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1. INTRODUCTION

Distributions which are limits (except for scaling and recentering) of sums of in-
dependent identically distributed variates are termed stable. When the variates
have second moment the possible limits necessarily are Gaussian and this is the
best known case of the central 1limit theorem. However the wider class of distri-
butions that share in the central limiting feature coincides exactly with the
stable laws. These laws, first obtained by P. Levy (1925, 1954) possess a natural
interest for statistical applications and for robustness studies in particular.
For applications to modelling telephone line noise, see Berger and Mandelbrot
(1963), Stuck and Kleiner (1974). Applications to modelling price changes in
various financial markets are given by Mandelbrot (1963), Fama (1965), Fielitz and
Smith (1972), Samuelson (1975), and Leitch and Paulson (1975). The use of sym-
metric versus skewed stable distributions, for example, carries implications for
investment strategy. Properties of the stable laws are discussed in Gnedenko and
Kolmogorov (1954), Feller (1966), Lukacs (1970), and Holt and Crow (1973).

The stable distributions admit unimodal densities having all derivatives but in
general these are available only as numerically awkward infinite series. This
Tack of a closed form for the density has impeded development of statistical
methods for this distribution family though a number of ad hoc procedures have
been developed. See for example Fama and Ro1l (1971), Press (1972), Paulson,
Halcomb and Leitch (1975), Heathcote (1977), de Haan and Resnick (1980), Brockwell
and Brown (1980).

In this paper, we also are concerned with inference for stable distributions, how-
ever our interest centers exclusively on procedures which are asymptotically ef-
ficient, or at least on procedures whose asymptotic efficiency can be made arbi-
trarily high. The first indication of efficient inference for the stable Taws
was given by DuMouchel (1973) who showed that the MLE's were consistent, asymp-
totically normal and followed the well-known theory for maximum 1ikelihood in-
ference. The maximum Tikelihood procedure was implemented by DuMouchel (1971,
1975) and subsequently in unpublished independent work by the authors. Because
maximum 1ikelihood is so technically cumbersome, alternative asymptotically ef-
ficient techniques remain of considerable interest. Since the stable character-
istic functions are readily available it is natural to ask if inference can be
based directly on these and whether or not efficient procedures exist. This
question was studied in Feuerverger and McDunnough (1980, 1979) and has an affir-
mative answer. The results of these two papers show that under very general con-
ditions statistical procedures based on the empirical characteristic function
(e.c.f.) may be used for a wide class of statistical problems and that suitable
‘ecf-based procedures have arbitrarily high asymptotic efficiency. To explore the
applicability of these ideas to the problem of inference for the stable laws is
one purpose of the present paper.

The outline of our paper is as follows. In §2 we present a new continuous repara-
metrization of the stable laws and a slight, but useful extension of a result due

109



110 A. Feuerverger and P. McDunnough

to Zolotarev. Certain essential properties of the stable laws are reviewed. In
§3-4 we discuss certain numerical aspects of maximum 1ikelihood for these distri-
butions and we present some Monte Carlo results for the symmetric case. In §5 we
discuss the ecf and methods of efficient inference in the Fourier domain. The
application to stable laws is considered in §6 and some numerical results per-
taining to grid selection are obtained. The various procedures discussed extend
easily to discrete time 1inear stable processes and in §7 we provide a brief
Monte Carlo study for the stationary AR(1) case. Some unusual results are noted.
Our numerical work is confined throughout to the symmetric case; the methods how-
ever are entirely general.

2. SOME PROPERTIES OF STABLE DISTRIBUTIONS

The stable distributions are defined through

-Itlu{l +1sgn(t) tan [%]} Sl
Tog¢ (t) = (2.1)
—|t|{1+1‘%6 sgn(t) 1og|t|} ,a=1
where ¢(t) = E{exp(itX)) is the characteristic function, and 0 <a <2,

-1 < g <1 are shape and skewness parameters. For a = 1 an alternative repre-
sentation is sometimes used:

Tog o (t) = -|t|* expl-i78" sgn(t) - K(a)} (2.2)

where K(a) =1 - |1-a|] and -1 <8 <1 . The two representations disagree on
scaling as well as skewness. The relation between g and B' ‘is given in
Lukacs (1970, pp. 136-8).

