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Abstract
Many imputation methods are based on a statistical model that assumes the variable
of interest is a noisy observation of a function of the auxiliary variables or covari-
ates. Misspecification of this function may lead to severe errors in estimation and to
misleading conclusions. Imputation techniques can therefore benefit from flexible for-
mulations that can capture a wide range of patterns. We consider the use of smoothing
splines within an additive model framework to estimate the functional dependence
between the variable of interest and the auxiliary variables. The estimator obtained
allows us to build an imputation model in the case of multiple auxiliary variables. The
performance of our method is assessed via numerical experiments involving simulated
and real data.

Keywords Additive models · Data imputation · Sample survey · Smoothing spline

1 Introduction

Nonresponse in surveys is a commonly encountered problem that, when ignored,
can affect the performance of the statistical estimators for the quantities of interest.
Two general adjustment techniques that have been developed to alleviate the effects
of nonresponse are reweighting and imputation. Reweighting procedures consist of
increasing the initialweights of respondents in order to compensate for nonrespondents
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and are commonly used to treat unit nonresponse, meaning that all the quantities of
interest are missing. Imputation procedures consist of filling in the missing values
in the data with imputed values and are commonly used to treat item nonresponse,
i.e. situations in which only some of the quantities of interest are missing. When
dealing with nonresponse, both reweighting and imputation may rely on a statistical
model. Imputation for the variable of interest can be more efficient if it is based
on information contained in a number of auxiliary variables, specifically, through a
model that estimates a functional link between the latter and the variable of interest.
However, the validity of the model will have a direct effect on the accuracy of the
estimated quantities. It is therefore crucial to be able to build flexible models that can
capture a large spectrum of patterns and make only weak assumptions about the true
underlying mechanism generating the data. Given these constraints, it is not surprising
that nonparametric models have been used to handle nonresponse in surveys.

Giommi (1987) focused on unit nonresponse and proposed two nonparametric
reweighting procedures based on kernel density estimators to estimate response proba-
bilities. Later, Niyonsenga (1994, 1997) used the nonparametric estimation ofGiommi
(1987) to handle nonresponse when unit nonresponse and item nonresponse occur
together. Finally, Da Silva and Opsomer (2006, 2009) applied, respectively, kernel
regression and local polynomial regression to estimate the response probabilities and
derived asymptotic properties of the propensity score adjusted estimator for these
approaches. These techniques are suitable when the number of auxiliary variables is
relatively low. We refer to Ning and Cheng (2012) for a comparison study of non-
parametric imputation methods and to Haziza (2009) for a review of imputation and
inference with missing data.

We propose here an imputation method for item nonresponse in surveys when
the variable of interest is a noisy observation of a function of many auxiliary vari-
ables. We consider smoothing spline models within an additive regression framework
which allows us to handle a large number of auxiliary variables. This improvement
significantly expands the range of nonparametric methods for handling nonresponse.
Moreover, the model considered is adaptable to a wide variety of functional patterns
thus providing protection againstmodelmisspecification. Results of a simulation study
confirm the performance of our method and highlight its capacity to adapt to many
different situations.

The paper is organized as follows: Sect. 2 establishes the framework and introduces
notation; Sect. 3 provides a motivation for the new imputation method; two nonpara-
metric tools used in the new imputationmethod are reviewed in Sect. 4; Sect. 5 presents
the new method as well as bootstrap procedures to estimate the variance of the total.
The performance of the new method is compared to that of other imputation methods
through a simulation study presented in Sect. 6. We close with concluding remarks
and a discussion of future work.

2 Framework

Consider a finite populationU = {1, 2, . . . , N } of possibly unknown size N . Suppose
that the parameter of interest is the population total
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Nonparametric imputation method for nonresponse in surveys 27

Y =
∑

i∈U
yi ,

for some unknown variable of interest y. A sample S of size n is selected from U
according to a probabilistic sampling design p(·) with the aim of observing yi for
i ∈ S. We suppose non-informative sampling. We refer the reader to Qin et al. (2002)
and Berg et al. (2016) for more details about informative sampling and imputation.
Consider

πi = Pr(i ∈ S) =
∑

s⊂U ;s�i
p (s) ,

the first-order inclusion probability of unit i and suppose that πi > 0 for all i ∈ U .
Let di = 1/πi represent the design weight of unit i ∈ U . In this paper we consider
two widely used sampling designs, simple random sampling without replacement
(SRSWOR) and stratified sampling . While the proposed imputation method can be
applied under a general sampling design, the variance estimation requires customiza-
tion. For the two sampling designs considered here we detail procedures for variance
estimation. Under SRSWOR, each sample of (fixed) size n has the same probability
of being selected and πi = n/N for all i ∈ U . Under stratified sampling, the popu-
lation U is partitioned into H strata U1, . . . ,UH of respective sizes N1, . . . , NH and
SRSWOR is applied independently in each stratum h. A sample Sh of size nh is hence
selected in each stratum Uh , h = 1, . . . , H and πi = nh/Nh for all i ∈ Uh .

We assume item nonresponse in which only one variable of interest is either
observed or missing. Specifically, unit i in the given sample S is classified as either
respondent or nonrespondent, depending on whether yi is observed or missing. Con-
sider the response indicator vector (ri |i ∈ S)� where ri takes value 1 if yi is observed
and 0 if it is missing. This results in the set of respondents Sr = {i ∈ S|ri = 1} and
in the set of nonrespondents Sm = {i ∈ S|ri = 0}. We assume that the missing data
are missing at random (see Rubin 1976, for a detailed definition) and that the units’
responses are independent of one another.

Under complete response, the Horvitz–Thompson estimator

Ŷ =
∑

i∈S

1

πi
yi , (1)

is design-unbiased for Y , i.e. Ep(Ŷ ) = Y . In the case of a survey with nonresponse,
however, the estimator (1) cannot be computed since some of the yi ’s, i ∈ S are
missing. One remedy is to impute each missing value yi , i ∈ Sm with an imputed
value y∗

i . The population total Y can then be estimated through the imputed estimator

ŶI =
∑

i∈S

1

πi

[
yiri + y∗

i (1 − ri )
] =

∑

i∈Sr

1

πi
yi +

∑

i∈Sm

1

πi
y∗
i . (2)

Design weights can optionally be taken into account when constructing the imputed
values, the resulting method being referred to as survey weighted imputation. We refer
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28 C. Hasler, R. V. Craiu

the reader toAndridge and Little (2010) andHaziza andRao (2005) for other examples
of survey weighted imputation methods.

