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Pattern Generation Using Likelihood
Inference for Cellular Automata

Radu V. Craiu and Thomas C. M. Lee

Abstract—Cellular automata are discrete dynamical systems
which evolve on a discrete grid. Recent studies have shown that
cellular automata with relatively simple rules can produce highly
complex patterns. We develop likelihood-based methods for es-
timating rules of cellular automata aimed at the re-generation
of observed regular patterns. Under noisy data, our approach is
equivalent to estimating the local map of a stochastic cellular au-
tomaton. Direct computations of the maximum likelihood estimates
are possible for regular binary patterns. The likelihood formulation
of the problem is congenial with the use of the minimum description
length principle as a model selection tool. We illustrate our method
with a series of examples using binary images.

Index Terms—Binary patterns, cellular automata, maximum
likelihood estimation, minimum description length principle,
neighborhood selection, rule estimation, stochastic cellular au-
tomata.

I. INTRODUCTION

ACELLULAR AUTOMATON (CA) [13]; [14] is a discrete
system which evolves in discrete time over a lattice struc-

ture composed of a large number of cells. The state of each cell
belongs to a finite set and is updated according to a local rule
operating on a given neighborhood. More precisely, the CA up-
dates at discrete times the entire lattice and the dynamics of
the changes are given by a local map which is used to deter-
mine the new state of each cell from the current states of cer-
tain neighboring cells. The local map is completely determined
by two components, the neighborhood, which includes all the
cells that influence a given cell and the rule, which specifies
how the neighborhood influences it. The classical CA evolves
according to deterministic rules. Even if these rules are rela-
tively simple, the corresponding cellular automata can produce
structures with a high level of complexity. Wolfram [15] char-
acterizes one-dimensional cellular automata according to their
attractor sets. The high level of complexity shown by some of
the cellular automata (e.g., those of Class 4 as described by [17,
p. 235]) makes it reasonable to investigate whether CA systems
can be used to reproduce a variety of patterns that are met in
nature.
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Other interesting patterns may also be produced if one
employs a nondeterministic CA. A natural extension is the so-
called stochastic cellular automaton (SCA) in which the local
map has a probabilistic component. There is a considerable
amount of freedom in the way one chooses to randomize the
rule. For instance, Burks [1] chooses at random the rules that
are applied in the updates and Ingerson and Buvel [4] allow,
for each cell, a certain probability that the respective cell is not
updated. Lee et al. [7] introduce the adaptive SCA in which
the probabilistic rules are nonuniform. The SCA we consider
in this paper is equivalent to a deterministic CA on which a
certain noise signal has been applied. Here we also assume that
the same stochastic rules are applied over the whole system.

The application of CA to pattern generation and recognition
can be developed in many directions. A classical reference for
pattern recognition with CA is Preston and Duff [9]. In addition,
one may try to use the CA to generate patterns with pre-spec-
ified properties (e.g., with various properties of randomness as
in [8] or [16]). Alternatively, given a certain pattern observed in
nature, one may want to construct a local map such that the cor-
responding CA generates patterns similar to the one observed
[10]. In a setup somewhat different to the one here, Yang and
Billings [19] use genetic algorithms to recover the local map of
a deterministic CA using spatio-temporal patterns produced by
it. Although the statistical tools seem to be appropriate in the
context of fitting a CA/SCA to a particular set of noisy data, the
connections between statistics and CA in the context of rule re-
covery are, as far as our knowledge, sparse in the literature. One
exception is the paper by Turin [12] in which a hidden Markov
chain model is fitted via the EM algorithm. However, the proce-
dure is quite cumbersome and no example is given to illustrate
its performance.

The objective of this paper is to develop statistical methods
for the detection of a local rule (or map) of a SCA and estimation
of its parameters. Consider for instance the simple binary CA
example illustrated in Figs. 1 and 2. We present there the local
rule as well as a series of two successive realizations obtained
from the initial states. Loosely speaking, these initial states are
randomly generated pixel values and their formal definition is
given in Section II. In this example, the state of a cell is depen-
dent only on the states of the three closest cells situated in the
previous line. It is clear that, given an initial row of cells and by
applying the local rule, one can run the CA and produce the next
pixel line . This process can be repeated to generate a se-
quence of pixel lines. These pixel lines may be stacked on top of
each other and displayed in the form of an image in which each
line of pixels represents an update of an CA/SCA that involves
only the previous lines. However, here we would like to be able
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Fig. 1. Neighborhood of size 1 � 3 for CA/SCA: during the updating
processing the future state value of pixel d depends on the state values of pixels
(a; b; c). For (deterministic) CA the value of d is uniquely determined by the
values of (a; b; c), while for SCA the value of d is a probability function of the
values of (a; b; c).