For applications involving the full nonsymmetric class the discontinuity at a=1
is troublesome. We shall show that this discontinuity may be removed. To do so
we first write the o = 1 term of (2.1) in the form

St - sttt a2 (2.3)
If we now shift the mean by an amount B8 tanlg1 we obtain
Sle]® - iet(]e* - 1) tan T2 (2.4)
or
-1t]® - i8*h(t,a) (2.5)
where Sl
s dieEe b
h(t,ot) = 2| (2-6)
and
g* = p(a-1) tan%l : (2.7)

Some analysis now establishes that the function h(t,a) ds continuous on RZ and
can be defined by continuity as tan|t] when o =1 .

That the discontinuity at o =1 can be removed by reparametrization is known;
see Chambers, Mallows and Stuck (1977) and DuMouchel (1971). The approach given
here seems more direct, however, and results in a parameter domain whose shape
(roughly elliptical but having corners at o = 0,2) is more consistent with the
known behaviour ‘of the densities near o« = 0,2 for varying skewness. The para-
metrizations B,B8' and B* are in 1-1 correspondence through (2.7) and
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e i) tanl—'(%Eut : (2.8)

By verifying that the variation of the difference between characteristic functions
within a shrinking neighbourhood in (a,B*,n,0) approaches zero we may prove:
Theorem 2.1. Let pas*(x) be the density corresponding to (2.5). Then the

I'e i
family lp . varies continuously in the sup-norm over the domain of its
c'aB* | o

(a,8%,u,0) parametrization.

The Bergstrom-Feller expansions for the stable densities may be written as fol-
lows: if 0 <a <1, then :

_1 % (Dklr(ak+l) . | ke . hei
faa’(x) = “szl - sinl 5 (00 bsgi = 1] (2.9)
and if 1 <a =<2, then

IS %&il s"in [“k [%) B'+sgnx}:] . 2

G k1 2

For the asymptotic character of these series and for the case a = 1 we refer to
Lukacs (1970), 5.8 and 5.9. We remark that from a statistical viewpoint expan-
sions for logf would be of greater interest.

fC!B|(X) = '_"_—)Z

Several useful observations about (2.9) and (2.10) do not seem to have been made
previously. First note that (2.10) converges also if a > 2 and secondly that
both series remain convergent for arbitrary -= < g' <« . The series for
0<a<1 and 1 <a<o (and B' arbitrary) are closely related and we have
the following slightly generalized form of a result due to Zolotarev: For O <a<e,
but a#2%,1 we have

= = %
fas.(x) =ix 1 "(le 2 2 .13
a B
where
o' + (a-1) sgnx iE O <a=<i
2a-1

B" =
(2-a)B" + (a-1)sgnx if 1l <a <=

The failure of (2.11) at a =% is, curiously, of an inessential kind. For if we
reparametrize in (2.10) by replacing 2%’8' by B'" then the expansion (2.9)

for some O<a<1 and some B' will be related to the expansion (2.10) for u'l
and 8™ =ag' +(a-1) sgnx . This relation does not fail at o =% . The signifi-
cance of (2.11) is that numerical evaluation for any 0<a<l (except a = L) may

be replaced by evaluation at a'l ; for small o discrete Fourier transformation
is very difficult.

3. MAXIMUM LIKELIHOOD BY INVERSION

Our approach to maximum likelihood estimation for the stable laws is an appli-
cation of the fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965).
Suppose ¢ is an integrable characteristic function; then the evaluation of the
integral
E i
f(x) = | o(t)e ™t (3.1)

J -
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by means of the FFT effectively restricts x to values on an equispaced grid such
as- O A 9 2A ... . Lt the FFT is based on N points the available
range for the density will be +N *8X/2 with one end-point missing; the corres-
ponding spacing for the frequency variable will then be at = 2n/N - Ax and the
range will be, not *mw/Ax , but rather +2m/Ax  with endpoints excluded. The
range for t s doubled in this way due to the fact that ¢(-t) = () so that
we have the identity

N-1 5 N-1 e

Y elht-n)es M - Re{ P (At-n)e'lxn}
=-N+1 n=0 ©°

where % is identical to ¢ except that ¢O(O) =

Now, given a complex sequence X€0),X(1),....X(N-1) , the FFT algorithm produces

-1 3
the sequence Xen)es 00 i pop = gﬁi > =0,1,...,(N-1) . Therefore if the
n=0

FFT is applied to the sequence
B, 0(at) , e(28t) ..., $((N-1) - at)

and if the real parts of the resulting sequence are multiplied by 2/N-Ax we ob-
tain - except for the effects of truncation and discretization of the integral -
values of the density

£(0), f(ax), f(2ax),..., f(-2ax), f(-ax)

Note the circular format with values for f on the negative axis occuring at the
end of the sequence.

