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ABSTRACT

The problems of assessing, comparing and combining probability forecasts for a binary
events sequence are considered. A Gaussian threshold model (analytically of closed form)
is introduced which allows generation of different probability forecast sequences valid for
the same events. Chi-squared type test statistics, and also a marginal-conditional method
are proposed for the assessment problem, and an asymptotic normality result is given. A
graphical method is developed for the comparison problem, based upon decomposing
arbitrary proper scoring rules into certain elementary scoring functions. The special role
of the logarithmic scoring rule is examined in the context of Neyman-Pearson theory.

1. INTRODUCTION

In the usual context of probability forecasting, we have a sequence of binary
events, i.e. of Bernoulli random variables Z;, i =1,2--, which take values 0 or 1. We
assume these variables to be independent, but not identically distributed. There also are
one or more forecasters who -- presumably on the basis of suitable analyses -- each
provide a corresponding sequence P, i =1,2,--- of stated probabilities for the events. It
is purported that Pr{Z;=1] = P;, for all i.

Three distinct problems arise. Firstly, given one such sequence (Z,P),

i=1,---,n, we seek to assess, nonparametrically, whether or not the Z’- can be considered
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to have arisen from the stated P/’s. That is, we seek to test the null hypothesis

Hy: Pr(Z;=1]=P; foralli. 1.1

<
This is the problem of assessing an individual forecaster. Secondly, given the forecasts
P;»‘, PiB, i=1,---,n, from two (or more) forecasters, A and B, say, we wish to determine
which of these forecasters provides the better forecast. This is the problem of comparison
and it need not admit a unique resolution. Last, though not least, is the problem of
combining the P:~4’s and PiB’s to obtain a best possible combined forecast P"-‘B. The
most common context in which these problems are considered is weather forecasting, but
there are many other applications including probabilistic medical diagnosis, stock market
prediction, measurement of knowledge, assessing fit in models having binary dependent
variables, etc. Some points of entry to previous work are Clemen (1989), Dawid (1986),
DeGroot and Fienberg (1986), Krzysztofowicz and Long (1991), Murphy and Winkler
(1984), and Schervish (1989).

Our purpose is to explore some aspects of the problems mentioned above. In the
section following we introduce a model of closed form which may be used for generating
different sequences of probability forecasts valid for the same event sequence. This model
is useful for application in simulation studies where suitable data sets must be generated
for analysis. In sections 3, 4, and 5 respectively we present some new methods or results
for each of the three main problems — i.e. assessing, comparing and combining - of
probability forecasting. Section 6 explores connections between scoring rule methods and
the Neyman-Pearson theory. Finally in section 7, some avenues for further work are
indicated.

2. A GAUSSIAN THRESHOLD CROSSING MODEL.

To begin with, it is not immediately apparent that different sequences of
probabilities can simultaneously all be valid (in the sense defined below) for the same
sequence of binary event variables Z; A commonly cited type of example has the
following form: half of the Z s are generated with probabilities 1/4 and the other half
with probabilities 3/4, with these probabilities constituting one sequence; a second

sequence of probabilities then consists of values all equal to 1/2. Strictly speaking,
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however, the second sequence is not quite valid, for the distribution of Z'I'Zi is not
binomial with parameters n and 1/2 as tacitly implied, even though a typical test of fit
will tend to accept H,, too often. Interestingly, the second sequence is nevertheless well
calibrated in the sense that the relative frequencies of the events do correspond correctly
to the stated probabilities (see, for example, DeGroot and Fienberg, 1982, or Dawid,
1982). This leads us to define validity to mean, roughly, that the correct distributional
properties (appropriate to the independence and Bernoulli P; disttibufional assumptions)
would be maintained if suitable replications of the system could be conducted. In any
event, it is of interest to obtain other types of examples, especially ones allowing more

substantive structure.

To this end, and for conceptual reasons, it is useful to consider an underlying
data generation mechanism of the following kind: the outcome Z;=Z(X,Y,U,V,)
depends functionally upon the random vector (X, Y;,U;,V;) which is sampled from some
distribution, and the overall success probability is P; = F 2(X 2 Y U; V'-). Further, we
suppose that we have two forecasters, A and B say, and that A has prior access only to
X; while B has prior access only to Yi. An entity called nature is considered to have
access not only to X; and Y, that is to all information available to any forecaster, but
also to certain additional information U ; that is not available to them. For the moment,
it is convenient to allow for the possibility that there is also a “component of
information” V; unknown to nature. Then it follows from the next Lemma that P'A =
PAX,) = E[Z(X,Y,U,V;)| X;] is the best forecast available to 4, PP = PR
= E[Z(X,Y,U,V;)|Y;] is the best forecast available to B, that P”-‘B =
PAB(X,Y,) = ElZ(X,Y,U,V)|X,Y,) is the best forecast that could be made if
the information available to both A and B were pooled, and likewise that
P?at Z P?at( X, Y,U) = E[Z(X,Y;,U p VI Xp YU ;] is nature’s optimal forecast.

