical results is the
adaptive random walk Metropolis since it is one of the most
used algorithms in practice. The interchain adaptation strat-
egy is widely applicable and could be used for a large num-
ber of adaptive MCMC algorithms with significant potential
gains. The regional adaptation algorithm proposed here has
been discussed in the context of two separate regions. Evi-
dently, the construction can be generalized but one has to keep
in mind that besides good sampling properties within each re-

Table 1. Simulation results for the LOH data

Mean in Region 1 Region 2 Whole space

η 0.897 0.079 0.838
π1 0.229 0.863 0.275
π2 0.714 0.237 0.679
γ 15.661 −14.796 13.435
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Figure 11. Scatterplot of the 250,000 samples for (π1,π2).
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Figure 12. LOH Data Example: The evolution of BGR’s R statistics
for 5 mixed RAPT chain; the dotted line represents the threshold 1.1.
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Figure 13. The total number of switches times for the five parallel
Mixed RAPT chains (solid line, run for 60,000 iterations each) versus
the number of switch times of a single Mixed RAPT (dashed line, run
for 300,000 iterations).

gion the sampler should be also required to visit all regions
often enough. In the case of many regions this could present
complications.

[Received July 2008. Revised April 2009.]
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