The effect of truncation (e.g. Brillinger, 1975, Ch. 3) is that we obtain a con-
voluted form of the transform required. One possibility would be to use a
tapering function; the one due to Bohman (1960) seems especially appropriate.
DuMouchel (1971, p. 35) gives a better resolution and shows how the truncation
effect may be eliminated using a "wrapped summation" method. In our work we used
a 10% cosine taper (Tukey, 1967) and found this gave satisfactory results provided
a was not less than about 0.5 .

The effect of discretization (e.g. Brillinger, 1975, §5.11) is that we obtain an

aliased version Y f(x+3j NAx) of the density. Since Nax typically is not
sma1T, de-aliasing could be achieved using the asymptotic expansion for ||+ o3
in fact this same expansion is required also for the tails where the inversion is
inaccurate numerically. DuMouchel (1971) replaced the Fourier integral by N/2
intervals and quadratically interpolated ¢(t) 1in each interval (Filon's method).

the aliasing error essentially is constant and thus may be determined immediately
1
) for the

density at x =0 from the corresponding FFT determined value. Further details
about this as well as other aspects of this paper may be found in an unpublished
technical report by the authors.

by subtracting the known exact expression 1 B'(O) = n'1r(l +a

4. MAXIMUM LIKELIHOOD SIMULATION STUDY

Using the methods in §3 a maximum 1ikelihood procedure was developed in FORTRAN
on the University of Toronto IBM 360/170. Versions for both the symmetric and
non-symmetric laws were produced but only the symmetric case was subjected to

’
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simulation. A noteworthy feature of the programs, particularly for comparison
with the ecf procedures of §5-6, is their essential technical complexity and the
considerable programming effort required. On this point, see also DuMouchel
(1971, 1974).

The stable variates required for the simulation study were generated using the
algorithm RSTAB (Chambers, Mallows and Stuck, 1976) corrected for an error
noticed in the published function D2: the fourth DATA line should read

"&,.18001 33704 07390 023 D3" (cf. approximation 1801 in Hart et. al., 1968).
The FFT subroutine used was the November 1967, Bell Laboratories, Murray Hill
version of ARIDFT written by W.M. Gentleman and G. Sande. The FFT was used to
obtain the standardized density at the current estimate & as well as at

@ + Ao where Ao =0.025. The data was then subjected to standardization at
the current estimates {i and G and as well at {i +Ap , 6 + Ao where

Au = .05 and Ao = .05 . In this manner, the 1ikelihood was calculated on the
subset of the 3x3x3 grid of parameter points needed in order to perform a
Newton-Raphson procedure. We used Ax =0.1 and N = 1024 and found single
precision adequate. For |x| < 7.5 values for the density were obtained using
quadratic interpolation on the FFT values which then were corrected for aliasing
as described in §3. For |x| > 7.5 values of the density were determined using
three terms of the asymptotic series. These values and rules were determined
after numerical experimentation. !

The simulation study spanned the values o =0.7 (.1) 1.9 and sample sizes

N = 50,100,200 of standard variates, with each sample being used once only.
(Note N now is no longer the FFT length.) The initial estimates were taken to
be the actual true values and five full iterations of the Newton-Raphson pro-
cedure were carried out for sample sizes N = 50,100, and four iterations for
N =200 . For N =100 and 200 , fifty trials (n = 50) were conducted and
for N =50 we conducted n = 100 ‘trials.

