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A new, implicit method is suggested for density estimation in inverse problems, where data are drawn not from the target dis-
tribution, but rather from its image under a transformation. The approach that we propose produces density estimators that are
themselves densities, without the negativity problems known to plague more explicit inversion techniques. We also suggest a
general empirical approach to selecting the smoothing parameter so as to optimize performance in the context of the target dis-
tribution, rather than its image after the transformation. We apply the new methods, and competing techniques, to a thick-section
Wicksell-type problem, using data on the radii of nerve terminals from the electric organ of the electric ray Torpedo marmorata. It
is shown that statistical properties of estimators in this problem are very different from those for the thin-slice, classical Wicksell
problem, and so the two cases cannot be developed simply by analogy with one another.
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1. INTRODUCTION

In this article we address problems of “stereological un-
folding” that involve estimating a probability density f
when data are available only from a distribution whose den-
sity is a transformation of f, say g = T'(f). To recover f, it
is necessary to invert the transformation, either explicitly or
implicitly. Explicit back-transformation can be problemati-
cal, not least because the back-transformation of a density
estimator is often not a density and, for example, can take
negative values. (See, e.g., van Es and Hoogendoorn 1990
for graphical illustrations of this difficulty.) In this article
we suggest an alternative, implicit approach. We take our
estimator of f to lie always in the space of probability den-
sities and to be of a specified type, such as a histogram or
frequency polygon, and we use a technique related to least
squares cross-validation (Bowman 1984; Rudemo 1982) to
fit it to data from the distribution with density g = T'(f). A
second application of ideas related to cross-validation then
may be used to choose the smoothing parameter. The latter
technique is also appropriate for choosing the smoothing
parameter even when the estimator of f is computed by
other means; for example, by explicit inversion of a kernel
density estimator of g.

The problems that we address here are all related to
the classic example of density estimation in settings in-
volving inverse transformations, namely that of Wicksell’s
(1925) problem in stereology, reviewed by Hall (1988, sec.
1.9), Hoogendoorn (1992), Ripley (1981, sec. 9.4), Stoyan,
Kendall, and Mecke (1987, sec. 11.4.1), and Weibel (1980).
This problem involves estimating the distribution of radii of
spheres, when data on radius are available only from ran-
dom, thin slices (in theory, slices of zero thickness) through
the three-dimensional medium containing the spheres. In
this article we address not only Wicksell’s original prob-
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lem, but also a version involving relatively thick sections.
Despite the importance of the thick-slice case to industrial
and biological applications (e.g., Anderssen and Jakeman
1975a, 1975b; Fox 1988; Goldsmith 1967), it has seldom
been studied in the statistics literature. As we show, the
thick-slice case has features strikingly different from those
of the classical Wicksell problem, and in statistical terms
cannot be adequately treated by analogy with the latter.
Therefore, along with our implicit approach we also study
explicit density-inversion methods in the thick-slice case.
We illustrate our techniques using thick-slice data on the
radii of synaptic nerve terminals from the electric organ of
the electric ray Torpedo marmorata (see Sec. 3).

The method that we present for selecting the smoothing
parameter is apparently the first to be proposed for den-
sity estimation in Wicksell-type problems. Indeed, choos-
ing the smoothing parameter would be particularly diffi-
cult in the contexts of previous treatments, as it must be
selected relative to performance in the space of densities
f, not in the space of images of f. For example, standard
cross-validation arguments are inappropriate, because they
rely on approximating the inner product of the true den-
sity and the density estimator by the average of values of
the leave-one-out density estimator at sample points. This
works only if the sample points are actually drawn from
the true distribution, and in the context of inverse problems
they are not. Even plug-in methods, which are based on an
asymptotic approximation to the optimal bandwidth, are not
straightforward, because they require stereological unfold-
ing to estimate derivatives of the sampled density, not just
the density itself.

We should note that there is no absolute standardiza-
tion in the literature on usage of the terms “thick” and
“thin” in reference to stereological inference from sections
of spheres. Our usage coincides with that of Mase (1995),
for example. However, because the Fredholm or type 2
Volterra equation [i.e., our equation (4)] with which for-
mulas in both the “thick” and “thin” cases are connected
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is sometimes called the “thin-section equation,” the applied
mathematics literature in particular sometimes asserts that
both settings involve “thin” slices.

The case of thick slices (i.e., slices whose thickness is
comparable with the sizes of particles themselves) was first
considered by Bach (1967) and Goldsmith (1967), who gave
formulas for the transformations and their inverses. Gold-
smith (1967) noted that the inversion problem can be treated
as one of solving a Volterra integral equation of the sec-
ond type, and gave an approximate linear solution that may
be used to compute histogram density estimators but that
would not in fact yield consistency. Anderssen and Jakeman
(1974) and Jakeman and Anderssen (1975) studied numer-
ical methods for solving the Volterra equations in both the
thick- and thin-slice contexts. Mecke and Stoyan (1980) re-
viewed and compared inversion formulas in the thick- and
thin-slice cases and gave rigorous proofs of the formulas
under the assumption that the distribution of sphere cen-
ters may be interpreted as a marked point process with
marks equal to radii. [In analyzing the thin-slice case, Wick-
sell (1925) had assumed that sphere centers are points of a
sparse Poisson process; see also Baddeley 1982.] For thin
slices, Taylor (1983) suggested estimating the density of
sphere radii by first estimating the density of radii observed
in slices and then explicitly back-transforming. Hall and
Smith (1988) derived asymptotic bias, variance, and mean
squared error properties of Taylor’s and related estimators,
and showed that their mean-squared performance is optimal
in a minimax sense. Van Es and Hoogendoorn (1990) pro-
posed alternative methods to those considered by Taylor
(1983) and Hall and Smith (1988). They noted that esti-
mators of this general type (i.e., explicit estimators) suffer
from problems with negativity and differ more from the
true density than they do from one another. Mase (1995)
addressed estimation of distributions rather than densities,
but briefly considered smoothing techniques. Carroll, van
Rooij, and Ruymgaart (1991) and Johnstone and Silverman
(1991), among others, addressed statistical aspects of in-
verse problems more generally.

