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OSS-SPEC L METHOD FOR SENSITIVITY ANALYSIS
OF COMPUTER SIMULA TION MODELS

A. Feuerverger, D.L. McLeish and R. Rubinstein

Pregsented by D.R. Brillinger, F.R.S.C.

ABSTRACT. Cross-spectral analysis of system performance variables with
score function sequences leads to a practical solution of the problem of sensi-

tivity analysis for computer simulation models.

1. INTRODUCTION. Consider a computer simulation model driven by an in-
put sequence X; and resulting in an output .sequence Yt‘ where
t=0,+1,+2, --+. The input Sequence X, is taken as independent identi-
cally distributed from density f,(x) where v is a multidimensional real
parameter, and the output sequence Y, will normally settle (as t—o0 ) into
steady state and become a stationary and ergodic process. One or more sample

performance measures of the form Ly= Ly(Y,) are evaluated and we are in-
terested not only in the steady state mean I(v) = Jim E,L; but also in the
00

sensitivities (gradient, Hessian, etc.) V,I(v), V2I(v). Examples of relevant
stochastic systems are queuing and reliability neﬁprh. In the first case L,
might be the sojourn ﬁme of the t-th customer, and f,,(x‘) the multivariate
density of interarrival times, service times and routing probabilities. In the
second case L; might be the life of a reliability system while f,(x) describes
the component lifetimes. In such systems [(v) is generally not analytically
tractable so that we have to resort to Monte Carlo simulation. Normally the

system cannot have knowledge = of the future and we write
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Yi= Y¢Xy Xy 1,00 +) and Ly= Ly(Yy) = LyX,, Xy q, * - ). In typical appli-
cations, system operation is started from some initial state and left to run until
stationarity is attained. Thereafter T consecutive observations are taken and
we denote these as (X, L;), (X,, Ly), ...,'(X1, Ly). In this simulation the
value of v is set at v, and due to the complexity of the system, it is costly to

repeat the simulation at other values of v. The value of I(»,) may be es-

2 T
timated by ,—:1[‘- >, L, whose variance, under general conditions, is O(T!).
- ‘

The purpose of this note is to present an effective method by which the sensi-
tivities may be estimated simultaneously from the same simulation run. Some
relevant references are Rubinstein (1986), Ho and Cao (1983). One contribu-
tion of our new‘ method lies in the substantial reduction in the asymptotic order
of the variance achieved relative to the score function method (Rubinstein,

1986), namely from O(T) to O(BF!T~!) for By — 0 such that B;T — oo.

2. MAIN RESULT. For simplicity we take v here to be univariate and as-

sume the process L; is stationary. Application of the result to vector valued
parameters v and to a vector of performance measures L, requires only con-
sidering the sequences Ly and S; appearing in the theorem to be jointly sta-
tionary vector valued time series. Hereafter the parameter v will be assumed
to be set equal to its value in the simulation v, wheréver it appears. Our key
result requires a mixing type condition consistent with the physical requirement
that the simulation system settles eventually into a steady state suitable for sta-

tistical analysis. Specifically, let Fiy be the o-field
Fiy = o X M X_pMa1s oXe) It follows from the martingale convergence

theorem (e.g. Doob, 1953, p. 331, Theorem 4.3) that the approximation to the

function L; based on a finite data set X_MrX_ Moy - ° - +Xy » Say, approxi-
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mates Ly arbitrarily closely as M—oo . More precisely, if L; is measurable
with respect to F'_, and is square integrable, then
E[LifFiy] =Ly as M —oo (2.1)

where the conve%gence in (2.1) holds both with probability 1 and in expectation
since the martingale on the left hand side of (2.1) is uniformly integrable since

it has a bounded sequence of second moments. Now if we are to be able to
approximate the sensitivity aa—ul(u) also using only a finite data set, then

clearly it is necessary that the convergence in (2.1) occur for the expectation of.