Table 4.1 summarizes the results of this Monte Carlo. For the three parameters in
each cell we give the sample average and the sample standard deviation.of the
estimates resulting from the n trials. We also give the value n for the num-
ber of trials; whenever n differs from the value declared at the top of the
table, this indicates failures of the MLE procedure to terminate normally. This
could occur if the latest update exceeded the boundaries of the parameter space or
if an unacceptable level of numerical instability was detected. The results of
table 4.1 are in good agreement with the asymptotic calculations given in
DuMouchel (1975). A detailed discussion appears in the technical report mentioned
above.

5. FOURIER METHODS FOR INFERENCE

Suppose XpsX5,...,X  are iid variates with density in {fe(x)} where 6 is a

real univariate parameter. The equation of maximum likelihood may be written in
the form

3log f_(x)
J: ——3—8—9-— d(F (x) - Fy(x)) =0 (5.1)

where F, is the cdf of fy and Fn(x) is the empirical cdf. Define now the
following transformed quantities: the characteristic function
cylt) = Je‘t"d Folx) 3 (5.2)

the empirical characteristic function (ecf)
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TABLE 4.1

N =50 N = 100 N = 200
n = 100 n = 50 n = 50

(# iter = 5) (# iter = 5) (# iter = 4)
n - - .030 J119 -.035 122
a - - - - 1.870 .063
Soeeh 5 . . 987  .062
n 26 23 30
n - - -.046 b3 -.023 .103
a - - 1.780 .098 1.758 .094
o - - .987 .087 .987 .064
n 53 36 41
u .018 .247 .048 133 021 .097
o - - 1.629 124 1.689 .097
o - - .985 .094 .993 .077
n 68 43 45
u .008 174 .002 .128 ST .101
ai-1,582 - 173 1.593 .160 1.608 119
°] .997 .159 1.005 .088 .995 .066
n 90 46 50 ;
u .019 5233 .034 REE] -.037 .116
al| 1.492 .162 1.474 .154 1503 .107
g .989 152 .983 .136 .989 .069
n -90 50 50
] .036 2221 -.002 AT .012 .110
ol 1.434 .183 1.391 .149 1.399 .092
of 1.028 .162 .959 .101 1.006 .056
n 93 . 50 50
u{ -.024 223 -.005 152 .011 ~L12
ol 1.302 .194 1:.320 137 1.324 .106
o .970 163 .983 123 1.105 .0%4
n 93 50 50
u .020 =205 -.054 .168 .001 .123
al 1.229 .187 1:e191 .139 1.209 .092
ol-1.012 .179 1.010 «132 1.003 .094
n 93 50 50
ul -.022 .189 .031 .163 .021 .093
al| 1.146 .139 1.088 .109 1.107 .096
of 1.039 .169 .995 .136 1.005 .097
n 88 49 50
uf -.013 .198 -.005 138 -.007 30T
af 1.061 .158 1.003 123 .997 077
o .989 .188 1.022 .161 1.000 .108
n 89 50 50
n; -.018 .187 -.032 .149 -.014 .084
a .958 .140 29l .102 .927 .081
o .996 .203 1.015 141 1.033 .104
n 82 50 50
u = = -.038 146 .007 .096
o - - .808 .084 .804 .052
o - - .992 .158 1.028 .136
n 72 46 50
u - - .031 122 015 .083
o - - .740 .059 b .043
o - - 1.026 .168 1025 i
n 39 32 42
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R W X
¢ (t) = Je‘t"an(x) =%_z] e J (5.3)
j=
and the inverse transform of the score
= 3logf. (x) _.
we(t) =21_1rJ a—eee e (5.4)

Our starting point is to note that under very general conditions, we may apply
the Parseval theorem to (5.1) to obtain

[mwe(t) (cn(t) =g (t))dt =0 . (5.5)
This is the Fourier domain version of the likelihood equation. Note that we(t)

must usually be regarded as a generalized function. (The multiparameter extension
is straightforward.) This result at once suggests that the empirical character-
istic function may have valuable applications; procedures based on the ecf and
thei;' asymptotic efficiency were explored in Feuerverger and McDunnough (1980,
1979).