Lemma 2.1 P;-4 is well calibrated and is the best forecast for A in the sense of

minimizing any proper scoring rule.

Proof: For the definition of proper scoring rules, see §4 below. The argument is
conditional on the value of X, Then P:‘:P;A(X'-) is in fact the probability that

Z; =1, 50 that if S is any proper scoring rule we have

E[S(Z,P)| X;] < E[S(Z;e(X))] X;)
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for any function ¢ of X ;. Taking expectations then gives
ES(Z;, P < EIS(Z;,9(X)))

and the result follows. 0O

If the random variable V; were omitted in the discussion above (or equivalently if
nature were assumed to know V, also) then nature’s best forecast would always be
categorical, taking on values 0 and 1 only (and equal to Z;). From an applications
standpoint, however, this viewpoint is often inconvenient. In any case, from these
considerations, and by virtue of the properties of conditional expectation of indicator
variables, it is clear now that different probability sequences can in fact be generated (for
the same event sequence) that will be not only well-calibrated, but in fact fully valid in
the sense defined above.

In the formulation above, the conditional expectation quantities P'A, P'-B 5 PfB =
etc., are in principle determined from the joint distribution of the underlying variables
X;, Y, U, V, and from the form of Z(-). Unfortunately these probabilities will in
general not have a closed functional form. For use in simulation studies and for other
purposes, however, it is of some interest to have in hand models of closed form. To this
end, we introduce the following Gaussian and threshold crossing based model. Thus
suppose that (X,Y) is standardized bivariate normal with correlation p. We assume now

-that there are two forecasters A and B who know only X and Y respectively. Let
T = p+aX+8Y +e, 21
where e is N(0,1), and suppose that
Z=1 it 589 2.2a
while
Z=0 if F<o. 2.2b

It follows that

PAB — PIr>0|X=12,Y =y} = ®(u+oaz+py), 2.3
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where ® is the N(0,1) cdf. Further, given X =z we have Y ~ N(pz,1- p2) or
Y = pz +\]1 - p®.n where n ~ N(0,1) so that

I''=p+ (a+Bp)z + ﬂ-\ll—p2-r) + e

and consequently

PA=P{r>olx==}=¢(ﬁ“+(‘”’3")’ ) 2.4
Likewise Lt ﬁ2(1 = p2)
PB = Pir >0 Y=y} = Q( p+(ﬂ2+ap)y ) 2.5
l+a (l—pz)

The expressions (2.4) and (2.5) provide the best possible forecasts, respectively, when only
X or Y are known, while (2.3) provides the best possible forecast when both X and Y are
known. By means of this model and its obvious multivariate extensions, and such closed
form expressions as (2.3)-(2.5), we may generate arbitrary numbers of different

probability sequences all valid for the same event sequence.

3. ASSESSING

Basic global statistics for testing the fit of a sequence of probability forecasts to a
corresponding binary event sequence may be obtained for various choices of the weights

W‘- in the form
n
& = ? Wi(zi“Pi)’ 3.1

which will be asymptotically normal provided that general conditions which limit the
evolving proportion of P’s close to 0 and 1 are met. The choice W, =1 for example was
proposed in Murphy (1969) and leads to an overall calibration test statistic equivalent to
the difference of means quantity Z —P. The choice W;=1-2P; was introduced in
Seillier and Dawid (1987). A natural generalization is to consider a number of statistics
§o0 &0 0 &s of the form (3.1) where EJ- corresponds to the choice W, = Lj(P,-) for the
weights, and the L ;j are a sequence of polynomials respectively of degree j exactly, for
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j=0,1,---,5. A test statistic consistent against a wide class of alternatives can then ‘be

constructed using the vector § = (60,-- - &)’ and its covariance matrix I having entries

This natural test will reject for large values of ¢S~ lf which under H,, will be xg +1°

