
The Canadian Journal of Statistics
Vol. 46, No. 1, 2018, Pages 147–175
La revue canadienne de statistique

147

, ,

Likelihood inflating sampling algorithm
Reihaneh ENTEZARI, Radu V. CRAIU * and Jeffrey S. ROSENTHAL

Department of Statistical Sciences, University of Toronto, 100 St. George Str., Toronto ON M5S 3G3,
Canada

Key words and phrases: Bayesian additive regression trees (BART); Bayesian inference; big data; consensus
Monte Carlo; Markov Chain Monte Carlo (MCMC).

MSC 2010: Primary 62F15; secondary 62M20

Abstract: Markov Chain Monte Carlo (MCMC) sampling from a posterior distribution corresponding to a
massive data set can be computationally prohibitive as producing one sample requires a number of opera-
tions that is linear in the data size. In this article we introduce a new communication-free parallel method,
the “Likelihood Inflating Sampling Algorithm (LISA),” that significantly reduces computational costs by
randomly splitting the data set into smaller subsets and running MCMC methods “independently” in parallel
on each subset using different processors. Each processor will be used to run an MCMC chain that samples
sub-posterior distributions which are defined using an “inflated” likelihood function. We develop a strategy
for combining the draws from different sub-posteriors to study the full posterior of the Bayesian Additive
Regression Trees (BART) model. The performance of the method is tested using simulated data and a large
socio-economic study. The Canadian Journal of Statistics 46: 147–175; 2018 © 2017 Statistical Society
of Canada

Résumé: Pour simuler une loi a posteriori issue de données massives, le temps de calcul d’une
méthode de Monte Carlo par chaı̂nes de Markov (MCMC) peut s’avérer trop long puisque la pro-
duction d’un échantillon requiert un nombre d’opérations qui augmente linéairement avec le nombre
de données. Les auteurs proposent une nouvelle méthode en parallèle sans communications appelée
algorithme d’échantillonnage à vraisemblance gonflée. Ils réduisent substantiellement les besoins en cal-
culs en séparant le jeu de données en sous-échantillons sur lesquels des MCMC indépendantes sont calculées
en parallèle. Chacun des processeurs génère ainsi une chaı̂ne pour la sous-distribution a posteriori basée
sur une fonction de vraisemblance gonflée. Les auteurs développent une stratégie pour la combinaison des
sous-distributions afin de reconstruire la loi a posteriori des arbres de régression additifs bayésiens (BART).
Ils évaluent les performances de leur méthode sur des données provenant de simulations et d’une étude
socio-économique d’envergure. La revue canadienne de statistique 46: 147–175; 2018 © 2017 Société
statistique du Canada

1. INTRODUCTION

Markov Chain Monte Carlo (MCMC) methods are essential for sampling highly complex distri-
butions. They are of paramount importance in Bayesian inference as posterior distributions are
generally difficult to characterize analytically (e.g., Brooks et al., 2011; Craiu & Rosenthal, 2014).
When the posterior distribution is based on a massive sample of size N posterior sampling can
be computationally prohibitive as for some widely used samplers at least O(N) operations are
needed to draw one MCMC sample. Additional issues include memory and storage bottlenecks
where data sets are too large to be stored on one computer.

* Author to whom correspondence may be addressed.
E-mail: craiu@utstat.toronto.edu

© 2017 Statistical Society of Canada / Société statistique du Canada

http://orcid.org/0000-0002-1348-8063

148 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

A common solution relies on parallelizing the computation task, that is, dividing the load
among a number of parallel “workers,” where a worker can be a processing unit, a computer,
etc. Given the abundant availability of processing units such strategies can be extremely efficient
as long as there is no need for frequent communication between workers. Some have discussed
parallel MCMC methods (Rosenthal, 2000; Laskey & Myers, 2003; Wilkinson, 2006) such that
each worker runs on the full data set. However these methods do not resolve memory overload
and also face difficulties in assessing the number of burn-in iterations for each processor.

A truly parallel approach is to divide the data set into smaller groups and run parallel MCMC
methods on each subset using different workers. Such techniques benefit from not demanding
space on each computer to store the full data set. Generally one needs to avoid frequent commu-
nication between workers, as it is time consuming. In a typical divide and conquer strategy the
data is partitioned into non-overlapping subsets, called “shards,” and each shard is analyzed by
a different worker. For such strategies some essential MCMC-related questions are: (1) how to
define the sub-posterior distributions for each shard, and (2) how to combine the MCMC samples
obtained from each sub-posterior so that we can recover the same information that would have
been obtained by sampling the full posterior distribution. Existing communication-free parallel
methods proposed by Neiswanger, Wang, & Xing (2013), Wang & Dunson (2013), and Scott et al.
(2016) have in common the fact that the product of the unnormalized sub-posteriors is equal to the
unnormalized full posterior distribution, but differ in the strategies used to combine the samples.
Specifically, Neiswanger, Wang, & Xing (2013) approximate each sub-posterior using kernel den-
sity estimators, whereas Wang & Dunson (2013) use the Weierstrass transformation. The popular
Consensus Monte Carlo (CMC) method (Scott et al., 2016) relies on a weighted averaging approach
to combine sub-posterior samples. The CMC relies on theoretical derivations that guarantee its
validity when the full-data posterior and all sub-posteriors are Gaussian or mixtures of Gaussian.

We introduce a new communication-free parallel method, the “Likelihood Inflating Sampling
Algorithm (LISA)” that also relies on independent and parallel processing of the shards by different
workers to sample the sub-posterior distributions. These distributions are defined differently than
in the competing approaches described above. In this article we develop techniques to combine
the sub-posterior draws obtained for LISA in the case of Bayesian Additive Regression Trees
(BART) (Chipman, George, & McCulloch, 1998, 2010; Kapelner & Bleich, 2013) and compare
the performance of our method with CMC.

Sections 2 and 3 contain a brief review of the CMC algorithm and the detailed description
of LISA, respectively. Section 4 illustrates the potential difference brought by LISA over CMC
in a simple Bernoulli example, and includes a simple application of LISA to linear regression
models. Section 5 contains the justification for a modified and improved version of LISA for
BART. Numerical experiments and the analysis of socio-economic data presented in Section 6
examine the computational performance of the algorithms proposed here and compare it with
CMC. We end the article with some ideas for future work. The Appendix contains theoretical
derivations and descriptions of the steps used when running BART.

2. REVIEW OF CONSENSUS MONTE CARLO

In this article we assume that of interest is to generate samples from π(θ|�YN) the posterior distri-
bution θ given the i.i.d. sample �YN = {Y1, . . . , YN} of size N. The assumption is that N is large
enough to prohibit running a standard MCMC algorithm in which draws from π are obtained on
a single computer. We use the notation π(θ|�YN) ∝ f (�YN |θ)p(θ), where f (�YN |θ) is the likelihood
function corresponding to the observed data �YN and p(θ) is the prior. Major issues with MCMC
posterior sampling for big data can be triggered because (a) the data sample is too large to be
stored on a single computer, or (b) each chain update is too costly, for example, if π is sampled
via a Metropolis–Hastings type of algorithm each update requires N likelihood calculations.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 149

In order to reduce the computational costs the CMC method of Scott et al. (2016) partitions the
sample into K batches (i.e., �YN = ∪K

j=1Y
(j)) and uses the workers independently and in parallel to

sample each sub-posterior. More precisely the j-th worker (j = 1, . . . , K) will generate samples
from the j-th sub-posterior distribution defined as follows:

πj,CMC(θ|Y (j)) ∝ f (Y (j)|θ)p(θ)1/K.

Note that the prior for each batch is considered to be pj(θ) = [p(θ)]1/K such that p(θ) =∏K
j=1 pj(θ) and thus the overall full-data unnormalized posterior distribution which we denote

as πFull(θ|�YN) is equal to the product of unnormalized sub-posterior distributions, that is,

πFull(θ|�YN) ∝
K∏

j=1

πj,CMC(θ|Y (j)).

When the full posterior is Gaussian the weighted averages of the sub-samples from all batches
can be used as full-data posterior draws. That is assuming θ

(k)
1 , . . . , θ

(k)
S are S sub-samples from

the kth worker then the sth approximate full posterior draw will be as follows:

θs =
(∑

k

wk

)−1 ∑
k

wkθ
(k)
s

where the weights wk = �−1
k are optimal for Gaussian models with �k = Var(θ|y(k)).

In the next section we introduce an alternative method to define the sub-posteriors in each
batch.

3. LIKELIHOOD INFLATING SAMPLING ALGORITHM (LISA)

LISA is an alternative to CMC that also benefits from the random partition of the data set followed
by independently processing each batch on a different worker. Assuming that the data have been
divided into K batches of approximately equal size n we define the sub-posterior distributions for
each machine by adjusting the likelihood function without making changes to the prior. Thus the
j-th sub-posterior distribution will be as follows:

πj,LISA(θ|Y (j)) ∝ [
f (Y (j)|θ)

]K
p(θ).

As the data are assumed to be i.i.d. inflating the likelihood function K times is intuitive because the
sub-posterior from each batch of data will be a closer representation of the whole data posterior.
We expect that sub-posteriors sampled by each worker will be closer to the full posterior thus
improving the computational efficiency.

We prove in a theorem below that under mild conditions LISA’s sub-posterior distributions
are asymptotically closer to the full posterior than those produced by the CMC-type approach.