Consider the process cn(t) . We are indebted to R.A. Mureika for pointing out

the following result which is due to an anonymous referee and which generalizes a
result of Feuerverger and Mureika (1977):

Theorem 5.1: If F is any distribution function and 'Iong = o(n) then

P{1im sup |cn(t) -c(t)] =0} =1

N~ H:IsTn
Proof. For fixed e >0 let A be such that F(-A) +1 - F(A) < e , and replace
Cn(t) - c(t) by
. Fb 3
oL, . =s § o 1 _J e
1X;1<h [-A,A]
Clearly

Iy(t,Xl,...,Xn) - Y(t',Xl,...,Xn)| <|ty-ty| A
Thus, it suffices to show that

)
1im sup 'y [%,xl,...,xn-” =

== AT = w.p.l.
k=t
€
But
P{ SUKT M%,xl,...,xn] > e}
[kls—"
€
ATn
o ssz{|y(t,X1,...,Xn)! > e}

The result follows using standard exponential bounds: the latter probability de-
creases exponentially, because n - y is the sum of n iid bounded random vari-
ables with mean zero. O

Define Y (t) = /rT(cn(t) - c(t)). As c (t) is a sum of iid bounded processes we
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have at once E Yn(t) =0 and cov[Yn(s),Yn(t)) = EYh(s)Yn(ti = ¢(s-t) - c(s)c(t)
and the covariance structure of the real and imaginary parts:

Cov(ReYn(s),ReYn(t)} = %[Rec(s—t)+Rec(s+t)] - Rec(s) Rec(t)
Cov(Re Y, (s),ImY, (t)) = LiImc(s-t)+Imc(s+t)] - Rec(s) Imc(t)  (5.6)
Cov (Im Yn(s),Im Yn(t)) = %{Re c(s-t)-Rec(s+t)] - Imc(s) Imc(t)

Let Y(t) be a zero mean complex Gaussian process having covariance structure
identical to Yn . By the central limit theorem Yn converges in distribution to

Y at finite numbers of points. Feuerverger and Mureika (1977) prove the weak
convergence of Yn(t) to Y(t) in any finite interval provided that

E|X|1+6 <« . Csorgo (1980) shows that the moment condition is not easily re-

moved and gives a general treatment of convergence questions. Necessary and suf-
ficient conditions for the weak convergence are given by Marcus (1980).
Feuerverger and McDunnough (e.g. Temma 2.1 of 1980) show that weak convergence of
the ecf process is not critical for many statistical purposes since one can
exploit the essentially simple stochastic structure of cn(t) to obtain needed

results. A quadratic version of the quoted lemma 2.1 may be proved upon evalua-
ting the 1imiting cumulants:

Lemma 5.2 Let A(tl’tz) be a function having bounded variation on RZ . Then

n- jJ(cn(tl) -c(tl)}[cn(tz) -c(tz)) A(dtl,dtz) 2 ny(tl) Y(t,) A(dtl,dtz)

The result holds also if matching factors in the integrands are conjugated.

Turning to inference, a comprehensive discussion of asymptotically efficient or
arbitrarily highly efficient procedures based on the ecf is given in Feuerverger
and McDunnough (1980, 1979). Here we emphasize only two of these - the harmonic-
regression procedure, and the k-L procedure, both of "discrete type". The k-L
procedure is so-called because it is of likelihood type, and based on a fixed
number k of ecf points. Let 0 < t1 S e tk be this fixed grid.- Define

25 = (re c(ty)s..sReclty) , Inc(ty),....In c(t,))' and let z, be its empirical

counterpart. Letting n'li be the covariance matrix of Z, » the entries of 1}

will be given by (5.6). The k-L procedure estimates a vector parameter 6 by
maximizing the asymptotic normal form of the log-Tikelihood of Z This may be
taken either as

-plogdett - Bz -z ) 4l (z -z

or as just the second term of this expression. Under very general conditions, the
asymptotic efficiency of the k-L procedure can be made arbitrarily close to the
Cramer-Rao bound by selecting the grid {tj} to be sufficiently fine and exten-

ded. The harmonic-regression procedure is equivalent, asymptotically, to the k-L

procedure and involves finding 8 by fitting Z, to 2, using nonlinear least

squares and any consistent estimate of the asymptotically optimal weights. This
is carried out using a first order expansion for Zy 3 to preserve the asymptotic

properties, a single iteration starting from any consistent estimates suffices.
The ease with which this procedure may be implemented contrasts sharply with the
methods of §3. :

The harmonic regression procedure was implemented for the parametrization
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1 e-[c t]e

0 = (u,0,a) for the symmetric stable laws: ce(t) =t We used

centered variates ij = (Xj -1u)/c where {i,& were current estimates: for sym-

metric families this gives a convenient block-diagonal structure for 3§ . In par-
ticular the 2kx3 regression may then be separated into a kx2 and a kx1 regres-
sion - the former involving only o and o , and the latter only u . The pro-
cedure was tested extensively and proved to be well behaved, however, because the
question of optimal gridpoints is not resolved we did not carry out a Monte Carlo
study for this procedure.