Fig. 2. Binary CA example with rule neighborhood size 1� 3. To generate the
value of pixel g at t = 1, one looks at the initial state values of pixels (a; b; c)
at t = 0, which are (black, white, white). These three pixel values correspond
to component 4 of the local map, which assigns black to pixel g. Similarly, to
generate the value for pixel h, one looks at pixels (b; c; d). For pixel f , we use
a cylindrical boundary assumption and look at pixels (e; a; b).

to do the reverse. That is, we assume that the local rule is un-
known and all that is available is the image formed by the pixel
lines. The aim is to reconstruct this unknown local map “hidden”
behind the image. By assuming that the underlying generating
process is a SCA, we enlarge considerably the number of pos-
sible models. For instance, consider the simple rule in which a
cell is the opposite of the cell directly above it. If we were to con-
sider only cellular automata it is clear that this simple local map
could not produce the sequence of realizations shown in Fig. 2.
However, if we allow the probabilistic “contamination” of the
rule, then we cannot reject automatically the above possibility
and more sophisticated methods are required for rule selection.

One can also apply these methods to a variety of regular im-
ages, as it is has been shown recently [17, pp. 232–234] that

Fig. 3. Neighborhood used in the cellular automata.

CA and SCA can produce very good approximations to a large
number of natural patterns.

The approach proposed here for the local map reconstruction
relies on a nonparametric model for which one can use likeli-
hood-based methods for estimation and model selection. While
the dependence between the neighborhood and the rule can be
modeled using a parametric family of distributions, such models
are usually too simple to capture the intricate structure of the
pattern (e.g., [2]). The patterns considered for reproduction are
binary. In the following section, we formally define the CA and
SCA, introduce notation and describe the data available. The
estimation involves two steps, intrinsically related. First, one
needs to estimate the parameters of the stochastic process su-
perimposed over the CA. Second, we must select the local map.
Estimation procedures for binary patterns with rules based on
medium-sized neighborhoods are described in Section III. The
identification of the local map is a model selection problem.
For likelihood-based methods developed for signal processing,
such as the ones used in this paper, the minimum description
length (MDL) principle is a natural tool for model selection. In
Section IV, we briefly describe the MDL principle and in Sec-
tion V we illustrate our methods with a few simulated and real
examples.

II. NOTATION AND DATA

A deterministic CA is composed of three parts: a discrete two-
dimensional lattice , a neighborhood and an updating rule
for the local map, . The lattice (i.e., the image) is defined as

. We will assume here that
the lattice has at each point a cell in a state that is characterized
by the random variable that, in the case of a binary image,
takes values in the set {0, 1} for all and .
A white cell will be assigned the value zero, and a black cell
has value one. In this paper we will consider neighborhoods
of size as shown in Fig. 3, i.e., the state of cell

, , is stochastically determined by the values of the cells

. Local maps with rules of the type shown in Fig. 3
are inspired by Wolfram [17, Ch. 3 and 6] who showed that
many patterns can be generated using a deterministic CA with
such rules.

In our applications we consider the following SCA. We as-
sume that the state is a random variable with distribution
defined by

(2.1)
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where is any of the
possible realizations of the -tuple

. An attentive reader
will have noticed that for those cells situated close to one of
the side edges of the lattice the rule given by (2.1) cannot
be applied directly. One can account for boundary conditions
by allowing a modification of (2.1) in which the evolution
of those cells close to the edge depends only on the cells in
the neighborhood that are also in the lattice. Evidently, this
increases the number of parameters but can be incorporated in
a straightforward manner in the present approach. However, to
simplify the presentation and the computational load, we will
assume that the lattice is in fact a cylinder in which the cells on
one lateral edge are adjacent to the cells situated on the opposite
edge. Corresponding to a rule given by (2.1), the first lines
of the cylinder are considered the initial states. Depending on
the situation, these initial states can be obtained in one of the
following manners. If, given an observed image, one would
like to estimate its unknown rule and use the estimated rule
to reproduce further images that mimic the original observed
image, these initial states are copied from the corresponding
rows in the original image. Otherwise, these initial states can
be randomly generated.