The Taylor series expansion for a log-posterior density log π(θ|�YN) around its posterior mode
θ̂N yields the approximation

log π(θ|�YN) ≈ log π(θ̂N |�YN) − 1
2

(θ − θ̂N)�ÎN (θ − θ̂N)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

150 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

where ÎN = − ∂2 log(π(θ|�YN))
∂θ∂θ� |

θ=θ̂N
. Exponentiating both sides will result in

π(θ|�YN) ≈ π(θ̂N |�YN) exp
[
−1

2
(θ − θ̂N)�ÎN (θ − θ̂N)

]
,

which shows asymptotic normality, that is, Î
1/2
N (� − θ̂N)

D→ N(0, I) as N → ∞ where � ∼
π(.|�YN). Let θ̂

(j)
n,L and θ̂

(j)
n,C denote the j-th sub-posterior modes in LISA and CMC, respectively.

Similarly, Î
(j)
n,L and Î

(j)
n,C denote the negative second derivative of the j-th log sub-posterior for

LISA and CMC, respectively, when calculated at the mode. Then consider the assumptions

A1: There exist θL, θC such that if we define ε
(j)
n,L = |θ̂(j)

n,L − θL| and ε
(j)
n,C = |θ̂(j)

n,C − θC|, then

max
1≤j≤K

ε
(j)
n,L → 0 and max

1≤j≤K
ε

(j)
n,C → 0 w.p. 1 as n → ∞.

A2: |Î(i)
n,L − Î

(j)
n,L| −→ 0 and |Î(i)

n,C − Î
(j)
n,C| → 0 w.p. 1 ∀ i �= j as n → ∞.

A3: πFull, πj,LISA, and πj,CMC are unimodal distributions that have continuous derivatives of
order 2.

Theorem 1. Assume that assumptions A1 through A3 hold and if �Full ∼ πFull(.|�YN) we also

assume Î
1/2
N (�Full − θ̂N)

D→ N(0, I) as N → ∞. If �j,LISA ∼ πj,LISA(.|Y (j)) and �j,CMC ∼
πj,CMC(.|Y (j)) then as N → ∞

Î
1/2
N (�j,LISA − θ̂N)

D→ N(0, I) and Î
1/2
N (�j,CMC − θ̂N)

D→ N(0, KI) ∀ j ∈ {1, . . . , K}.

Proof. See Appendix. �

Theorem 1 shows the difference between sub-posterior distributions for CMC and LISA, with
LISA’s sub-posterior distributions being asymptotically similar to the full posterior distribution.
This suggests that draws from LISA sub-posteriors can be combined using uniform weights.

Remarks:

1. When data are i.i.d. we expect the shards to become more and more similar as N (and thus
n = N/K) increases and assumption A1 is expected to hold for general models.

2. Assumption A2 in Theorem 1 holds due to the structural form of sub-posteriors in LISA and
CMC.

3. The validity of using uniform weights with LISA’s sub-posterior draws is justified asymptot-
ically, but we will see that this approximation can be exact in some examples, for example,
for a Bernoulli model with balanced batch samples, whereas in others modified weights can
improve the performance of the sampler. In this respect LISA is similar to other embarrassingly
parallel strategies where one must carefully consider the model of interest in order to find the
best way to combine the sub-posterior samples.

In the next section we will illustrate LISA in some simple examples and compare its perfor-
mance to the full-data posterior sampling as well as CMC.

4. MOTIVATING EXAMPLES

In this section we examine some simple examples where theoretical derivations can be carried
out in detail. We emphasize the difference between LISA and CMC.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 151

4.1. Bernoulli Random Variables
Considery1, . . . , yN to beN i.i.d. Bernoulli random variables with parameter θ. Hence we consider
a prior p(θ) = Beta(a, b). Assuming that we know little about the size of θ we set a = b = 1 which
corresponds to a U(0, 1) prior. The resulting full-data posterior πFull(θ|�YN) is Beta(S + a, N −
S + b) where S = ∑N

i=1 yi is the total number of ones. Suppose we divide the data into K batches
with Sj number of ones in batch j, such that Sj = S

K
for any j ∈ {1, .., K}, that is, the number of

1’s are divided equally between batches. Then the jth sub-posterior based on batch-data of size
n = N

K
for each method will be as follows:

CMC:

πj,CMC(θ|Y (j)) = Beta
(

Sj + a − 1
K

+ 1, n − Sj + b − 1
K

+ 1
)

= Beta
(

S

K
+ a − 1

K
+ 1,

N − S

K
+ b − 1

K
+ 1

)
;

LISA:

πj,LISA(θ|Y (j)) = Beta(SjK + a, (n − Sj)K + b)

= Beta(S + a, N − S + b)

which implies

πj,LISA(θ|Y (j)) = πFull(θ|�YN) ∀ j ∈ {1, . . . , K}.

In this simple case any one of LISA’s sub-posterior distributions is equal to the full posterior
distribution if the batches are balanced, that is, the number of 1’s are equally split across all
batches. Thus LISA’s sub-samples from any batch will represent correctly the full posterior. On
the other hand the draws from the CMC sub-posterior distributions will need to be recombined
to obtain a representative sample from the true full posterior πFull(θ|�YN).

However, when the number of ones is unequally distributed among the batches it is not easy
to pick the winner between CMC and LISA as both require a careful weighting of each batch
sub-posterior samples.

In the remaining part of this article we will mainly focus on the performance of LISA when it
is applied to the BART model. Interestingly we discover that using a minor modification inspired
by running LISA on the simpler Bayesian Linear Regression model we can approximate the full
posterior. The idea behind the modification is described in the next section.

4.2. Bayesian Linear Regression
Consider a standard linear regression model

Y = Xβ + ε (1)

where β ∈ Rp, X ∈ RN×p, and Y, ε ∈ RN with ε ∼ NN (0, σ2IN). To simplify the presentation
we consider the improper prior

p(β, σ2) ∝ σ−2. (2)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

152 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Straightforward calculations show that the conditional posterior distributions for the full data
are

πFull(σ2|Y, X) = Inv-Gamma
(

N − p

2
,
s2(N − p)

2

)
; (3)

πFull(β|σ2, Y, X) = N
(
β̂, σ2(X�X)−1); (4)

where β̂ = (X�X)−1X�Y and s2 = (Y−Xβ̂)�(Y−Xβ̂)
N−p

.

An MCMC sampler designed to sample from πFull(β, σ2|Y, X) will iteratively sample σ2

using (3) and then β via (4). If we denote βFull the random variable with density πFull(β|Y, X)
then, using the iterative formulas for conditional mean and variance we obtain

E[βFull|Y, X] = (X�X)−1X�Y

and

Var(βFull|Y, X) = (X�X)−1 (N − p)/2
(N − p)/2−1

s2 = (X�X)−1s2 + O(N−1). (5)

We examine below the statistical properties of the samples produced by LISA. If the data are
divided into K equal batches of size n = N/K let us denote Y (j) and X(j) the response vector and
model matrix from the jth batch, respectively.

With the prior given in (2) the sub-posteriors produced by LISA have the following conditional
densities

πj(σ2|Y (j), X(j)) = Inv-Gamma

(
N − p

2
,
Ks2

j (n − p)

2

)
and (6)

πj(β|σ2, Y (j), X(j)) = N

(
β̂j,

σ2

K
(X(j)�X(j))−1

)
, (7)

where β̂j = (X(j)�X(j))−1X(j)�Y (j) and s2
j = (Y (j)−X(j)β̂j)�(Y (j)−X(j)β̂j)

n−p
for all 1 ≤ j ≤ K.

A simple Gibbs sampler designed to sample from πj(β, σ2|Y (j), X(j)) will iteratively sample
σ2 from (6) and then β from (7).

It can be shown using the iterative formulas for conditional means and variances that

E[β|Y (j), X(j)] = β̂j

and

Var(β|Y (j), X(j)) = (X(j)�X(j))−1 s2
j (n − p)/2

(N − p)/2 − 1
= (X(j)�X(j))−1 s2

j (n − p)

(N − p)
+ O(N−1).

In order to combine the sub-posterior samples we propose using the weighted average

βLISA =
⎛
⎝ K∑

j=1

Wj

⎞
⎠−1

K∑
j=1

Wjβj, (8)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 153

where βj ∼ πj(β|Y (j), X(j)) and Wj = X(j)�X(j)

σ2 . As
∑K

j=1 X(j)�X(j) = X�X we get

E[βLISA|Y, X] = β̂ = (X�X)−1X�Y (9)

and

Var(βLISA|Y, X) = (X�X)−1 n − p

N − p

⎡
⎣ K∑

j=1

s2
j (X(j)�X(j))

⎤
⎦ (X�X)−1 ≈ (X�X)−1 n − p

N − p
s2,

(10)

where the last approximation in (10) is based on the assumption that s2
j ≈ s2 as both are unbiased

estimators for σ2 based on n and, respectively, N observations. It is apparent that the variance
computed in (10) is roughly K times smaller than the target given in (5). In order to avoid
underestimating the variance of the posterior distribution we propose a modified LISA sampling
algorithm which consists of the following steps:

σ2 ∼ Inv-Gamma

(
N − p

2
,
Ks2

j (n − p)

2

)
;

σ̃ =
√

Kσ;

β̃ ∼ N

(
β̂j,

σ̃2

K
(X(j)�X(j))−1

)
= N(β̂j, σ

2(X(j)�X(j))−1).