6. FOURIER GRIDPOINTS FOR THE SYMMETRIC STABLE LAWS

For fixed k the optimal {tj} depends on the unknown 6 = (u,0,a) . Since

iteration takes place at standardized variates, we may presume without loss of
generality that p =0 , o =1 ; the dependence on o is therefore the one of
greatest interest. In general, for fixed k we propose to use those points which
minimize the asymptotic variances (at the current estimates). For arbitrary

spacing, the asymptotic covariance of the estimators is g‘:" G where
82y 0z, 3z &

G 2 % )
= 3’ 30 ° da)|e = (0,1,a)

parameter variance, or which joint-criterion we wish to minimize (the determinant
of the covariance matrix being one possibility). Now the updating algorithm is
such that the u adjustment depends only on the imaginary ecf, while the o,a
adjustments depend only on the real part. (Note that the increased computational
burden in using distinct grids for the real and imaginary components is very
slight. The components for the imaginary parts covariances in (5.6) will now dif-
fer from those for the real parts.) The important tradeoff therefore takes place
on the real axis between o and o .

Actually the optimal {tj} depends on which

The question of optimal gridpoints requires numerical treatment. For the case of
uniform spacing we refer to Feuerverger and McDunnough (1979), especially table

1, According to these results, o 1is the parameter least amenable to uniform
spacing, particularly for small -« , and is hence the parameter of greatest in-
terest here. Adjustments were made to the programme which calculates the asymp-
totic variances. By an iterative procedure of arbitrary starts, sequential opti-
mization using steepest ascent on lattices, and further checking, grid-points

were obtained which appear to be optimal (asymptotically) for the estimation of

o . These were obtained for k =2,3,4 and 5 with o =1.0 (.1) 1.9 and are
given in table 6.1.

Table 6.2 compares the asymptotic values of n -var(a) for a-optimal spacing of
k=2,3,4 and 5 points. The Cramer-Rao bound value ranges shown are deter-
mined from DuMouchel (1975). It may be noted that the change from optimal uniform
spacing to optimal spacing involves a sharp improvement in the asymptotic effi-
ciences. As before, however, for fixed k , efficiencies are seen to decrease
with o ; in particular, for k =5 the efficiency is seen to drop below 90% for
a <1.1 . We may remark that while the optimal spacings become costlier and more
difficult to determine as k increases, the results of table 6.1 provide a useful
guide in determining good spacings for larger k . In practice there are no spe-
cial difficulties in using values of k =10 or even 20 . For further results
and discussion (and an indication of the intrinsic complexity of the k-dimensional
surfaces optimized here) we refer the reader to our technical report.

7. A SIMULATION STUDY FOR AR(1) STABLE PROCESSES

The closure under convolutions property of the stable distributions provides a
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TABLE 6.2

Asymptotic values of N - VAR(G)
for a-optimal spacings

o k=2 k =3 k =4 k =5 1
1.0 158327 1.5890 1.4637 “1.398
el 2.0993 1.8426 1.7207 1.648
152 2.3432 2.0826 1.9710 1.898
£:3 2.5478 2.2924 2.1974 2.127
1.4 2.6918 2.4524 2.3774 2.314
ka5 2.7508 2.5363 2.4831 2.427
1.6 2.6942 2.5120 2.4691 2.434
1.7 2.4839 2.3402 2.3079 2.290-
1.8 2.0698 1.9682 1.9464 1.940
1.9 1:3721 13152 1.3038 1.284

class of highly tractable linear stationary processes. With an MLE algorithm al-
ready available, it is not very difficult to carry out maximum likelihood esti-
mation for stable autoregressive processes. We give here the results of a brief
simulation study for the AR(1) case.