To see the connection between the deterministic CA (in which
the s are 0 or 1) and the SCA defined above, imagine that the
updates are performed row by row. After an entire row is up-
dated using the CA the state of each cell is flipped with a
small probability that may depend on the cells in the neigh-
borhood of . If we assume that the flipping probabilities are
constant across rows, the resulting stochastic dynamical system
is equivalent to the SCA defined above. It is worth mentioning
that one could imagine different noising schemes applied to a
deterministic CA so that the resulting discrete dynamical system
is equivalent to an SCA with rules similar to (2.1). For example,
one could perform a deterministic update of the whole cylinder

and at the end perform a random flip of all the cells. There-
fore, the SCA considered in (2.1) covers a wide range of noising
processes and is likely to perform well for the generation of reg-
ular patterns.

Such a regular pattern will be represented by a cylinder in
which each cell is a pixel which takes only two values, 0 and 1.
Of interest will be the determination of the neighborhood con-
stants and , and the estimation of for all possible con-
figurations . The parameter space has dimension so
that even for binary images the parameter space rapidly becomes
very large when . In Sections IV and V below we show,
respectively, how and can be estimated using the data
observed.

III. LIKELIHOOD FOR BINARY PATTERNS

In a binary image, each cell has only two possible states, 0 or
1. For any value of , we write as the set of all possible

s. The likelihood function of is

(3.1)

where and are, respectively, the cell value and the neigh-
borhood configuration of cell . It should be noted that, for any
fixed value of , gives the corresponding probability of
generating a given pattern .
The above expression for can be derived by observing that
the distribution of each cell state (i) follows a Bernoulli distribu-
tion with parameter and (ii) depends only on the previous
h lines. Thus, the likelihood can be split into a product of con-
ditional probabilities, each of which representing

for and . Notice that, since we assume a
cylindrical shape, there are no edge conditions. The top lines
are considered to be the starting values of the CA/SCA. To sim-
plify notation, from now on will be written as , where
is the value denoted by the neighborhood configuration when
the configuration is viewed as a binary number. For example, if

(i.e., a neighborhood size of 1 3) and ,
then is 5, as 101 is 5 in binary digit representation. Thus,
ranges from 0 to .

A general question of interest in estimation is whether the
parameters are identifiable (or estimable) from the data at hand.
Amongst others, in the following two situations not all the s
can be estimated. First, if the neighborhood size is too large
compared to the image size, i.e., , then not
all the s can be estimated. It is because in this case there are
only “data points” while the number of unknown parame-
ters is . The second situation occurs when a rule can
be sufficiently represented by a rule with a smaller neighbor-
hood size. One example is when all or almost all s share the
same common value, , say. In this case the neighborhood size is
hard to estimate, as rules with different neighborhood sizes but
with the same common value for all s would generate patterns
with the same statistical properties. In fact, all these rules label
independently each pixel black with probability . In what fol-
lows, we will exclude those situations in which the parameters
are not identifiable, such as the two situations discussed above.

Meanwhile, even if the s are identifiable, the question of
uniqueness is more difficult to answer. Suppose that a given pat-
tern is rotated with a certain angle . While the image
remains the same, in all but few cases in which the pattern is in-
variant to rotations, the parameter estimates will be different for
different s. This feature can be used in the estimation process
as it may be the case that patterns which are difficult to estimate
in their original configuration may be easier to reproduce once
a similar transformation is applied.

Another issue of great impact in estimation is the dimension
of the parameter vector . For small values of and say if

and , the direct computation of the maximum
likelihood estimates can be obtained directly from (3.1). More
precisely, for each of the possible configurations ,
we can compute , the number of times the rule assumed the
value 1, and the number of times the rule assumed the value
0. Then, the parameter estimates are

(3.2)
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Fig. 4. Binary SCA example with the same local map as in Fig. 2. The first
line of pixels is generated at random. With small probability, white pixels
are contaminated into black pixels and vice versa. The contaminated pixels
are shown using circles inside squares. The color of the circle represents the
contamination color.

However, for large values of and , the parameter space is
too large to be computationally manageable and a different ap-
proach is required. Some alternative models for dealing with the
high-dimensionality of the space of possible rules are currently
under investigation.

IV. AUTOMATIC CHOICE OF NEIGHBORHOOD SIZE USING MDL

Arguably, the most important aspect of the estimation of the
SCA is the correct identification of the rule’s neighborhood. In
statistical terms, the problem of selecting the most appropriate
and is a model selection problem. For each pair , the pa-
rameter space has parameters so overestimating or

easily results in overfitting. In turn, this implies that the rules
would tend to model the noisy component of the SCA (as well
as the deterministic portion). On the other hand, if the values of

and are too small (i.e., if they are underestimated), the SCA
used for reconstruction does not capture all the distinct features
of the pattern.

Given a binary image generated by a SCA with an un-
known rule, this section considers the problem of estimating
its neighborhood size (i.e., the values of and ). The min-
imum description length (MDL) principle will be adopted to
tackle this problem. In particular, we shall focus on the so-called
two-part encoding scheme. Once and are determined, max-
imum likelihood estimates of can be computed by (3.2). The
MDL principle is based on ideas from information theory which
were adapted to statistical purposes by Rissanen [11]. It has been
successfully applied to tackle many different image processing

TABLE I
8 EXAMPLE RULES AND THE ESTIMATION RESULTS. RECALL

THAT THE NUMBER OF REPETITIONS WAS 500

TABLE II
TRUE � AND THE AVERAGED ESTIMATED ^� FOR EXAMPLE RULES 1 AND 2.

NUMBERS IN PARENTHESES ARE THE CORRESPONDING ESTIMATED

STANDARD ERRORS FOR THE ^� S. RECALL THAT THE ESTIMATED

� S ARE RESTRICTED TO THE RANGE [0.0001, 0.9999]

problems, e.g., see Xie et al. [18]. For introductory tutorials on
the topic, consult, for example, Hansen and Yu [3] and Lee [5].

In the current context, the MDL principle defines the best
combination of and , or the best neighborhood size, as the
one that produces the shortest code length that completely de-
scribes the observed binary image . Here, the code length of
an object can be taken as the amount of memory space that is
required to store the object. For the so-called two-part MDL, a
classical way to store the observed image is to split into two
parts.

1) A fitted model that summarizes the average (or mean)
behavior of many (imaginary) observed images . Denote
the estimates, obtained from , of , and as , , and
respectively. Then such a fitted model can be completely
specified by the initial states and .

2) The portion of that is unexplained by the fitted model.
This measures how much the observed image is devi-
ated from its averaged behavior. Sometimes it is useful to
treat this part as the “residual” component of the problem.

Now, the task is to derive expressions for the code length for
these two parts so that and can be estimated by minimizing
the sum of these code length expressions. In below the code
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Fig. 5. Left column displays images generated from Example Rules 1 and 2. Displayed in the right column are typical images simulated from rules that are
estimated from the corresponding images in the left column.

length of an object , in terms of number of bits, is denoted as
.

To proceed, we apply the above two-part decomposition to
the total code length of the observed image

(4.1)

Note that MDL defines the “best” combination of and as the
minimizer of .

Now, we calculate (4.1) term by term. First since that there are
pixels in the initial states and that each pixel can take on two

possible values, we have

. In below the term will be dropped, as
it is a constant with respect to the minimization. Next as both
and are integers, their corresponding code lengths and

are respectively and bits. For the third term,
the following result of Rissanen [11, pp. 55–56] can be applied:
if a (real-valued) parameter estimate is estimated from data
points, then it can be effectively encoded with bits.
Since, for any given , is estimated from data
points, . For the last
residual term, Rissanen [11] demonstrates that it is equal to the
negative of the log (base 2) conditional likelihood function given
the fitted model. For the present case this simplifies to
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Fig. 6. Similar to Fig. 5, on the left are images generated from Example Rules 3 and 4; on the right are typical images simulated from rules that are estimated
from the corresponding images in the left column.

where . Combining these results and changing
to log, one obtains the following approximation, denoted

by , to

(4.2)

Thus the MDL principle suggests estimating and as the joint
minimizer of . Once the estimates of and are
obtained, maximum likelihood estimates of can be computed
by (3.2). For the reason of avoiding numerical instability (e.g.,
taking the logarithm of 0s), in our implementation estimates for

are restricted to the range , where is set to 0.0001.

V. NUMERICAL RESULTS

A. Illustrative Example

We start with a simple example meant to illustrate the analysis
in detail. Fig. 4 shows a lattice with 12 rows and 12 columns of

pixels. The first row of pixels has been generated at random and
subsequent rows are updated according to the local map shown
in Fig. 2. With probability each pixel in a given row
will switch its color before the rule is applied to that particular
row. We refer to such pixels as being contaminated and the new
color is called the contamination color. In Fig. 4 the pixels that
were contaminated to black are represented with a black disk
inside the square while the other contaminated pixels are repre-
sented with a circle inside the square. For instance, the pixel sit-
uated in second row and the fourth column was white according
to component 3 of the local map, but due to contamination it
switches to black. Since in practice there is no way of knowing
which cells have switched color, we assume that the rule is ap-
plied without differentiating between contaminated and noncon-
taminated pixels.

Suppose now an image such as this 12 12 lattice is
observed. The task then is to estimate the neighborhood
size , as well as the corresponding s, of the rule that
generated the image. Notice that once estimates for
are specified, unique maximum likelihood estimates of the
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Fig. 7. Similar to Fig. 5, on the left are images generated from Example Rules 5 and 6; on the right are typical images simulated from rules that are estimated
from the corresponding images in the left column.

s can be computed using (3.2). As suggested before, the
best estimates of are given by the pair the minimizes

as in (4.2). We adopted a grid-search approach to
minimize . That is, we compute for
every possible combinations of for which
and , and the pair that gives the smallest
value of is taken as our final estimates for .
Throughout our numerical work we set .

For a given value of , the calculation of the maximum
likelihood estimates of the is straightforward. We illustrate
this idea using the same 12 12 lattice given in Fig. 4, with a
neighborhood of size 1 3; i.e., and there are eight

s. Recall that controls the probability of the pixel being
black for the -th component of the local map. In this case we
know the true values while

. Using (3.2), for the above 12 12
lattice we have , ,

, and . As
mentioned previously, if is 0 or 1, then it will be replaced

with 0.0001 or 0.9999, respectively. Once these s are obtained,
calculation of is straightforward.

B. Simulation Study

Numerical experiments were conducted to evaluate the prac-
tical performance of the neighborhood size selection criterion

. A minimal check for the method proposed here is
to verify whether it can recover the unknown rule of a SCA from
a pattern generated using the respective SCA. To this purpose,
we generate first an observed binary image from a known SCA
rule and then we apply the proposed method to estimate , and
the s. The generated images are of size .
Altogether we tested the method on eight different rules. The
neighborhood sizes of these eight rules are listed in Table I. For
Example, Rules 1 and 2, the corresponding values are listed
in Table II, while for Example Rules 3 to 8, the values can
be obtained from the authors. The corresponding generated ob-
served images are given in the left columns of Figs. 5–8. For
each of the eight different rules, the procedure was repeated
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Fig. 8. Similar to Fig. 5, on the left are images generated from Example Rules 7 and 8; on the right are typical images simulated from rules that are estimated
from the corresponding images in the left column.

500 times so that the effectiveness of the proposed estimation
method could be assessed. In each of the 500 replicates, the local
map is the same but we start the generation with different initial
states. These initial states were generated at random from a dis-
tribution that assigns with equal probability the value 0 (white)
or 1 (black) to each cell situated in the top rows of the image.

Also listed in Table I are the number of times that both and
were simultaneously and correctly estimated. For Example,

Rules 1 and 2, listed in Table II are the averages of all the
estimated s corresponding to those repetitions for which
the neighborhood size was correctly identified. For visual
comparison, images simulated from the estimated rules are
displayed in the right columns of Figs. 5–8. From these images
and Tables I and II, the effectiveness of the proposed method
clearly results.

C. Real Data

We have applied our method for various general patterns en-
countered in nature with some degree of success. It is also clear,

from those trials performed, that certain patterns are more suit-
able than others. Fig. 9 displays two different patterns for which
similarities between the original image and the reproduced one
are quite different. In this respect, the method based on CA is
no different than other pattern synthesis methods (e.g., [6] and
[20]), which are suitable for some textures, but certainly not for
all.

VI. CONCLUSION AND FUTURE WORK

We present a nonparametric likelihood-based approach to re-
produce patterns using stochastic cellular automata. The method
works very well when we need to recover the rule from an ob-
served realization of a SCA with a medium-sized rule. Such pat-
terns are usually difficult to restore using other pattern genera-
tion methods. The method also works well with many regular
patterns encountered in nature.

Nevertheless, in order to apply the same approach to a wider
variety of binary patterns, we need to expand our method and to
develop computational implementations so that neighborhoods
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Fig. 9. Results from real patterns. Top row: Two real grayscale images. Middle row: Binary images obtained from thresholding the grayscale images in the top
row (pixels with greyvalues higher than the threshold were set to black, otherwise they were set to white). Bottom row: Simulated images obtained from applying
the presented method to the binary images in the middle row. Both patterns have the same estimated neighborhood size with ^h = 3 and k̂ = 2.

of larger size can be handled. Another natural extension is
to incorporate grayscale patterns. However, such an exten-
sion cannot be made in a straightforward manner since the
dimensionality of the space of rules increases too fast to be
manageable even for medium-sized neighborhoods like the
ones considered here. We are currently investigating both of
these issues.

Last, we can only hope that our approach adds another tool
to an already rich gallery of methods which makes the choice of
the right procedure a matter of art as much as it is a matter of
science.
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