We assume an additive imputation model in order to predict the missing values and
adopt the imputation model approach (Haziza 2009). With this approach, inference is
made with respect to the imputation model, the sampling design, and the nonresponse
mechanism. For deterministic imputation, the imputed estimator in (2) is asymptoti-
cally unbiased (i.e. the bias of the imputed estimator is negligible as compared to the
value of this estimator when the sample size increases to infinity) if the imputation
model is correctly specified, the sampling is non-informative, and the data are missing
at random (MAR).

3 Motivation

We consider a variable of interest, y, that is measured along with a q-dimensional
vector of auxiliary variables, x = (

x1, x2, . . . , xq
)�. We assume that xi is known for

all i ∈ S. We note that auxiliary information can be used at different stages of the
survey, namely in establishing the sampling design, for estimation, and handling of
nonresponse. Reliable auxiliary information can explain the variation in the variable
of interest and/or in the response probabilities and helps reduce error due to sampling
and nonresponse.

More importantly for the purpose of this study, in situations in which the variable
of interest is not recorded for some sampled units, one may rely on the auxiliary
variables to impute the missing values if there is a way to connect these variables via
an imputation model (Särndal 1992). For instance, consider a general model of the
type

yi = f (xi1, xi2, . . . , xiq) + εi , (3)

where f is a function from R
q to R, and εi are zero-mean independent errors with

variance σ 2. A deterministic imputation method estimates first the function f based
on those individuals/items i ∈ Sr for which (yi , xi ) = (yi , xi1, . . . , xiq) are fully
observed, and then imputes values for i ∈ Sm using the estimated function and
the observed xi . The challenging issue of estimating f arises naturally because the
choice of the imputation model crucially impacts the accuracy of the imputed values.
A misspecified model may result in highly biased estimates for the parameters of
interest.

Without prior knowledge on the form of f in (3), it is natural to use a nonparametric
regression model since the resulting estimate f̂ is known to adapt to the shape of f
based on the information provided by the data. When handling survey data, however,
several auxiliary variables are often available and one needs to include most of them
in the model. Unfortunately, a few nonparametric smoothers such as kernel-based
ones tend to break down in high dimension, unless the sample size is very large. This
phenomenon is known as the curse of dimensionality (Bellman 1961; Stones 1985)
and can be alleviated if an additive model (AM, Hastie and Tibshirani 1986) is used.
Such a model is additive in the predictor variables and takes the form
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Nonparametric imputation method for nonresponse in surveys 29

yi = a0 +
q∑

j=1

a j (xi j ) + εi , (4)

where (yi , xi ) = (yi , xi1, . . . , xiq), i = 1, . . . , N , are observations, a0 is a constant,
a j , j = 1, . . . , q, are univariate smooth functions, and εi are zero-mean independent
errorswith commonvarianceσ 2. The functionsa j , j = 1, . . . , q, are each individually
estimated by univariate smoothers so the curse of dimensionality is avoided because the
original problem of nonparametric estimation inRq has been replaced by q estimation
problems in R. Without loss of generality, henceforth we suppose that the xi , i =
1, . . . , N , lie in the interval [0, 1]q .

We propose an imputation method for nonresponse in surveys based on AM. The
new method is based on imputation model (4). The nonparametric tools used to esti-
mate the regression function are presented in Sect. 4 and the new method is presented
in Sect. 5.

4 Nonparametric tools

This section introduces two nonparametric tools used in the new imputation method,
smoothing spline regression and additive models. The main idea of smoothing spline
regression is to fit a data set with a curve that maximizes a measure of goodness-of-fit
while achieving a fixed degree of smoothness. There is an extensive literature devoted
to spline regression and we refer the reader to Green and Silverman (1994), Eubank
(1999) and Wang (2011). Smoothing spline regression (SSR) assumes model (4) with
a unique predictor variable, that is

yi = a(xi ) + εi , 1 ≤ i ≤ N

where εi are zero-mean independent errors with common variance σ 2, and a is a
smooth function in the sense that a ∈ Wm

2 [0, 1] where Wm
2 [0, 1] is the Sobolev space

Wm
2 [0, 1] =

{
g : g, g′, . . . , g(m−1) are absolutely continuous,

∫ 1

0
g(m)(t)2dt < + ∞

}
.

Weconsider a K -dimensional functionbasis {bk : k ∈ 1, . . . K } for the spaceWm
2 [0, 1].

Hence, any function f ∈ Wm
2 [0, 1] can be expressed as

f (x) =
K∑

k=1

βkbk(x),

for some vector of parameters β = (β1, β2, . . . , βK )�. Given a function a, SSR aims
at finding its best approximation, â ∈ Wm

2 [0, 1] while simultaneously controlling its
degree of smoothness. The resulting smoothing spline estimator â of a is theminimizer
of the following penalized least square (PLS) criterion
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â = arg min
g∈Wm

2 [0,1]
1

N

N∑

i=1

(yi − g(xi ))
2 + λ

∫ 1

0
g(m)(t)2dt . (5)

We consider m = 2 in what follows and obtain the following smoothing spline esti-
mator

â(x) =
K∑

k=1

β̂kbk(x),

where

β̂ = (N�N + Nλ�)−1N�y,
N (i, j) = b j (xi ),

�(i, j) =
∫ 1

0
b

′′
i (t)b

′′
j (t)dt .

One may use different basis, each of which yielding a different smoothing spline
estimator. In what follows, we will consider the thin plate spline basis (see Wood
2003). The parameter λ is the smoothing parameter and its size determines the balance
between goodness-of-fit, as measured by the mean squared residual, and smoothness,
as measured by the squared L2 norm of themth order derivative. The reader may refer
to Lee (2003) for a discussion on smoothing parameter selection.