The intermediate step simply adjusts the variance samples so that

Var(β̃|Y (j), X(j)) = (X(j)�X(j))−1 s2
jK(n − p)/2

(N − p)/2 − 1
= (X(j)�X(j))−1 s2

jK(n − p)

(N − p)
+ O(N−1).

In turn, if we define

βmodLISA =
⎛
⎝ K∑

j=1

Wj

⎞
⎠−1

K∑
j=1

Wjβ̃j, (11)

then E[βmodLISA|Y, X] = (X�X)−1X�Y and

Var(βmodLISA|Y, X) = (X�X)−1 K(n − p)
N − p

⎡
⎣ K∑

j=1

s2
j (X(j)�X(j))

⎤
⎦

×(X�X)−1 ≈ (X�X)−1 K(n − p)
N − p

s2. (12)

As both (11) and (8) produce samples that have the correct mean, from Equations (5), (10),
and (12) we can see that the weighted average of the modified LISA samples have the variance
closer to the desired target.

In the next section we will examine LISA’s performance on a more complex model, the BART.
The discussion above will guide our construction of a modified version of LISA for BART.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

154 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

5. BAYESIAN ADDITIVE REGRESSION TREES (BART)

Consider the nonparametric regression model:

yi = f (xi) + εi, εi ∼ N(0, σ2) i.i.d.

where xi = (xi1, . . . , xip) is a p-dimensional vector of inputs and f is approximated by a sum of
m regression trees:

f (x) ≈
m∑

j=1

g(x; Tj, Mj),

where Tj denotes a binary tree consisting of a set of interior node decision rules and a set of
terminal nodes. Mj = {μ1j, . . . , μbj} is the set of parameter values associated with the b terminal
nodes of Tj . In addition g(x; Tj, Mj) is the function that maps each x to a μij ∈ Mj . Thus, the
regression model is approximated by a sum-of-trees model

yi =
m∑

j=1

g(xi; Tj, Mj) + εi , εi
iid∼ N(0, σ2).

Let θ = ((T1, M1), . . . , (Tm, Mm), σ2) denote the vector of model parameters. Next we briefly
describe the prior specifications stated in Chipman, George, & McCulloch (1998, 2010).

Prior Specifications:

1. Prior Independence and Symmetry:

p((T1, M1), . . . , (Tm, Mm), σ) =
[∏

j

p(Mj|Tj)p(Tj)
]
p(σ)

where p(Mj|Tj) = ∏
i p(μij|Tj).

2. Recommended number of trees: m = 200 (Chipman, George, & McCulloch, 2010) and m = 50
(Kapelner & Bleich, 2013)

3. Tree prior p(Tj) is characterized by three aspects:
a. The probability that a node at depth d = 0, 1, . . . is non-terminal, which is assumed to have

the form α(1 + d)−β, where α ∈ (0, 1) and β ≥ 0. (recommended values are α = 0.95 and
β = 2).

b. The distribution on the splitting variable assignments at each interior node which is recom-
mended to have a uniform distribution.

c. The distribution on the splitting rule assignment in each interior node, conditional on the
splitting variable which is also recommended to have a uniform distribution.

4. The conditional prior for μij is N(μμ, σ2
μ) such that

{
mμμ − k

√
mσμ = ymin

mμμ + k
√

mσμ = ymax

with k = 2 recommended.
5. The prior for σ2 is Inv-Gamma(ν

2 , νλ
2) where ν = 3 is recommended and λ is chosen such that

p(σ < σ̂) = q with recommended q = 0.9 and sample variance σ̂.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 155

Hence the posterior distribution will have the following form:

π(θ) = π(θ|Y, X) ∝
{

(σ2)
− n

2 e
− 1

2σ2

∑n

i=1

(
yi−

∑m

j=1 g(xi;Mj,Tj)
)2}

︸ ︷︷ ︸
Likelihood

×

⎧⎪⎨
⎪⎩(σ2)

− ν
2 −1

e
− νλ

2σ2︸ ︷︷ ︸
Prior of σ2

⎡
⎣ m∏

j=1

σ
−bj
μ (2π)−

bj
2 e

− 1
2σ2

μ

∑bj

k=1 (μkj−μμ)2

p(Tj)

⎤
⎦
⎫⎪⎬
⎪⎭︸ ︷︷ ︸

Prior

. (13)

Gibbs Sampling is used to sample from this posterior distribution. The algorithm iterates between
the following steps:

1. σ2 | (T1, M1), . . . , (Tm, Mm), Y, X ∝ Inv-Gamma(ρ, γ),
where ρ = ν+n

2 and γ = 1
2 [

∑n
i=1 (yi − ∑m

j=1 g(xi; Mj, Tj))2 + λν].

2. (Tj, Mj) | T(j), M(j), σ, Y, X is the same as drawing from the conditional (Tj, Mj) | Rj, σ where
T(j) denotes all trees except the jth tree, and residual Rj is defined as follows:

Rj = g(x; Mj, Tj) + ε = y −
∑
k �=j

g(x; Mk, Tk).

The sampling of (Tj, Mj) is performed in two steps:
a. Tj | Rj, σ and
b. Mj | Tj, Rj, σ.
Step 2 involves sampling from each component of Mj using

μij | Tj, Rj, σ ∼ N

⎛
⎝ σ2

σ2
μ

μμ + niR̄j(i)

σ2

σ2
μ

+ ni

,
σ2

σ2

σ2
μ

+ ni

⎞
⎠

where R̄j(i) denotes the average residual (computed without tree j) at terminal node i with total
number of observations ni. The conditional density of Tj in Step 1 can be expressed as follows:

p(Tj | Rj, σ) ∝ p(Tj)
∫

p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj. (14)

The Metropolis–Hastings (MH) algorithm is then applied to draw Tj from (14) with four different
proposal moves on trees:

• GROW: growing a terminal node (with probability 0.25);
• PRUNE: pruning a pair of terminal nodes (with probability 0.25);
• CHANGE: changing a non-terminal rule (with probability 0.4) (Kapelner & Bleich, 2013,

change rules only for parent nodes with terminal children);
• SWAP: swapping a rule between parent and child (with probability 0.1) (this proposal move

was removed by Kapelner & Bleich, 2013).

Detailed derivations involving the Metropolis–Hastings acceptance ratios are described in the
Appendix.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

156 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Two existing packages in R, “BayesTree” and “bartMachine,” can be used to run BART
on any data set, but as the sample size increases, these packages tend to run slower. In these
situations we expect methods such as LISA or CMC to become useful, and for a fair illustration
of the advantages gained we have used our own R implementation of BART and applied the same
structure to implement LISA and CMC algorithm for BART. The Metropolis–Hastings acceptance
ratios for LISA and CMC are also reported in the Appendix.

As discussed by Scott et al. (2016) the approximation to the posterior produced by the CMC
algorithm can be poor. Thus for comparison reasons we applied both LISA and CMC to BART
using a simulated data set (described further) with K = 30 batches. Given Theorem 1, as LISA’s
sub-posterior distributions are asymptotically equivalent to the full posterior distribution, we
examined its performance by uniformly taking sub-samples from all its batches as an approxi-
mation to full posterior samples. We will see further that LISA with uniform weights produces
higher prediction accuracy compared to CMC. However they both perform poorly in approxi-
mating the posterior samples as they generate larger trees and under-estimate σ2, which results
in over-dispersed posterior distributions.

The following sub-section discusses a modified version of LISA for BART which will have
significant improvement in performance.

5.1. Modified LISA for BART
The under estimation of σ2 when applying LISA to BART is similar to the problem encountered
when using LISA for the linear regression model discussed in Section 4.2. This is not a coincidence
as BART is also a linear regression model, albeit one where the set of independent variables is
determined through a highly sophisticated process. We will show below that when applying a
similar variance adjustment to the one discussed in Section 4.2 the Modified LISA (modLISA)
for BART will exhibit superior computational and statistical efficiency compared to either LISA
or CMC.

Just like in the regression model we “correct” the sampling algorithm by adjusting the residual
variance. We start with the conditional distribution of tree j from expression (14) which takes the
form

p(Tj | Rj, σ) ∝ p(Tj)
∫

p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj.