Section 2 describes our methods in a general setting,
appropriate to either thin or thick slices, and introduces
the problem of density estimation for thick-slice data. Sec-
tion 3 describes the numerical properties of our methods,
through application to both real and simulated data. Section
4 summarizes theoretical properties for which the Appendix
sketches a technical analysis.

2. METHODOLOGY

2.1 Implicit Inversion in the General Case

Let F denote a class of bounded probability densities, and
let G be the image of F under a transformation 7". Using
data from the distribution with density g = T(f) € G, we
wish to estimate f € F. To achieve this goal, we propose
taking an element f of a flexible class F of potential f’s,
such as histograms or frequency polygons. Each f € F
depends on a smoothing parameter, i say, as well as on
other quantities, such as bin heights when F is the class
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of histograms. The class F is related to a sieve, and our
techniques have connections to Grenander’s (1981) method
of sieves.

For example, we might take  to be a set of histograms f
having binwidth h, bins B; for 1 < j < k, and height ¢; on
the jth bin. Alternatively, f could be the linear interpolant
(at bin centers) of such an estimator—that is, a frequency
polygon.

Our algorithm for selecting an element of F empirically
is as follows. First, define a least squares goodness-of-fit
criterion y(f, f) to characterize the closeness of elements of
F to the true f. Next, develop an empirical approximation
4 to ~, for a given value of h. Then, for a given value of
h, use 4 to select a data-dependent member of F that is
close to the true f. Finally, use a version of least squares
cross-validation to choose h empirically.

More specifically, given a bounded, nonnegative weight
function w, we define the goodness-of-fit criterion function

W= [G=pru= [ FPo-z2 [Frus [ o

Ideally, for a given value h of the smoothing parameter, we
would wish to choose f € F to minimize v(f, f). In anal-
ogy to cross-validation arguments, note that the first term on
the far right side does not depend on f and is readily com-
puted, and that the last term there does not depend on f and
so is unimportant to the operation of minimizing ~( 1, ).
Therefore, we need only estimate I(f, f) = J ffw. Sup-
pose that we have an estimator /(f) of I(f, f) based on
a random sample Y = {Y3,...,Y,} from the distribution
with density g. We note here that in the case of transfor-
mations of Wicksell type, we suggest unbiased estimators
of the form

I(f) =n"t 3o LAY, M

where L is a certain linear functional defined later. Thenl

using our estimator I(f) of I(f, f), we now choose f = f
to minimize

) = / Pw — 20(F).

We call the resulting f an “implicit inversion” estimator
of f.

The final step is to select 4 empirically. (When it is de-
sired to explicitly indicate dependence on the smoothing
parameter h, we shall write f, and fh in place of f and f )
Assume then that [ has the form in (1) and let I; denote
the version of I that arises if we replace the n sample )
by the (n — 1) sample J; = Y\ {Y;} in the definition there;
specifically,

L(f)=(n-1)""> LFY;)
JFL
Put

¥i(fn) Z/fgw—ﬂi(fh),
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and let f,; be the function f, € F that minimizes %;(fy).
Finally, in the spirit of cross-validation (see, e.g., Bowman
1984; Rudemo 1982), let

i = [fu-wt Y L), @
. =1

and choose h to minimize 5(h). Our final estimator of f
is fﬁ.

For insight into (2), note that if we were able to directly
observe variables X; with density f, and compute density
estimators fj, (from the full sample) and fy; (from the sam-
ple with X; omitted), then in place of (2), we would define
the cross-validation criterion by

/ Frw =201 Fri(Xw(X). A3)
=1

This is usually motivated through the fact that it is an
almost-unbiased approximation to the first two components
in the expansion [(f, — f)?w = [ ffw—2 [ ffaw+ [ fPw
of mean integrated squared error. By using (2) instead of (3),
we are replacing the “cross-product” term fp,;(X;)w(X;) by
L(f1:)(Y;), where the functional L effectively inverts the
transformation that took X; to Y;. (It also incorporates the
weight w.) This method for empirical smoothing parameter
selection can be used quite generally and does not require
fr to be an implicit-inversion estimator. In fact, in Sections
3 and 4 we study properties of the method in the context
of explicit inversion as well.

In both the histogram and frequency polygon cases men-
tioned earlier in this section, the problem of minimizing
4(f) reduces to one of minimizing a k-variate quadratic
function of the ¢;’s, subject to each t; being nonnegative.
Imposing the additional condition h ", t; = 1 ensures that
the density estimator integrates to 1. (This is true for the lin-
ear interpolant as well if we insist that the first and last bins
are empty.) These constrained minimization problems may
now be solved using standard quadratic programming meth-
ods. We remark that our focus here on histogram estima-
tors is due not only to their essential simplicity, and to the
fact that they lead to a computationally tractable quadratic
optimization, but also to the fact that histogram estimators
have a long-standing tradition in the stereological literature.
Similar remarks are applicable also to frequency polygon
estimators, which are introduced here primarily to handle
the thin-slice case, where our implicit approach will require
the estimated density to be a continuous function.

We claim that when the transformation 7T is the iden-
tity, our “implicit” approach to defining estimators f}, by
minimizing 4(f,) often reduces to familiar, “explicit” def-
initions, and that in such cases our argument that h be
chosen to minimize 4(h) turns out to be no more than
the usual cross-validation approach to smoothing param-
eter choice. For example, if f is the histogram with bins
B; of width h and with respective bin heights ¢;, then
f(z) = X, I(x € Bj)t; and an estimator of I(f,f) is
I(fy=nty, >, I(Y: € Bj)t;. For this choice of I, the
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estimator f = f that minimizes 4(f) is the usual histogram
estimator, for which ht; equals the proportion of data that
lie in bin B;. Further, in the case of this example, it is also
clear that 4 reduces to the usual cross-validation criterion
for the selection of h.

2.2

In the case of Wicksell-type problems for thick slices, the
data may be thought of as originating in the following way.
Spheres are embedded in an opaque matrix, through which
a slice of thickness 24 is taken. For any given sphere that
penetrates the slice, the largest radius of all planar sections
of the spheres that lie in the slice (and are parallel to its
plane) is measured. (This equals the radius of the sphere it-
self if the center of the sphere lies in the slice, but otherwise
it is strictly less than the sphere’s radius. One cannot tell
from the data, however, whether the sphere center lies in
the slice.) In practice, the radii measurements are generally
taken from circular “shadow” profiles, formed by shining a
beam (of electrons, say) through the translucent slice con-
taining the spheres. This beam has its axis perpendicular to
the plane of the slice.