" Concerning the statistic {'2_16, it is worthwhile to note (from the identity
(A8)(Az4’)~ 1(4€) = €T~ 1¢) that its value does not depend upon the choice of the
polynomials L jr 88 long as the degrees of the polynomials remain as stated. Hence the
test statistic depends upon s only (and the selected value of s determines a tradeoff
between power properties and the extent of consistency). We applied this procedure, using
s =5, to the cancer data set (n = 306) as reported in Haberman (1976), and studied by
Landwehr, Pregibon and Shoemaker (1984). The latter authors examined two logit
models for these data, and we used the probability sequences resulting from these two
fits. The resulting x2 values (d.f.= 6) were 14.9 and 1.43 suggesting lack of fit in the first

model, and overfitting in the second — consistent with the other findings of these authors.

On examination of many data sets, we found that the “distribution” of the P,’s
can frequently be adequately approximated by some beta density f(p;a,f). This allows

2

an interesting decomposition of the x“ statistic into approximately orthogonal

components: if the L j are the Jacobi polynomials (Davis and Rabinowitz, 1984) defined
on [0,1], corresponding to estimates of « and B, we will then have approximate

orthogonality in (3.2). Details may be found in a technical report by the authors.

Suppose now that in place of statistics of the form (3.1), we work instead with

W g 3.3
iF-P)
Then W; based on the Legendre polynomials L § (defined by orthogonality on [0,1]), for

example using W i= L J-(i/(n+ 1)), will lead to nearly orthogonal components. We also

could consider Fourier weights
W, = \Z-cos 228 and Wi = \Z-sin 2 3.4

with j = 0,1,--+,s which results in exact orthogonality.
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The asymptotic normality of statistics such as (3.1) and (3.3) is of interest. By
Lindeberg’s condition (see for example Shiryayev, 1984, p.326) the asymptotic normality
of (3.3), for instance, is equivalent to the approach to 0, as n—oo, for any ¢ > 0, of the
quantity

§n: W2/ 2dF() 5
; ] 3.

= U] el et FTERR

i=1 |w'.'

7P,
where F; is the cdf of Y; = Lt . For weights (3.4) however, |W;1l < %, s0

P.(1-P.
that (3.5) is i
2 & 2
< dF 3.6
-ﬁig /Iyl>f\|§y i)

n
$ w2t 3.8
1=1

for any §>0. We are thus led (using the Cramer-Wold devise, ibid. p.517) to the

sufficient condition

n
11+6 '231[}_’,.(1-&)]-‘s =0, as n—oo, 3.9
I =

n

for some 6 > 0, for the asymptotic normality of finite collections of terms (3.3) based on
weights from (3.4). This condition limits the evolving proportion of P’s close to 0 and 1.
Similar calculations may be carried out for statistics of the form (3.1); for these we
require, in addition to (3.9), also that the condition
{wfp f(1-P) / {ZW2P,(1-P)} =0(n~1) holds uniformly in j.

In the procedures discussed above, an excessive number of P; too close to 0 or 1
can lead to unstable test statistics. Consequently, we may wish to carry out separate
analyses for the extreme P segments of the data. The three independent p-values
obtained for tests based on the data segments of P ~0, P ~ 1, and the remaining data,
could then be combined (perhaps by Fisher’s method). To this end we now indicate a

significance testing procedure that may be applied to an extreme-P segment of a data set.
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Thus suppose for illustration that (in some larger data set under investigation) we find
that there are, say, 20 observation pairs (Z # P;) corresponding to values of P; <.05 given

as follows:

(0, 0.0001), (0, 0.0001), (0, 0.0002), (1, 0.0003), (0, 0.0005), (0, 0.001), (0, 0.001),
(0, 0.002), (0, 0:002), (0, 0.005), (1, 0.01), (0, 0.02), (0, 0.02), (0, 0.02), (0, 0.03),
(0, 0.04), (0, 0.05), (0, 0.05), (0, 0.05), (0, 0.05).

Now, because all P; here are small, the marginal (total) quantity T = E%OZ'- in this
segment will, under H,, be approximately Poisson with mean A = 2¥0Pi= .3522 so
that the probability of obtaining a value at least as high as the T' = 2 actually observed is
approximately .0493. (The exact value is in fact .0471.) In many situations it will be
appropriate to leave this p-value one-sided. In any case, conditional on T =2, the
configuration of the values shown appears unusual in that the Z ; = 1 occur in conjunction
with relatively smaller P;. In fact, for T = 2, there are (220) = 190 configurations for the
vector Z = (Zy,*-+Zqq), and the probability of any one, conditional upon T = 2, is given
by
PP j

PPy
T=P)a-P) / &, T-FP)A-F) 3.10

where k, | reference the nonzero Z’s. By means of a simple computer program (we used
the S language) we may calculate all 190 probabilities, order them from smallest to
largest, and so determine that the (conditional)‘ probability of obtaining the configuration
actually observed, or of any configuration of equal or lesser probability, is in fact 0.0257.
Therefore altogether it appears that for the given data we have too many Z =1

occurrences, and that these occur in a relatively unlikely configuration.