Note that only the conditional distribution of the residuals, Rj | Mj, Tj, σ is affected by the
modifications brought by LISA. The Metropolis–Hastings acceptance ratios for tree proposals
contain three parts: the transition ratio, the likelihood ratio, and the tree structure ratio. The
modifications brought by LISA will influence only the likelihood ratio which is constructed from
the conditional distributions of residuals. Consider the likelihood ratio for GROW proposals in
LISA (full details are presented in the Appendix)

P(R | T∗, σ2)
P(R | T, σ2)

=
√

σ2(σ2 + Knlσ2
μ)

(σ2 + KnlLσ2
μ)(σ2 + KnlRσ2

μ)
×

exp

{
K2σ2

μ

2σ2

[(∑nlL

i=1 RlL,i

)2

σ2 + KnlLσ2
μ

+
(∑nlR

i=1 RlR,i

)2

σ2 + KnlRσ2
μ

−
(∑nl

i=1 Rl,i

)2

σ2 + Knlσ2
μ

]}
,

(15)

where nl is the total number of observations from batch-data that end up in terminal node l. The
newly grown tree, T∗, splits terminal node l into two terminal nodes (children) lL and lR, which
will also divide nl to nlL and nlR which are the corresponding number of observations in each

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 157

new terminal node. By factoring out K in (15) we can rewrite it as

P(R | T∗, σ2)
P(R | T, σ2)

=

√√√√√ σ2

K

(
σ2

K
+ nlσ2

μ

)
(

σ2

K
+ nlLσ2

μ

)(
σ2

K
+ nlRσ2

μ

) ×

exp
{

σ2
μ

2 σ2

K

[(∑nlL

i=1 RlL,i

)2

σ2

K
+ nlLσ2

μ

+
(∑nlR

i=1 RlR,i

)2

σ2

K
+ nlRσ2

μ

−
(∑nl

i=1 Rl,i

)2

σ2

K
+ nlσ2

μ

]}
. (16)

Expression (16) shows a similar residual variance that is K times smaller in each batch, and hence
following the discussion in Section 4.2, to achieve similar variance, we need to modify LISA for
BART by adding the intermediate step σ̃2 = Kσ2 when updating “trees” in each batch, and then
taking a weighted average combination of sub-samples (similar to Bayesian linear regression).
As in Section 4.2 we do not apply any changes when updating σ2. All our numerical experiments
show that modLISA also generates accurate predictions in BART, as the modification corrects the
bias in the posterior draws of σ2 and properly calibrates the size of the trees.

The BART algorithm will split the covariate space into disjoint subsets and on each subset a
regression with only an intercept is fitted. Therefore as suggested by the discussion in Section 4.2
the weight assigned to each batch will be proportional to the estimate of σ2 in that batch. In the
following sections we examine the improvement brought by modLISA when compared to LISA
and CMC.

6. NUMERICAL EXPERIMENTS

6.1. The Friedman’s Function
We have simulated data of size N = 20,000 from Friedman’s test function (Friedman, 1991)

f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

where the covariates x = (x1, . . . , x10) are simulated independently from a U(0, 1) and y ∼
N(f (x), σ2) with σ2 = 9. Note that five of the ten covariates are unrelated to the response vari-
able. We have also generated test data containing 5,000 cases. We apply BART to this simulated
data set using the default hyperparameters stated in Section 5 with m = 50 to generate pos-
terior draws of (T, M, σ2) that, in turn, yield posterior draws for f (x) using the approximation
f̂ (x) ≈ ∑m

j=1 g(x; T̂j, M̂j) for each x = (x1, . . . , x10). As in this case the true f is known one can

compute the root mean squared error (RMSE) using average posterior draws of f̂ (x) for each x (i.e.,

f̂ (x)), as an estimate to measure its performance, that is, RMSE =
√

1
N

∑N
i=1 (f (xi) − f̂ (xi))2.

It is known that SingleMachine BART may mix poorly when it is run on an extremely large data
set with small residual variance. However as the data simulated is of reasonable size and σ is not
very small the SingleMachine BART is expected to be a good benchmark for comparison (see
discussion in Pratola et al., 2016).

6.1.1. Comparison of modLISA with competing methods
We have implemented modLISA, LISA, and CMC for BART with K = 30 batches on the simu-
lated data for 5,000 iterations with a total of 1,000 posterior draws. Table 1 shows results from all
methods including the SingleMachine which runs BART on the full data set using only one ma-
chine. Results are averaged over three different realizations of training and test data, and include
the Training and Test RMSE for each method, along with tree sizes, σ2 estimates and their 95%
credible intervals (CI). The summaries presented in Table 1 show that although LISA has better

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

158 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Table 1: Comparing Training and Test RMSE, tree sizes, and average post burn-in σ̂2 with 95% CI in each
method for K = 30 to SingleMachine BART (all results are averaged over three different realizations

of data).

Method TrainRMSE TestRMSE Tree nodes Avg σ̂2 95% CI for σ2

CMC 2.73 2.94 602 1.91 [1.45, 2.88]

LISA (unif wgh) 1.18 1.19 55 0.001 [0.0009, 0.0011]

modLISA (wgh avg) 0.57 0.59 7 7.97 [7.87, 8.08]

SingleMachine 0.55 0.56 7 9.04 [8.85, 9.21]

prediction performance than CMC, it does a terrible job at estimating σ2, its estimate being orders
of magnitude smaller than the one produced by CMC. CMC and LISA both generate larger trees
compared to SingleMachine, with CMC generating trees that are ten times larger than LISA’s.
One can see that modLISA with weighted averages dominates both CMC and LISA across all
performance indicators as it yields the smallest RMSE, the smallest tree size, and less biased σ2

estimates. Generally modLISA generates results that are by far the closest to the ones produced
by SingleMachine.

The size of trees produced by each method is in sync with the average acceptance rates of each
tree proposal move shown in Table 2. There is a difference between CMC and LISA’s average
acceptance rates between growing a tree and pruning one. On the other hand modLISA has overall
larger acceptance rates with the smallest relative absolute difference between growing and pruning
probabilities compared to LISA and CMC (6/26 = 23.1% for modLISA, 98.6% for CMC, and
72.2% for LISA) and is closest to SingleMachine (10%). Overall modLISA induced a significant
reduction in tree sizes by preserving a balance between growing and pruning trees which also
improves exploration of the posterior distribution.

For a more clear comparison of the methods Table 3 shows the average coverage of 95% CI
for predictors f (x) and 95% prediction intervals (PI) for future responses y. The calculations are
made for the values of y and f (x) in the training and test data sets.

The coverage for CI is given by the averaging for all training or test data of

#{f (xi) ∈ Îf (xi) : 1 ≤ i ≤ N}
N

,

where Îf (xi) is the CI for f (xi) estimated based on the MCMC draws from π.
The coverage of the PI corresponding to a pair (yi, f (xi)) is given by the proportion of 1,000

i.i.d. samples generated from the true generative model N(f (xi), σ2) that fall between its limits,

Table 2: Average acceptance rates of tree proposal moves.

Method GROW PRUNE CHANGE

CMC 21% 0.03% 34%

LISA 1.8% 0.5% 1.6%

modLISA 20% 26% 19%

SingleMachine 9% 10% 6%

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 159

Table 3: Average coverage for 95% CI constructed for training (TrainCredCov) and test (TestCredCov)
data and 95% prediction intervals constructed for training (TrainPredCov) and test (TestPredCov) data.

The prediction interval coverage is estimated based on 1,000 i.i.d. samples, N = 20,000 and K = 30. All
results are averaged over three different realizations of data.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 45.71% 47.83% 81.95% 99.99%

LISA (unif wgh) 1.54% 1.54% 100% 100%

modLISA (wgh avg) 92.93% 92.91% 60.88% 58.45%

SingleMachine 94.67% 94.65% 71.58% 71.54%

that is, the average over training or test data of

#{ỹj ∈ Ĵ yi : ỹj
iid∼ N(f (xi), σ2)1 ≤ j ≤ 1, 000}

1, 000
,

where Ĵ yi is the PI for yi. The PI coverage in modLISA and SingleMachine are very close to
nominal and vastly outperform the PI’s produced using LISA or CMC.

One can see that coverages of the CI built via CMC and LISA are high, which is not surprising as
both algorithms produce over-dispersed approximations to the conditional distributions of f (x).
Our observation is that the CI for LISA and CMC are too wide to be practically useful. Also
modLISA and SingleMachine have much lower CI coverage than nominal which, as pointed out
by one of the referees, is also expected due to the systematic bias induced by the discrepancy
between the functional forms of the true predictor (continuous) and of the one fitted by BART
(piecewise constant). Thus the CI for f (x) will exhibit poor coverage as they are centered around
a biased estimate of f (x).

In order to verify that this is indeed the case we have generated a data set of size 20,000 from
the piecewise constant function:

f (x) = 1[0,0.2)(x1) + 2 · 1[0.2,0.4)(x1) + 3 · 1[0.4,0.6)(x1) + 4 · 1[0.6,0.8)(x1) + 5 · 1[0.8,1)(x1)

where 1[a,b)(x) = 1 if x ∈ [a, b) and 0 otherwise, x = (x1, . . . , x10) ∈ (0, 1)10 is a ten-dimensional
input vector, with xi ∼ Uniform(0, 1), and y ∼ N(f (x), 9). Additional 5,000 data have also been
simulated as test cases. Table 4 summarizes the analysis with K = 30 and confirms a sharp
decrease in RMSEs even though the noise has the same varianceσ2 = 9. We note that the coverages
of CI build under modLISA and SingleMachine are much higher.

Table 4: Comparing test data RMSE and coverage of 95% CI for piecewise f (x) with N = 20000 and
K = 30.

Method TestRMSE TestCredCov

CMC 1.35 100%

LISA (unif wgh) 0.94 100%

modLISA (wgh avg) 0.24 90.16%

SingleMachine 0.15 98.76%

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

160 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

6.1.2. Comparison with SingleMachine BART
In order to investigate the closeness of posterior samples in each method to the SingleMachine
BART we have plotted in Figure 1 the empirical distribution functions of f̂ (x) generated from
each algorithm for two pairs of observations in the training and test data set. One can see that the
empirical distribution functions in LISA and CMC do not match the ones from SingleMachine,
and look over-dispersed. However, the empirical distribution functions in modLISA weighted
average look much closer to SingleMachine with a slight shift in location.