Data Y = {Y1,...,Y,} on radii arising in this way have
density g, say. We may express ¢ in terms of the density f
of actual sphere radii by the formula

(k+m)g(y) = uf(y) + y/oo (z* —y?) 2 f(2)dw, (4)
Yy
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where m = [j_,__ xf(z)dz equals the mean radius of a
sphere (see Bach 1967, 1976; Goldsmith 1967). (Of course,
f and g are both supported on the positive half-line.) Equa-
tion (4) is similar to a Fredholm or type 2 Volterra equation,
albeit with the integral taken over an infinite rather than a
finite interval. The inverse operator is bounded, suggesting
that the inverse problem associated with (4) is less ill-posed
than in the case of Wicksell’s (thin-slice) problem, for ex-
ample. Therefore, we expect that asymptotic properties of
estimators of f found by inversion may be similar, in terms
of order of magnitude, to those of relatively conventional
estimators of g. Theorem 1 will bear this out.

Several equivalent inversion formulas for (4) may be
found in the literature. One is f = T—'g = —CA’, where
A’ denotes the derivative of the function A,

C= @/t Aw) = [ " ala,y)g(y) dy,

a(z,y) = ul{2r(y® - 2*)}/?/(2p)],
u(z) = Q’”z/z/ eV /2y (35
(see Jakeman 1984). Starting from this property, if « is any

bounded, integrable function, then, after a change of order
of integration, we may show that [ af = C [ 8,9, where

Ba(y) = a(y)u(0) — /Oy aro(z,y)a(z) dz 6)

and ajo(z,y) = (8/0z)a(z,y). Hence any expectation with
respect to the density f may be converted to an expectation
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with respect to g. (The converse is also true, of course.)
In particular, taking o = fw, where f is a nonrandom
function, we see that an unbiased estimator of the quan-
tity I(f, f) = | ffw, based on a random sample Y7, ..., Y,
from the distribution with density g, is given by (1), where
L(f) = CBf, and C = C(m, p) is as given at (5).

In practice, p is generally known, but m often is not. By a
second application of the “inner product method” used ear-
lier, we may estimate the latter directly, without estimating
f first, and then substitute this estimate for the true value
in our formula for L when computing first I and then our
density estimator f. To this end, observe that if we take
a(z) = z in (6), then we obtain 8, = v, where

Yy 1
v(y) = / ale,y)de = y /0 ul{2n(1 — 22}y (2) de.

Hence if X and Y have densities f and g, then
E(X) = CE{v(Y)}, or, equivalently, m = (2/m)"/2(1 +
p~tm)E{v(Y)}, giving
pE{v(Y)}

"= ) P BV} 7
Assuming only that 0 < p < oo, it may be shown that 0 <
v(y) < const. for all y. Therefore, v(Y') has all moments
finite, and in particular, var{v(Y)} < co. Hence a root-n—
consistent estimator of m is always obtained—without any
moment conditions [other than m = F(X) < oo] on the dis-
tribution of X—by substituting n=* Y=, v(Y;) for E{v(Y)}
in (7).

Finally, we remark here that the fact that expectations
J af with respect to f can be written instead as expec-
tations with respect to g has previously been noted in the
literature concerning Wicksell-type problems (see, €.g., An-
derssen 1980; Anderssen and de Hoog 1990). Anderssen de-
veloped a general inverse-problem solving technique, built
around the following formula, valid in a Hilbert space con-
text:

/ of = (f,a) = (T7'g,a) = (¢,(TV)a), ()

where * refers to the adjoint and (-, -) is the inner product.
Using this approach, the implicit method described earlier
can be applied to a range of inverse problems. The same
ideas can be used to develop nonparametric solutions to
other inverse problems, such as those where the function
of interest is a regression mean rather than a density, and
to define smoothing parameter choice methods in general
settings. However, because we do not have practical moti-
vation for such applications, we do not explore them here.

In the case of inverse problems that are ill-posed, so that
(T~1)* at (8) is unbounded, some care will be required
in the choice of «, as in the thin-slice case considered
later, where we require « to be differentiable and to satisfy
a(0) = 0. Alternatively, (T~!)* will need to be replaced by
a regularized version. (A point of entry to the literature on
this more general viewpoint is Ruymgaart 1993; for discus-
sion of numerical methods in general cases, see Anderssen
and de Hoog 1990.)

Journal of the American Statistical Association, June 2000

2.3

In the thin-slice case, the expression for g in terms of the
density f may be obtained by setting p = 0 in (4):

9ly) = % /OO (2% — yZ)—l/Zf(x) dux;
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however, the inverse to this relation cannot be obtained from
(5) by simply substituting x4 = 0 there. In fact, the estimator
I(f) suggested in Section 2.2 is also not directly applicable
if 2 = 0. In this case we suggest basing I(f) on classical
Wicksell formulas, for which the expression f = T~ 1g =
—C A’ continues to hold true provided that we redefine C' =
2m/m and a(z,y) = (y? —x2)~'/2. [We continue to define A
in terms of a as in (5).] The expression in (6) for 3, is also
no longer applicable, as both terms on the right side will be
infinite. Instead, if we assume that « is differentiable and
that «(0) = 0, then we are led, as an alternative to (6), to

Baly) = /0  a(, y)of () da. ©)

Thus, restricting our attention to differentiable density esti-
mators f for which f(0) = 0, and taking w = 1 for simplic-
ity, we may in the present case define L(f) = C37, where
ﬁf- is now obtained using (9). Examples of differentiable
density estimators include frequency polygons, obtained by
interpolating between midpoints of blocks in a histogram.
(The fact that such estimators are not differentiable at block
centers does not cause any difficulties.) With these changes,
the implicit inversion procedure is otherwise formally the
same as what we have described in the thick-slice case.
[Note that the choice of w = 1 in conjunction with the
use of frequency polygons results in o/ (x) being piecewise
constant in (9).]

If m is unknown and the distribution of sphere radii
X has finite variance, then m may be estimated at rate
Op(n=%/2), for all e > 0; for example, by m =
(m/2)(n= 13, ¥, (see, e.g., Ripley 1981). With this
choice for L(f), we may then compute I(f) as described
earlier, substituting /m for m in the formula for C.