The question arises as to how the p-values -- obtained from the marginal and the
conditional test procedures — can be combined; in this respect, the viewpoint from the

conditional inference model
f(zie,2) = f(t9)-f(s]t,2), 3.1

where z = (s,t), appears germane, at least approximately. The identifications to be made

here are:
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s « observed configuration, )\ « configuration probabilities.

In the model (3.11), the off-diagonal entries of the Fisher information matrix are null, so
that asymptotically, inferences concerning ¢ and A are independent. It is therefore
tempting to treat the p-values from the conditional and marginal tests as approximately
independent. However, in the present context, the given data are not being used to assess
the plausibility of various values for ¢ and ), but rather we are seeking to check the
plausibility (goodness of fit) of the data using given values for ¢ and A\. We leave open

the inevitable and interesting questions which now arise.

4. COMPARING

Comparative assessment of two or more forecasters is often carried out by means
of scoring rules S(Z,P). See, for example, Savage (1971). We adopt the convention that
EfS(Z,-, P;) is to be minimized. We remark here that we shall consider the scoring rules
S(Z,P) and S(Z,P)+ f(Z) to be equivalent. A scoring rule S is said to be- proper if its
expectation, EPS(Z,Q) = P-S(1,Q) + (1-P)-5(0,Q), regarded as a function of Q,
is minimized when Q = P, and is said to be strictly proper if Q = P is the unique
minimum. Typical rules are Brier’s score (Z-— P)2, and the logarithmic score
—log pZ 1- P)l =Z, A characteristic difficulty is that the results of a comparison often

depend upon which scoring rule is used.

In certain cases, one forecaster may in fact be better than (or at least as good as)
another regardless of which scoring rule is used. For example, this will be the case if
forecaster A is sufficient for forecaster B, so that B’s forecasts behave stochastically like
those of A plus an auxiliary randomization. See, for example, DeGroot and Fienberg
(1982, 1986) We shall say that forecaster A is uniformly at least as good as forecaster B if
A’s expected score is at least as good as B’s for any proper scoring rule. Related to the

results of DeGroot and Fienberg we have:

Lemma 4.1 If forecaster A is sufficient for B, then A is uniformly at least as good as B.
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Proof: Let S be any proper scoring rule and suppose that A stochastically dominates B.
Then the forecasts of A and B are related as PB = f(PA,R) where R is a random
variable independent of PA and Z. However since PZz=1]= PA and S is proper we
have E[S(Z,PA)| R] < E[S(Z,PB)| R] and hence ES(z,PA) < ES(2,PB). O

We now consider the problem of constructing a data analytic procedure for
examining such questions as whether or not A is uniformly at least as good as B. It turns
out that we may approach this by means of a graphical procedure based upon certain
elementary scoring rules to be defined below. We first record the following representation
result due to Shuford, Albert and Massengill (1966), Savage (1971) and Schervish (1989):

Lemma 4.2 S(Z,P) is a proper scoring rule if and only if it may be represented in the
form
5(L,P) = [L(1-2)-du(z) 4.1a

S(,P) = fon-dy(z) 4.1b

for some positive measure u on [0,1]. The scoring rule will be strictly proper if and only if

4 assigns positive measure to every nondegenerate subinterval of [0,1].

We now define the elementary scoring rules S,4(Z, P), for all a € [0,1], as those

corresponding to (4.1) when y is a unit point mass at a. Thus

S$41,P) = 1—-a if P<a 4.2a
=0 if P>a,
and
Sal0;P) = a i P>a 4.2b
=0 if P<a,
or equivalently,
$4(Z,P) = (1-0a)-I(Z=1, P<a) + 6¢-1(Z=0, P>a), 4.2¢

where I is the indicator function. Then clearly, if S is any proper scoring rule we will

have

S5(2,P) = [} 54(2,P) du(a) 43
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for some positive measure u. In this sense the elementary scoring rules can be said to
“generate” all the proper scoring rules and the following result is an immediate

consequence:

Lemma 4.3 Forecaster A is uniformly at least as good as B if and only if A is at least as

good as B for all elementary scoring rules.

