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On some methods of analysis for weather experiments

By ANDREY FEUERVERGER
Department of Statistics, University of Toronto

SUMMARY

Using generalized densities, maximum likelihood and ancillarity, methods are developed
for the analysis of randomized weather modification experiments that incorporate predictor
variables. The linear logistic form is used to model the distributional singularity at the origin,
while a gamma model with predictors is developed for the component conditional on the
presence of precipitation. Connexions between the component submodels are explored and
illustrated using an Australian data set.

Some key words: Ancillarity ; Gamma distribution model with predictors; Generalized density; Linear
logistic model; Maximum likelihood; Single cloud weather modification experiment.

1. INTRODUCTION

This paper summarizes some efforts to develop methods for the analysis of data collected
in certain randomized experiments in climate modification. Methods related to likelihood
are used to examine the problem of zero precipitation cases and the use of predictor variables
in conjunction with the gamma distribution. The procedures proposed were implemented
for testing on data given by Bethwaite et al. (1966).

2. SINGULARITY AND THE LIKELIHOOD

Owing to the singularity at the origin we use generalized densities (Zacks, 1971, p. 41)
for rainfall. These take values 0, 1 —p, pf(y) according as y<O0, y =0, y>0 with p the
rainfall probability and f(y) the density conditional on occurrence. It should be noted (Zacks,
1971, Chapter 5) that under regularity the usual asymptotics for maximum likelihood still
hold.

Now suppose the experiment to consist of » independent cases, each giving a precipitation
measure Y;, and [ fixed predictors X; = (X, ..., X;;) (¢ = 1,...,n). Here X;, may be a seeding
indicator with the remaining predictors unaffected by seeding; the cases may be clouds that
satisfy preconditions; and the measuring may require instrumented aircraft. The Agl
seeding is conducted in blind randomized trials. The joint density for Y7, ...,Y, will be

HD{I -p(X;, f")} O p(Xs, 1) f(¥s, Xisv),

where the products are over the dry and rain cases. In this expression the probability, p,
and the conditional density, f, are assumed related to X; by means of models with
parameterizations u and v respectively. This then leads to a likelihood function L(u,v).

It follows that to specify a distributional family we need to specify p(X, ) and f(y, X, v).
We also see that questions of real interest concerning the state of nature are raised by
enquiring about relations among the parameter sets p and v. Initially, specific information
will be lacking, so that we regard u and v to be unrelated. The likelihood L(u,v) = L;(u) Ly(v)
will then factorize into a probability component which concerns only the aspect of occurrence
and a conditional component which concerns only the situation given rainfall. By virtue
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of the ancillarity which ensues (Cox & Hinkley, 1974, p. 31-5) the factorization means that
estimation of the submodel parameters proceeds as independent problems and that the
estimates resulting for u and v may be regarded as independent. On this basis one may then
enquire into relations, e.g. proportionalities, among the parameters of u and v. If none is
tenable, inference proceeds on a basis of independent components. An assumed relation-
ship, on the other hand, increases power but couples the estimation procedure. Here one
could consider to maximize the whole likelihood L(u,v), but in §5 we propose a simpler
approach which preserves the asymptotic efficiency.

3. THE PROBABILITY COMPONENT
To model rainfall probability we use (Cox, 1970) the linear logistic model

A = log {p;/(1—p,)} = po+p Xyg+ .. + 1 Xy

We note here that stability of Newton—Raphson maximum likelihood procedures is assured
in view of the known unimodality of the likelihood surface.

4. THE CONDITIONAL COMPONENT

The conditional model obtains upon dropping zeros. Neyman, Scott & Vasilevskia (1960)
and Neyman & Scott (1960) considered Gaussian regression in conjunction with transformed
precipitation measures and correction for bias due to transformation. For a conditional
gamma model with predictors, the distribution form {I'(x)}7(7/a)*y*1exp (—ay/n)
(0 <y <o) is convenient. Modelling shape as constant, and scale as

logm;=—A;=0,+0, X;+...+6,X;; (t€R)
we obtain the log likelihood
—nlogl(e)+aZ4;+naloga+(a—1)ZlogY, —a X ¥, e4,
where now, as throughout this section, » is the number of rainfall cases, and sums are over R.