With survey data, it is often desirable to consider design weights when estimating
parameters of interest. Indeed, a design weight di = 1/πi can be interpreted as the
number of population units represented by the i th sampled unit. Hence, when units are
selected with unequal inclusion probabilities it might be unreasonable to assume that
each sampled unit has the same influence on the parameters of interest. A weighted
version of the smoothing spline estimator was proposed by Zhang et al. (2013) who
suggested adding design weights in the general PLS criterion in Eq. (5). Hence, they
consider the smoothing spline estimator âW adapted for survey data which is the
minimizer of

âW = arg min
g∈Wm

2 [0,1]
1

N̂

∑

i∈S
di (yi − g(xi ))

2 + λ

∫ 1

0
g(m)(t)2dt, (6)

where N̂ = ∑
i∈S di is the estimated population size. Note that Zhang et al. (2013)

restrict themselves to the case m = 2.
Aflexibleway to combine the contributions of each auxiliary variable to the variable

of interest is provided by the additive model paradigm. A class of generalized additive
models was proposed by Hastie and Tibshirani (1986) and was discussed in depth
in Hastie and Tibshirani (1990). We focus here on the additive regression model
(AM) in (4). SSR is used to estimate each function a j , j = 1, . . . , q. A backfitting
algorithm (Hastie and Tibshirani 1986) or a direct fitting approach (Wood 2008) can
be considered. The general steps of the backfitting algorithm are:
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(1) set initial values for a0, a1, . . . , aq ;
(2) keep a0, a2, . . . , aq constants and estimate a1 via SSR with model yi − a0 −∑q

j=2 a j (xi j ) = a1(xi1) + εi ;
(3) repeat (2) for a2, a3, . . . , aq ;
(4) repeat (2) and (3) until a convergence criterion is met.

Note that it may be required to center the estimated functions, seeHastie andTibshirani
(1986) for more details. The direct fitting approach solves the penalized likelihood
maximization problem using penalized iteratively reweighted least squares and is
implemented in the R package mgcv (Wood 2014). When appropriate, an additive
model allows us to handle multiple predictor variables in a reasonable computation
time and avoids the curse of dimensionality problem as it breaks a high-dimensional
nonparametric estimation problem into a number of one-dimensional ones.

5 Themethod

In this section, we propose a nonparametric model-based imputation method for non-
response in surveys and discuss bootstrap procedures to estimate the resulting variance
of the total estimator for the population U .

5.1 Estimation and imputation

We consider the additive imputation model based on (4). Smoothing spline estimates
â j , j = 1, . . . , q, of functions a j , j = 1, . . . , q, and an estimate â0 of a0 are obtained
using the complete data (yi , xi ), i ∈ Sr . Two different smoothing splines estimators
can be obtained based on expression (5) (unweighted imputation) or expression (6)
(survey weighted imputation), respectively. Finally, missing values yi , i ∈ Sm , are
imputed with predictions based on the imputation model as follows

y∗
i = â0 +

q∑

j=1

â j (xi j ). (7)

The proposed imputation procedure is deterministic. Random imputation methods
are preferred when the goal is to estimate population quantiles because they tend to
preserve the distribution of the variables being imputed. A simple extension of the
imputation scheme in (7) to obtain random imputation consists of adding a random
residual to the imputed values. That is, we set

y∗
i = â0 +

q∑

j=1

â j (xi j ) + e∗
i ,

where e∗
i is selected at random from the respondent residuals
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⎧
⎨

⎩yi − â0 −
q∑

j=1

â j (xi j ) : i ∈ Sr

⎫
⎬

⎭ ,

or from the empirical distribution function of the respondent residuals. See Chauvet
et al. (2011) on the selection of the random residuals e∗

i .

5.2 Variance estimation for the imputed total

A valid method for estimating the variance of the estimator of the population total
must account for the extra variability due to imputing the missing values. In turn, this
variability is due to the variance of predicted values y∗

i produced via the additivemodel.
Since an analytical expression for the asymptotic error of AM predictive value is not
available, we pursue a bootstrap-based approach. Bootstrap procedures to estimate
the variance of parameters of interest are available for different imputation methods
and sampling designs. In this Section, we follow Shao and Sitter (1996) to devise
bootstrap procedures to estimate the variance of the total under AM imputation for
simple random sampling without replacement (SRSWOR) and stratified sampling .
The bootstrap variance estimate proposed in Shao and Sitter (1996) is consistent when
the sampling fraction is negligible.We refer toMashreghi et al. (2014) for more details
and for bootstrapmethods that are valid under three common imputationmethodswhen
the sampling fraction is large.

We follow Shao and Sitter (1996) and apply the following methods to estimate
the variance of the total under AM imputation: the mirror-match bootstrap (MMB)
proposed by Sitter (1992b) and the without-replacement bootstrap (BWO) proposed
by Gross (1980). Procedure 1 presents the MMB variance estimation in the case of
stratified sampling. For simple random sampling, the same procedure is applied with
a single stratum. In step 1, the user chooses a sample size n′

h and selects a simple
random sampling of size n′

h from Sh . In step 2, the sample selection procedure of step
1 is repeated kh times independently. In most cases, kh is non-integer and a randomiza-
tion must be applied (see Sitter 1992b, Section 1.6). Note that the randomization may
impair the performance of the variance estimator, as detailed in the “Appendix”. In step
3, steps 1 and 2 are repeated independently for each stratum h. A bootstrap sample S∗
is obtained. Because the bootstrap sample consists of sampled units, it is very likely
to contain units with missing yi and units with observed yi . Hence, in step 4, AM
imputation is applied to the bootstrap sample S∗ and the bootstrap analog Ŷ (b)

I of the
imputed total estimator ŶI is obtained. Depending on the choice of n′

h and on whether
randomization is applied to round kh , the bootstrap procedure might mimic a stratified
sampling in a population whose size differs from N . Fraction N/N∗ appears in the
computation of the bootstrap analog of the imputed total estimator Ŷ (b)

I to take this into
account. Steps 1 to 4 are repeated to obtain B analogs of the imputed total estimator.
In step 6, the bootstrap variance of the imputed total is obtained using the standard
bootstrap formulae. The computational time involved in the bootstrap evaluation of
variance can be shortened if multiple processors are available. The embarrassing par-
allel structure of the procedure implies that the sample-specific calculation can be
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Nonparametric imputation method for nonresponse in surveys 33

performed on a separate processor and the merging of simulated values is needed only
in Step 6.