Now suppose that we have two forecast sequences, P'A and P‘B , for events Z.
i=1,---,n. The comparison across all elementary rules can be carried out graphically as
in Figure (4.1). For this Figure, the event sequence, and the forecasts for A and B were
derived using the Gaussian threshold model with n = 200, and parameter values u =.5,
a=.5 =1, and p =.25. The forecasts used for A were the best forecasts based solely
on the X’s as given by (2.4), while the forecasts used for B were the best combined
forecasts as given by (2.3). In this situation, we know that B’s forecasts are uniformly
better than those of A. In Figure (4.1), the two solid lines trace the empirical values of
the totals of the elementary scores for A and for B as a ranges over (0,1), except for an
alteration in scaling as noted at the end of the following paragraph. The line for A is the
one at the top. We remark here that by virtue of (4.2c) the computation of these score
averages involves only simple counting procedures. For this data set we see that B’s total
score falls below A’s for all a. We consequently know that for this data set, B’s empirical

score will be better than A’s for any choice of a proper scoring rule.

To help assess the statistical significance of the differences between the two

curves in Figure (4.1), we need to establish the variance of their difference
D) = ¥ (842, P2) - 542, PB 44
(0)—,21[,;( iri) a( i ,)] 2
t=

at each value of a. Now the n terms in this sum are assumed independent, but they are

not identically distributed. We find
n
var(D(a)) = zl[sa(l, PA)-5,(1,PB) - 5,00,PA)+5,0,PP)? . P1-P). 45
1=

To evaluate this last expression, >we require values for the probabilities P:-‘, P,B . One

possibility is to obtain these by fitting a logit model such as A\; =+ Bz\f‘o{- 7)? to the

data, where /\’- =iln 1—_—'}5: and likewise for /\;4 and ,\iB . There is however a more practical
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Fig. 1: Elementary Scores Plot

way to proceed. Under the null hypothesis that the forecasters are equivalent, the terms
in the sum in (4.4) have zero means and can be regarded as having been sampled from a
mixture distribution. But the variance of a mixture distribution is the corresponding
linear combination of the variances of the component distributions, provided the means of

these distributions are identical. Consequently we are led to the estimate

var(D(a)) =

n
(nZI)iE:l(yi—y)z L

where y; = Sa(Z'-,PA) - 854(2; PB). Using this expression, we computed upper and
lower pointwise confidence limits. These centered bands are shown plotted as dashed
lines, each =+ 1 standard error from the midpoint (for each a) of the score curves; thus
when the total score curves (both) lie outside these bands, they are two standard errors
apart and their difference is significant at the .05 level. These calculations were carried
out using a combination of the S language and Fortran. Finally, we remark that we
actually had used scores S;(Z, P)/a(1 — a) instead of S,(Z, P) in producing Figure (4.1),
with corresponding adjustments to the confidence bands; this provides a qualitatively
simpler visual display for this data. Such rescaling, of course, does‘not affect the

quantitative content.
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Fig. 2: Density Plots

A simpler, if less comprehensive, graphical procedure applied to the same data set
is illustrated in Figure (4.2). Here we have plotted density estimates of the values of P
corresponding to the events Z =0 and Z =1 for the two sets of forecasts. The density
estimates were obyained using the “density” routine in the S computing language using
the smallest kernel bandwidth that provided curves judged to be adequately smooth; each
of the four density estimates is scaled so that the total area. under each curve is
proportional to the number of events in question. Here the starred lines correspond to
forecaster B, and are seen to be more concentrated about the 0 and 1 extremes than the
solid lines for forecaster A. We remark that when there is too little data to obtain reliable
nonparametric density estimates, beta distributions may often be fitted to the data and

plotted instead.