The structure of this surface is less complex than first appears, for upon centring predictors
at their R-means so that X 4, = —n#,, writing 4; for 4;+6,, and rearranging we obtain

[—nlog I'(a) +nalog o+ ofS1og ¥; +nby— (T Y; e4¢)}]
and this may be maximized in stages. First, the surface in innermost parentheses has-
(4, k)th second partial derivative L Y; X;; X, e4 (,k = 1,...,1) and unimodality follows from
positive-definiteness. Hence we may find the minimum M by a Newton-Raphson procedure
and then set 6, = log (n/ M) as required by the intermediate expression. Finally, maximization

of the outermost parentheses follows the familiar gamma procedure for scale.
It is of interest that the simplified likelihood equations with R-centred predictors are

loga—i(a) = p—n1ZlogY;, ZYedi=n, ZY;X,ed'=0 (j=1,..,10),

where i is the digamma function. Hence the 8’s are chosen so Y;/#; averages to unity and is
orthogonal to Xj;, for all j. The equations have a unique solution, and the estimate & is
independent of the 8’s, by Basu’s theorem. The asymptotic covariance for &, by, ..., 0, is

P (@) —a 0 ]
0 o1
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where i’ is the trigamma function, and E is (I+1)x (I+1) with entries X¥; X;; Xj;e4s
(4,k=0,1,...,1). Note 1 plays the role of a variance, and the effectiveness of the predictors,
which is related to the quantity log (n~1Z#,)—n-1Zlogm,; depends on the increase in o
attributable to the predictors.

5. ON SYNTHESIS AND EVALUATION

The natural approach to problems of inference concerning relations across the submodel
parameters involves cumbersome maximization of the coupled likelihood L(u,v). To avoid
this we exploit first the ancillarity, thus regarding the submodel estimates i, # as independent,
and secondly the asymptotic form of the log likelihood :

—H AR QR —p) — 36— QP —v).
Here the covariances are estimated but considered fixed, and the unrestricted maximum

is zero. Now consider a relation such as p = kv among some corresponding submodel
parameters. A likelihood ratio approach based on the asymptotic form gives

v=(k®Q 1+ Q) kQ, A+ Q719), «=(Q10R)/(vVQ1 ),

where uncapped symbols are now the estimates sought. These are solved by recursion. As
one would expect that factors governing rainfall occurrence are nearly those which govern
quantity given rain, one may reflect that evidence contrary to proportionality would be
indeed remarkable. We note the covariance estimate for «,v under proportionality:

[ v'Qy (21 —f2)" Q1 ]_1
Q(2kv—f) «2Q1+01

The model and inference possibilities that now arise are numerous: for the submodels
may be treated as related or not, and if related, the proportionality may include the seeding
parameter or not. Further, there is the question of whether seeding alters the meteorological
dynamics thus invalidating the use of ‘parallel’ models for seeded and unseeded cases. Also
there is the matter of producing unbiased estimates, asymptotically at least, of percentage
seeding effect in units of untransformed precipitation. We note that gamma expectations
behave simply under power transform: if ¥ has parameters «, 7 then

B(Y*) = (nfa) °T(a+0)/T(a).

Finally, concerning robustness, we note that the Gaussian and gamma models of §4 differ
also in structural form, one being additive in seeding, the other multiplicative, and that the
range of these models is further extended by power transformation (Box & Cox, 1964): the
implication of robustness is enhanced if conclusions stay relatively invariant over different
models and transformation intervals judged plausible, say, by means of quantile plots.
For some further details see an unpublished University of Toronto report by the author.
For other discussions relevant to this work see Neyman & Scott (1967), Dawkins et al. (1977)
and Brillinger, Jones & Tukey (1978).

6. NUMERICAL STUDY WITH AUSTRALIAN DATA

Data from a single cloud experiment given by Bethwaite et al. (1966) were used to guide
this work. Difficulties noted by the experiment authors were ignored and we used all 69
cases reported, 33 rain and 36 dry, and three predictors: X, cloud top temperature in
negative degrees Celsius; X,, cloud height to sea level in km; Xj, cloud depth in km. The
37
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seeding variable was omitted. Fortran programs were developed on the University of Toronto

IBM 360/165 to carry out the linear logistic procedure, to fit a gamma model with predictors,

and to produce quantile and other plots of Y;/#;. Convergence in general was extremely rapid.
The linear logistic relation fitted was

A =—014+0-16X, — 0-69X, + 1-74X,,

the ¢ values for the three regression coefficients being respectively 1-83, —1-60 and 2-85.
The signs are as expected with the last coefficient highly significant, and the other two not
quite. An interesting kind of ancillary nonparametric verification of fit is possible : the actual
precipitation values for rain cases may be compared to the probabilities determined by the
relation above. Using the randomness test of Lehmann (1975, §6-2) we obtained, in the
natural direction, an observed level of significance of 0-043. This we are content to leave one
sided, but caution that to do so means to impute a certain lack of perversity on the part
of nature!

Quantile plots revealed very good fit of the conditional gamma model combined with
power transforms of precipitation with exponent between 0-55 and 0-65. We quote the
relation for 0-60 whose fit was remarkably good:

log7r; = 277+ 0-064X, — 0-54X, + 0-78X,.

The ¢ values of 1:37, —2-32 and 2-55 were very stable in the exponent. Further details and a
Gaussian analysis may be found in the unpublished report mentioned above. The computer
programs described are available from the author.

This research was supported by the National Research Council, Canada and the
Atmospheric Environment Service, Canada. It is a pleasure to acknowledge very helpful
conversations with Dr A. J. Chisholm.
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