2.4 Explicit Inversion in the Thick-Slice Case

An alternative approach to that suggested in Sections 2.1
and 2.2 is to simply apply the inversion formula (given in
Sec. 2.2) to a density estimator §, computed directly from
the data ). For example, we might define

30 = ()~ Y- K{(y - )/},

=1

where K is a kernel function and % is a bandwidth, and take

—oa [T ultents? - <) ) dy

f(z)

e {gu) sacte [Cu@naeiar, o)

where Cy = (u+m)/p, b(z,y) = (y* — %)~/ 2w [{27(y* —
22)}2/(2u)], and uy(z) = u/(x) = zu(z) — 1. Details of
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the numerical and theoretical properties of such explicit-
inversion estimators are given in Sections 3 and 4.

The method of choosing the smoothing parameter sug-
gested in Section 2.1 has a direct analog in the case of
explicit inversion, as follows. Let f = f, be the explicit-
inversion estimator defined in (10), let f; be its version
derived from the (n— 1) sample Y\ {Y;}, let L(f) = CBj,,
be defined as in Section 2.2, and, using this notation, define
%(h) by (2). Then our cross-validatory approach to estimat-
ing h in the explicit inversion case amounts to choosing A to
minimize (k). If m is unknown, then we may replace it by
the root-n—consistent estimator of Section 2.2 in the defini-
tion of C'. Likewise, our method of choosing the smoothing
parameter has a version in the thin-slice, explicit-inversion
context, and when m is unknown we may replace it by the
Op(nf=1/2) estimator of Section 2.3.

3. NUMERICAL PROPERTIES

We implemented both the implicit and explicit inver-
sion algorithms for the thick-slice case, together with the
cross-validation methodologies described in Sections 2.1,
2.2, and 2.4 using both real and simulated data. We used
the S-PLUS statistical software, version 3.4, running on a
Silicon Graphics R10000 Challenge L computer (see, e.g.,
Becker, Chambers, and Wilks 1988). Where required, op-
timization of quadratic functions subject to linear (equality
and inequality) constraints was carried out via the S-PLUS
function “solve.QP,” which links S-PLUS to Fortran sub-
routines that implement a Goldfarb—Idnani-type algorithm.
This function, written by B. Turlach, is available via the
Carnegie Mellon University “statlib” website under the file
name “quadprog.”

Given an arbitrary density function f for the radii of
spheres in space, a random sample of observations from the
density g of radii measured in a slice of thickness 2y may
be generated numerically via the following device. First,
introduce an auxiliary density function p for the radii of
those spheres that happen to intersect with our “slice” in
space. Then clearly p(x) is proportional to (2u + 2z)f(x)
so that, with m = [ ____ «f(x)dz being the mean radius
of the spheres,

(wta)flz) _ p
J(p+s)f(s)ds  p+m

m_ zf(@)

p+m m

p(z) = fl@) +

that is, p(x) is a mixture of the densities f(z) and z f(z)/m
in the proportions shown. Next, if X = x is an observation
from p(z) and Y is the “corresponding” observation from g,
then straightforward geometric reasoning shows that Y = x
with probability 44/(u+z) and Y = 2(1—U?)'/2 with prob-
ability x/(u + ), where U is uniformly distributed on [0,
1] and is independent of X. This procedure for generating
observations from ¢ is particularly simple if f is either the
gamma distribution G(«, §) or the beta distribution B(«, 3),
because in those cases p will be a mixture of the G(«, 3) and
G(a+ 1, 8) distributions or of the B(«, 3) and B(a+1, 3)
distributions. Furthermore, the beta distribution, which may
be rescaled from [0, 1] to [0,£], also has the advantage of
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having a fixed finite support, which is convenient for pre-
senting simulation results.

All weight functions w appearing in the least squares
goodness-of-fit criteria were taken as equal to 1, to avoid
introducing extraneous considerations in the simulations.
We also remark that for purposes of computation—to avoid
unbounded integrands—the integrals appearing in (6) and
(10) were first rewritten as

/01/ a1o(z, y)a(zr) dz = /Oy az) dya(z,y)

and

u‘lx/ b(z,y)9(y) dy

- [ e ()

and then evaluated essentially by means of their Riemann—
Steiltjes approximating sums. Note that the term (z/y) ap-
pearing in the last integrand is bounded above there by
unity.

Figure 1 shows the results of a typical single simulation
run from a sample of size n = 1,000 when the radii in
three-dimensional space are assumed to have a beta B(a =
6, 3 = 4) distribution, rescaled onto the interval [0, 40], and
the thickness of the slice is taken to be 2y = 15. For this
particular sample, the mean radius in the slice was found to
be 21.04, whereas the mean radius of the spheres in space
was estimated, via (7), to be 24.04. The true value for this
distribution is 24.

Figure 1(a) gives the cross-validation curve for the im-
plicit histogram estimator, obtained by letting the histogram
range over the interval [0, 40] and requiring the bandwidths
(i.e., binwidths) to divide the range into a whole number of
intervals. For each binwidth & selected, the corresponding
point on this cross-validation curve was determined via the
following computational steps:

1. Evaluate /(f) at (1) as a linear function of the bin
heights ¢; using L(f) = CBy and with (37 as defined at (6).

2. Use quadratlc programming to obtaln the histogram
f» that minimizes the function 4(f) defined in the equation
following (1). The function f}, is defined by means of the bin
heights ¢;, which are subject to the constraints h > ¢; =1
and t; > 0.

3. Repeat steps 1 and 2 to obtain all of the leave-one-
out estimators fhi that minimize the leave-one-out criterion
functions #;(f),) defined in the equation preceding (2).

4. Finally, compute the cross-validation criterion func-
tion 4(h) as defined at (2).

The cross-validation curve thus obtained is seen in this in-
stance to have a minimum at the bandwidth A = 5, corre-
sponding to a subdivision of the range [0, 40] into eight bins.