5. COMBINING

The problem of combining probability forecasts in an optimal way has an
extensive literature. See for example Clemen (1989), Genest and Zidek (1985), Hogarth
(1977), Lindley (1982).
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Here we consider briefly the following problem. We suppose that the data
(Z'-, P'A,P,-B), i=1,--4n, can be considered to have been generated in accordance with
the Gaussian threshold model as in equations (2.1)-(2.5), with the parameters y, a, 8, p
being unknown. The sequences P’A, PiB of forecasts are assumed to be best possible
based on knowledge, by A and B, of X ; and Y respectively. The underlying X pYpoe

are unknown. We seek to estimate the best combined forecasts:

PAB = @(u+aX,+pY): 51

(See equation (2.3).) Now, from (2.4) and (2.5) we have

1P = uy+o,X; and 8L PP) = uptopy, 5.2
where
I a+ Bp
By = v Oy = : 5.3a
NL+621- 7)) 1+ 8%1- 4%
B B+ap
pg= y og= . 5.3b
1+a2(1—p2) 1+02(1—p2)

(We may assume ¢ 498> 0 by reversing signs for the X’s and Y’s, if required. The
degenerate cases o 4, op =0 would mean that forecaster possesses no useful random
information, and is not permitted.) It follows that u 4» BB 04, Op, p are the mean,
standard deviation and correlation parameters of the bivariate Gaussian quantities
-2 l(}":-4), @~ 1(P’-B) and may be estimated in the obvious way. These estimates may
then be substituted into (5.3a,b) to yield four equations (with redundancy) which may be
solved (in closed form) to obtain estimates for y, o and 8. Once u 4» BBy 04 Op are
estimated, we may estimate X, and Y by inverting (5.2) and finally estimate P,AB using
(5.1). Note that one aspect of the solution is that knowledge of the Z’s is not required.
However because robustness properties have not been investigated, applicability of the
Gaussian threshold model to the problem of combining forecasts may be limited to cases
where the model assumptions, are met. Further details and investigations are given in the

mentioned technical report available from the authors.

6. THE NEYMAN-PEARSON CONNECTION

Given an events vector Z = (2 1**Zyp), and probability vectors denoted here as

P =(Py,--Py) and Q=(Qq,-:+Qyp) and corresponding to two forecasters, it is
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seemingly natural to attempt to distinguish among them on the basis of the log likelihood

ratio statistic
Z; 1-2;
Qiu-g) %

i(1- p',)l =

n
= —igl [S109(2Q)) - S10g(Zis P} s

where Slo g is the logarithmic score. In the Neyman-Pearson context, this statistic is the
most powerful for testing the hypothesis that the events Z were generated according to
the model P versus the alternative that they were generated from Q. However, for the
Neyman-Pearson Lemma to be in force, it is necessary that the vector Z have been
generated according to either one or another of the hypotheses, and this condition
generally need not be met in probability forecasting applications. Yet, although we know
that different score functions are generally inconsistent amongst themselves, the
logarithmic score appears somehow to occupy a special place here. A related issue is
whether there is a particular score function that is optimal for distinguishing among any

two given forecasters.

In this connection we record here three results:
Lemma 6.1 Negative log likelihood is a proper scoring rule.

Proof: This follows because the negative log likelihood for Z generated from P is

n Z,; 1-2.
- logi 1=1 ) B (L= b ¢
which corresponds to the logarithmic scoring rule S(Z, P) given by S(1,P) = —log P
and S(0,P) = -log (1-P). O

Lemma 6.2 The likelihood ratio test corresponds to a comparison among forecasters
based on the logarithmic scoring rule.

Lemma 6.3 If either of the two forecasters A or B is valid and stochastically dominates
the other, then the likelihood ratio test based on Z, PA, PBjs optimal for discriminating

among them.
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Proof: The validity implies that there is a conditioning under which Z can be regarded
as having been generated from the valid probabilities sequence, while the domination

implies that the other sequence is not valid under that conditioning. O

7. FINAL REMARKS

We indicate two main areas in which limited work has been done and which we
believe will lead to further useful results. The first involves multivariate extension in the
sense that each forecaster must provide a k-variate probabilities vector (Pspre+Pyy) for a
k-variate binary occurences vector (Z‘-I,---,Z ilc) at each time i=1,2.-.. (But see
DeGroot and Fienberg, 1986.) This situation arises, for example, when precipitation
probabilities are required for several regions that are close enough to involve correlational
effects. The other involves time series extension, as for example when daily precipitation
occurences and their corresponding forecasts are in fact correlated over time. The case of
stationarity is the natural one for initial study. The time series aspect has a second
variant, namely the case when a sequence of probabilities is generated by providing, at
regular time intervals, forecasts for the same future event. Finally, the multivariate and
time series contexts can be considered in combination. It may readily be seen that the
methods of the previous sections will not carry over without some modifications; in
particular, the key concepts require appropriate reformulation and the test procedures

must be suitably extended. We believe these to be fruitful avenues for further work.
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