Procedure 1 Variance of the imputed total estimator using MMB.
Step 1: Choose 1 ≤ n′

h < nh and select a SRSWOR of size n′
h without replacement from Sh .

Step 2: Repeat step 1 kh = nh(1 − f ∗
h )/(n′

h(1 − fh)) times independently to obtain a sample S∗
h ={

hi : i = 1, . . . , n∗
h

}
of size n∗

h = n′
hkh , where fh = nh/Nh and f ∗

h = n′
h/nh .

If kh is not integer, apply a randomization (see Sitter 1992b, Section 1.6).
Step 3: Repeat steps 1 and 2 independently for each stratum h to obtain a bootstrap sample S∗ ={

S∗
1 , . . . , S∗

H

} = {
hi : h = 1, . . . , H ; i = 1, . . . , n∗

h

}
of size n∗ = ∑H

h=1 n
∗
h .

Step 4: Apply AM imputation to impute the bootstrap sample S∗ and obtain the bootstrap analog of the
imputed total estimator ŶI by

Ŷ (b)
I = N

N∗
H∑

h=1

∑

hi∈S∗
h

ỹ(∗)
hi
f ∗
h

= N

N∗
H∑

h=1

nh
n′
h

∑

hi∈S∗
h

ỹ(∗)
hi ,

where N∗ = ∑H
h=1 nhkh and ỹ(∗)

hi is the value of the variable of interest of unit hi if this one is
observed and the imputed value otherwise.

Step 5: Repeat steps 1 to 4 a large number of times B to obtain Ŷ (1)
I , . . . , Ŷ (B)

I where Ŷ (b)
I is the analog

of ŶI for the b-th bootstrap sample.
Step 6: Obtain the bootstrap variance of ŶI by

Vboot (ŶI ) = 1

B

B∑

b=1

(
Ŷ (b)
I − Ŷ (.)

I

)2
,

where Ŷ (.)
I is the mean bootstrap analog of ŶI

Ŷ (.)
I = 1

B

B∑

b=1

Ŷ (b)
I .

Procedure 2 presents the variance estimation based on the BWO of Gross (1980)
in the case of SRSWOR. Given a sample of size n from a population of size N ,
we set k = N/n and assume k is an integer. The case of a non-integer k = N/n is
discussed in the next paragraph. In step 1we construct a pseudopopulation of size N by
replicating the sample k times. In step 2, a simple random sample of size n is selected
from the pseudopopulation. Because the pseudopopulation consists of sampled units,
the bootstrap sample is very likely to contain both units with missing yi and units
with observed yi . In step 3, AM imputation is applied to the bootstrap sample. Steps
2 and 3 are repeated to obtain B analogs of the imputed total estimator. In step 5,
the bootstrap variance of the imputed total is obtained using the standard bootstrap
formulae.

Procedure 2 can be applied only in the case of simple random sampling and when
k = N/n is an integer. We apply the extension of BWO of Sitter (1992a) to stratified
sampling and obtain Procedure 3 to estimate the variance under stratified sampling or
under simple random sampling when k is a non-integer. For simple random sampling,
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Procedure 2 Variance of the imputed total estimator under SRSWOR using BWO
when k = N/n is an integer.
Step 1: Consider k = N/n. Construct a pseudopopulation of size N by replicating the sample k times.
Step 2: Draw a SRSWOR of size n from the pseudopopulation of step 1. Denote S′ the selected bootstrap

sample.
Step 3: Apply AM imputation to impute the sample selected in step 2 and obtain the bootstrap analog of

the imputed total estimator ŶI by

Ŷ (b)
I = N

n

∑

i∈S′
ỹ(∗)
i ,

where ỹ(∗)
i is the value of the variable of interest of unit i if this one is observed and the imputed

value otherwise.
Step 4: Repeat steps 2 and 3 a large number of times B to obtain Ŷ (1)

I , . . . , Ŷ (B)
I where Ŷ (b)

I is the analog
of ŶI for the b-th bootstrap sample.

Step 5: Obtain the bootstrap variance of ŶI by

Vboot (ŶI ) = 1

B

B∑

b=1

(
Ŷ (b)
I − Ŷ (.)

I

)2
,

where Ŷ (.)
I is the mean bootstrap analog of ŶI

Ŷ (.)
I = 1

B

B∑

b=1

Ŷ (b)
I .

a single stratum is considered. In step 1, the user computes a sample size n′
h and

a replication factor kh for stratum h. In most cases, at least one of kh and n′
h is

non-integer and a randomization must be applied (see Sitter 1992a, Section 3.1).
Note that the randomization may impair the performance of the variance estimator,
as detailed in the “Appendix”. In step 2, the units in stratum h are replicated kh times
to obtain the h-th stratum of the pseudopopulation. In step 3, a SRSWOR of size
n′
h is selected without replacement from the h-th stratum of the pseudopopulation

created in step 2. Steps 1 to 3 are repeated independently for each stratum h and
a bootstrap sample S∗ is obtained in step 4. Because the bootstrap sample consists
of sampled units, it is very likely to contain units with missing yi and units with
observed yi . Hence, in step 5, AM imputation is applied to the bootstrap sample S∗
and the bootstrap analog Ŷ (b)

I of the imputed total estimator ŶI is obtained. Depending
on the choice of kh and n′

h and on whether randomization is applied to round these
quantities, the bootstrap procedure might mimic a stratified sampling in a population
whose size differs from N . The fraction N/N∗ appears in the computation of the
bootstrap analog of the imputed total estimator Ŷ (b)

I to take this into account. Steps
1 to 5 are repeated to obtain B analogs of the imputed total estimator. In step 6,
the bootstrap variance of the imputed total is obtained using the standard bootstrap
formulae.
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Procedure 3Variance of the imputed total estimator using the extended BWOof Sitter
(1992a).

Step 1: Consider n′
h = nh − (1− fh) and kh = Nh

nh

(
1 − 1− fh

nh

)
. If at least one of kh or n′

h is not integer,

apply a randomization (see Sitter 1992a, Section 3.1).
Step 2: Create the h-th stratum of the pseudopopulation by replicating kh times the nh units in Sh .
Step 3: Select a SRSWOR of size n′

h without replacement from the h-th stratum of the pseudopopulation
created in step 2 to obtain a sample S∗

h = {
hi : i = 1, . . . , n′

h

}
.