the derivative with respect to v as well, i.e. that
B Bl - Bl E LN (2.2)
Yoy % M- = opk = b

Our main result is the following

THEOREM. Let {X, L.} be the stationary stochastic system described above.

dlogf,(Xy) :
Let S, = o o and assume that S, and L, are square integrable and

that the covariances ;cov,(Ly, S, j) are absolutely summable in j. Assume that

(2.2) holds and also-that the derivative may be passed through the integral in

8 t
35 BALcIFhy] T £(x)x
for each M. Then

Z1w) = f,40) (2.3)

where f; g(X\) is the cross-spectral density function of the stationary sequence

{Lty Se}- It follows that for any sequence B, — O such that B;T — oo, an esti-

mator will exist having bias O(Bf) and variance O(B7!T1).
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PROOF. From (2.2)

2] S
?a—‘/- l(l/) (2.4)
= Jim 2 BB, [Fh) (2.5)

Bl

? 2] L g - .
L}lm f E) Ev{LtIF—tM}HfV(Xi) dX- + f Eu{Lt-IF—tM] Hfu xi)d&
—00 v M aV_M

- Jm B Z L) +EALS) (26)

= i) cov,(Ly, Sj) (2.7)
j=-o00

= fs(0). D ‘ .. (2:8)

;I‘he proof shows that the limit in (2.2) must exist under the other conditions of
the theorem; (2.2) is only required to insure that this limit is 0. Concerning
estimation of f, 5(0), see Brillinger (1975), Jenkins and Watts (1969). In par-
ticular (Brillinger, 1975, chapter 7) for any sequence Bp — 0 such that
BrT — co an estimator will generally exist having bias O(By) and variance
O(B3!T1); for symmétric weight functions the bias will be O(B3%). Variance
reducing techniques which- take into account the onesidedness of the f, g()\)
Fourier series (e.g. Bhansali and Karavellas; 1983) and as in Heidelberger and.
Welch (1981) may also be applied. Further terms in the Taylor expansion ‘of -

I(v) may be obtained by means of cumulant spectra (Brillinger and Rosenblatt,
2 WS k

1967), e.g. -ag—,; l(v) = f55(0,0) where ff gg(N;; Xg) is the cross-
1%

bispectrum.

Control variates may be used to achieve further variance reduction. Sup-
pose that we can find some simple function I:t‘, say, of the past observations,
which approximabés reasonably closely the per"fdrmance measure Lg-and whose

expectation is analytically calculable and differentiable. For example, we might

take L; to be a linear combination of functions g,(X;) such that %E,,g(xi)
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can be calculated analytically; or simbly <

= o :
Li= o(v) + Ld(v)Xy; (2.9)
: - i=0 :
for nonrandom regression coefficients c(») and dj(v); or in the case of a
GI/G /1 queue with L, the sojourn time of a customer, L, might be a weighted
average of the difference between the service times and the interarrival times

of afew of the"precédiﬁg customers in the sygtém. Then
L) = LB L L+ LEL, = BAL-LISS, }+ 2EL, (2.10)
v St A= et 5 Lllha el

Thus we may estimate thé cross spectral density ‘funcﬁion between L I:,,' and
S; rather than L, and S;, the advantage beiﬁg that judicious choice bof I:,t may
result in a cross spectral -density function that is flatter ﬁcar the origin (for
exa.t_uple, a preliminary simulation may be used and L, regressed on the
prebceeding Xj). We may then use a spectral density estimator with wide win-
dow without substantially increasing the bias of the estimator while reducing its

variance significantly.

For a regenerative process, there is some random time 7 such that Ly is
ihdependent of §;; j<t-7.In this case t-7:is a,vregeneratipn time of the
_pr&cess. .‘Then since E(LyS; i) = E(LSy i | k<7) i:’(kST) we may estimate
the cross-covariance using only terms L; and S; in the same regenerative

cycle, further reducing the variance of the score fuﬂction estimator to (T ).

Further details will be given elsewhere.
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