In order to assess the performance of the sampling procedures considered we use the Cramér-
von Mises distance to assess the difference between empirical distribution functions. This dis-
tance is defined to be ω2 = ∫ ∞

−∞(Fn(x) − F (x))2dF (x) where we assume F (x) = FBART (x)
to be the empirical distribution function generated from posterior samples in SingleMachine
BART and Fn(x) is similarly computed for the alternative method that is considered for
comparison.

Using a set of T = 1,000 equispaced points we compute the average squared difference be-
tween the single machine and all other alternative methods for each observation in the data set.
To illustrate for LISA we estimate ω using ω̂2

LISA = 1
T

∑�
j=1(FLISA(tj) − FBART (tj))2.

Figure 1: Empirical distribution functions of f̂ (x) obtained from MCMC samples produced by modLISA
(red line), LISA (green line), CMC (blue line), and SingleMachine BART (black line) for two different
pairs of training and test data. In this example K = 30. Top left: test x∗ = 2,000, f (x∗) = 14.4. Top right:
test x∗ = 2,000, f (x∗) = 14.4. Bottom left: training x = 999, f (x) = 19.8. Bottom right: training x = 2,001,

f (x) = 11.2.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 161

Figure 2 compares the fitted polynomial trends of ω̂2 (in each method) versus mean predicted
f̂ (x) in SingleMachine with their corresponding 95% credible regions (for both training and test
data). Clearly in LISA and modLISA there are small variations around the trends with no significant
changes in values of ω̂2 among different mean predicted f̂ (x), which specifies consistency within
different training or test observations. In addition, the gap between trends from training and test
data indicate that the average distance between LISA/modLISA and SingleMachine’s distributions
are smaller for test data compared to training data. Furthermore there are still small variations seen
around CMC’s trends, but with slight changes in values of ω̂2 among different mean predicted
f̂ (x), especially for the test data set which indicates inconsistency within different observations.

To emphasize the difference in performance between modLISA and its competitors, Figure 3
shows all the fitted polynomial trends without their credible regions for the training and test

Figure 2: Blue lines: fitted polynomial trends (for both training and test data) of average squared difference
between empirical distribution functions of SingleMachine and the following: (a) CMC for training (solid
line) and test (dot dashed line) data (top left panel), (b) LISA with uniform weights for training (solid line)
and test (dot dashed line) data (top right panel), and (c) modLISA with weighted average for training (solid
line) and test (dot dashed line) data (bottom panel). The difference is plotted against the mean prediction f̂ (x)
produced by SingleMachine. Grey areas represent the 95% CI constructed from 100 independent replicates.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

162 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Figure 3: Comparing fitted polynomial trends of average squared difference in empirical distribution
functions of each method and SingleMachine, as functions of mean predicted f̂ (x) in SingleMachine for

training (left panel) and test data (right panel).

data. One can see that there is a large gap between ω̂2 values in modLISA weighted average
and other alternative methods (for both training and test data), with modLISA having the lowest
value. Thus the weighted average of samples produced by modLISA yields the closest results to
SingleMachine. This can also be justified by comparing average ω̂2 over all training observations
for each trend which is calculated to be 0.013 for modLISA that is significantly smaller than
0.059, 0.048 for CMC, and LISA, respectively. Similarly, the average ω̂2 over test data are 0.008,
0.047, and 0.031 for modLISA, CMC, and LISA, respectively, in which the smallest value is
seen in modLISA. We conclude that the modLISA weighted average sample yields the closest
representation of the BART posterior and exhibits the best performance compared to alternative
methods.

At last we compare run time per iteration for each method so we can draw some conclusions
regarding the computational efficiency.

6.1.3. Run time comparisons
The main goal of methods such as LISA and CMC was to reduce run times regarding big data
applications. Here we have compared average run times per iteration (from one processor) for
each method using our implementation of BART.

As it is seen in Table 5 modLISA, LISA, and CMC with K = 30 are all faster compared to
SingleMachine as they are influenced by the smaller subsets of data used. However, as LISA and
CMC generate much larger trees they become slower compared to modLISA which is the fastest

Table 5: Running times for CMC, LISA, modLISA and SingleMachine when K = 30.

Method Avg time per iteration (s) Speed-up

CMC 11.99 31%

LISA 5.04 71%

modLISA 1.81 90%

SingleMachine 17.28 –

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 163

Table 6: Tree sizes, estimates, and 95% CI for σ2, RMSE for training data (TrainRMSE) of size
N = 60,000 and for test data (TestRMSE) of size 5,000 for each method run with K = 30.

Method TrainRMSE TestRMSE Tree nodes Avg σ̂2 95% CI for σ2

CMC 2.85 5.56 983 0.48 [0.30, 0.66]

LISA (unif wgh) 1.17 1.19 125 0.0003 [0.00031, 0.00035]

modLISA (wgh avg) 0.41 0.42 7 8.82 [8.79, 8.86]

SingleMachine 0.41 0.41 11 9.04 [8.94, 9.16]

method. We have also reported the speed-up percentages with respect to SingleMachine, which
is defined to be (1 − t/17.28) × 100% where t is the average time per iteration in each method.
Clearly CMC shows the smallest speed-up (31%), whereas modLISA has the highest (90%).

6.2. Additional Considerations
6.2.1. Effect of N (number of training data) on posterior accuracy
To see how the number of training data (N) can effect the posterior accuracy we have examined
the performance of all methods when N is increased to 60,000 while we keep the same number
of batches K = 30. Tables 6 shows the results of 1,000 posterior samples generated from fitting
the BART model to the training set with an additional 5,000 data considered as test cases.

Unsurprisingly, Tables 1 and 6 show that the RMSE for training and test data in LISA,
modLISA, and SingleMachine decrease as N increases. More importantly, as LISA and CMC
estimates for σ2 get worse modLISA generates more accurate estimates of σ2 with a larger N.

Trees have a stable size in modLISA, but tend to grow larger in CMC and LISA as N increases.
Table 7 shows that coverage of PI decreases in CMC and LISA, but increases in modLISA and
SingleMachine for larger training data. We find it particularly promising that modLISA competes
with SingleMachine for larger N. Note that coverage of CI in LISA and CMC are still unreliable
because of their over-dispersion, whereas in modLISA and SingleMachine they decrease as N

increases, which is reasonable as larger sample sizes creates narrower CIs that are around a biased
f (x) estimate, as discussed in the previous section. Overall, as N increases, modLISA seems to
be a more reliable method as it shows a better performance compared to all other alternatives.

6.2.2. Effect of K (number of batches) on posterior accuracy
To examine the effect of K on posterior accuracy we have generated 1,000 posterior draws for
training data of size N = 20,000 and K = 10. The test data sample is of size 5,000.

Table 7: Average coverage for 95% CI constructed for training (TrainCredCov) and test (TestCredCov)
data and 95% prediction intervals constructed for training (TrainPredCov) and test (TestPredCov) data.
The prediction interval coverage is estimated based on 1,000 i.i.d. samples, N = 60,000 and K = 30.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 25.74% 17.28% 51.37% 85.92%

LISA (unif wgh) 0.84% 0.84% 100% 100%

modLISA (wgh avg) 94.54% 94.53% 53.68% 52.68%

SingleMachine 94.83% 94.84% 57.79% 58.90%

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

164 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Table 8: Tree sizes, estimates, and 95% CI for σ2, RMSE for training data (TrainRMSE) of size
N = 20,000 and for test data (TestRMSE) of size 5,000 for each method run with K = 10.

Method TrainRMSE TestRMSE Tree nodes Avg σ̂2 95% CI for σ2

CMC 2.92 3.18 951 0.73 [0.57, 0.90]

LISA (unif wgh) 1.70 1.78 131 0.001 [0.0010, 0.0012]

modLISA (wgh avg) 0.46 0.47 7 8.69 [8.61, 8.77]

SingleMachine 0.55 0.56 7 9.04 [8.85, 9.21]

The results are shown in Table 8.
As K decreases the performance of LISA and CMC worsens whereas modLISA generates

stronger results, which is intuitively expected as each batch is larger and closer to the full sample
when K is smaller. We also note the improvement of modLISA over SingleMachine in terms of
RMSE. In addition Table 9 shows that the PI and CI coverages for modLISA and SingleMachine
are very close.

6.3. Varying the Underlying Model—Different f (x)
Consistency in performance of modLISA can also be seen when the underlying model is changed.
For instance we also considered a sample of size 20,000 using

f (x) = 3
√

x1 − 2x2
2 + 5x3x4, (17)

where x = (x1, . . . , x4) is a four-dimensional input vector that is simulated independently from
a U(0, 1) and y ∼ N(f (x), σ2) with σ2 = 1. An additional 5,000 data points were also simulated
as test cases. Similarly by fitting this newly simulated data set to each method with K = 30 we
have generated 1,000 posterior samples with results averaged across three different realizations
of data shown in Tables 10 and 11.

Again modLISA outperforms all alternative methods, and its performance is closest to Sin-
gleMachine. This confirms the previous simulation results and allows us to conclude that modLISA
is a more reliable method for BART models with large data sets.

In the next section we will apply modLISA weighted average BART to a large socio-economic
study.