Figure 1(b) is a bar plot that shows three histograms si-
multaneously. Over each of the eight bin ranges indicated
on the horizontal axis, three bars are drawn. In each case
the height of the first of the three bars gives the height (i.e.,
count) of the histogram for the uncorrected data; that is,
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for the radii observed in the slice. The second bar gives
the expected count for the known true distribution of radii
in three-dimensional space. Finally, the third bar gives the
height for the histogram obtained by our implicit “correc-
tion” procedure. Although the “raw” and “corrected” his-
tograms are, of course, subject to sampling variability, the
counts in the raw histogram tend to be too low in the bins
corresponding to larger radii and too high in the bins cor-
responding to smaller radii. This is as would be expected,
owing to the downward bias that occurs for radii observed
in a slice. (Note that in the first bin, the expected and “cor-
rected” counts are both imperceptibly close to 0.)

Figure 1(c) gives the cross-validation curve (for the same
data as before) for the explicit inversion procedure dis-
cussed in Section 2.4. This was based on a Gaussian ker-
nel density estimator applied to the raw data, with stan-
dard deviation of the Gaussian playing the role of the
bandwidth parameter h. For each bandwidth value % se-
lected, the corresponding point on the cross-validation
curve was determined via the following computational
steps:

1. Evaluate f, as in (10), as well as the similarly deter-
mined leave-one-out estimators f;.
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2. Compute the cross-validation criterion function %(h)

as defined at (2) using L(f) = CBf, and with 37 defined at
(6) evaluated by numerical integration.

In general, the appearance of the cross-validation curves in
the explicit inversion case tends to be much smoother than
in the implicit inversion case. It is seen that the minimum
occurs here for the bandwidth choice h = 3, the standard
deviation of the Gaussian kernel used in the density esti-
mator.

Figure 1(d) shows the resulting explicit inversion den-
sity estimator using h = 3. The solid curve here gives the
true beta density function. The density estimate for the raw
data is given by the dotted curve, and the dashed curve is
obtained from (10). It is seen that the corrected density is
centered more appropriately (i.e., higher up) than the raw
density, but of course its peakedness, relative to the true
curve, is reduced slightly due to the convolution with the
kernel function. In this particular instance, the corrected
density does not take on negative values over any portion
of its range, whereas in other instances it does do so for
smaller values of z (see, e.g., Fig. 3 later). This effect did
not occur in the present instance, largely because this sam-
ple was generated “correctly” from the postulated model.

0-5 5-10 10-15 1520 20-25 25-30

Histogram Bin Ranges

(b)

30-35 35-40

30

Figure 1. Analysis of a Simulated Dataset of Sample Size n = 1,000 From a Beta B (Alpha = 6, Beta = 4) Distribution Rescaled Onto the
Interval [0, 40], and a Slice Thickness of 2u. = 15. (a) Cross-validation curve for the implicit histogram estimator, (b) bar plot of three histograms for
observed (leftmost), theoretical (middle), and implicitly corrected (rightmost) cell counts; (c) cross-validation curve for the explicit inversion density
estimator; (d) density estimate for raw data (dotted curve), the true beta density (solid curve), and the explicit inversion density estimate (dashed

curve).
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In real data (e.g., as in the dataset examined later), difficul-
ties with negativity of the estimated density generally will
be much more severe and occur largely as a consequence
of the degradation of observations at smaller radii—that
is, particles of small radius tend to not get recorded. The
reader may wonder whether the “upturn” in the estimated
density for z near O is a consequence of numerical errors.
In fact, it is not; rather, it occurs due to the fact that the
kernel density estimator ¢ is not O at the origin. In this
connection, observe that (10) is a sum of roughly commen-
surate terms of opposite signs, factored up by the quantity
(. This feature generally will not arise for real data, where
the left tail is usually truncated by the limited resolution of
the instrumentation.

Figure 2 shows the summary results of a simulation study
of the implicit histogram estimator using the same rescaled
beta distribution and slice thickness indicated earlier. A cho-
sen bandwidth of h = 4 (corresponding to 10 bins) was
used in each of 500 Monte Carlo trials with sample size
n = 1,000. (The choice h = 4 was among the typical band-
widths indicated by the cross-validation procedure for such
data.) The figure shows the true histogram for this distri-
bution (i.e., the expected cell counts under the true distri-
bution). Also, in each bin, superimposed above and below
the true histogram’s top bar, we show the upper and lower
10th percentiles for that bin as observed in the Monte Carlo
trials. In cells that do not show three distinct top bars, the
lower bars are either at O or imperceptibly close to 0.

Figure 3 shows the summary results of a simulation study
of the explicit density estimator, again using the same beta
distribution, slice thickness, and sample size indicated ear-
lier. Here, too, 500 Monte Carlo trials were conducted, and
we used a fixed standard deviation of A = 3 for the Gaussian
kernel, one of the commonly occurring bandwidths from
the cross-validation. The solid curve in the figure gives the
true beta density function, and the other two curves are the
(pointwise) upper and lower 10th percentiles observed in
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Figure 2. Results of a Simulation Study for the Implicit Histogram Es-
timator, With Distribution, Sample Size, and Slice Thickness as in Figure
1: True Histogram (Expected Cell Counts), With Upper and Lower 10th
Percentiles for 500 Monte Carlo Trials Superimposed.
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Figure 3. Results of a Simulation Study for the Explicit Density Esti-
mator, With Distribution, Sample Size, and Slice Thickness as in Figure 1:
True Density (Solid Curve) With (Pointwise) Upper and Lower 10th Per-
centiles of Explicit Inversion Density Estimates From 500 Monte Carlo
Trials.

the Monte Carlo trials. Note that the lower 10th percentile
curve descends below 0.

Figure 4 constitutes an analysis of real data that are part
of a larger dataset that was very kindly supplied to us by
G. Q. Fox of the Max Planck Institut fiir biophysikalis-
che Chemie in Gottingen. The particular dataset examined
here comprises 786 radii (in nanometers) of synaptic ter-
minals from the electric organ of the electric ray Torpedo
marmorata, taken from the same specimen block. Because
synaptic vesicles are central to the study of synaptic func-
tion and transmission, their distributional characteristics are
of significant interest. In particular, accurate comparisons
of size distributions of synaptic vesicles are important in
genetic mutation studies and in studies that require assess-
ing the impact of physiological stresses or other differences
arising from experimental manipulations. (For physiolog-
ical and other details, see, e.g., Fox 1988 and the refer-
ences therein.) A section thickness of 50 nm was used for
this sample, and the observations were recorded using an
electron microscope and particle analyzer. Focal depth ex-
ceeded section thickness, so the radii measured were max-
imum radii within the section. As is typical in data of this
kind, smaller radii were lost.