Step 4: Repeat steps 1 to 3 independently for each stratum h to obtain a bootstrap sample S∗ ={
S∗
1 , . . . , S∗

H

} = {
hi : h = 1, . . . , H ; i = 1, . . . , n′

h

}
of size n∗ = ∑H

h=1 n
′
h .

Step 5: Apply AM imputation to impute the bootstrap sample S∗ and obtain the bootstrap analog of the
imputed total estimator ŶI by

Ŷ (b)
I = N

N∗
H∑

h=1

∑

hi∈S∗
h

ỹ(∗)
hi

n′
h/(nhkh)

,

where N∗ = ∑H
h=1 nhkh and ỹ(∗)

hi is the value of the variable of interest of unit hi if this one is
observed and the imputed value otherwise.

Step 6: Repeat steps 1 to 5 a large number of times B to obtain Ŷ (1)
I , . . . , Ŷ (B)

I where Ŷ (b)
I is the analog

of ŶI for the b-th bootstrap sample.
Step 7: Obtain the bootstrap variance of ŶI by

Vboot (ŶI ) = 1

B

B∑

b=1

(
Ŷ (b)
I − Ŷ (.)

I

)2
,

where Ŷ (.)
I is the mean bootstrap analog of ŶI

Ŷ (.)
I = 1

B

B∑

b=1

Ŷ (b)
I .

6 Simulations

A numerical study was conducted to test the performance of the proposed imputation
method. Simulated data and real data were considered. In Sects. 6.1 and 6.2 , the sim-
ulation settings for the simulated data and for the real data are respectively presented.
Measures used to compare the new imputation method with existing imputation meth-
ods and to test the accuracy of the bootstrap procedures for the variance estimation
are described in Sect. 6.3. Finally, the results of the simulations in each setting are
displayed and commented in Sects. 6.4 and 6.5 respectively.

6.1 Setting 1: Simulated data

Populations of size N = 10,000 were considered. Four auxiliary variables x1, x2,
x3, and x4 were generated. The values xi1, xi2, and xi3, i = 1, . . . , N , are inde-
pendent draws from a Uniform[0, 1] random variable and xi4, i = 1, . . . , N , are
independent draws of a gamma density with shape and scale parameters, respec-
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tively, 3 and 1/6 that were mapped into the [0, 1] interval via the transformation
xi4 → (xi4 − min(x4)) / (max(x4) − min(x4)).

Five populations were then generated as follows:

y(1)
i = 1 + 5xi1 + xi2 + xi3 + xi4 + 10εi ,

y(2)
i = 2+cos(πxi1 + π) + sin(4πxi2) + exp(−(xi3 − 0.5)2) + (xi4 − 0.5)2 + 6εi ,

y(3)
i = 1 + cos(2πxi1) + xi1xi2 + x2i3xi4 + 5εi ,

y(4)
i = 2 + cos(π(xi1 + xi2)) sin(π(xi3 + xi4)) + εi ,

y(5)
i = 1 + εi ,

where i = 1, . . . , N , and where εi are N independent draws of a normal random
variable with mean 0 and standard deviation 0.1. In the first four populations, the
variable of interest is linked to the auxiliary variables. In the first two populations the
link is correctly specified by anAM, even a linearmodel in population 1. In populations
3 and 4 the AM is not a valid representation of the truth, while in the last population
there is no link between the variable of interest and the auxiliary variables.

Two different sampling designs were used for the selection of samples: simple
randomsamplingwithout replacement (SRSWOR) and stratified sampling . For simple
random sampling, a sampling rate of f = 0.2 was considered. For stratified sampling,
strata were created as follows. First, units were classified into two groups, depending
whether their value xi1 is larger than the median of x1 or not. In each group created,
units were then subdivided into two other groups, depending on whether their value
xi2 is larger than themedian of x2 in each group or not. The procedure was repeated for
variables x3 and x4. This resulted in creating 16 strata of size 625 that are somewhat
homogeneous with respect to the auxiliary variables. Then, SRSWOR was applied
within strata with a sampling rate of f = 0.2 in each stratum. Note that in this setting
all units have the same design weight under both SRSWOR and stratified sampling.
Therefore, unweighted imputation based on (5) and weighted imputation based on (6)
yield the same results.

The response probabilities were obtained from

pi = exp (b0 + b1xi1)

1 + exp (b0 + b1xi1)
,

where b0 = − 1 and b1 = 5. These values yield an overall mean response rate of
approximately 75%.

One thousand simulations were then conducted as follow. For each simulation, a
sample S was selected according to either SRSWOR or stratified sampling. For each
sample S selected, a respondents set Sr and a nonrespondents set Sm were then created
by generating a response indicator vector (ri |i ∈ S)�, where ri , i ∈ S, was generated
from a Bernoulli distribution with parameter pi . Then, for each set of respondents and
of nonrespondents obtained, the missing yi , i ∈ Sm , were replaced with imputed y∗

i
using the five following imputation methods:
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• Regression imputation Imputed values y∗
i , i ∈ Sm , are obtained by

y∗
i = β̂0 +

q∑

j=1

β̂ j xi j ,

where β̂ = (β̂0, β̂1, . . . , β̂q)
� is defined by

β̂ =
⎛

⎝
∑

j∈Sr
d j (1, x j )

�(1, x j )

⎞

⎠
−1

∑

i∈Sr
di (1, xi )�yi .

Regression imputation is based on imputation model model 3 with f (xi1, xi2, . . . ,
xiq) = β0 + ∑q

j=1 β j xi j .
• Mean imputation The missing yi , i ∈ Sm , are replaced by the respondents’ mean
value, that is the imputed values y∗

i , i ∈ Sm , are obtained by

y∗
i = 1∑

j∈Sr d j

∑

k∈Sr
dk yk .

Mean imputation is a particular case of regression imputation where only
a constant covariate is considered. It is based on imputation model 3 with
f (xi1, xi2, . . . , xiq) = β0. For both simple random sampling and stratified sam-
pling, we applied mean imputation within strata. This means that in the case of
simple random sampling, strata were used as imputation classes in order to use
the auxiliary information when imputing.