6.4. Real Data Analysis
The American Community Survey (ACS) is a growing survey from the U.S. Census Bureau and
the Public Use Microdata Sample (PUMS) is a sample of responses to ACS which consists of

Table 9: Average coverage for 95% CI constructed for training (TrainCredCov) and test (TestCredCov)
data and 95% prediction intervals constructed for training (TrainPredCov) and test (TestPredCov) data.
The prediction interval coverage is estimated based on 1,000 i.i.d. samples, N = 20,000 and K = 10.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 31.08% 29.83% 48.18% 99.80%

LISA (unif wgh) 1.44% 1.43% 99.98% 99.96%

modLISA (wgh avg) 94.30% 94.29% 71.08% 70.32%

SingleMachine 94.67% 94.65% 71.58% 71.54%

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 165

Table 10: Tree sizes, estimates, and 95% CI for σ2, RMSE for training data (TrainRMSE) of size
N = 20,000 generated from (17) and for test data (TestRMSE) of size 5,000 for each method run with

K = 30. Results are averaged over three different data replications.

Method TrainRMSE TestRMSE Tree nodes Avg σ̂2 95% CI for σ2

CMC 0.89 0.76 614 0.21 [0.18, 0.34]

LISA (unif wgh) 0.32 0.33 57 0.0001 [0.000083, 0.000103]

modLISA (wgh avg) 0.11 0.11 7 0.88 [0.87, 0.89]

SingleMachine 0.14 0.14 7 1.00 [0.99, 1.03]

various variables related to people and housing unit (see US Bureau of Census, 2013). Considering
the person-level data from PUMS 2013 we would like to predict a person’s total income based on
variables such as sex, age, education, class of worker, state of residence, and citizenship status. We
have collected information related to people who are employed and have total incomes of at least
$5,000 with education levels of either a Bachelor’s degree, Master’s degree, or PhD which resulted
in 437,297 observations. We randomly divided the data set into approximately 80% training and
20% test data, with K = 100 batches considered for splitting the training data to apply modLISA.
Computations were performed on the GPC supercomputer at the SciNet HPC Consortium (Loken
et al., 2010) using 100 cores, each running on 3,500 observations. Considering the logarithm of
total income for each person as the response variable we ran modLISA with weighted average
and SingleMachine BART on this data set for 1,500 iterations (as SingleMachine is very slow)
and discarded the first 1,000 draws which resulted in 500 posterior samples. Table 12 contains the
results of Test RMSE as well as average post burn-in σ2 estimates and tree sizes.

One can see that Test RMSE in modLISA is similar to the one from SingleMachine, but with
a 90% reduction in computation time of modLISA over SingleMachine. This speed improvement
can be explained by the larger acceptance probabilities and by the smaller tree sizes reported in
Tables 13 and 12, respectively. The 90% time cost reduction is important for applications like
the one considered here as it takes more than a day to simulate 1,500 samples from the posterior
using SingleMachine. The results indicate the potential of the proposed method for reducing
computational costs while producing accurate predictions.

7. DISCUSSION

The challenge of using MCMC algorithms to sample posterior distributions obtained from a
massive sample of observations is a serious one.

Table 11: Average coverage for 95% CI constructed for training (TrainCredCov) and test (TestCredCov)
data and 95% prediction intervals constructed for training (TrainPredCov) and test (TestPredCov) data

generated from (17). The prediction interval coverage is estimated based on 1,000 i.i.d. samples,
N = 20,000 and K = 30. Results are averaged over three different data replications.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 49.74% 52.97% 84.16% 100%

LISA (unif wgh) 1.50% 1.49% 100% 100%

modLISA (wgh avg) 93.07% 93.18% 82.88% 83.50%

SingleMachine 94.82% 94.81% 79.13% 78.47%

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

166 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Table 12: Perfomance summaries computed from 1,000 posterior samples generated from modLISA with
K = 100 and SingleMachine BART on PUMS 2013 test data.

Method TestRMSE Avg σ̂2 Tree nodes Speed-up

modLISA (wgh avg) 0.71 0.488 7 90%

SingleMachine 0.70 0.485 23 –

Table 13: Average acceptance rates of tree proposal moves.

Method GROW PRUNE CHANGE

modLISA 10% 11% 14%

SingleMachine 8% 7% 7%

In this article we introduced a new method based on the idea of randomly dividing the data
into batches and drawing samples from each of the resulting sub-posteriors independently and
in parallel on different machines. We propose a novel way to define the sub-posteriors and we
develop a strategy to combine the samples produced by each batch analysis for the important
class of BART models. For this model the proposed methodology performs very well and shows
a reduction in computation time that are as much as 90%.

In future work we would like to find a procedure for combining the sub-posterior samples
that will make LISA easy to adapt to a wide variety of models. We also hope that our article will
stimulate the research into this type of divide-and-conquer approaches for Big Data MCMC and
will expand the research on how to construct the batch-specific sub-posteriors along with novel
strategies of combining or weighting the samples obtained from each batch analysis.

APPENDIX

Proof of Theorem 1. For simplicity assume n = N/K is the number of observations in each
batch and consider θ to be a one-dimensional parameter. We will show the statements of Theorem 1
separately for LISA and CMC.

LISA: Given assumption A1, ∀ j w.p.1:

∀ ε
(j)
1 > 0 ∃ M1 > 0 s.t. ∀ n > M1 |θ̂(j)

n,L − θL| < ε
(j)
1 (1)

hence with the continuous assumption in A3 we have ∀ j w.p.1:

∀ γ
(j)
1 > 0 ∃ M1 > 0 s.t. ∀ n > M1

∣∣∣∣ log
(
πj,LISA(θ̂(j)

n,L|Y (j))
) − log

(
πj,LISA(θL|Y (j))∣∣∣∣ < γ

(j)
1

(2)
We know that

(
πFull(θ|YN)

)K ∝ ∏K
j=1 πj,LISA(θ|Y (j)), hence:

log
(
πFull(θ|YN)

) = 1
K

K∑
j=1

log
(
πj,LISA(θ|Y (j))

) + c (3)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 167

where c is a constant. This implies that

log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

= 1
K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

) + c. (4)

As θ̂N is the full posterior mode:

[
1
K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)] −
[

1
K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)] ≥ 0, (5)

and because θ̂
(j)
n,L is the mode of πj,LISA:

1
K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

) ≤ 1
K

K∑
j=1

log
(
πj,LISA(θ̂(j)

n,L|Y (j))
)
, (6)

and thus from (5) and (6) we will have:

0 ≤
[

1
K

K∑
j=1

log
(
πj,LISA(θ̂N |Y (j))

)] −
[

1
K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)]

≤
[

1
K

K∑
j=1

log
(
πj,LISA(θ̂(j)

n,L|Y (j))
)] −

[
1
K

K∑
j=1

log
(
πj,LISA(θL|Y (j))

)]
. (7)

Taking absolute values from last inequality in (7) and using the triangle inequality we have w.p.1:

1
K

∣∣∣∣∣
K∑

j=1

[
log

(
πj,LISA(θ̂N |Y (j))

) − log
(
πj,LISA(θL|Y (j))

)]∣∣∣∣∣ ≤

1
K

∣∣∣∣∣
K∑

j=1

[
log

(
πj,LISA(θ̂(j)

n,L|Y (j))
) − log

(
πj,LISA(θL|Y (j))

)]∣∣∣∣∣ ≤

1
K

K∑
j=1

∣∣∣∣ log
(
πj,LISA(θ̂(j)

n,L|Y (j))
) − log

(
πj,LISA(θL|Y (j))

)∣∣∣∣ ≤ 1
K

K∑
j=1

γ
(j)
1 = γ1. (8)

The last inequality in (8) is followed by (2). From inequality (8) and the fact that the posteriors
are unimodal as stated in assumption A3 we can conclude w.p.1:

|θ̂N − θL| −→ 0 as N → ∞. (9)

From (9) and assumption A1 we can conclude ∀ j w.p.1:

|θ̂N − θ̂
(j)
n,L| −→ 0 as n → ∞, (10)

and from (10) and assumption A3, wp.1, ∀ j:∣∣∣∣∣ ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂N

− ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,L

∣∣∣∣∣ −→ 0 as n → ∞. (11)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

168 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

In addition from (10) we can also conclude that for any i and j such that i �= j:

|θ̂(i)
n,L − θ̂

(j)
n,L| −→ 0 as n → ∞. (12)

And thus benefitting from (11), (12), and the structural form of sub-posterior distributions in
LISA (or assumption A2) for i �= j we have w.p.1:∣∣∣∣∣ ∂2

∂θ2 log
(
πi,LISA(θ|Y (i))

)∣∣∣∣
θ=θ̂

(i)
n,L

− ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,L

∣∣∣∣∣ −→ 0 as n → ∞ (13)

Now take the second derivative with respect to θ from both sides of (3) evaluated at θ = θ̂N :

−ÎN := ∂2

∂θ2 log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

= 1
K

K∑
j=1

∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣∣
θ=θ̂N

, (14)

denoting:

−Î
(j)
n,L := ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣∣∣∣
θ=θ̂

(j)
n,L

. (15)

Using (11), (13), and (14), will result in:

|ÎN − Î
(j)
n,L| =

∣∣∣∣∣ ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L

− 1
K

K∑
i=1

∂2

∂θ2 log
(
πi,LISA(θ|Y (i))

)∣∣
θ=θ̂N

∣∣∣∣∣
≤ 1

K

∣∣∣∣∣ ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L

− ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂N

∣∣∣∣∣ +

1
K

∣∣∣∣∣∑
i�=j

[
∂2

∂θ2 log
(
πi,LISA(θ|Y (i))

)∣∣
θ=θ̂N

− ∂2

∂θ2 log
(
πj,LISA(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,L

]∣∣∣∣∣ −→ 0

(16)

w.p.1 ∀ j.