These 786 observations range approximately from 17 to
53 nm, with a mean radius of 40.29 nm. The “corrected”
mean radius, as computed via (7), was found to be 48.92
nm. Figure 4(a) shows the cross-validation curve for the
implicit estimator using the electric ray Torpedo synaptic
vesicle data, computed for a histogram with range (0, 55).
We selected the bandwidth & = 5 (resulting in 11 bins), this
value being in the vicinity indicated by the cross-validation
curve, and allowing for a nice division for this histogram’s
range; the corresponding reconstruction is shown in Figure
4(b). Here again we have used a barplot method to show
two histograms simultaneously. Within each bin, the left-
most bar corresponds to the raw data observed, whereas
the rightmost bar corresponds to the corrected distribution.
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It is seen that our procedure has the effect of shifting mass
upward and, of course, that mass is never permitted to be
negative. A treatment of phenomena associated with the
“degradation” of observations at the smaller radii is outside
the scope of this study; we note, however, that no mass is
assigned to the lower ranges.

Finally, Figures 4(c) and 4(d) give the cross-validation
curve for the explicit estimator, and the density estimator
(10) using the value h = 1.5 of the kernel bandwidth, which
is where the cross-validation curve takes on its minimum.
The dotted curve in Figure 4(d) corresponds to the raw data,
whereas the solid curve, which is seen to be “pushed up-
ward,” is the corrected density estimator. Note the substan-
tial negative lobe of the latter—a very common occurence
in real data of this type.

4. THEORETICAL PROPERTIES

4.1 Explicit Inversion

Our first result shows that, like the original kernel density
estimator estimator g, the back-transformed estimator f in
the thick-slice case has bias of size h? and variance of size
(nh)~! as n — co.

Assume that K is a bounded, symmetric, compactly sup-
ported probability density, and put 1 = [K? and ky =
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J 2K (z) dz. Suppose that b = h(n) — 0 as n — oo, in
such a manner that nh — oo. Assume further that f is sup-
ported on (z3,xz3) for some 0 < z; < z3 < oo, and has
two bounded and continuous derivatives on (0,0c0). (The
assumption that the support of f is bounded away from the
origin is realistic, because in practice, owing to physical re-
strictions, radii below a certain value are not observable.)
Finally, suppose that the data Y = {Y¥3,...,Y,} are iid and
drawn from the distribution with density g = T'(f), where
the transformation 7" is defined by (4), and that the estima-
tor g is defined in terms of Y by (10), where m is either
known or estimated root-n consistently from the data. Let
(C) denote the set of conditions in this paragraph, and recall
that C1 = (u +m)/p.

Theorem 1. Assume conditions (C). Then
B(f(@)} = [@) + 5hmaf"(@) +o(h?) (1)
and
var f(:z:) = (nh)"*C%k1g(x) + o{(nh)~'} (12)

uniformly in z € (0,00) as n — oco. Furthermore, at each
point in its argument, f is asymptotically normally dis-
tributed as N(Ef, var f).

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55
Histogram Bin Ranges

(o)

Figure 4. Analysis of a Dataset Comprising 786 Radii (in nm) of Synaptic Terminals From the Electric Organ of the Electric Ray Torpedo
marmorata, With Section Thickness of 50 nm. (a) Cross-validation curve for the implicit histogram estimator; (b) barplot of two histograms: for
observed (left), and implicitly corrected (right) cell counts; (c) cross-validation curve for the explicit inversion density estimator; (d) density estimate
for raw data (dotted curve) and the explicit inversion density estimate (solid curve).
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Note that, by (10), the estimator f may be written as
C14 plus a more complex term, expressible as an integral.
It turns out that the variance of the latter term is negli-
gible relative to that of C;g, and it is easily shown that
the variance of § is asymptotic to (nh)~1x1g. This explains
the origins of formula (12). On the other hand, the term of
size h2 in the bias formula (11) has contributions from both
parts of the right side of (10); these are 1C1h%k2g” (x) and
sh2ra{f"(z) = C1g" ()}

The variance result in Theorem 1 is very different from
its analog in the context of Wicksell’s original (thin-slice)
problem, where the variance is of size (nh?)~! rather than,
as in (12), (nh)~!. This reflects the fact that the thin-slice
problem is more ill-posed than its thick-sliced counterpart;
see the discussion following (4). The inferior convergence
rate in the thin-slice case is a function of the problem, not of
the particular estimator type, because it is minimax-optimal
(Hall and Smith 1988).

Theorem 1 implies that under conditions (C), the mean
integrated squared error is given by [ E( f=F2~ Aht +
As(nh)~Y, where A; = (1/4)s3 [(f")? and Ay = Cki.
Therefore, the mean integrated squared error will be asymp-
totically minimized by taking h = hg = Asn~'/%, where
As = {Ay/(4A;)}'/5. Our next result shows that the
cross-validation procedure suggested in Section 2.4 for ex-
plicit inversion in the thick-slice case produces a band-
width that is asymptotically optimal in the sense given
here.

For the sake of simplicity, take w = 1. Given 0 <
e < 1/5, let H = H(n) = [n~¢,n"17¢], and let h de-
note the bandwidth in 7 that minimizes ¥(h), defined in
Section 2.4.

Theorem 2. Assume those conditions in (C) that per-
tain to f and K, and in addition suppose that K is Holder
continuous. Then h/hg — 1 in probability as n — occ.

Similarly, our cross-validation procedure may be shown
to produce asymptotically optimal bandwidths for explicit
inversion estimators in the thin-slice case.

4.2

Our main result in this section is tailored to general
implicit-inversion density estimators in the thick-slice case,
and shows that the approach suggested in Section 2.1 pro-
duces consistent density estimators in such circumstances.
The main prerequisite is that for each sample size n, the
class of potential estimators in F considered when mini-
mizing 4(f) be not too rich. In condition (c) of Theorem 3,
we describe richness through the number of elements of the
class, but alternative approaches could be used. In particu-
lar, we could describe it in terms of an increasingly (with
n) rich class of “basis” elements, together with a continuum
of other elements, each of which is not too far from some
element of the basis.

Let F,, denote a subset of F, its size assumed to diverge
with n. Define

Implicit Inversion

¢n = sup sup |f(z) - f(z)|

feF, 0<z<oo
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and

dn= inf [ (-1,
fE€Fn

take w = 1, and let f be the element of F,, that minimizes
5(f) over f € F,. We assume the context of the thick-slice
Wicksell problem, and assume that if the mean sphere diam-
eter, m, is unknown, then it is estimated root-n consistently.

Theorem 3. Suppose that (a) the supports of f and all
elements of F,,, for n > 1, lie within a common compact in-
terval; (b) for some 6 > 0, ¢,, = O(n~?); and (c) the number
N,, of elements of F,, satisfies N,, = O{exp(Cni),,/logn)}
for all C' > 0. Then

J( - §)?
infrez, [(f - f)?
in probability as n — occ.

To delineate the implications of this theorem, we out-
line its specialization to the cases of histograms and fre-
quency polygons. One may show that, provided that f has
two derivatives on (0,00),9, = h* or h?, according to
whether f is a histogram or its linear interpolant, where
h = h(n) denotes binwidth. Take j = 1,2 in these respec-
tive -cases, suppose that h ~ c¢yn~°2, and allow each bin
height to assume any one of at most n® different values,
for constants ¢y, ca, c3 > 0. Then the number of elements of
F is of order exp(cqh~*logn) for some ¢, > 0, and this
is no larger than O{exp(Cn1,/logn)}, provided that we
insist that co < 1/(2j5 + 1). (No condition is needed on the
value of c3.) Therefore, the assumptions that A ~ c¢;n=°
with c2 < 1/(2j + 1), and that the number of possible
heights for each bin is no more than polynomially large
in n, are sufficient to ensure that the crucial condition
(c) holds.

Under conditions similar to those given in Theorem 3,
one may prove that our cross-validation method produces
consistent implicit-inversion density estimators in the thick-
slice case, although for the sake of brevity we do not give
details here. Versions of these results in the thin-slice case
may also be derived.

—1

APPENDIX: PROOFS

Outline Proof of Theorem 1

We confine attention to the variance formula, because the
bias formula may be derived more simply. Define Ki(z) =
h~'K(z/h), and write (10) as f = C1(§ + p~'xl), where i(z) =
n~' Y, (=) and

l(z,2) = /°° b(z,y)Kn(y — 2z) dy.

Because K is bounded and compactly supported and f is bounded,
there exist constants By, Ba > 0 such that h| E{K},(y1, Y ) Kn(y2—
Y)}l < B1[(|y1 — ygl < Bzh) Hence

hiB, / / bz, 11)b(z, v2)

X I(|yr — y2| < Bz2h) dy: dy2
= o(h™")

E{l(z,Y)?}

IN



544

as h — 0. Hence var | = op{(nh) ™'}, and so var f ~ C7 var § ~
(nh)~1C%k1g. The central limit theorem for f may be proved via
Lindeberg’s theorem.

Outline Proof of Theorem 2

We assume for simplicity that m is known rather than estimated
from the data. The latter case may be treated by incorporating a
relatively simple, subsidiary argument. We prove that

nt Y L(fu)(Y)
i=1
= /E(fh)f + Ri +op{(nh)™" + '} (A1)
uniformly in A € H, where R; denotes a random variable not
dependlng on h. Similarly, it may be shown that f f? = f E(f3)+

op{(nh)™" + h*} uniformly in h € H. Together, these results
imply that

w0 = [ -2 Y 1w

_ / B(fu— £)° + Ra + op{(nh) ™" + %)

uniformly in A € H. Theorem 2 then follows from this formula
and from the expansion of f E(fn — f)? implied by Theorem 1.
Put K (z) = h™*K(z/h) and let A(y|h) denote the functional

{AyIh)} () = Kn(z—y). Then fu; = (n—1)"" 3, A(Y;|h),
and so
L(fr) = (n =171 Y L{A(Y;IR)},
Jij#i
whence
) = 5n7 Y] Lifw)(%)
= {ntn =1} Y L{A;I}HY).

1<j<i<n
Using the definition of g, at (6), define
J={nn-1}""Y " (i—1)CB,(Y:)
i=1

and

Zyn = Z/BA(Y 1) (Y

(1—1) {u(O)Di(y) - / i aio(z,Ys)Dsi(x) dw} , (A2)

i) — (1= 1)Be(Y2)

where D;(y) =

(7: - 1)_1 ngi—l A(Y}lh)(y) - g(y)' Then

CTHI(h) = T} ={n(n -1} "> Za. (A3)

=2

Define \; = {(¢ — 1)} ™2 + h? for 2 < i < n, and observe
that by Rosenthal’s inequality (Hall and Heyde 1980, p. 23),

sup E{D;(y)**} < oo
O<y<oo

—2k
sup  sup A;
2<i<n<oco heH
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for all integers k > 1. Therefore, by (A.2), B{(i — 1)7*Z;1 }?F =
O(M?%) uniformly in 2 < i <n < oo and h € H. Hence

1= 1= ) :
< Bi(k) (Zm%)
< Ba(k)[n*{(nh) ™" + h*}*
(A4)
and
Y E(ZE) < Bs(bn®™ ' {(nh) T +1"YF, (A5

i=2
where B1(k), B2(k), ... denote positive constants depending only
on f,u, and k. Put Z;o = E(Zi1|Y1, .. -,Yz‘—l) and Z;3 = Z;1 —
Ziz. Then E(Z3|Y1,...,Yi—1) = 0, and so the Z;3’s are mar-
tingale differences. Therefore, by Rosenthal’s inequality together
with (A.4) and (A.5),

(Z Zlg> < Ba(k)n**{(nh)"  + h*}*.  (A6)

Let Y denote a generic Y;, and define

Z(Y) = u(O)/g(Y—hz)K(z) dz
- b (y)d a10(Y — hz,y)K(2)dz
/0\ v y/{\z:Y—hZSy} Y
= —/ (Y — h2)K(z) dz
* /°° a(Y — hz,y){y " '9(v)} dy (A7)
Y ~hz
and
) ==Y [t sy A

where the prime denotes differentiation. Put Z3 = Z;(Y) — Z2(Y)
and Z; ;40 = Zj<i_1 Z,(Y;) for | = 2, 3. Given a random variable
W, write “W— mean” for “W — E(W).” Note that Z> does not
depend on A, and so
n n  i—1
ZZiz— mean = Z ZZl(Yj)— mean
i=2 i=2 j=1
n—1
= Z (n—7)Zs(Y;) — mean + Rs. (A.9)
j=1
Moreover, by Rosenthal’s inequality,

E {"Z‘: (n—3)Z3(Y;) — mean}

< Bs(k)[n** {EZs(Y)*}* + n®* T E{Z3(Y)*}].
We claim that

(A.10)

E{Z3(Y)*} < Bgs(k)h**.
Combining (A.9)—(A.11), we deduce that

" 2k
E (Z Zi» — mean — R3> < Br(k)n**n**,

=2

(A.11)
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whence by (A.3) and (A.6), noting that J does not depend on h,
E{J(h) — mean — R4}** < Bg(k)n *{(nh)™' + r*}*. (A.12)

In view of (A.12), there exists § > 0 (depending on ¢ in the
definition of ) such that

J(h) —EJ(h) —Rs\ _ ., _sk
<n‘5{(nh)_l my ) = o™

for all k. Therefore, if H’ denotes a subset of  containing O(n?)
elements for some B > 0, then, by Markov’s inequality,

P[|J(h) — EJ(h) — Ra| > n"°{(nh) "' +h*} VheH]—0.
Because B is arbitrary, the Holder continuity assumption enables
us to replace ' by H in this result. Formula (A.1), with R; there
equal to 2Ry, follows immediately.

It remains to prove (A.11). Let v be a function with a bounded

derivative. Because aio(z,y) = —(z/y)ao1(z,y), then, through
integration by parts,

/ " a0, 0)1(0) dy = 1(@)u(0) + @ / ale, )y W)Y dy.

Hence, using the exact formula for the remainder in a Taylor ex-
pansion,

/ - a(z +n,y)v(y)dy — / - a(z,y)v(y) dy

+n

sup

= n/o (z + nt) dt/:m a(z +nt,y){y " v(y)} dy

77/ (w+nt)dt/ a(z, y){y " (v)} dy + O(n?)
(A.13)

as n — 0, uniformly in z € [z1,22] for any 0 < z1 < z2 < oo.
Take x = Y,n = —hz, and y(y) = {y~*v(y)}’; multiply both
sides of (A.13) by (Y — hz)K(z); and integrate over z, obtaining

ess. sup| Z1(Y) — Zo(Y)| < const. h®.
[Note formulas (A.7) and (A.8).] This implies (A.11).

Outline Proof of Theorem 3

We assume initially that m is known, and at the end of our proof
address the case where it must be estimated. Put

S=8(F)=n""Y_ {L(F) - L(H}Y:)

and define ¢ = ¢(f) = sup, |f(z) — f(=)| and ¢ = $(f) =
J(f = f)?. Note from (6) that

D) = L) — L(A}W)
= (F - Hlwu(0) - / ar0(2,9)(F = £)() da.

Furthermore, |ai0(z,y)| < Ciz(y? — 2?)Y/2, where Ci,Cq, . ..
denote positive constants not depending on x, y, f or n. Hence, be-
cause f and f are both supported within a given compact interval,
|D(y)| < C2¢ and, for each 3/2 <p<2andg=(1-p~ )7,

2/q
var{D(Y)} < C3 {w +(@2-p) P </ If - fI") } :

(We used Holder’s inequality to derive the last term.) There-
fore, taking p = 2 — (logn) ™!, we have by assumption (b) that
var{D(Y)} < Ca¢logn. From these results and Bernstein’s in-
equality (e.g., Pollard 1984, p. 193), we may prove that for each
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t>0,
m1(t) = P{|S — E(S)| > ¢}
< 2exp{—Csnt®/(logn + ¢t)}. (A.14)

Take ¢ = 4, where n = n(n) denotes a sequence of positive
constants converging to 0. Then ¥ logn > ¢t for all sufficiently
large n, and so by (A.14), 71 (t) < 2exp(—Cesnin?/ logn). Hence

P{sup %(H)7'S(f) — ES(f)| > n}

fE€Fn

O{N,, exp(—Csntpnn*/logn)}.

ma(n) =

(A.15)

By assumption, nw,/logn — oco. Because N, =
O{exp(Cnin/logn)} for all C > 0, then, provided that ¢
¢(n) — 0 sufficiently slowly, we have

n¢pn/ logn — oo
and
Ny, = Ofexp(n¢®¢n/logn)}.
For this ¢, taking 77 = ¢'/? in (A.15), we obtain

m2(n) = Olexp{(n¢*n/ logn) — (Con(yn/ logn)}] — 0.

Hence

S(f) = ES(f) + op{v(H)}

uniformly in f € Fn. Now ES(f) = I(f, f) — I(f, f), and so,
uniformly in f € F,,

(A.16)

() = / 7 —2S(F) - 21(f) = 9(F) - R(f) + op (1)},

where R(f) = 2I(f, f)+2I(f)+ [ f* does not depend on f. In the
case where m is known, the theorem follows from this formula.

If m is not known, then it is replaced by a root-n—consistent
estimator, h, in the definitions of C = C(m) and I H =
C(m)n™' Y, L(f)(Y:). Arguing in this way, we may show, us-
ing (A.16), that

()

C)C(m) ™ S(F) + Cm)n™" Y L(F)(Y3)

= C(m)C(m)" (. f) + Ba(F), (A.17)
where R;(f) denotes terms that either do not depend on f or are
0p{¥(f)} uniformly in f € F,. In view of the root-n consis-
tency of 7, C(1)C(m)~! = 14 Op(n~'/?). Moreover, I(f, f) —
I(f, f) = O{%(f)"/?}. Because n™""?y(f)'/* = o{3(f)} uni-
formly in f € F,, then, by (A.17), I(f) = I(f, f)+Ra(f), whence
it follows that 4(f) = ¥(f) + Rs(f) uniformly in f € F,. The
theorem is a consequence of this result.

[Received June 1998. Revised April 1999.]
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