Suppose X(t) s a discreté stationary process satisfying
(x(t) =) = a(X(t-1) -u) + e(t)

where the e(t) are iid variates of the form ¢S where Sa is the standard-
ized symmetric stable law. Then s

Q|

(X(t)-u) = ¥ ale(t-§) ~ o(1- |a]®)
j=0
The joint density for a length T of the stationary process

S
a

T
F(X1sXp50000xp) = Fxq) jzz f(lexj-l)

1 x1-H) & 7 Xj-u) -a(xj_l-u)
=Ty | ToF J T-1 i foz o
: g j=2

where o* = o(1 -lala)'l/“ and where f, 1is the density of the standard stable
variate. We may therefore easily carry out the full (unconditional) MLE proce-
dure for-such AR processes by adapting the methods of §3-4.

Tables 7.1 and 7.2 summarize the results of a 1limited simulation study for the
cases o =1.9, 1.8, 1.6, 1.0 and a =0, .25, .5 for series lengths of T =200
and T=500 . The data series used were constructed with u=0,0=1 and in-
itial estimates were taken at the true values and followed by five Newton-Raphson
iterations. Convergence was, in general, extremely rapid. We carried out n=25
trials for each cell; values n < 25 indicate that some trials did not terminate
normally (see §4). As before, the tables show the mean and standard deviation of
the n trials for each parameter.

0f particular interest, though not apparent in these tables, is an instability in

the Var(a) values produced by the MLE procedure, with many of these values being
exceedingly small. This phenomenon occurs because the
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accuracy of estimates for AR coefficients clearly is conditional on whether or not
there are some extreme outliers present to help us. This is a numerical confirm-
ation of the limiting infinite Fisher information per observation for this para-
meter: see Hannan and Kanter (1977) and Kanter and Steiger (1974). A related ob-
servation is made by Cox (1966).

TABLE 7.1
Simulation Results for Symmetric Stable Time Series of Length T = 200
with 25 Trials per Cell and 5 Iterations per Trial

a=0 a = .25 a=.5
u .013  .109 -.054 166 ST T 1hs
o 1:1.877 .051 1.853  .055 1.859  .064
g0y .984  .049 1.003  .045 .981  .046
a .024 042 .248  .066 499 037
n 16 18 18
u .032  .090 -.005 .105 011 " .082
o 1792 132 1.815 .082 1.826  .115
as=1.8- 5 .998  .057 .989  .067 .990  .058
a .000 .052 237 =072 486 .041
n 25 25 25
=P 109 00713 .039  .275
o | 1.633 .100 1.609 .107 1.644  .112
=6 .996  .048 1.014  .061 1.005 .061
a 014 .049 .256  .043 499 044
n 25 25 25
| -.032 109 -.048  .133 .023 190
a | 1.007 .080 .986  .084 1.008 .065
=10 4 .985  .082 .989 . .087 1.005 .102
d ¢ -.003 - 009 .251  .008 .501  .007
n 23 22 25

TABLE 7.2
Simulation Results for Symmetric Stable Time Series of Length T = 500
with 25 Trials per Cell and 5 Iterations per Trial

a=0 a=.25 a =275

u .024 074 .001  .094 =011 - 14

o | 1.895 .039 | 1.879 .048 1.887  .056
a =1.9 o 1.012  .044 .994 031 .998  .049

a .013  .053 207 084 .504  .032

n 19 18 20

u W23 .023  .080 2085 127

o 1783 =063 1 807 = 074 1.824  .069
de= 18 .999 033 | 1.003 .049 .984 037

a .005 .029 253 .032 507 .035

n 25 25 25

u .016  .052 .007  .092 $007° 166

i L6120 1 598 GAT 1.604 .062
o =1.6 o .991  .039 1.001 .056 1.005 .038

a .000 .023 .254  .031 .494 019

n 25 25 24

sl aD0bE - 072 e 0l 092 -.030 .146

a 1013 - 052 | 1.010 046 1.006 .032
aes L.0- < o L 0f3 063 5 1000 = 046 ©.980  .057

a .000 .005 .249  .006 .501  .003

n 25 25 25
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