CMC: In CMC, as πFull(θ|YN) ∝ ∏K
j=1 πj,CMC(θ|Y (j)), we will have

log
(
πFull(θ|YN)

) =
K∑

j=1

log
(
πj,CMC(θ|Y (j))

) + c, (17)

where c is a constant. Thus, using A1 through A3 with a similar proof as in LISA, we can show
that w.p.1:

|θ̂N − θC| −→ 0 as N → ∞, (18)

and hence ∀ j w.p.1:

|θ̂N − θ̂
(j)
n,C| −→ 0 as n → ∞ (19)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 169

|θ̂(i)
n,C − θ̂

(j)
n,C| −→ 0 as n → ∞ for i �= j. (20)

Similarly from (19) and assumption A3, wp.1, ∀ j:∣∣∣∣∣ ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂N

− ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,C

∣∣∣∣∣ −→ 0 as n → ∞. (21)

Again benefitting from (20), (21), and the structural form of sub-posterior distributions in CMC
(or assumption A2), for i �= j, we have w.p.1:∣∣∣∣∣ ∂2

∂θ2 log
(
πi,CMC(θ|Y (i))

)∣∣∣∣
θ=θ̂

(i)
n,C

− ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣
θ=θ̂

(j)
n,C

∣∣∣∣∣ −→ 0 as n → ∞. (22)

Now taking the second derivative with respect to θ from both sides of (17) evaluated at θ = θ̂N :

−ÎN := ∂2

∂θ2 log
(
πFull(θ|YN)

)∣∣∣∣∣
θ=θ̂N

=
K∑

j=1

∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣∣
θ=θ̂N

, (23)

denoting:

−Î
(j)
n,C := ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣∣∣∣
θ=θ̂

(j)
n,C

. (24)

Using (21), (22), and (23) will similarly result in:∣∣∣∣∣ ÎN

K
− Î

(j)
n,C

∣∣∣∣∣ =
∣∣∣∣∣ ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C

− 1
K

K∑
i=1

∂2

∂θ2 log
(
πi,CMC(θ|Y (i))

)∣∣
θ=θ̂N

∣∣∣∣∣
≤ 1

K

∣∣∣∣∣ ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C

− ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂N

∣∣∣∣∣ +

1
K

∣∣∣∣∣∑
i�=j

[
∂2

∂θ2 log
(
πi,CMC(θ|Y (i))

)∣∣
θ=θ̂N

− ∂2

∂θ2 log
(
πj,CMC(θ|Y (j))

)∣∣
θ=θ̂

(j)
n,C

]∣∣∣∣∣ −→ 0

(25)

w.p.1 ∀ j. �

Acceptance Ratios for BART
We will use a similar explanation and notation given by Kapelner & Bleich (2013) to derive the
acceptance ratios of the Metropolis–Hastings step in updating trees of BART. We will further
extend these calculations for LISA and CMC.

The Metropolis–Hastings algorithm is used to draw samples from conditional distribution
given in Equation (14)

p(T | R, σ) ∝ p(T)
∫

p(R | M, T, σ) p(M | T, σ) dM.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

170 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

Assume we propose T∗, then the acceptance ratio will be:

r = P(T∗ → T)
P(T → T∗)︸ ︷︷ ︸

transition ratio

× P(R | T∗, σ2)
P(R | T, σ2)︸ ︷︷ ︸

likelihood ratio

× P(T∗)
P(T)︸ ︷︷ ︸

tree structure ratio

.

We will calculate r for each possible proposal:

GROW Proposal:

• Transition ratio: Consider growing one of the b terminal nodes of tree T , say node η, to two
children nodes. Then we will have:

P(T → T∗) = P(GROW) P(choosing η) P(choosing a predictor to split on) ×
P(choosing a splitting value)

= P(GROW)
1
b

1
p(η)

1
np(η)

,

where p(η) denotes the number of predictors left available to split on at node η (there must be
at least two unique values in each predictor to consider), and where np(η) denotes the number
of unique splitting values left in the chosen pth attribute.
In addition we have:

P(T∗ → T) = P(PRUNE) P(choosing η to prune) = P(PRUNE) 1
w∗ ,

where w∗ is the number of nodes with two terminal nodes in the new tree T∗. Hence the transition
ratio will be:

P(T∗ → T)
P(T → T∗)

= P(PRUNE)
P(GROW)

b p(η) np(η)
w∗

• Likelihood ratio: For computing the likelihood ratio we have:

P(R1, . . . , Rn | T, σ2) =
b∏

l=1

P(Rl1 , . . . , Rlnl
| σ2)

as the data are partitioned across all b terminal nodes of tree T . Rlj denotes the j-th data
(residual) in the l-th terminal node and nl is the number of observations in the l-th terminal
node. From BART we know that μl ∼ N(0, σ2

μ) hence we will have:

P(Rl1 , . . . , Rlnl
| σ2) =

∫
R

P(Rl1 , . . . , Rlnl
| μl, σ

2) P(μl; σ2
μ) dμl.

By completion of the square this will equal to:

P(Rl1 , . . . , Rlnl
| σ2) =

1
(2πσ2)nl/2

√
σ2

σ2 + nlσ2
μ

exp

⎛
⎝− 1

2σ2

⎡
⎣ nl∑

i=1

(Rli − R̄l)2 − R̄l
2
nl

2

nl + σ2

σ2
μ

+ nlR̄l
2

⎤
⎦
⎞
⎠ , (26)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 171

where R̄l is the average residual at terminal node l. Note that the likelihood is specified by all
terminal nodes, and as T differs from T∗ only at its l-th terminal node which splits into two
terminal children lL and lR, the probability terms from other terminal nodes will be cancelled
in the likelihood ratio which results in (using (26)):

P(R | T∗, σ2)
P(R | T, σ2)

=
√

σ2(σ2 + nlσ2
μ)

(σ2 + nlLσ2
μ)(σ2 + nlRσ2

μ)
×

exp
(

σ2
μ

2σ2

[
(
∑nlL

i=1 RlL,i)2

σ2 + nlLσ2
μ

+ (
∑nlR

i=1 RlR,i)2

σ2 + nlRσ2
μ

− (
∑nl

i=1 Rl,i)2

σ2 + nlσ2
μ

])
, (27)

where RlL and RlR are residuals in the left and right child (respectively) with corresponding
number of observations nlL and nlR .

• Tree Structure ratio: Recall the descriptions given in BART related to the probability that node
η at depth dη is non-terminal:

PSplit(η) = α

(1 + dη)β
,

with probability of assigning a rule given as:

PRule(η) = 1
p(η)

1
np(η)

.

Hence the prior on each tree will be:

P(T) =
∏

η ∈ non-terminal nodes
PSplit(η) PRule(η) ×

∏
η ∈ terminal nodes

(1 − PSplit(η)),

which will result in the following tree structure ratio:

P(T∗)
P(T)

= α
(1 − α

(2+dη)β)2

((1 + dη)β − α) p(η) np(η)
. (28)

PRUNE Proposal:

• Transition ratio: A similar description as in the GROW step will lead to:

P(T∗ → T)
P(T → T∗)

= P(GROW)
P(PRUNE)

w

(b − 1) p(η∗) np(η∗)
,

where w is the number of nodes with two terminal nodes in tree T . Note that tree T∗ has one
fewer terminal node (b − 1).

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.
• Tree Structure ratio: This is also the inverse of the tree structure in the GROW proposal.

CHANGE Proposal:

• Transition ratio: As described by Kapelner & Bleich (2013), for simplicity, we will only change
the rule assignments for nodes with two terminal children. Hence:

P(T → T∗) = P(CHANGE) P(choosing η) P(choosing a predictor to split on) ×
P(choosing a splitting value),

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

172 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

with the first three terms cancelling in the transition ratio given as:

P(T∗ → T)
P(T → T∗)

= np∗ (η∗)
np(η)

.

• Likelihood ratio: T∗ differs from T only from the two terminal children effected by the changed
rules from their parents. Hence by cancelling the probabilities from other terminal nodes we
will achieve the likelihood ratio:

P(R | T∗, σ2)
P(R | T, σ2)

=

√√√√√√√
(

σ2

σ2
μ

+ n1

)(
σ2

σ2
μ

+ n2

)
(

σ2

σ2
μ

+ n∗
1

)(
σ2

σ2
μ

+ n∗
2

) ×

exp

⎛
⎝ 1

2σ2

⎡
⎣(∑n1∗

i=1 R1∗,i
)2

σ2

σ2
μ

+ n∗
1

+
(∑n2∗

i=1 R2∗,i
)2

σ2

σ2
μ

+ n∗
2

−
(∑n1

i=1 R1,i

)2

σ2

σ2
μ

+ n1
−

(∑n2
i=1 R2,i

)2

σ2

σ2
μ

+ n2

⎤
⎦
⎞
⎠ ,

(29)

where subscripts 1 and 2 denote the two terminal children, and the asterisk refers to the proposed
tree T∗.

• Tree Structure ratio: Following the definition of P(T) we will have that:

P(T∗)
P(T)

= np(η)
np∗ (η∗)

.