• Nearest neighbor imputation The missing yi , i ∈ Sm , are replaced by their
respective nearest neighbor in the complete data. The proximity is quantified
through the auxiliary variables. Imputed values y∗

i , i ∈ Sm , are obtained by

y∗
i = y j(i) where d(xi , x j(i)) = min

j∈S|r j=1
d(xi , x j ),

where d(·, ·) is the Euclidean distance.
• Random forest imputation Random forest (Breiman 2001) is a nonparametric
algorithm for classification and regression. It generates at random several classi-
fication trees. In the context of regression, predictions are obtained by averaging
the output of all trees. The missing values were imputed with the nonpara-
metric imputation method using random forest of Stekhoven and Buehlmann
(2012). Imputation was carried out using function missForest of R package
missForest (Stekhoven 2013). Function missForest begins with an initial
guess for the missing values. Then, it sorts the variables according to the amount
of missing values starting with the lowest amount. In our case, variable y is last
since it is the only one with missing values. The missing values are imputed by
first fitting a random forest to the observed values (yi , xi ), i ∈ Sr ; then imputing
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the missing values yi , i ∈ Sm by applying the trained random forest to xi , i ∈ Sm .
The procedure is repeated until a stopping criterion is met.

• AM imputation An AM was fitted using the complete data (yi , xi ), i ∈ Sr , and
imputed values y∗

i , i ∈ Sm , were obtained through predictions with this model,
as explained in Sect. 5. Survey weights were considered in the smoothing spline
estimator computation of each term, as in the PLS equation of expression (6). The
model was fitted using function gam of R package mgcv (Wood 2014). Function
gam uses m = 2 and thin plate splines basis by default. The model is fitted by
penalized likelihood maximization and the smoothing parameter is selected by
generalized cross validation.

The imputed total estimator ŶI was computed for each method and each simulation.
Note that all the considered imputation methods use auxiliary information when com-
puting imputed values under both SRSWOR and stratified sampling, including mean
imputation. Indeed, mean imputation is applied in each stratum separately, and the
strata are created using auxiliary information.

Moreover, one thousand simulationswere conducted to test the accuracy of the boot-
strap procedures presented in Sect. 5.2 to estimate the variance of the total. SRSWOR
and stratified sampling were considered. For each simulation, a sample S, a set of
respondents Sr and of nonrespondents Sm were created as described above. The miss-
ing values were replaced with imputed values using AM imputation. The imputed total
estimator ŶI and its bootstrap variance Vboot (ŶI ) were computed for each simulation.
For the bootstrap variance under SRSWOR, Procedure 1 (MMB) was applied where,
in step 1, a sample of size 400 was selected, that is n′

h = f · nh = 400, h = 1 and
Procedure 2 (BWO) was applied where, in step 1, k = 25. For the bootstrap variance
under stratified sampling, Procedure 1 (MMB) was applied where, in step 1, a sample
of size 125 was selected in each stratum, that is n′

h = f · nh = 125 for each stratum
h and Procedure 3 (extended BWO) was applied where a randomization was applied
in step 1. Note that randomization was applied only in the latest case. More cases
where randomization is applied and a discussion on how randomization may affect
the results are shown in Sect. 6.2 and in the “Appendix”.

6.2 Setting 2: Expenditure data

We consider the data from the 1992 family expenditure survey (FES), see Central
Statistical Office (1993). The data is made available by the UK data archive at the
University of Essex. To test our method, we considered that the households having
a non-missing and larger than zero disposable income (disposable income and self-
supply and in kind) of the 1992 FES form the population of interest. The size of this
population is N = 7409. The variable disposable income is highly skewed to the
right (skewness is 3.15) and has many outliers. Important asymmetry and outliers may
impact negatively the performance of all competing imputation methods and yield
unstable imputed total estimators. For this reason, the variable disposable income was
modified as follows. First, it was divided by itsmean value. Then, the natural logarithm
of the obtained value plus one was computed. One was added before computing the
logarithm to avoid negative values.We suppose that the aim of the survey is to estimate
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the population total of the modified disposable income. The population was stratified
into 12 regions and simple random sampling with a sampling rate of f = 0.2 was
applied within each region (stratum). The sample size was randomly rounded for 8
strata for which this sampling rate led to a non-integer sample size. For each sampled
household, we supposed that the following characteristics were observed:

xi1: number of adults in household i ,
xi2: number of children in household i ,
xi3: number of persons economically active in household i ,
xi4: age of the head of household i ,
xi5: age of the chief economic supporter of household i .

Such variables could for instance come from a register. Figure 1 shows the resulting
data. The figure shows that none of the five characteristics listed above has a linear
relationship with modified disposable income. It was supposed that the willingness of
a household to respond depends on the number of adults in this household and that the
households respond independently from each other. Hence, the response probabilities
were obtained from

pi = exp (b0 + b1xi1)

1 + exp (b0 + b1xi1)
,

where b0 = − 1 and b1 = 1 which yields an overall mean response rate of approxi-
mately 70%. Then, for each sampled household, a response indicator was generated
from a Bernoulli distribution with parameter pi . The modified disposable income was
then recorded for respondents and erased for nonrespondents. One thousand simula-
tions were conducted. The same imputation methods as in Sect. 6.1 were considered.

Moreover, one thousand simulations were conducted to test the accuracy of the
bootstrap procedures presented in Sect. 5.2 to estimate the variance of the total. For
each simulation, a sample and a set of respondents and of nonrespondents were created
as described above. The missing values were replaced with imputed values using AM
imputation. The imputed total estimator ŶI and its bootstrap variance Vboot (ŶI ) were
computed for each simulation. For the bootstrap variance, Procedure 1 (MMB) was
applied with B = 100 bootstrap replicates. In step 1, we set n′

h = � f · nh� where �·�
is the ceiling function. In step 2, a randomization was applied to round the non-integer
kh (see Sitter 1992b, Section 1.6).

6.3 Measures of comparison

For each simulation and each imputation method of both settings, the population total
for the variable of interest was estimated through the imputed estimator of expres-
sion (2). To compare the performance of the methods, four comparison measures
were recorded. First, to quantify the accuracy of imputed values, the Monte Carlo
mean relative prediction error was computed, which is defined as

MRPE = 1

L

L∑

�=1

1

n(�)
m

∑

i∈S(�)
m

∣∣∣∣∣
y∗
i

(�) − yi
yi

∣∣∣∣∣ ,
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Fig. 1 Modified disposable income and number of adults in household (x1), number of children in household
(x2), number of persons economically active in household (x3), age of the head of household (x4), and age
of the chief economic supporter of household (x5) in FES data

where S(�)
m is the nonrespondents set obtained at the �-th simulation, n(�)

m is the size of
S(�)
m , y∗

i
(�) is the imputed value obtained for i ∈ S(�)

m at the �-th simulation, and L rep-
resents the number of simulations. Then, for each imputationmethod, the performance
of the imputed estimator of expression (2) was studied through three comparison mea-
sures, namely

• the Monte Carlo relative bias (RB) defined as

RB = B

Y
,
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where B = Ŷ (·)
I − Y , Ŷ (·)

I represents the mean imputed estimator over the L
simulations

Ŷ (·)
I = 1

L

L∑

�=1

Ŷ (�)
I ,

and Ŷ (�)
I is the imputed estimator ŶI obtained at the �-th simulation,

• the Monte Carlo relative root variance (or relative standard deviation) defined as

RRVAR = (VAR)1/2

Y
,

where

VAR = 1

L − 1

L∑

�=1

(
Ŷ (�)
I − Ŷ (·)

I

)2
,

• the Monte Carlo relative root mean square error defined as

RRMSE =
(
B2 + VAR

)1/2

Y
.

For AM imputation, the following measures were computed to test the accuracy of
the bootstrap variance estimator:

• The Monte Carlo variance of the total estimator:

VAR = 1

L − 1

L∑

�=1

(
Ŷ (�)
I − Ŷ (·)

I

)2
,

• The Monte Carlo expectation of the bootstrap variance estimator:

VARboot = 1

L

L∑

�=1

V(�)
boot (ŶI ),

where V(�)
boot (ŶI ) is the bootstrap variance Vboot (ŶI ) obtained at the �-th simula-

tion,
• The coverage rate CR: the proportion of times the true total Y falls into the 95%
confidence interval

ŶI ± 1.96
√
Vboot (ŶI ).
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Fig. 2 Comparison measures of five imputation methods in five populations under SRSWOR

6.4 Results of setting 1

Figures 2, 3, and Table 2 display the results of setting 1. Table 1 reports the average
ranks over the populations of each imputationmethod for eachmeasure of comparison.
The absolute value of RB was considered.

We first comment the results shown in Figs. 2 and 3. When functional dependence
between the variable of interest and the auxiliary variables is additive (populations
1 and 2), AM imputation provides the best results. If, moreover, this functional
dependence is linear (population 1), regression imputation performs as well as AM
imputation. When there is no dependence between the variable of interest and the
auxiliary variables (population 5), all five methods perform fairly similarly. Because
the functional dependence between the variable of interest and the auxiliary variables
is not additive in populations 3 and 4, the results for these two populations allow us to
study the performance of AM imputation under model misspecification. We can see
that AM imputation still performs the best in population 3. The reason for the good
performance of AM imputation in this population is that, even though the functional
dependence is not additive, it can be well approximated by an additive function. In
population 4, the situation is less obvious and it is difficult to rank the imputation
methods. In order to produce a global index of performance we ranked the imputing
methods for each population and each performance criterion. The results, reported in
Table 1 show that, globally, AM imputation performs better than the other imputation
methods considered.
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Fig. 3 Comparison measures of five imputation methods in five populations under stratified sampling

The performance of the bootstrap-based estimators of the variance is assessed in
Table 2. Whether the functional dependence between the variable of interest and
the auxiliary variables is additive (populations 1 and 2) or not (populations 3, 4, 5),
the bootstrap variance is generally very close to the variance obtained by simulation
and leads to very good coverage rates across all five populations considered. We
see, however that BWO variance estimate tends to overestimate the variance when
randomization is applied (here under stratified sampling). This overestimation is more
pronounced when the functional dependence between the variable of interest and the
auxiliary variables is additive and strong (populations 1 and 2). This phenomenon is
discussed in the “Appendix”.

6.5 Results of setting 2

Tables 3 and 4 display the results of our analysis performed under setting 2. The
numbers in brackets in Table 3 report the rank of each imputation method for each
measure of comparison. We can see that AM imputation outperforms the competing
imputation methods. With this data, the bootstrap variance yields a coverage rate of
94% that is close to the theoretically stated value of 95%.

As we can see from the results of both settings, AM imputation performs the best
overall, closely followed by random forest. This is not surprising since random forest
is also nonparametric. Two advantage of random forest over our imputation method
are: (1) it can handle mixed-type data and (2) auxiliary variables can have missing
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Table 1 Average ranks over five
populations of each imputation
method for each measure of
comparison (in absolute value)

Imputation method MRPE RB RRVAR RRMSE

Simple random sampling (SRSWOR)

Regression 3.0 3.6 3.2 3.2

Mean 4.2 4.2 2.6 3.8

Nearest neighbor 3.4 2.8 4.0 3.6

Random forest 2.4 2.6 2.6 2.4

AM 2.0 1.8 2.6 2.0

Stratified sampling

Regression 3.0 3.6 3.0 3.0

Mean 4.2 4.2 3.2 3.8

Nearest neighbor 3.4 3.2 4.0 3.6

Random forest 2.4 2.8 2.4 2.6

AM 2.0 1.2 2.4 2.0

Table 2 Monte Carlo variance of the total, Monte carlo expectation of the bootstrap variance and coverage
rate associated with AM imputation for two different sampling designs and five populations

MMB BWO

VAR × 102 VARboot × 102 CR VARboot × 102 CR

Simple random sampling (SRSWOR)

Population 1 157 152 0.94 151 0.94

Population 2 669 611 0.94 607 0.94

Population 3 396 378 0.94 381 0.94

Population 4 156 137 0.92 137 0.92

Population 5 7 6 0.94 6 0.94

Stratified sampling

Population 1 896 843 0.94 1577 0.99

Population 2 495 447 0.93 636 0.97

Population 3 374 361 0.95 424 0.95

Population 4 110 106 0.93 148 0.95

Population 5 7 6 0.93 7 0.93

Table 3 Comparison measures for five imputation methods for FES data

Imputation method MRPE × 101 RB × 10−2 RRVAR × 10−2 RRMSE × 10−2

Regression 3.28(4) 0.79(3) 1.41(2) 1.61(3)

Mean 4.51(5) 5.57(5) 1.47(4) 5.76(5)

Nearest neighbor 3.19(3) 0.85(4) 1.54(5) 1.76(4)

Random forest 2.97(2) 0.22(2) 1.42(3) 1.43(2)

AM 2.90(1) 0.08(1) 1.39(1) 1.40(1)
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Table 4 Monte Carlo variance of the total, Monte carlo expectation of the bootstrap variance and coverage
rate associated with AM imputation for FES data

VAR VARboot CR

4394.03 4031.77 0.94

values. Two advantages of our method are: (1) it is fast and (2) it allows us to take
design weights into account in the imputation model.

7 Conclusion

We propose new imputation method for nonresponse in surveys based on spline
smoothing within the additive model paradigm. The simulations indicate that the new
method is very flexible and can capture a large spectrum of functional dependencies
between the variable of interest and the auxiliary variables. Since the model requires
only weak assumptions, it is less susceptible to model misspecification than other
models such as parametric ones. Most importantly, the AM formulation makes it pos-
sible to consider several auxiliary variables in the imputation process without running
into the curse of dimensionality phenomenon. Bootstrap procedures to estimate the
variance of the total under SRSWOR and stratified sampling was suggested.

Through a simulation study, the new imputation method was confirmed to perform
well in many different situations. AM imputation performs better than the other impu-
tation methods considered when the functional dependence between the variable of
interest and the auxiliary variables is additive or when this dependence can be well
approximated by an additive function.When this dependence is not well approximated
by an additive function or when there is no dependence between the variable of inter-
est and the auxiliary variables, AM imputation shows a performance similar to that of
the other imputation methods considered. In most of the cases studied, the proposed
bootstrap-based variance estimates were close to the true Monte Carlo variance and
produced very good coverage rates. We explain why the proposed bootstrap-based
variance estimates may overestimate the variance of the total estimator in some cases.

Futurework include extending the currentmethod to situations inwhich the samples
are dependent and improving the computational speed of the variance via parallel
processing.

Acknowledgements The authors thank Yves Tillé for his constructive suggestions. This research was
supported by the Swiss National Science Foundation and the Natural Science and Engineering Research
Council of Canada.

Appendix: Bootstrap variance when a randomization is applied

We repeated the simulations for the bootstrap variance of Sect. 6.1 with sampling
fraction f = 0.3 in order to study the impact of randomization on the quality of
variance estimates. For the bootstrap variance under SRSWOR, Procedure 1 (MMB)
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Table 5 Monte Carlo variance of the total, Monte carlo expectation of the bootstrap variance and coverage
rate associated with AM imputation for two different sampling designs and five populations

MMB BWO

VAR × 102 VARboot × 102 CR VARboot × 102 CR

Simple random sampling (SRSWOR)

Population 1 914 873 0.95 877 0.95

Population 2 390 356 0.93 357 0.94

Population 3 244 222 0.93 220 0.93

Population 4 92 80 0.92 79 0.93

Population 5 4 4 0.93 4 0.93

Stratified sampling

Population 1 525 2643 1.00 918 0.99

Population 2 282 790 1.00 370 0.97

Population 3 219 259 0.97 243 0.96

Population 4 79 163 1.00 83 0.95

Population 5 4 4 0.92 4 0.92

was applied where, in step 1, a sample of size 900 was selected, that is n′
h = f · nh =

900, h = 1 and a randomization was applied in step 2, and Procedure 3 (extended
BWO) was applied (k was non-integer) where a randomization was applied in step 1.
For the bootstrap variance under stratified sampling, Procedure 1 (MMB) was applied
where, in step 1, a sample of size 187 was selected in each stratum, that is n′

h = 
 f ·
nh� = 187, where 
·� is the floor function, for each stratum h and a randomization was
applied in step 2, and Procedure 3 (extendedBWO)was appliedwhere a randomization
was applied in step 1. Note that randomization was applied in all four cases.

Table 5 shows the result. Under SRS, whether the functional dependence between
the variable of interest and the auxiliary variables is additive (populations 1 and 2) or
not (populations 3, 4, 5), the bootstrap variance is close to the variance obtained by
simulation and it leads to very good coverage rates (between 92% and 94%) across
all five populations considered. Under stratified sampling, the bootstrap variance is
greater than the variance obtained by simulations in four out of the five populations
considered. This difference is greater when the functional dependence between the
variable of interest and the auxiliary variables is additive and strong (populations 1
and 2). We explain this phenomenon in what follows.

When a randomization is applied to round the non-integer kh and/or n′
h as it is the

case here, the bootstrap variance contains two parts: the variance due to the randomiza-
tion and the variance of the total estimator. When there is a strong additive functional
dependence between the variable of interest and the auxiliary variables, the variance
of the total estimator is small. An important portion of the bootstrap variance is due to
randomization and the bootstrap variance overestimates the variance of the total. As
the additive functional dependence between the variable of interest and the auxiliary
variables weakens, the variance of the total estimator increases and the portion of the
bootstrap variance due to randomization decreases. The bootstrap variance gets closer
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to the variance of the total. When stratified sampling is applied, the portion of the
variance due to randomization may be particularly important because randomization
is applied within each stratum. This explains the difference between the bootstrap vari-
ance and the variance obtained by simulations under stratified sampling in Table 5. The
simulations run on the real data of Sect. 6.2 confirm this explanation. In this setting,
there is amoderate additive functional dependence between the variable of interest and
the auxiliary variables. Stratified sampling was used and the randomization procedure
was applied to round the non-integer quantities. The obtained bootstrap variance is
close to the variance obtained by simulations and yields a coverage rate of 94%.

As shown by these results, randomization affects the quality of the variance esti-
mates. We refer the reader to Andreis et al. (2018) about weights rounding problems
in resampling. We repeated the simulation in this section and rounded the non-integer
kh and n′

h to the nearest integer instead of applying randomization. This yields very
similar results.
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