Note that:

P(T∗ → T)
P(T → T∗)

× P(T∗)
P(T)

= 1.

LISA for BART
GROW Proposal:

• Transition ratio: No change.
• Likelihood ratio: Equation (26) changes to:

P(Rl1 , . . . , Rlnl
| σ2) =

1
(2πσ2)nl/2

√
σ2

σ2 + Knlσ2
μ

exp

⎛
⎝− K

2σ2

⎡
⎣ nl∑

i=1

(Rli − R̄l)2 − KR̄l
2
nl

2

Knl + σ2

σ2
μ

+ nlR̄l
2

⎤
⎦
⎞
⎠ .

(30)

Thus the likelihood ratio will change to:

P(R | T∗, σ2)
PR | T, σ2)

=
√

σ2(σ2 + Knlσ2
μ)

(σ2 + KnlLσ2
μ)(σ2 + KnlRσ2

μ)
×

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 173

exp

⎛
⎜⎝K2σ2

μ

2σ2

⎡
⎢⎣
(∑nlL

i=1 RlL,i

)2

σ2 + KnlLσ2
μ

+
(∑nlR

i=1 RlR,i

)2

σ2 + KnlRσ2
μ

−
(∑nl

i=1 Rl,i

)2

σ2 + Knlσ2
μ

⎤
⎥⎦
⎞
⎟⎠ .

(31)

• Tree Structure ratio: No change.

PRUNE Proposal:

• Transition ratio: No change.
• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.
• Tree Structure ratio: No change.

CHANGE Proposal:

• Transition ratio: No change.
• Likelihood ratio:

P(R | T∗, σ2)
P(R | T, σ2)

=

√√√√√√√
(

σ2

σ2
μ

+ Kn1

)(
σ2

σ2
μ

+ Kn2

)
(

σ2

σ2
μ

+ Kn∗
1

)(
σ2

σ2
μ

+ Kn∗
2

) × (32)

exp

⎛
⎝ K2

2σ2

⎡
⎣(∑n1∗

i=1 R1∗,i
)2

σ2

σ2
μ

+ Kn∗
1

+
(∑n2∗

i=1 R2∗,i
)2

σ2

σ2
μ

+ Kn∗
2

−
(∑n1

i=1 R1,i

)2

σ2

σ2
μ

+ Kn1
−

(∑n2
i=1 R2,i

)2

σ2

σ2
μ

+ Kn2

⎤
⎦
⎞
⎠ .

• Tree Structure ratio: No change.

The conditional posterior of σ2 and Mj changes to:
σ2 | (T1, M1), . . . , (Tm, Mm), Y, X ∝ Inv − Gamma(ρ, γ)

where ρ = ν+Kn
2 and γ = 1

2 [K
∑n

i=1 (yi − ∑m
j=1 g(xi; Mj, Tj))2 + λν]. For the condi-

tional posterior Mj | Tj, Rj, σ we have that

μij | Tj, Rj, σ ∼ N

⎛
⎝ σ2

σ2
μ

μμ + KniR̄j(i)

σ2

σ2
μ

+ Kni

,
σ2

σ2

σ2
μ

+ Kni

⎞
⎠ ,

where R̄j(i) denotes the average residual (computed without tree j) at terminal node i with total
number of data ni. Note that we can consider μμ = 0.

CMC for BART
GROW Proposal:

• Transition ratio: No change.
• Likelihood ratio: Equation (26) changes to:

P(Rl1 , . . . , Rlnl
| σ2) = 1

(2πσ2)nl/2

(√
2πσ2

μ

)1− 1
K

√√√√ σ2

σ2

K
+ nlσ2

μ

×

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

174 ENTEZARI, CRAIU AND ROSENTHAL Vol. 46, No. 1

exp

⎛
⎝− 1

2σ2

⎡
⎣ nl∑

i=1

(Rli − R̄l)2 − R̄l
2
nl

2

nl + σ2

Kσ2
μ

+ nlR̄l
2

⎤
⎦
⎞
⎠ . (33)

Thus the likelihood ratio will change to:

P(R | T∗, σ2)
P(R | T, σ2)

=
(√

2πσ2
μ

)1− 1
K

√√√√√ σ2
(

σ2

K
+ nlσ2

μ

)
(

σ2

K
+ nlLσ2

μ

)(
σ2

K
+ nlRσ2

μ

) ×

exp

⎛
⎜⎝ σ2

μ

2σ2

⎡
⎢⎣
(∑nlL

i=1 RlL,i

)2

σ2

K
+ nlLσ2

μ

+
(∑nlR

i=1 RlR,i

)2

σ2

K
+ nlRσ2

μ

−
(∑nl

i=1 Rl,i

)2

σ2

K
+ nlσ2

μ

⎤
⎥⎦
⎞
⎟⎠ .

(34)

• Tree Structure ratio: The tree structure ratio will be raised to the power 1/K:[
P(T∗)
P(T)

] 1
K

.

PRUNE Proposal:

• Transition ratio: No change.
• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW proposal.
• Tree Structure ratio: This is the inverse of the tree structure ratio in the GROW proposal.

CHANGE Proposal:

• Transition ratio: No change.
• Likelihood ratio:

P(R | T∗, σ2)
P(R | T, σ2)

=

√√√√√√√
(

σ2

Kσ2
μ

+ n1

)(
σ2

Kσ2
μ

+ n2

)
(

σ2

Kσ2
μ

+ n∗
1

)(
σ2

Kσ2
μ

+ n∗
2

) ×

exp

⎛
⎝ 1

2σ2

⎡
⎣(∑n1∗

i=1 R1∗,i
)2

σ2

Kσ2
μ

+ n∗
1

+
(∑n2∗

i=1 R2∗,i
)2

σ2

Kσ2
μ

+ n∗
2

−
(∑n1

i=1 R1,i

)2

σ2

Kσ2
μ

+ n1
−

(∑n2
i=1 R2,i

)2

σ2

Kσ2
μ

+ n2

⎤
⎦
⎞
⎠ .

(35)

• Tree Structure ratio: The tree structure ratio will be raised to the power 1/K.

Now the product of transition ratio and tree structure ratio is not 1 anymore:

P(T∗ → T)
P(T → T∗)

× P(T∗)
P(T)

= np(η)
1
K

−1 np∗ (η∗)1− 1
K .

The conditional posterior of σ2 and Mj changes to:

σ2 | (T1, M1), . . . , (Tm, Mm), Y, X ∝ Inv − Gamma(ρ, γ)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs

2018 LIKELIHOOD INFLATING SAMPLING ALGORITHM 175

where ρ = ν+2+K(n−2)
2K

and γ = 1
2 [

∑n
i=1 (yi − ∑m

j=1 g(xi; Mj, Tj))2 + λν
K

]. For the conditional
posterior Mj | Tj, Rj, σ we have:

μij | Tj, Rj, σ ∼ N

⎛
⎝ σ2

Kσ2
μ

μμ + niR̄j(i)

σ2

Kσ2
μ

+ ni

,
σ2

σ2

Kσ2
μ

+ ni

⎞
⎠

where we can consider μμ = 0.

ACKNOWLEDGEMENTS
We thank the editor, Grace Y. Yi, the guest editor, Richard Lockhart, the associate editor, and three
anonymous referees for helpful suggestions that have greatly improved the article. This work has
been supported by Natural Sciences and Engineering Research Council of Canada grants to RVC
and JSR.

BIBLIOGRAPHY
Brooks, S., Gelman, A., Jones, G. L. & Meng, X., editors (2011). Handbook of Markov Chain Monte Carlo.

CRC Press, Boca Raton, Florida, USA.
Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search. Journal of the

American Statistical Association, 93, 935–948.
Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The

Annals of Applied Statistics, 4, 266–298.
Craiu, R. V. & Rosenthal, J. S. (2014). Bayesian computation via Markov chain Monte Carlo. Annual Review

of Statistics and Its Application, 1, 179–201.
Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67.
Kapelner, A. & Bleich, J. (2013). bartmachine: Machine learning with Bayesian additive regression trees.

arXiv preprint arXiv:1312.2171.
Laskey, K. B. & Myers, J. W. (2003). Population Markov chain Monte Carlo. Machine Learning, 50, 175–196.
Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.-H.,

Chen, J. et al. (2010). Scinet: Lessons learned from building a power-efficient top-20 system and data
centre. Journal of Physics: Conference Series, 256. IOP Publishing, 012026.

Neiswanger, W., Wang, C., & Xing, E. (2013). Asymptotically exact, embarrassingly parallel MCMC. arXiv
preprint arXiv:1311.4780.

Pratola, M. T. et al. (2016). Efficient Metropolis–Hastings proposal mechanisms for Bayesian regression tree
models. Bayesian Analysis, 11, 885–911.

Rosenthal, J. S. (2000). Parallel computing and Monte Carlo algorithms. Far East Journal of Theoretical
Statistics, 4, 207–236.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., & McCulloch, R. E. (2016). Bayes
and big data: The consensus Monte Carlo algorithm. International Journal of Management Science and
Engineering Management, 11, 78–88.

US Bureau of Census (2013). 2013 ACS 1-YEAR PUMS data.
Wang, X. & Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass sampler. arXiv preprint

arXiv:1312.4605.
Wilkinson, D. J. (2006). Parallel Bayesian computation. Statistics Textbooks and Monographs, 184, 477.

Received 29 April 2016
Accepted 16 July 2017

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique

